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and Deductive Veri�cation, they are still limited in theirability to handle large systems. It is generally recognizedthat the only way these methods can ever scale up tohandle industrial-size designs is by the extensive use ofabstraction and modularization, which break the taskof verifying a large system into several smaller tasks ofverifying simpler systems.In this paper, we review the two main tools of com-positionality and abstraction in the framework of lin-ear temporal logic. We illustrate the application of thesetwo methods for the reduction of an in�nite-state systeminto a �nite-state system that can then be veri�ed usingmodel checking.To simplify matters, we have considered two specialclasses of in�nite-state systems for which the combina-tion of compositionality and abstraction can e�ectivelysimplify the systems into �nite-state ones. The �rst classis where the unboundedness of the system results fromits structure. These are parameterized designs consist-ing of a parallel composition of �nite-state processes,whose number is a varying parameter. For such systems,the source of complexity is the control or the architec-tural structure. We describe the techniques useful forsuch systems as control abstraction, since it is the con-trol component that we try to simplify. Another sourcefor state complexity is having data variables which rangeover in�nite domains such as the integers. We refer tothe techniques appropriate for simplifying such systemsas data abstraction.Many methods have been proposed for the uniformveri�cation of parameterized systems, which is the sub-ject of our control abstraction. These include explicitinduction ([12], [33]) network invariants, which can beviewed as implicit induction ([20], [35], [15], [23]), meth-ods that can be viewed as abstraction and approximationof network invariants ([4], [32], [6]), and other methodsthat can be viewed as based on abstraction ([16], [13]).The approach described here is based on the idea of net-



2 Yonit Kesten, Amir Pnueli: Control and Data Abstraction: The Cornerstones of Practical Formal Veri�cation.work invariants as introduced in [35], and elaborated in[20] into a working method.There has been extensive study of the use of dataabstraction techniques, mostly based on the notions ofabstract interpretation ([9], [10]). Most of the previouswork was done in a branching context which complicatesthe problem if one wishes to preserve both existentialand universal properties. On the other hand, if we re-strict ourselves to a universal fragment of the logic, e.g.actl�, then the conclusions reached are similar to ourmain result for the restricted case that the property  contains negations only within assertions.The paper [7] obtains a similar result for the frag-ment actl�. However, instead of starting with a con-crete property  and abstracting it into an appropriate �, they start with an abstract actl� formula 	 evalu-ated over the abstract systemD� and show how to trans-late (concretize) it into a concrete formula  = C(	).The concretization is such that ��( ) = 	 .The survey in [8] considers an even simpler case inwhich the abstraction does not concern the variables onwhich the property  depends. Consequently, this is thecase in which  � =  .A more elaborate study in [11] considers a more com-plex speci�cation language { L�, which is a positive ver-sion of the �-calculus.None of these three articles considers explicitly thequestion of fairness requirements and how they are af-fected by the abstraction process.Approaches based on simulation and studies of theproperties they preserve are considered in [24] and [14].A linear-time application of abstract interpretation isproposed in [3], applying the abstractions directly to thecomputational model of fair transition systems which isvery close to the fds model considered here. However,the method is only applied for the veri�cation of safetyproperties. Liveness, and therefore fairness, are not con-sidered.2 A Computational Model: Fair DiscreteStructureAs a computational model for reactive systems, we takethe model of fair discrete system (fds), which is a slightvariation on the model of fair transition system [28]. Thefds model was �rst introduced in [19] under the name\Fair Kripke Structure".An fds D : hV;W;O; �; �;J ; Ci consists of the follow-ing components.� V = fu1; :::; ung : A �nite set of typed system vari-ables, containing data and control variables. The setof states (interpretation) over V is denoted by �.Note that � can be both �nite or in�nite, dependingon the domains of V .The variables in V are classi�ed as follows:

� W = fw1; : : : ; wng � V : A �nite set of ownedvariables. These are the variables that only thesystem itself can modify. All other variables canalso be modi�ed by the environment. A system issaid to be closed if W = V .� O = fo1; : : : ; ong � V : A �nite set of observ-able variables. These are the variables which theenvironment can observe.It is required that V =W [O, i.e., for every systemvariable u 2 V , u is owned , observable , or both.� � : The initial condition { an assertion (�rst-orderstate formula) characterizing the initial states.� � : A transition relation { an assertion �(V; V 0), re-lating the values V of the variables in state s 2 � tothe values V 0 in a D-successor state s0 2 �.� J : fJ1; : : : ; Jkg : A set of justice (weak fairness)requirements. The justice requirement J 2 J is anassertion, intended to guarantee that every compu-tation contains in�nitely many J-state (states satis-fying J).� C : fhp1; q1i; : : : hpn; qnig : A set of compassion (strongfairness) requirements. The compassion requirementhp; qi 2 C is a pair of assertions, intended to guar-antee that every computation containing in�nitelymany p-states also contains in�nitely many q-states.We require that every state s 2 � has at least one D-successor. This is often ensured by including in � theidling disjunct V = V 0 (also called the stuttering step).In such cases, every state s is its own D-successor.Let � : s0; s1; s2; :::; be an in�nite sequence of states,' be an assertion, and let j � 0 be a natural number.We say that j is a '-position of � if sj is a '-state.Let D be an fds for which the above componentshave been identi�ed. We de�ne a computation of D to bean in�nite sequence of states � : s0; s1; s2; :::; satisfyingthe following requirements:� Initiality: s0 is initial, i.e., s0 j= �.� Consecution: For each j = 0; 1; :::, the state sj+1 isa D-successor of the state sj .� Justice: For each J 2 J , � contains in�nitelymany J-positions� Compassion: For each hp; qi 2 C, if � contains in-�nitely many p-positions, it must alsocontain in�nitely many q-positions.For an fds D, we denote by Comp(D) the set of all com-putations of D. An fds D is called feasible if Comp(D) 6=;, namely, if D has at least one computation.An in�nite state sequence � is called a run of D ifit satis�es the requirements of initiality and consecutionbut not, necessarily, any of the fairness requirements.System D is said to be viable if every �nite run canbe extended into a computation. One of the di�erencesbetween the model of fair transition systems and the fdsmodel is that every fts is viable by construction, whileit is easy to de�ne an fds which is not viable, e.g., byhaving the justice list include the assertion false . On the



Yonit Kesten, Amir Pnueli: Control and Data Abstraction: The Cornerstones of Practical Formal Veri�cation. 3other hand, every fds which is derived from a programis viable.All our concrete examples are given in spl (SimpleProgramming Language), which is used to represent con-current programs (e.g., [28], [26]). Every spl programcan be compiled into an fds in a straightforward man-ner. In particular, every statement in an spl programcontributes a disjunct to the transition relation. For ex-ample, the assignment statement`0 : y := x+ 1; `1 :can be executed when control is at location `0. Whenexecuted, it assigns x+1 to y while control moves from`0 to `1. This statement contributes to � the disjunct�`0 : at�`0 ^ at�`01 ^ y0 = x+ 1 ^ x0 = x:The predicates at�`0 and at�`01 stand, respectively, forthe assertions �i = 0 and �0i = 1, where �i is the controlvariable denoting the current location within the processto which the statement belongs.Every variable declared in an spl program is speci�edas having one of the modes in, out , in-out , or local . Thisspeci�cation determines whether the variable is consid-ered to be owned or observable or both according to thefollowing tableMode Owned? Observable?in N Yout Y Yin-out N Ylocal Y N3 Operations on fds'sThere are several important operations, one may wishto apply to fds's.The �rst useful set of operations on programs andsystems is forming their parallel composition, implyingthat the two systems execute concurrently. Consider thetwo fair discrete systemsD1 = hV1;W1;O1; �1; �1;J1; C1iand D2 = hV2;W2;O2; �2; �2;J2; C2i. We consider twoways of forming the parallel composition of D1 and D2.3.1 Asynchronous Parallel CompositionThe systems D1 and D2 are said to be composable ifW1 \W2 = ;; V1 \ V2 = O1 \ O2 and neither systemmodi�es the variables owned by the other, i.e.,�1 ! pres(W2 \ V1) and �2 ! pres(W1 \ V2):The �rst condition requires that a variable can only beowned by one of the systems. The second condition re-quires that variables known to both systems must beobservable in both.

For composable systems D1 and D2, we de�ne theirasynchronous parallel composition, denoted by D1kD2,to be the system D = hV;W;O; �; �;J ; Ci, whereV = V1 [ V2 W = W1 [W2O = O1 [O2 � = �1 ^ �2J = J1 [ J2 C = C1 [ C2� = ��1 ^ pres(V2 � V1) _�2 ^ pres(V1 � V2) �For a set of variables U � V , the predicate pres(U)stands for the assertion U 0 = U , implying that all thevariables in U are preserved by the transition.Obviously, the basic actions of the composed systemD are chosen from the basic actions of its components,i.e., D1 and D2. Thus, we can view the execution of Das the interleaved execution of D1 and D2.As seen from the de�nition, D1 and D2 may havedisjoint as well as common system variables, and thevariables of D are the union of all of these variables. Theinitial condition of D is the conjunction of the initialconditions of D1 and D2. The transition relation of Dstates that at any step, we may choose to perform a stepof D1 or a step of D2. However, when we select one ofthe two systems, we should also take care to preservethe private variables of the other system. For example,choosing to execute a step of D1, we should preserve allvariables in V2 � V1 and all the variables owned by D2.The justice and compassion sets of D are formed asthe respective unions of the justice and compassion setsof the component systems.Asynchronous parallel composition corresponds to thespl parallel operator k constructing a program out ofconcurrent processes.3.2 Synchronous Parallel CompositionWe de�ne the synchronous parallel composition of D1and D2, denoted by D1kjD2, to be the systemD : hV;W;O; �; �;J ; Ci;where V = V1 [ V2 W = W1 [W2O = O1 [O2 � = �1 ^ �2J = J1 [ J2 C = C1 [ C2� = �1 ^ �2As implied by the de�nition, each of the basic actions ofsystem D consists of the joint execution of an action ofD1 and an action of D2. Thus, we can view the executionof D as the joint execution of D1 and D2.The main, well established, use of the synchronousparallel composition is for coupling a system with a testerwhich tests for the satisfaction of a temporal formula,and then checking the feasibility of the combined sys-tem. In this work, synchronous composition is also usedfor coupling the system with a progress monitor , used toensure completeness of the data abstraction methodol-ogy presented in section 7.



4 Yonit Kesten, Amir Pnueli: Control and Data Abstraction: The Cornerstones of Practical Formal Veri�cation.3.3 Modularization of an fdsLet P be an spl program and D its corresponding fds.The standard compilation of a program into an fdsviews the program as a closed system which has no in-teraction with its environment. In the context of com-positional veri�cation, we need an open system view ofan fds, which takes into account not only actions per-formed by the system but also actions (in particular,variable changes) performed by the environment.Let D : hV;W;O; �; �;J ; Ci be an fds and s 62 V bea fresh boolean variable. The modular version of D, isgiven by DM : hVM ;W;OM ; �; �M ;J ; Ci, where,VM = V [ fsg OM = O [ fsg�M = (� ^ s0) _ (W 0 =W ^ :s0):That is, DM the modular version of D admits as an ad-ditional action a transition which preserves the values ofall variables owned by D but allows all other shared vari-ables to change in an arbitrary way. This provides themost general representation of an environment action.The scheduling variable s is used to ensure interleavingbetween the module and its environment. We refer toDM as the modular or open version of system D.We de�ne a modular computation of D to be anycomputation of DM .3.4 Restricting an Open Shared VariableWhen constructing a system out of smaller components,it is often the case that all processes within the systemare allowed to access a certain shared variable, but onlya subset of the processes is allowed to modify its value.For example, we may have a systemD = D1 k D2 k D3;in which all processes are allowed to access variable x,but only processes D1 and D2 are allowed to modify itsvalue.We provide a special restriction (sealing-o�) oper-ation, which moves one of the system variables to thecategory of owned variables, thereby disallowing its mod-i�cation by the environment.Let D : hV;W;O; �; �;J ; Ci be an fds and let U �V �W be a set of variables which are not owned by D.The result of restricting U in D, denoted by DnU is thefds DR : hV;WR ;O; �; �;J ; Ci, where WR =W [ U .Thus, to represent a system consisting of sub-systemsD1, D2, and D3, in which D3 is not allowed to modifyvariable x, we may writeD = ((D1 k D2)nx) k D3:To represent the closing o� of an entire system D,we write DR , which is an abbreviation for Dn(V �W ).This restricts the environment from writing on any ofthe system variables. A system such that W = V isoften described as a closed system, because it can haveno interaction with its environment.

4 Speci�cation Language: Temporal LogicAs a requirement speci�cation language for reactive sys-tems we take temporal logic (tl) [27]. For simplicity, weconsider only the future fragment of tl. Extending theapproach to the full logic is straightforward.We assume an underlying assertion language L whichcontains the predicate calculus and interpreted symbolsfor expressing the standard operations and relations oversome concrete domains. A temporal formula is constructedout of state formulas (assertions) to which we apply theboolean operators : and _ (the other boolean opera-tors can be de�ned from these), and the basic temporaloperators 2 (next) and U (until).A model for a temporal formula p is an in�nite se-quence of states � : s0; s1; :::; where each state sj pro-vides an interpretation for the variables mentioned inp. Given a model �, we present an inductive de�nitionfor the notion of a temporal formula p holding at a po-sition j � 0 in �, denoted by (�; j) j= p.� For a state formula p, (�; j) j= p () sj j= pThat is, we evaluate p locally, using theinterpretation given by sj .� (�; j) j= :p () (�; j) 6j= p� (�; j) j= p _ q () (�; j) j= p or (�; j) j= q� (�; j) j= 2 p () (�; j + 1) j= p� (�; j) j= pU q () for some k � j; (�; k) j= q;and for every i such that j � i < k; (�; i) j= pAdditional temporal operators can be de�ned by1 p = true U p (eventually)0 p = : 1 :p (henceforth)For a temporal formula p and a position j � 0 suchthat (�; j) j= p, we say that j is a p-position (in �). If(�; 0) j= p, we say that p holds on �, and denote it by� j= p. A formula p is called satis�able if p holds on somemodel. A formula p is called valid, denoted by j= p, if pholds on all models.Given an fds D and a temporal formula p, we saythat p is D-valid, denoted by D j= p, if p holds on allmodels which are computations of D. A property ' issaid to be modularly valid over fds D, denoted D j=M ',if ' is DM -valid, i.e., DM j= '.An algorithm for model checking whether a temporalformula p is valid over a �nite-state fds D is presented in[19]. The paper presents a version of the algorithm usingexplicit state enumeration methods as well as a symbolicversion. Based on the ideas developed in [22] and [5],the approach calls for the construction of a tester for thenegation of p. This is an fds D:p whose computationsare all the sequences which satisfy the negated formula:p. Then, we form the synchronous parallel compositionDcomb = DkjD:p and check for feasibility. If Dcomb isfound to be feasible, this implies that D has a compu-tation which violates p and therefore p is not valid over



Yonit Kesten, Amir Pnueli: Control and Data Abstraction: The Cornerstones of Practical Formal Veri�cation. 5D. If Dcomb is found to be infeasible, we can concludethat p is D-valid.5 Control AbstractionLet U � V be a subset of the system variables. Fora V -state s, we denote by s+U the U -state obtainedby projecting s onto U . That is, the interpretation srestricted to the domain U .The state sequence e� : es0; es1; : : : is de�ned to be anobservation of the fds D : hV;W;O; �; �;J ; Ci if e� is astuttering variant of the O-projection�+O= s0+O; s1+O; : : : ;where � : s0; s1; : : : is a computation of D. Let Obs(D)denote the set of all observations of system D.The two fds's DA : hVA ;WA ;OA ; �A ; �A ;JA ; CAiand DC : hVC ;WC ;OC ; �C ; �C ;JC ; CC i are de�ned tobe comparable, if OA = OC and OA \WA = OC \WC .The fds DA is an abstraction of the comparable DC , de-noted by DC v DA , if Obs(DC ) � Obs(DA), i.e., everyobservation of DC is also an observation of DA . We referto DC and DA as the concrete and abstract systems, re-spectively. The abstraction relation is obviously re
exiveand transitive.It would have been very useful if the abstractionrelation as de�ned above, would have been composi-tional with respect to (asynchronous) parallel compo-sition. That is, if DC v DA would have implied (DC kQ) v (DA k Q) for every fds Q. Unfortunately, this isnot the case.Consider, for example, the fds's correponding to pro-grams incx and incy presented in Fig. 1. Up to stut-tering and idling, both of these fds's have the uniqueobservationhx : 0 ; y : 0i; hx : 1 ; y : 1i; hx : 2 ; y : 2i; : : :It follows that incx and incy have the same set of ob-servations. In particular, this implies that incx v incy.However, when we consider the program Q given byin-out x : integerloop forever dom0 : x := 0we �nd out that the observationhx : 0 ; y : 0i; hx : 1 ; y : 1i; hx : 0 ; y : 1i; hx : 1 ; y : 1i; : : :belongs to Obs(incx k Q) but does not belong to the setObs(incy k Q). Consequently, while incx v incy,(incx k Q) 6v (incy k Q);which shows that the abstraction relation v is not com-positional.

Obviously, the problem lies in the fact that the rela-tion v is based on the set of observations of the closed-system fds semantics of programs. The di�erence be-tween programs incx and incy can be observed onlywhen we take into account actions of the environment,such as resetting variable x to 0. In the de�nition of thecompuatations (and therefore observations) of the fdsassigned to these programs, such actions are not repre-sented.Once we diagnose the malady, the remedy is quitestraightforward. We say that fds DA is a modular ab-straction of the comparable DC , denoted by DC vM DA ,if Obs((DC )M ) � Obs((DA)M ), i.e., every observation of(DC )M the modularized version of DC is also an obser-vation of (DA)M the modularized version of DA .Note that, while incy is a plain abstraction of incx,it is not a modular abstraction of incx. To see this wepoint tohs : 0 ; x : 0 ; y : 0i; hs : 1 ; x : 1 ; y : 1i; hs : 0 ; x : 0 ; y : 1i;hs : 1 ; x : 1 ; y : 1i; : : : ;which is an observation of incxM but not of incyM .When we upgrade from plain abstraction to modu-lar abstraction, we obtain the desired property of com-positionality of the abstraction relation with respect tothe operations of parallel composition and restriction, asstated by the following claim:Claim 1. Let DC and DA be two comparable fds's suchthat DC vM DA . Then, for every fds Q, and temporalformula ',1. (DC k Q) vM (DA k Q)2. (DC )R vM (DA)R3. DA j= ' implies DC j= 'We describe these compositionality properties by sayingthat the operations of parallel composition and restric-tion are monotonic with respect to modular abstraction,while temporal validity is anti-monotonic.This indicates how we propose to use abstraction inorder to simplify the veri�cation task. Namely, given aproperty p to be veri�ed over a complex system DC ,we use modular abstraction in order to derive a simplersystem DA and then verify that p is DA-valid. Note thatthe implication is still in one direction. Namely, validityover the abstract system implies concrete validity butnot, necessarily, vice versa. The most striking applica-tions of this strategy are when DC is an in�nite-statesystem, while its abstraction DA is �nite-state and thusamenable to veri�cation by model checking.The comparable fds's P and Q are de�ned to bemodularly equivalent , denoted P �M Q, if both P vM Qand Q vM P .6 Veri�cation by Abstract Network InvariantsIn this section, we concentrate on cases in which thesystem is a parallel composition P (n): (P1 k � � � k Pn)R ,



6 Yonit Kesten, Amir Pnueli: Control and Data Abstraction: The Cornerstones of Practical Formal Veri�cation.in-out x : integer where x = 0out y : integer where y = 0loop forever do`0 : (x; y) := (x+ 1; x+ 1)� incx � in-out x : integer where x = 0out y : integer where y = 0loop forever do`0 : (x; y) := (y + 1; y + 1)� incy �Fig. 1. Programs incx and incywhere each Pi is a �nite-state system. The �nal restric-tion of the parallel composition guarantees that no fur-ther interference from the environment is possible. Theunbounded number of states for system P (n) comes fromthe fact that we consider an in�nite family of systems,and yet wish to verify uniformly (i.e., for every value ofn > 1) that the property p is valid.The general principles of the method and one of theexamples presented in this section are shared with [20].The main di�erences between the two presentations arethat, while [20] considers processes communicating bysynchronous message passing, we focus here on commu-nication by shared variables, and we �nd the abstractionwe use somewhat simpler to comprehend, perhaps dueto the di�erent communication mechanisms.For simplicity, assume that the property p only refersto the observable variables of P1 and that processesP2; : : : ; Pnare identical (up to renaming). The strategy we proposecan be summarized as follows:Veri�cation by Abstract Network Invariants1. Devise a network invariant I , which is an fds in-tended to provide a modular abstraction for the par-allel composition P2 k � � � k Pn for any n.2. Con�rm that I is indeed a network invariant, bymodel checking that P2 vM I and that (I k I) vMI . The technique of model checking a modular ab-straction is presented in Subsection 6.3.3. Model check DR j= p, where DR is the restrictedsystem (P1 k I)R .We argue that this strategy is sound. Namely, if DR j= pthen P (n) j= p for every n > 1. Step 2 of the strategyestablishes P2 k � � � k Pn vM I. By monotonicity of theparallel composition (Claim 1), it follows thatP1 k � � � k Pn vM (P1 k I):By monotonicity of the restriction operation, we can con-clude thatP (n) = (P1 k � � � k Pn)R vM (P1 k I)R = DR :Due to the anti-monotonicity of the validity relation, itfollows that DR j= p implies P (n) j= p, establishing thatthe proposed strategy is sound.

local y: natural where y = 1ni=1 P [i] :: 264 loop forever do"Ni : NonCriticalTi : request yCi : Critical; release y #375Fig. 2. Program mux-sem.Step 1 in the strategy is the only one requiring inge-nuity and which cannot be fully mechanized. However,while presenting the examples, we will provide some ex-planations and clues for the choices we made.6.1 Mutual Exclusion by SemaphoresAs our �rst running example, we use program mux-sempresented in Fig. 2. The program consists of n processes.Each process P [i] cycles through three possible locations:Ni, Ti, and Ci. Location Ni represents the non-criticalactivity which the process can perform without coor-dination with the other processes. Location Ti, is the\trying" location, at which a process decides it needs toaccess its critical location. At the trying location, theprocess waits for the semaphore variable y to become 1.On entering the critical section Ci, the process sets yto 0. Finally, Ci is the critical location which should bereachable only exclusively by one process at a time. Onexit from the critical section, variable y is reset to 1.The mode local speci�ed for variable y identi�es y asbeing owned by the entire system but not by any of theindividual processes. This speci�cation ensures that hevariable y cannot be modi�ed by an enviornment agentexternal to the program. By the standard compilation ofspl programs, each process P [i] is associated with a jus-tice requirement Ji : :Ci and a compassion requirementCi : (Ti ^ y > 0; Ci). The justice requirement ensuresthat process P [i] does not remain stuck forever at loca-tion Ci. The compassion requirement ensures that P [i]does not remain stuck forever at location Ti while y turnspositive in�nitely many times. Note that a process maychoose to stay forever at Ni or may get stuck at Ti ify turns positive only �nitely many times and then re-mains zero forever. The latter behavior cannot occur inprogram mux-sem but this can be established only by aglobal analysis of the complete system.
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Crelease yN request yJ : :CFig. 3. Process inv-cand, a candidate for a network invariant.In Fig. 3, we present process inv-cand, which isour �rst candidate for the network invariant abstractingP [2] k � � � k P [n]. In this section we choose to repre-sent fds's by transition diagrams, in which we explicitlylist the fairness requirements. Process inv-cand can beobtained by simpilfying a single copy of the concreteP [2]. The simpli�cation consists of merging locations Nand T into a single location N and relaxing the fair-ness requirements associated with this combined loca-tion. This simpli�cation is suggested by noting that themain liveness requirement of accessibility is studied onlyfor process P [1]. The only liveness properties we requirefrom the environment processes P [2]; : : : ; P [n], is thatthey eventually exit their critical sections and releasethe semaphore. Thus, while being at location N , pro-cess inv-cand may choose non-deterministically to stayat N or move to C if y equals 1. There is no justicerequirement associated with location N , due the possi-bility that the process may choose to remain there. Onthe other hand, with location C, we associate the jus-tice requirement :C which excludes behaviors in whichinv-cand get stuck at C. Let us denote by Ca the fdscorresponding to inv-cand .A useful heuristic that often leads to the generationof network invariants is forming the sequence of fds'sI1 = Ca, I2 = Ca k Ca, I3 = I2 k Ca; : : : ; and compar-ing every two successive Ii's, hoping that the sequencewill converge. Convergence means that we identify anindex j � 0 such that Ij �M Ij+1. Trying this ap-proach with the fds Ca fails. Comparing I2:Ca k Cawith I1:Ca, we �nd that (I2)M can generate the obser-vationhy : 1 ; s : 0i; hy : 0 ; s : 1i; hy : 1 ; s : 0i; hy : 0 ; s : 1i;hy : 1 ; s : 1i; hy : 0 ; s : 0i; hy : 1 ; s : 1i; � � � ;which cannot be generated by (I1)M . Such a behav-ior can be explained as a scenario in the behavior ofP [2] k P [3] under an unrestricted environment. First,P [2] enters its critical section according to the step hy :1 ; s : 0i ! hy : 0 ; s : 1i. Then, while P [2] is still inits critical section, the environment raises y to 1, ac-cording to the step hy : 0 ; s : 1i ! hy : 1 ; s : 0i (weknow that this is an environmet step because s0 = 0.Then P [3] enters its own critical section, as recorded inhy : 1 ; s : 0i ! hy : 0 ; s : 1i. Following that, P [2] exitsits critical section (hy : 0 ; s : 1i;! hy : 1 ; s : 1i), theenvironment resets y to 1 (hy : 1 ; s : 1i ! hy : 0 ; s : 0i),

request yN Crelease y y > 0 �y := 0
y := 1J : :CFig. 4. The fds Imux, a network invariant for mux-sem.and �nally P [3] exits (hy : 0 ; s : 0i; hy : 1 ; s : 1i). Whatis special about this behavior is that I2 exits twice insuccession without an observable entry between thesetwo exits. In all behaviors of I1 = Ca, which has onlyone copy of P [2], every two exits must be separated byan observable entry.In a similar way, we �nd that I3 can exit its criticalsections three times in succession, if the environmentcooperates, which cannot be done by I2. This showsthat the sequence I1; I2; : : : will never converge.Looking closer at this example, we realize that thefactor that di�erentiates between I1 and I2 and betweenI2 and I3 is their response to a behavior of the environ-ment which will never be realized in the closed system,namely raising the semaphore variable to 1 while one ofthe processes is in its critical section. This leads us to thenext (and �nal) abstraction Imux, presented in Fig. 4.The system Imux behaves as Ca as long as the envi-ronment behaves properly. However, once it detects thatthe environment raised the value of y from 0 to 1 whilethe system was in the critical section, it goes into a chaoscontrol state in which \anything goes". That is, all arbi-trary sequences of values for the observable variables willbe accepted from this point on. It is obvious that Imuxis an abstraction of Ca because it di�ers from Ca in allthe additional behaviors it is ready to generate once itreached the chaos state.It is not di�cult to verify that Imux is a networkinvariant. We model checked that Ca vM Imux and that(Imux k Imux) vM Imux.It only remains to perform step 3 in the abstrac-tion strategy presented in the beginning of the section.We form the closed system fds D = (P1 k I)R anduse model checking to verify the liveness property D j=0 (N1 ! 1 C1). This has been done and establishedthat process P [1] of program mux-sem has the propertyof accessibility for any number of processes.6.2 The Dining Philosophers ProblemAs a more advanced example, we applied the techniquedescribed above to the problem of the dining philoso-phers. As originally described by Dijkstra, n philoso-phers are seated at a round table. Each philosopher al-ternates between a thinking phase and a phase in whichhe becomes hungry and wishes to eat. There are n chop-sticks placed around the table, one chop-stick between
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release L
request L

�
L R request Rrelease R

Nr
release R

Cr
request R

release L

C`
request L
N`

J : :Cr; C: (R; :C`)Fig. 6. The fds Icontr , the network invariant for program dine-contr.every two philosophers. In order to eat, each philoso-pher needs to acquire the chop-sticks on both sides. Achop-stick can be possessed by only one philosopher ata time.A solution to the dining philosophers problem, us-ing semaphores, is presented by program dine-controf Fig. 5.In this program, philosophers P [2]; : : : ; P [n] reach�rst for the chop-stick on their left, represented by sema-phore variable c[j] for philosopher j, and then for theirright chop-stick (semaphore c[j �n 1]). Philosopher P [1]behaves di�erently, reaching �rst for his right chop-stick(c[2]) and only later for his left chop-stick (c[1]). We wishto prove the liveness property of accessibility for each ofthe philosophers, which can be speci�ed by the temporalformula  acc: 0 (at�`2[j] ! 1 (at�`4[j]));for every j = 1; : : : ; n. This property ensures that everyhungry philosopher eventually gets to eat.Proceeding through a sequence of abstraction stepssimilar to the previous example, we �nally wind up withthe fds Icontr presented in Fig. 6.The diagram of Fig. 6 consists of two componentsthat operate in parallel, one taking care of the left sema-phore L and the other handling the right semaphore R.Whenever an environment fault is detected, i.e. the en-vironment raises a semaphore that has been lowered bythe system, both components escape to the chaos stateafter which all behaviors are possible. By the graphicalconventions, the transitions to a chaos state have prior-ity over internal transitions such as the one connecting(Nr; R) to (Cr;:R).Since Icontr is intended to abstract behaviors of astring of consecutive philosophersP [i] k P [i+ 1] k � � � k P [j];we should not be surprised that the behavior of the leftsemaphore L is only loosely coupled with that of the

right semaphore R. This is because L stands for c[i] (as-suming i > 1) the left semaphore of process P [i] the left-most process in the string, while R stands for c[j �n 1]the right semaphore of P [j], the rightmost philosopher.There is still a weak coupling which is expressed throughthe fairness requirement. For ordinary philosophers, whotake the right chop-stick last, the obligation to releasesemaphore R once it is taken, can be guaranteed locally,independently of the environment. This is expressed bythe justice requirement :Cr forbidding the system to re-main forever in Cr with the semaphore R occupied. Thesituation is di�erent with the left semaphore L. No sub-system (modeled by Icontr ) can unconditionally guar-antee release of L once it is taken. Consequently, thefairness requirement guaranteeing the release of L is for-mulated as the compassion requirement (R;:C`) makingthe release of L (as implied by being at N`) conditionalon the in�nite recurrence of an available R. Already atthe level of a single philosopher, after acquiring L thesystem proceeds to acquire R. If R is not available withsu�cient frequency, the system will fail in obtaining it,and will keep L occupied forever.It is straightforward to verify (using model checking)that Icontr modularly abstracts any of the processesP [2]; : : : ; P [n] and that (Icontr k Icontr ) vM Icontr .It follows that Icontr is a network invariant for any se-quence of regular philosophers. We can combine Icontrwith P [1] to establish the accessibility properties of thecontrary philosopher P [1].We can also verify the accessibility property for allordinary philosophers. To do so, we consider the combi-nation P [1] k Icontr k P [ordinary ] k Icontr , in whichwe use the network invariant Icontr as an abstractionfor the sequence of philosophers separating P [1] fromP [ordinary ] and then again as an abstraction for the se-quence of philosophers separating P [ordinary ] from P [1]in the other direction.In all of these combinations, we should remember toclose the ring by identifying the leftmost semaphore ofthe combination with the rightmost semaphore.6.3 Model Checking Modular AbstractionWhen carrying out the abstraction process as describedin this section, we are repeatedly required to verify thatone fds modularly abstracts another. Most of the avail-able computer aided veri�cation (cav) tools for ltl (e.g.,step [2] and tlv-basic[31]) are designed to support ver-i�cation tasks. That is, they accept as inputs a systemdescription, equivalent to an fds D, and a temporal for-mula ' and attempt to establish (or refute) that D j= '.In this subsection, we show how the modular abstrac-tion problem DC vM DA can be reduced into a veri�ca-tion problem. This reduction can be used in order toestablish the modular abstraction relation between sys-tems while using the available ltl veri�cation tools.



Yonit Kesten, Amir Pnueli: Control and Data Abstraction: The Cornerstones of Practical Formal Veri�cation. 9in n : integer where n � 2local c : array [1::n] where c = 1nj=2 P [j] :: 26666664 `0 : loop forever do2666664 `1 : NonCritical`2 : request c[j]`3 : request c[j �n 1]`4 : Critical`5 : release c[j]`6 : release c[j �n 1]
377777537777775 P [1] :: 26666664 `0 : loop forever do2666664 `1 : NonCritical`2 : request c[2]`3 : request c[1]`4 : Critical`5 : release c[2]`6 : release c[1]

377777537777775Fig. 5. Program dine-contr: solution with one contrary philosopher.The idea of proving abstraction (equivalently re�ne-ment) by forming a superposition of the abstract andconcrete systems, as we do here, has been proposed in[17]. The underlying theory of proving abstraction bysimulation relations is thoroughly discussed in [1] andapplied in [25], [34], [29], [21].In theory, for the case that both DC and DA are�nite-state, the modular abstraction problem is algorith-mically solvable. All that is required is to convert thetwo systems into !-automata, compute the complementof the DA -automaton, and check that the languages ofDC and DA have an empty intersection. However, veryfew symbolic model checkers provide that capability ofcomplementing a system and, even when they do, thisoperation could be exponentially expensive.Instead, we base our approach on the simple obser-vation that when DA is deterministic, it is possible toconstruct a combined system which will try to emulatethe joint computation of the two systems. For the casethat DA is non-deterministic, we rely on the user to pro-vide an additional restriction on the possible actions ofDA , reducing them to a single possible action. Thus, wetrade computational complexity for full automation, andour approach may require user interaction.Consider two comparable fds's:DC : hVC ;WC ;OC ; �C ; �C ;JC ; CC iand it's proposed abstractionDA : hVA ;WA ;OA ; �A ; �A ;JA ; CAi;and assume we wish to establish that DC vM DA . With-out loss of generality, we can assume that VC \ VA = ;;but that there exists a 1-1 correspondence between thevariables of OC and those of OA .We say that the fdsDS : hVS ;WS ;OS ; �S ; �S ;JS ; CS iis a superposition of DC and DA if it has the following

form:VS = VC [ VAWS = WC [WAOS = OC [ OA�S = �C ^ �A ^ �d^ ((9VA : �A ^ �d ^ OA = OC ) ! OA = OC )�S = (�P ^ ((9V 0A : �P ^ O0A = O0C )! O0A = O0C ))_ (�E ^ ((9V 0A : �E ^ O0A = O0C )! O0A = O0C ))where�P = �C ^ �A ^ �d�E = pres(WC ) ^ pres(WA)JS = JC and CS = CCThe general idea in the construction of the superpositionsystem DS is that every computation of DS induces acomputation of DC (when projected on VC ) and a runof DA (when projected VA). Thus, a computation of DScan be viewed as a joint computation of the two systemsDC and DA . There are two desired features a successfulsuperposition of DC and DA should satisfy.1. Every computation of DC is induced by some com-putation of DS . Thus, the additional conjuncts in �Sand �S should not restrict the behavior of DC .2. To the best of its ability, DS should attempt to main-tain the correspondence OC = OA . This explains therole of the implications conjuncted into �S and �S .These implications require that, if it is possible tochoose abstract variables which are consistent withthe constraints of DA and maintain OC = OA , thensuch a choice should be made.Note also that the system DS has already been modu-larized by de�ning �S as the choice between a systemstep �P which is comaptible with �C ^ �A and an envi-ronment step �E which only guarantees the preservationof WS =WC [WA .The system DS has �d and �d as open parameters,which should be provided by the user. Once they arespeci�ed, DS can be automatically constructed from DCand DA , and this is what has been implemented in thecurrent tlv-basic implementation of the modular ab-straction checker within tlv.



10 Yonit Kesten, Amir Pnueli: Control and Data Abstraction: The Cornerstones of Practical Formal Veri�cation.A1. �C ! 9VA : �A ^ �dA2. �C ! 9V 0A : �A ^ �dA3. DS j=8>>>>>>: 0 (OC = OA)^ VJ2JA 0 1 J^ V(p;q)2CA (0 1 p! 0 1 q)9>>>>>>;DC vM DAFig. 7. Rule mod-abst.A very simple choice is to take �d = �d = 1, namely,take them both as being identically true. This choiceis adequate in all cases that the abstract system DA isdeterministic. Determinism in the abstraction contextmeans that, for every DA -state s and a set of speci�edvalues U for the observable variables OA , there exists atmost one s0 a �A-successor of s, such that s0[OA ] = U .All the examples presented in this section such as thenetwork invariants presented in Fig. 4 and Fig. 6 aredeterministic. In fact, one of the reasons for eliminatingthe trying location T in process inv-cand and the othernetwork invariants was to make them deterministic. Inview of this, all the modular abstractions mentioned inthis section were resolved by superposition systems inwhich we have taken �d = �d = 1.The following claim makes precise the relation be-tween computations of DS , computations of DC and runsof DA .Claim 2. If � is a computation of DS , then �+VC is acomputation of DC and �+VA is a run of DA .In the preceding discussion, we listed two features whichare desirable in a good superposition. However, thesefeatures are not automatically guaranteed. In Fig. 7, wepresent a proof rule whose premises guarantee that thesystem DS has the desired features.Premise A1 guarantees that for every value assign-ment to the concrete variables VC satisfying �C , thereexists a value assignment to the abstract variables VAsatisfying �A ^�d. Thus, �A ^�d does not restrict thechoice of values for VC .Premise A2 stipualtes a similar non-restriction re-quirement for �C . It requires that, for every value as-signments to VC , V 0C , and VA , which make �C (VC ; V 0C )true, there exists a value assignment to V 0A which satis-�es �A(VA ; V 0A) ^ �d(VC ; V 0C ; VA ; V 0A). Thus, �A ^ �d doesnot restrict the choice of values for VC , V 0C , and VA .Finally, premise A3 requires that every computation� ofDS maintains the invariant 0 (OC = OA), and �+VAthe projection of � on the abstract variables VA yieldsa computation of DA . According to Claim 2, �+VA is arun of DA . Adding to it the fact that � satis�es all thefairness requirements of DA , as established by A3, wecan conclude that �+VA is also a computation of DA .The following claim states that rule mod-abst issound.

Claim 3. If the premises of rule mod-abst are validfor some choice of �d and �d, then DA is a modularabstraction of DC .7 Data AbstractionIn this section, we present a general methodology fordata abstraction , strongly inspired by the notion of ab-stract interpretation [9]. Since in this case we do notdeal with compositionality and modularization, we usea slightly simpler fds model, in which system variablesare not classi�ed into W and O.Let D = hV;�; �;J ; Ci be an fds, and � denote theset of states of D, the concrete states . Let � : � 7! �Abe a mapping of concrete states into abstract states . Wesay that � is a �nitary abstraction mapping, if �A is a�nite set. The strategy of veri�cation by data abstractioncan be summarized as follows:Veri�cation by Data Abstraction1. De�ne a �nitary abstraction mapping � to ab-stract the (possibly in�nite) concrete fds Dinto a �nite, abstract fds D�.2. Abstract the concrete temporal property  into a �nitary abstract temporal property  �.3. Verify D� j=  �.4. Infer D j=  .An implementation of this general strategy which speci-�es a recipe for de�ning the abstractions D� and  � fora given � is called a data abstraction method .A data abstraction method is said to be safe (equiv-alently, sound) if, for every fds D, temporal formula  ,and a state abstraction mapping � (not necessarily �ni-tary), j=  � implies j=  , and D� j=  � implies D j=  .7.1 Safe Abstraction of Temporal FormulasTo provide a syntactic representation of the abstractionmapping, we assume a set of abstract variables VA and aset of expressions E�, such that the equality VA = E�(V )syntactically represents the semantic mapping �.Let p(V ) be an assertion. We wish to de�ne the ab-straction p�(VA) such that j= p�(VA) implies j= p(V ).We introduce the operator ��; de�ned by��(p(V )): 8V �VA = E�(V ) ! p(V )�:The assertion ��(p) holds for an abstract state S 2 �Ai� the assertion p holds for all concrete states s 2 � suchthat s 2 ��1(S), i.e., all states s such that S = �(s).Alternatively, ��(p) is the largest set of states X � �Asuch that ��1(X) � kpk; where kpk represents the setof states which satisfy the assertion p. If ��(p) is valid,then k��(p)k = �A implying ��1(k��(p)k) = � which,by the above inclusion, leads to kpk = � establishingthe validity of p.



Yonit Kesten, Amir Pnueli: Control and Data Abstraction: The Cornerstones of Practical Formal Veri�cation. 11For complex formulas, we have to consider assertionswhich are nested within an odd number of negations. Toabstract an assertion under such a context, we de�ne theoperator �+; dual to ��; as follows�+(p(V )): 9V �VA = E�(V ) ^ p(V )�:The assertion �+(p) holds for an abstract state S 2 �Ai� the assertion p holds for some concrete state s 2 �such that s 2 ��1(S), i.e., some state s such that S =�(s). Alternatively, �+(p) is the smallest set X � �Asuch that kpk � ��1(X):An abstraction � is said to be precise with respect toan assertion p if �+(p) � ��(p). A su�cient conditionfor � to be precise w.r.t. p is that the abstract variablesinclude a boolean variable Bp with the de�nition Bp = p.Having de�ned the abstractions �� and �+ whichoperate on assertions, we lift them to the abstractions��� and �+� which can be applied to temporal formulas.These temporal abstractions are de�ned inductively, aspresented in Fig. 8.We respectively refer to ��� (p) and �+� (p) as the uni-versal (or contracting) and existential (or expanding) ab-straction of the formula p.Note that equivalent temporal formulas may havedi�erent abstractions. For example, the contracting ab-stractions of the equivalent formulasp _ (q _ 1 r) and (p _ q) _ 1 r;where p, q, and r are assertions (state formulas) are re-spectively given by the formulas��(p) _ ��(q) _ 1 ��(r) and ��(p _ q) _ 1 ��(r);which may be inequivalent. Similarly, the respective ab-stractions of p ^ (q ^ 0 t) and p ^ qare �+(p) ^ �+(q) and �+(p ^ q):Claim 4. Let  be a temporal formula and � be anabstraction mapping. Thenj= ��� ( ) implies j=  and j=  implies j= �+� ( )The proof of this claim appears in [18].In the following sections, we denote by  � the con-tracting abstraction ��� ( ) of the temporal formula  .7.2 Safe Abstraction of FDS'sIn the previous subsection, we established that the ab-straction of the temporal formula  into  � = ��� ( ) issafe (equivalently sound) in the sense that if  � is valid,then so is  .Here we will establish su�cient conditions for thejoint abstraction of the fds D and the temporal formula

 to be safe (sound) in the sense that D� j=  � impliesD j=  . To do so, we reduce the problem of the safe jointabstraction of an fds and a temporal property into theproblem of safe abstraction of a single temporal prop-erty, a problem that has been solved in the precedingsubsection.Given an fds D = hV;�; �;J ; Ci, there exists a tem-poral formula Sem(D), called the temporal semantics ofD [30], such that, for every in�nite state sequence �, itholds that � j= Sem(D) i� � 2 Comp(D): The temporalsemantics of an fds D is given bySem(D): 0@�(V ) ^ 0 �(V; 2 V ) ^VJ2J 0 1 J(V ) ^V(p;q)2C (0 1 p(V )! 0 1 q(V ))1A ;where we use the temporal expression 2 V to denote thenext values of the system variables V . Given a veri�ca-tion problem D ?j=  , we construct the temporal formulaVer(D;  ): Sem(D) !  :It is not di�cult to establish that D j=  i� Ver(D;  )is valid.Applying a safe �-abstraction to Ver(D;  ), we ob-tain��� (Ver(D;  )) = 0@�+(�) ^ 0 �++(�) ^VJ2J 0 1 (�+(J) ^V(p;q)2C (0 1 ��(p)! 0 1 (�+(q))1Awhere�++(�): 9V; 2 V : 0@VA = E�(V ) ^2 VA = E�(2 V ) ^�(V; 2 V ) 1ABased on the way ��� (Ver(D;  )) abstracts the di�erentcomponents of D, we de�ne the �-abstracted version ofD to be the fds D� = hVA ; ��; ��;J �; C�i, where�� = �+(�) �� = �++(�)J � = f�+(J) j J 2 J gC� = f(��(p); �+(q)) j (p; q) 2 CgThe following claim de�nes our recipe for veri�cation bydata abstraction and states its soundness (safety).Claim 5 (Soundness). The abstraction method which,for a given �, abstracts  into ��� ( ) and abstracts Dinto D� = hVA ; ��; ��;J �; C�i, is safe. That is,D� j=  � implies D j=  .Proof: An immediate consequence of claim 4 and thede�nitions of D� and  �. utAs an example, we consider program bakery-2, pre-sented in Fig. 9.Program bakery-2 is obviously an in�nite-state system,since the variables y1 and y2 can assume arbitrarily largevalues.



12 Yonit Kesten, Amir Pnueli: Control and Data Abstraction: The Cornerstones of Practical Formal Veri�cation.For a state formula p,��� (p) = ��(p) �+� (p) = �+(p)For a formula ' 2 f:p; p _ q; 2 p; pUqg, which is not a state formula,��� (:p) = :�+� (p) �+� (:p) = :��� (p)��� (p _ q) = ��� (p) _ ��� (q) �+� (p _ q) = �+� (p) _ �+� (q)��� (2 p) = 2 ��� (p) �+� (2 p) = 2 �+� (p)��� (pU q) = (��� (p))U (��� (q)) �+� (pU q) = (�+� (p))U (�+� (q))Fig. 8. Abstractions of temporal formulas.local y1; y2 : natural where y1 = y2 = 02666664 `0 : loop forever do26664 `1 : NonCritical`2 : y1 := y2 + 1`3 : await y2 = 0 _ y1 < y2`4 : Critical`5 : y1 := 0 377753777775 jj 2666664m0 : loop forever do26664m1 : NonCriticalm2 : y2 := y1 + 1m3 : await y1 = 0 _ y2 � y1m4 : Criticalm5 : y2 := 0 377753777775� P1 � � P2 �Fig. 9. Program bakery-2: the Bakery algorithm for two processes.The temporal properties we wish to establish aregiven by  exc : 0 :(at�`4 ^ at�m4) acc : 0 (at�`2 ! 1 at�`4);The safety property  exc requiresmutual exclusion, guar-anteeing that the two processes never co-reside in theirrespective critical section at the same time. The livenessproperty  acc requires accessibility for process P1, guar-anteeing that, whenever P1 reaches location `2 it willeventually reach location `4.Following [3], we de�ne abstract boolean variablesBp1 ; Bp2 ; : : : ; Bpk , one for each atomic data formula, wherethe atomic data formulas for bakery-2 are y1 = 0,y2 = 0, and y1 < y2. Note that the formula y2 � y1is equivalent to the negation of y1 < y2 and needs notbe included as an independent atomic formula.The abstract system variables consist of the concretecontrol variables, which are left unchanged, and a setof abstract boolean variables Bp1 ; Bp2 ; : : : ; Bpk . The ab-straction mapping � is de�ned by�: fBp1 = p1; Bp2 = p2; : : : ; Bpk = pkgThat is, the boolean variable Bpi has the value true inthe abstract state i� the assertion pi holds at the corre-sponding concrete state.It is straightforward to compute the �-induced ab-stractions of the initial condition �� and the transitionrelation ��. In Fig. 10, we present program Bakery-2

(with a capital B), the �-induced abstraction of programbakery-2.Since the properties we wish to verify refer only to thecontrol variables (through the at�` and at�m expres-sions), they are not a�ected by the abstraction. ProgramBakery-2 is a �nite-state program, and we can applymodel checking to verify that it satis�es the two prop-erties of mutual exclusion and accessibility. By Claim 5,we can infer that the original program bakery-2 alsosatis�es these two temporal properties.7.3 Augmentation by Progress MonitorsProgram Bakery-2 is an example of successful dataabstraction. However, there are cases when abstractionalone is inadequate for transforming an in�nite-state sys-tem satisfying a property into a �nite-state abstractionwhich maintain the property. In the following we illus-trate the problem and the proposed solution on a simpleexample. For the treatment of the general case, see [18].In Fig. 11, we present a simple looping program. Theassignment at statement `2 assigns to y non determin-istically the values y + 1 or y. The property we wish toverify is that program sub-add always terminates, in-dependently of the initial value of the natural variabley.A natural abstraction for the variable y is de�ned by



Yonit Kesten, Amir Pnueli: Control and Data Abstraction: The Cornerstones of Practical Formal Veri�cation. 13local By1=0; By2=0; By1<y2 : boolean initially By1=0 = By2=0 = 1; By1<y2 = 02666664 `0 : loop forever do26664 `1 : NonCritical`2 : (By1=0; By1<y2) := (0; 0)`3 : await By2=0 _ By1<y2`4 : Critical`5 : (By1=0; By1<y2) := (1;:By2=0)37775
3777775 jj 2666664m0 : loop forever do26664m1 : NonCriticalm2 : (By2=0; By1<y2) := (0; 1)m3 : await By1=0 _ :By1<y2m4 : Criticalm5 : (By2=0; By1<y2) := (1; 0) 37775

3777775� P1 � � P2 �Fig. 10. Program Bakery-2: the Bakery algorithm for two processes.y: natural`0 : while y > 1 do" `1 : y := y � 2`2 : y := fy + 1; yg`3 : skip #`4 :Fig. 11. Program sub-add .Y : fzero; one ; largeg`0 : while Y = large do" `1 : Y := sub2 (Y )`2 : Y := fadd1 (Y ); Y g`3 : skip #`4 :Fig. 12. Program sub-add-abs-1 abstracting program sub-add.
Y = 0@ if y = 0 then zeroelse if y = 1 then oneelse large ; 1Awhere y is abstracted into the three-valued domainfzero; one; largeg:However, applying this abstraction yields the abstractprogram sub-add-abs-1, presented in Fig. 12, where theabstract functions sub2 and add1 are de�ned bysub2 (Y ) = � if Y = fzero;oneg then zeroelse fzero;one ; largeg; �add1 (Y ) = � if Y = zero then oneelse large : �Unfortunately, program sub-add-abs-1 needs not ter-minate, because the function sub2 can always choose toyield large as a result.Termination of programs like program sub-add canalways be established by identi�cation of a progress measure

that never increases and sometimes is guaranteed to de-crease. In this case, for example, we can use the progressmeasure � : y + at�`2 which never increases and alwaysdecreases on the execution of statement `1. To obtain aworking abstraction, we �rst compose program sub-addwith an additional module, to which we refer as theprogress monitor for the progress measure �, as shownin Fig. 13.The construct always do appearing in monitor M�means that the assignment which is the body of this con-struct is executed at every step. The comparison func-tion comp(�; �0) is de�ned bycomp(�; �0) = 0@ if � < �0 then 1else if � = �0 then 0else �1: 1ANote that the expressions on the right-hand-side of theassignments in the monitor allow references to the newvalues of � as computed in the same step by the moni-tored program.The presentation of the monitor moduleM� in Fig. 13is only for illustration purposes. The precise de�nition ofthis module is given by the following fds:V = VD [ finc : f�1; 0; 1gg� : t� : inc0 = comp(�; �0)J : ;; C : f(inc < 0inc > 0)gwhere VD are the system variables of the monitoredfds D. Thus, at every step of the computation, mod-ule M� compares the new value of � (�0) with the cur-rent value, and sets variable inc to -1, 0, or 1, accord-ing to whether the value of � has decreased, stayed thesame, or increased, respectively. This fds has no jus-tice requirements but has the single compassion require-ment (inc < 0; inc > 0) stating that � cannot decreasein�nitely many times without also increasing in�nitelymany times. This requirement is a direct consequence ofthe fact that � ranges over the well-founded domain ofthe natural numbers, which does not allow an in�nitelydecreasing sequence.



14 Yonit Kesten, Amir Pnueli: Control and Data Abstraction: The Cornerstones of Practical Formal Veri�cation.y: natural26664 `0 : while y > 1 do" `1 : y := y � 2`2 : y := fy + 1; yg`3 : skip #`4 : 37775 kj 264 de�ne � = y + at�`2inc : f�1; 0; 1gm0 : always doinc := comp(�; �0)375� sub-add � � monitor M� �Fig. 13. Program sub-add composed with a monitor.y : naturalinc : f�1; 0; 1g`0 : while y > 0 do" `1 : (y; inc) := (y � 2; comp(�; �0))`2 : (y; inc) := (fy + 1; yg; comp(�; �0))`3 : inc := comp(�; �0)#`4 :Fig. 14. A sequential equivalent of the monitored program.Y : fzero; one; largeginc : f�1; 0; 1gcompassion (inc < 0; inc > 0)`0 : while Y = large do" `1 : (Y; inc) := (sub2 (Y ); �1)`2 : (Y; inc) := (fadd1 (Y ); Y g; f0;�1g)`3 : inc := 0 #`4 :Fig. 15. Abstracted version of the monitored- Program sub-add-abs-2.It is possible to represent this composition as (al-most) equivalent to the sequential program presented inFig. 14, where we have conjoined the repeated assign-ment of module M� with every assignment of processsub-add. The \almost" quali�cation admits that we didnot conjoin this assignment with the transition associ-ated with location `0 which tests the value of y and de-cides when to terminate. In a fully formal treatment ofthis example, the assignment will also be conjoined tothis testing transition.The abstraction of the program of Fig. 14 will abstracty into a variable Y ranging over fzero; one; largeg. Thevariable inc, ranging over the �nite domain f�1; 0; 1g,is not abstracted. The resulting abstraction is presentedin Fig. 15.The program sub-add-abs-2 (Fig. 15) di�ers from pro-gram sub-add-abs-1 (Fig 12) by the additional com-passion requirement (inc < 0; inc > 0). However, it isthis additional requirement which forces program sub-add-abs-2 to terminate. This is because a run in whichsub1 always yields large as a result is a run in whichinc is negative in�nitely many times (on every visit to`1) and is never positive beyond the �rst state. The fact

that sub-add-abs-2 always terminates can now be suc-cessfully model-checked.The extension to the case that the progress measureranges not over the naturals but over lexicographic tu-ples of naturals is straightforward.7.4 The Data Abstraction Method is CompleteIn a separate work [18], concentrating on the data ab-straction method, we have established that this methodis relatively complete . Completeness in this context meansthat for every (possibly in�nite) system D and a tempo-ral property  , such thatD j=  , there exists a (progress)monitor M� whose composition with D does not con-strain the computations of D, and a �nitary state ab-straction mapping �, such that (DkjM�)� j=  �. Thisimplies that whenever  is a property valid for D, wecan apply the method of data abstraction described inthis section in order to formally verify that  is D-valid.8 ConclusionsThe paper presented two central techniques for reducinga big veri�cation task into several smaller ones. Thesetechniques are specially impressive when they reduce anin�nite-state system into a �nite-state one.The �rst technique is based on control abstractionand reduces an unbounded environment for a single mod-ule into an abstract environment model which repre-sents the relevant features of the environment. Often,the unbounded environment represents a set of brotherprocesses and the derived abstract model represents anetwork-invariant which is independent of the size of thisset.The second technique is that of data abstraction inwhich variables ranging over in�nite domains are ab-stracted into variables ranging over �nite domains. Themethod presents a general recipe for computing such anabstraction for every user-provided state mapping, suchthat the abstraction preserves all counter-examples toany temporal property. This means that if the propertyhas been veri�ed to be valid on the abstract level, itsconcrete version is guaranteed to be valid (no false pos-itives).
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