
Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

88(11) 1350–1367

� 2012 The Society for Modeling and

Simulation International

DOI: 10.1177/0037549712450628

sim.sagepub.com

A binary partition-based matching
algorithm for Data Distribution
Management in a High-level
Architecture-based distributed
simulation

Junghyun Ahn, Changho Sung and Tag Gon Kim

Abstract
Data Distribution Management (DDM) is one of the High-level Architecture (HLA) services that reduce message traffic
over the network. The major purpose of DDM is to filter and route the exchange of data between federates during a
federation. However, this traffic reduction usually results in a significant computational overhead, which is caused by cal-
culating the intersection between update regions and subscription regions in a matching process. To reduce the compu-
tational overhead for the matching process, this paper proposes a binary partition-based matching algorithm for DDM in
a HLA-based distributed simulation. The new matching algorithm is fundamentally based on a divide-and-conquer
approach. The proposed algorithm recursively performs binary partitioning that divides the regions into two partitions
that entirely cover those regions. This approach promises low computational overhead, since it does not require unne-
cessary comparisons within regions in different partitions. The experimental results show that the proposed algorithm
performs the existing DDM-matching algorithms better and improves the scalability of the DDM.

Keywords
Data Distribution Management, High-level Architecture/Runtime Infrastructure, large-scale High-level Architecture-
based distributed simulation, matching algorithm, binary partition, scalability

1. Introduction

Data Distribution Management (DDM) is one of the most

important filtering mechanisms in large-scale distributed

simulations.1–3 DDM has been successful in reducing the

network traffic in some respect, but its capability is limited

by the computational overhead for matching update

regions and subscription regions that represent the inter-

ests of data producers and data consumers, respectively.4

For example, a typical DDM scenario is a battlefield simu-

lation, where sensors are deployed to detect enemy move-

ment. The enemy units are moving to a certain destination

point and a sensor detects any enemy units. The update

regions represent the location of enemy units with small

rectangles, and the subscription regions represent the

detecting ranges of the sensors. In this example, only if

the update regions of the enemy units and subscription

regions of the sensor overlap, the location of the enemy

units will be routed by the DDM filtering mechanism.

However, that mechanism produces high computational

overhead because a matching process is performed to cal-

culate the intersection between all pairs of update regions

and subscription regions.

Several studies of the DDM-matching algorithms have

been proposed in recent years.5–8 For instance, a region-

based algorithm9 exhaustively compares the intersection

of all the pairs of regions with high computational over-

head, but it achieves exact matching. On the other hand,

the grid-based algorithm6 separates a multidimensional

space into a regular grid. In place of exhaustive matching

computing, update regions and subscription regions are

assumed to overlap if and only if they share at least one

common grid cell. Therefore, the grid-based algorithm

Department of EE, KAIST, Republic of Korea

Corresponding author:

Junghyun Ahn, Department of EE, KAIST, 335 Gwahangno, Yuseong-gu,

Daejeon, 305-701, Korea.

Email: jhahn@smslab.kaist.ac.kr

provides much less computation of the matching process

than the region-based algorithm, but it sacrifices accuracy.

While all of the DDM-matching algorithms have been

devised to balance considerable computational overhead

and the accuracy, they are not aware of how the regions

are generated and distributed in the multidimensional

space. As the previous matching algorithms do not con-

sider the characteristics of the region distribution, it is dif-

ficult to select a matching algorithm that is appropriate for

some region-distribution situations. In the case of large-

scale distributed simulations, such as a battlefield simula-

tion, it will probably be a situation with large overlapping

regions. The computational overhead of the matching pro-

cess in large-scale simulations is significant, because of

superfluous intersections between regions.

Therefore, in this paper, we propose a binary partition-

based matching algorithm based on the divide-and-conquer

approach to reduce the computational overhead in the

matching process for the DDM. The design goal of our

algorithm is to perform binary partitioning that divides the

regions into two partitions, the left-hand partition and

right-hand partition, and to find out the overlap informa-

tion that entirely cover those regions recursively, and then

carry out the matching process that calculates the intersec-

tion of regions in the partition boundary, since these

regions in the partition boundary can be included within

two partitions. We assume that the regions on the partition

boundary are located in the left-hand partition and define

these regions as a pivot set, which is illustrated in Section

4.1. Specifically, the matching process is executed by

comparing the intersections between regions that corre-

spond to boundaries in the pivot set of the left-hand parti-

tion and regions in the right-hand partition.

Figure 1 shows a conceptual overview of the binary par-

titioning for the matching process. Typically, we assume

that the multidimensional space is a two-dimensional space

in Figure 1. The algorithm first performs the x-dimension

at a partitioning run and then repeats this procedure for the

y-dimension.

As shown in Figure 1(b), in the binary partitioning on

the x-dimension, the update or subscription regions tend

not to fall on the boundaries of partitions, because the

region size is often smaller than the partition size. To

reflect the region distribution, the proposed algorithm uses

the concept of an ordered relation that represents the rela-

tive location of the partition in the multidimensional space.

If an update region in the left-hand partition and a sub-

scription region in the right-hand partition exist, there is

no need to calculate the intersection between these regions,

which leads to the reduction of the matching operation that

is used in the matching process, because these regions

exist in different partitions that are located in the ordered

relation of partitions. The previous matching algorithms

we have examined so far do not focus on the relative loca-

tion of partitions to improve the overall performance of

the matching process.

In the matching process, the proposed algorithm has the

ability to classify whether region boundaries fall accurately

on partition boundaries. As illustrated in Figure 1(b), the

regions in the partition boundary will all overlap in the x-

dimension. Thus, the proposed algorithm can easily find

the calculation of the intersection of the x–y dimensions in

the matching process. This requires minimal computational

overhead in some partitions, in particular those with large

overlapping regions or in a clustered distribution in which

regions are collected at particular points. In addition, as the

Figure 1. A conceptual overview of the binary partition-based matching algorithm.

Ahn et al. 1351

proposed algorithm considers the ordered relation of parti-

tions to reflect the characteristics of the region distribution

over a range of overlapping conditions, it provides robust-

ness in terms of a dynamic range measure on variations in

the overlapping regions.

To evaluate the proposed algorithm, a set of experi-

ments has been conducted with different numbers of

regions, overlap rates, and distribution of regions for vari-

ous situations to reflect the region distribution. Our experi-

mental results show that the proposed algorithm

significantly performs better than the previous DDM-

matching algorithms in the execution time for the match-

ing process, as well as in the dynamic range measure. The

proposed algorithm outperforms the previous matching

algorithms by more than 45%, on average, in terms of exe-

cution time, when many regions are greatly overlapped.

The more regions are overlapped, the better the perfor-

mance of the proposed algorithm will be. In more complex

scenarios where the distribution of regions is clustered, not

uniform, the proposed algorithm is much better than the

others and improves the scalability of DDM implementa-

tion for large-scale simulations. Moreover, the proposed

algorithm is more robust to variations in the overlap rate

than the others for the different characteristics of the

region distribution in terms of the dynamic range measure.

The remainder of this paper is organized as follows.

Section 2 describes an overview of the DDM in the High-

level Architecture (HLA), and Section 3 briefly outlines

the work related to this paper. In Section 4, we present a

binary partition-based matching algorithm based on a

divide-and-conquer strategy. Section 5 shows experimen-

tal results across a variety of workloads. Finally, Section 6

gives concluding remarks.

2. Overview of Data Distribution
Management in High-level
Architecture

As a standard architecture for interoperation between het-

erogeneously distributed simulations that are developed by

different languages and platforms, the HLA was approved

as the Institute of Electrical and Electronics Engineers

(IEEE) Standard 1516 in 2000.10–13 A revised version,

HLA Evolved, has now also been standardized by IEEE

1516-2010.14–16 It provides a common framework within

which simulation developers can structure and describe

their simulations. The individual simulation model is

referred to as a federate. A federation is defined as the

grouping of federates to achieve some specific objective

of simulation interoperation. The HLA standard formally

consists of three main parts: (1) HLA Rules,14 which are a

set of 10 basic rules that define the interoperability and the

responsibilities of federates and federations; (2) Federate

Interface Specification,15 which provides a specification

that a simulation may perform, or be asked to perform,

during HLA federation execution; it includes Runtime

Infrastructure (RTI) services that are available to each

simulation and the callback functions that each federate

must provide to the RTI; and (3) the Object Model

Template (OMT),16 which is a common template for spe-

cifying simulation information in terms of a hierarchy of

object classes, their attributes, and so on. It forms a docu-

mentation standard for a description of a data model.

The aim of HLA is to promote interoperability between

simulations and to encourage the reuse of simulations in

various contexts. HLA’s interoperability can be achieved

by conforming to the Federate Interface Specification. If

the simulations are developed under the HLA standard,

HLA establishes a common technical framework to facili-

tate the interoperability of simulations. HLA’s reusability

can also be achieved through the use of the OMT. The

essential sharable simulation information in a particular

federation is described by the Federation Object Model

(FOM), a unified data model within the federation that is

documented in accordance with the OMT. A FOM and an

existing federate can easily be adapted and reused in

another federation.

Because HLA is an architecture, not software, RTI soft-

ware is required to support the IEEE 1516.1 Federate

Interface Specification. RTI is an implementation of the

services described in the Federate Interface Specification.

Through a federate’s Local RTI Component (LRC), the

RTI provides each federate with management services,

such as federation management, time management, object

management, and DDM. In general, as a customized ver-

sion, RTI software consists of three parts: the RTI execu-

tive process, federation executive process, and LRC

library.17

The RTI is often used as the distributed operating

system for large-scale HLA-based distributed simula-

tions.18–23 It makes possible simulations to construct dis-

tributed simulations that facilitate the execution of

simulations across multiple nodes and improve simulation

performance. In large-scale simulations, a simulation

entity updates objects that need to be exchanged over dis-

tributed simulation nodes. These simulations have tens of

thousands of simulation objects that need to be exchanged

in real time for interoperation.24,25 This may incur a large

processing overhead on the simulation nodes and large

communication overhead on the network.26 Such an appli-

cation may require a filtering mechanism to reduce com-

munication traffic among the federate nodes over the

network.

DDM services, one category of the HLA management

services, reduce message traffic by sending the data only

to those federates that need the data. The DDM performs

filtering based on the interest expressions of federates in a

federation and allows the federation to control the routing

and delivery through user-defined information (i.e.

1352 Simulation: Transactions of the Society for Modeling and Simulation International 88(11)

regions). Using the DDM, the RTI then distributes objects

and interactions by sending federates to receiving feder-

ates. The DDM services allow value-based filtering.1 This

type of filtering provides the most precise filtering

mechanisms, which ensures that the federates receive the

minimal set of data they are interested in. In a large-scale

federation, it is necessary to filter and route more elabo-

rately for data exchange during the federation execution.

Therefore, the DDM provides value-based filtering for

large-scale simulations that both require long execution

time and consume vast memory space.

Table 1 presents the definitions of terms used in this

paper. These definitions originate from the HLA stan-

dard.14 Although the definitions of terms are provided in

Table 1, the terms’ usage is illustrated and described in

Figure 1(a). This figure shows an example of region inter-

section for value-based filtering. Because our interest lies

in the simple exemplification of DDM terms, we assume

that the multidimensional space is a two-dimensional

space. In the figure, there are four update regions and four

subscription regions. An update region is the defined set

of data declared by a publishing federate, whose informa-

tion is delivered to subscribing federates. A subscription

region is the area of interest declared by the subscribing

federates. A situation in which the corresponding region

sets overlap is called an intersection. When an intersection

exists, data exchange occurs from the publishing federate

to the subscribing federate. In this case, there are two

intersections between the update regions and subscription

regions. The process of identifying these intersections

between update regions and subscription regions is a

matching process. The main role of DDM is to reduce the

volume of data exchanged through the matching process

during a federation.

With the subscription region and the update region, the

publishing federate’s LRC performs the matching process,

which is the focus of this paper. It is necessary for a pub-

lishing federate’s LRC to know exactly who is subscrib-

ing. The publishing federates want to send their updates to

all joined federates, so it checks if it matches some of its

subscription regions for DDM considerations (i.e. it must

know who to notify of the subscription region changes).

The objective of the matching process is to efficiently

obtain the overlap information when update regions and

subscription regions intersect. Since this process leads

to higher computational overhead and to less data trans-

mission amount on the network, the performance of

DDM depends on how well the matching process is

performed.

3. Related works

Previous matching algorithms have solved matching prob-

lems differently depending on their various performance

concerns. Table 2 briefly summarizes the major character-

istics of the previous matching algorithms. We compare

the proposed method with the previous matching algo-

rithms in Section 5. We have classified them into several

categories as follows:

1) the region-based algorithm;1,2

2) the grid-based algorithm and the hybrid

approach;6,27

3) the sort-based algorithm;7

4) the other DDM-matching algorithm.

Firstly, the region-based algorithm exhaustively compares

the intersection of all the pairs of update regions and sub-

scription regions. This algorithm is quite straightforward

while computing the intersection, as every update region is

checked directly against every subscription region. If there

are N update regions and M subscription regions, there are

N * M pairs to check in the worst case. If there are many

intersections in a large, spatial simulation because of a

high number of simulated entities, a considerable amount

of computational overhead occurs in the matching process.

However, the exact overlap information between update

regions and subscription regions can be found. In addition,

Table 1. Terminology definitions in Data Distribution Management (DDM).14

Terminology Definition

Dimension A named coordinate axis with non-negative integers
Multidimensional space A coordinate system whose dimension is d

(where d is a fixed natural number)
Range A continuous semi-open interval on a dimension

(lower bound, upper bound]
Region A set of ranges for any given dimension
Update region A specified set of region instances associated with a publishing federate
Subscription region A specified set of region instances associated with a subscribing federate
Overlap All ranges of dimensions that lie over and partly cover in the update region and subscription region

put upon another pairwise
Intersection A situation in which the corresponding region sets overlap
Matching process A process to calculate the intersection between update regions and subscription regions

Ahn et al. 1353

the region-based algorithm is directly implemented in the

matching operation in the DDM of the RTI.

The grid-based algorithm involves dividing the multidi-

mensional space into a grid of cells, and update regions

and subscription regions are allocated into each cell of the

grid.6,28–30 In this algorithm, as an exact evaluation of the

matching process is not implemented, update regions and

subscription regions are assumed to overlap if and only if

they share at least one common grid cell. Although the

grid-based algorithm requires much less computation than

the region-based algorithm, incorrect matching creates

irrelevant data communication, and additional receiver-

side filtering is required. Another problem is that it is hard

to define the appropriate size of the grid cells.31 The larger

grid cell size causes more irrelevant data to be received by

each receiving federate. On the other hand, when the grid

cells are too small, each region is mapped on several dif-

ferent cells, which leads to redundant computations.

On the other hand, the hybrid approach improves per-

formance by exploiting the advantages of the two previous

approaches (i.e. the region-based algorithm and the grid-

based algorithm) and minimizing the drawbacks of the

grid-based algorithm.27,32 This approach uses a variation

of the region-based approach, which uses grid cells to

reduce the irrelevant communication overhead. It first

minimizes the irrelevant message cost of grid-based fil-

tering to map all regions to the grid cells. Then, the

region-based approach is used to make the exact match

by checking a pair of update regions and subscription

regions within each cell. In this way, the computational

overhead of the matching process is lower than that of

the region-based algorithm, and the overlapping informa-

tion is exact. It also produces a lower number of irrele-

vant messages than the grid-based algorithm. However,

building an irregular grid may occur with the hybrid

approach as well as with the grid-based algorithm. The

major issue of this approach is selecting the optimal size

of the grid cells, which the performance of the hybrid

approach depends on.

There are several other matching algorithms that have

been used in HLA/RTI, such as the sort-based algorithm

detailed by Raczy et al.;7 Pan et al.33 compute the intersec-

tion between update regions and subscription regions using

a sorting algorithm. The sort-based algorithm projects the

multiple dimensions of regions on each dimension. The end

points in each dimension of all regions are sorted for each

direction to determine the overlap information. When the

sorted lists of end points are scanned, the sort-based algo-

rithm can maintain the set of subscription regions before

and after the current position. Therefore, it is possible to

know exactly, for each update region, which subscription

regions match on each dimension, which have a time com-

plexity of N * O(log N), where N is the total number of

regions. However, the sort-based algorithm’s performance

is degraded when the regions are highly overlapped, and it

is necessary to optimize the sorting data structure for an

efficient matching operation.

In addition to these approaches, the off-loading matching

algorithm transfers the matching process with another

device.8,34,35 There is a coarse-grained task parallelism

between the matching process and the other DDM opera-

tions. When regions are added or modified by federates, only

the information from updated regions is copied from the host

to the device. In Santoro and Fujimoto,8 a part of the match-

ing computation is shifted to network processors or, in Lo,35

to graphical processing units that are based on the Compute

Unified Device Architecture (CUDA). An approach using

agents for matching process was proposed by Tan et al.5 and

Wang et al.36 An agent-based DDM approach has been pro-

posed to filter user messages on the sender side to avoid

transmitting unnecessary data to the subscribers by using the

agents. In addition, a quadtree-based approach that is similar

to the hybrid approach decomposes the multidimensional

space into equal-sized quadrants, similar to the grid cells.37

Instead of using grids to partition the space, this approach

uses a quadtree for the decomposition process.

All of the previous works have been devised to reduce

the considerable computational overhead. Since the

Table 2. Comparison of previous matching algorithms.

Matching algorithms Description Advantage Disadvantage Average case
complexity

Region-based algorithm Brute-force method Simple implementation Too time consuming d * O(N2)
Hybrid approach Based on the grid-based

algorithm
Exact match Needed optimal grid size d * c * O(N2)

Sort-based algorithm Sorting algorithm usage On average performance Needed to optimize the
sorting data structure

d * N * O(log N)

Proposed method Binary partitioning Scalability; robustness Needed to optimize
initialization costs in
partitioning

d * N * O(log N)

N = # of regions, d = # of dimensions, c = # of grid cell.

As first noted by Petty and Morse,4 DDM Rectangle Matching (DRM) requires time with a lower bound in � (N* log N) and upper bound in O(N2),

where N is the number of runtime data distribution actions performed by the federates.

1354 Simulation: Transactions of the Society for Modeling and Simulation International 88(11)

previous matching algorithms are not aware of how

regions are generated and distributed in the multidimen-

sional space, it is difficult to select a matching algorithm

that is appropriate for some region-distribution situations.

As described in Table 2, there are matching algorithms to

apply for the different situations case by case. These algo-

rithms are with a time complexity of a lower bound in

�(N * log N), where N is the number of runtime data dis-

tribution actions performed by the federates. However,

they have a quadratic complexity O(N2) in the worst case.4

Hence, we present a binary partitioning algorithm to

contribute to these existing works, which is somewhat

more efficient and has the advantage of being very robust.

In the proposed method, we focus on the ordered relation

of partitions to reflect the region distribution. The pro-

posed method takes advantage of reducing computational

overhead and improves the overall performance of the

matching process through the binary partitioning. The pro-

posed method achieves scalability in the system across a

variety of workloads. In addition, it provides robustness in

terms of a dynamic range measure on variations in the

overlapping regions. The binary partitioning approach, of

course, has an initialization cost in the partitioning proce-

dure. Hence, it is necessary to optimize an efficient algo-

rithm and reduce overhead in terms of initialization costs.

4. Binary partition-based matching
algorithm

4.1 Principle of the proposed algorithm

In this section, we present the design principle of the bin-

ary partition-based matching algorithm. Our approach

takes a divide-and-conquer approach similar to the one

used for the Quicksort algorithm,38 which is roughly ana-

logous to the use of pivots in sorting, with the potential to

cut down the overall number of comparison operations.

This approach consists of two main processes, the repeti-

tive binary partitioning process and the matching process.

Firstly, in the binary partitioning process, the algorithm

recursively performs binary partitioning, which divides the

regions into two partitions that entirely cover those regions

by a pivot value. The partitioning operation is started by

selecting the pivot value and a dimension. The regions are

partitioned into approximately two equal-sized sets, which

are assigned to the left-hand and right-hand partitions.

Regions are assigned to the right-hand partition if the coor-

dinate (i.e. the regions range) in that dimension is greater

than the pivot value. Otherwise, regions are assigned to the

left-hand partition if the regions range in that dimension is

less than or equal to the pivot value. In addition, regions

for which the coordinate includes the pivot value in the

regions’ range are assigned to the left-hand partition.

If a region falls on the partition boundary, the region is

assumed to be assigned to the pivot set in the left-hand

partition. All regions’ range in the pivot set of the left-

hand partition includes the pivot value. This value can be

a midpoint, which reduces the probability of choosing a

bad pivot value. The midpoint guarantees equal-sized par-

titions with some computational costs for the binary parti-

tioning, approximately. This is the optimal and most

appropriate situation when the distribution of regions is

not known. Therefore, in this paper, we assume that the

pivot value is the midpoint in the regions. Although the

selection of the pivot value as the midpoint is intuitive and

faster, this selection of the midpoint may lead to imbal-

anced partitions when the distribution of regions is not

uniform. Rather than an arbitrary midpoint as an approxi-

mation, any information on the statistical analysis can be

used as a better approximation of the pivot value.38,39

However, the midpoint is used as the representative value

in many application domains because it does not consider

the distribution of regions.

Secondly, in the matching process, the algorithm uses

the concept of an ordered relation, which represents the

relative location of the partition. After the binary partition-

ing, update or subscription regions tend not to fall on the

boundaries of partitions. If an update region in the left-

hand partition and a subscription region in the right-hand

partition exist, there is no need to calculate the intersection

between these regions, which leads to the reduction of a

matching operation that is used in the matching process.

Because these regions exist in different partitions that are

located in the ordered relation of partitions, the matching

operation is performed for the calculation of the intersec-

tion of regions in the partition boundary. In other words,

this matching operation is executed by comparing the

intersections between regions that correspond to bound-

aries in the pivot set of the left-hand partition and regions

in the right-hand partition. This requires minimal compu-

tational overhead in some partitions, especially in large

overlapping regions. The significant points of our algo-

rithm are that these partitions are being processed in paral-

lel. The proposed algorithm promises low computational

overhead, since it easily calculates the intersection

between regions on partition boundaries and does not

require unnecessary comparisons within regions in differ-

ent partitions. Therefore, in this paper, we propose a bin-

ary partition-based matching algorithm based on the

divide-and-conquer approach to reduce the computational

overhead in the matching process for the DDM. The

design goal of our algorithm is to perform binary partition-

ing that divides the regions into two partitions, the left-

hand partition and right-hand partition, and to find out the

overlap information that entirely covers those regions,

recursively.

Ahn et al. 1355

4.2 Dimension projection

To facilitate a meaningful interpretation of the multidimen-

sional space, our approach uses a well-known dimension

projection algorithm.7,33,34,40 Before presenting the dimen-

sion projection algorithm, we introduce our approach to a

region representation as follows. Let a collection of the

projected regions TRR
d = { Rjd, r(i, j)d }, where i ∈ (up,

sub) (i.e. i is a flag to show whether a region is up, update

region, or sub, subscription region), a region identifier j =

1,.,n, and d = a specified dimension. (r(i, j)d.l, r(i, j)d.u)

is the range of regions whose upper bound is r(i, j)d d.u and

lower bound is r(i, j)d.l with the i the update/subscription

flag and the j region handle on the d dimension. The

dimension projection algorithm is used to determine the

overlap information spatially in multidimensional space.

Previous works on the regions in multidimensional space

are not intuitive, so the dimension projection algorithm is

used, defined as follows:

Definition 1. Dimension projection, T: the d-dimensional pro-

jection is TRR
d, where RR is the set of all regions and dimen-

sion d ≥ 1.

The algorithm first works by projecting all dimensions in

the multidimensional space, using the definition shown

above. It reduces the multidimensional problem to a one-

dimensional problem and intuitively finds the pairs of

regions may overlap. It then carries out the partition pro-

cess, as presented in Section 4.3. Figure 2 shows

the dimension projection of eight regions located in a

two-dimensional space. In the figure, we project each

region to the x-dimension. Next, the x-dimension is recur-

sively partitioned into a binary partition. After performing

the procedure for one dimension, the algorithm repeats this

procedure for the y-dimension. The overall overlap infor-

mation can be obtained by combining the information of

each dimension: two regions overlap if and only if they

overlap for the x–y dimensions.

4.3 Proposed binary partition-based matching
algorithm

We present the overview of the binary partition-based

matching algorithm. After regions R are projected by the

d dimension, the original projected region set TRR
d, our

algorithm divides the projected regions TRR
d, which are

partitioned in approximately two equal-sized sets, which

are assigned to the left-hand and right-hand partitions, Pl

and Pr. This guarantees the avoidance of checking the

intersection between regions in the different partitions.

Regions are assigned to the right-hand partition if the

coordinate (i.e. the regions range) in that dimension is

greater than the pivot value. Otherwise, regions are

assigned to the left-hand partition if the region range in

that dimension is less than or equal to the pivot value. In

addition, regions for which the coordinate includes the

pivot value in the region range (i.e. pivot set) are

assigned to the left-hand partition.

The conceptual description shown in Figure 3 demon-

strates the binary partition. After the dimension projection,

the algorithm uses the binary partitioning of the regions

around a pivot value and then deals with the two smaller

partitions separately. As a result, the x-dimension is parti-

tioned into two partitions by the pivot value. They are the

left-hand partition of the pivot value and the right-hand

partition of the pivot value. Each partition consists of one

or several regions. Any partitions are disjoint with respect

to each other, which are made of different regions, as

described in partition properties.

By using the binary partitioning, projected regions

TRR
d are decomposed into several partitions, P =

{P1;P2 . . . ;Pmg such that:

1) 8p∈ {1, 2, . , m}, 8j ∈ {1, 2, . , r}, 8pr ∈ {1,

2, . , n}, Pp = {Rp1, Rp2, . , Rpr}, each partition

consists of a partition identifier (p) and belongs to

PP ;

2) 2) for 9R ∈ TRR
d and 9p ∈ {1, 2, . , m}, R

belongs in a partition, R ∈ Pj, since Pj belongs to

TRR
d;

3) 8p, q ∈ {1, 2, . , m}; if p6¼q, then Pp ∩ Pq =

1, and regions are distinct, since these regions are

located in the different partition;

4) the union of P is all regions TRR
d.Figure 2. Dimension projection with the x-dimension.

1356 Simulation: Transactions of the Society for Modeling and Simulation International 88(11)

Through these partition properties, we ensure that the

regions are correctly represented by the set of partitions.

The partition of regions can be more than two with the

projected region set. However, our interest is in the two

subsets case by using the binary partition. Therefore, we

provide the following definition of the binary partition.

Definition 2. The binary partition: after regions RR are pro-

jected by the d dimension, the original projected region set

TRR
d is divided into two partitions, Pl and Pr, by choosing a

pivot value as the boundary. A binary partition of TRR
d is a

pair of region subsets (Pl, Pr), such that TRR
d) = Pl + Pr, Pl

Pr ≤ TRR
d, and Pl

S
Pr = TRR

d. For example, the binary par-

titioning of TRR
d results in (Pl, Pr).

The detailed binary partition algorithm is presented as

Algorithm 1. Those regions in which the regions’ ranges

are greater than the pivot value are put in Pr; otherwise,

they are put in Pl. This partition consists of four subsets of

sorted regions, Slu, Sls, Spu, and Sps, in ascending order,

that is, the update regions and subscription regions for the

left-hand partition and the update regions and subscription

regions for the pivot set in the left-hand partition, respec-

tively. In addition, Pr consists of two subsets of sorted

regions, Sru and Srs. For the matching process, Spu and Sps

in the pivot set are compared and matched with the other

set in the left-hand and right-hand partitions, Slu, Sls, Sru,

and Srs. Table 3 presents three partitions of the binary par-

tition. In Figure 3, from the left-hand partition Pl, we find

that Slu is {U3, U1} and Sls is {S2}. The other set in each

partition is also arranged by the binary partition, which is

illustrated in Table 3.

Definition 3. Ordered relation: let A and B be two non-empty

subsets in the given binary partition; an ordered relation

between A and B is defined as follows: A ≤ B, if for all a in

A, all b in B such that a.u < b.l.

Through the binary partition, if two regions are in dif-

ferent partitions, they do not overlap through the ordered

relation of the partitions. As can be seen in the definition

above, the ordered relation between different partitions

plays an important role in deciding the overall overlap

information of regions. The algorithm constructs partitions

of regions. As there is no need to determine the overlap

information between the left-hand and right-hand parti-

tions’ regions, the algorithm performs the matching opera-

tion for the pivot set with the other set in the left-hand and

right-hand partitions. In other words, it is not necessary to

compare and match different partitions through the ordered

relation in the binary partition.

From the binary partition, we can extract regions

that fall on the boundaries of partitions by using

BinaryPartition(). These regions are collected into the pivot

set, which consists of two subsets of regions, Spu and Sps.

These sets are used for the matching process to compare

Algorithm 1. Binary partition algorithm.

Input: The projected Regions TR
d, pivot value p

Output: Sorted regions set, Slu, Sru, Spu, Sls, Srs, Sps

1: procedure BinaryPartition(TR
d, p)

2: for Each region Ri ∈ Region TR
d do

3: if Rj = update region then
4: if r(u j)d. l≤ p then
5: Slu {j}

S
Slu

{pivot set in the left partition}
6: if r(u, j)a.u > p then
7: Spu {j}

S
Spu

8: end if
9: else if r(u, j)d. l > p then
10: Sru {j}

S
Sru

11: end if
12: else if Rjd = subscription region then
13: {similar to above}
14: end if
15: end for
16: return Slu, Sru, Spu, Sls, Srs, Sps;

Algorithm 2. Intersection calculation algorithm.

Input: Sorted regions Sl, Sr; dimension d
Output: n-by-n matrix, OMd = (omijd), where i, j ∈ n
1: procedure IntersectionCalculation(Sl, Sr)
2: Smatching = 1,
3: i = 0;
4: j = 0;
5: for Each update region Ri

d ∈ Sl and each subscription region
Rj

d ∈ Sr do
6: if r(u, i)d.u > r(s, j)d.u then

7: omijd++ all i to n;
8: j++ ;
9: end if
10: i+ + ;
11: end for
12: return OM

d
;

Table 3. Three partitions of the binary partition.

Partition Set of update and subscription regions Region

Pl Slu {U3, U1}
Sls {S2}

Pivot set Spu {U2}
Sps {S1, S4}

Pr Sru {U4}
Srs {S3}

Ahn et al. 1357

the intersection between regions in the right-hand partition,

Pr.

(U (i) · l< S(j):u) & (S(j):l <U (i):u) ð1Þ

where i, j are region identifiers.

The matching process is checked by the Intersection

Calculation() algorithm, which is presented in Algorithm

2. Consider one update region, denoted as U in Figure 4,

and one subscription region, denoted as S in the Figure 4.

The matching process checks the overlapping of update

regions in Sl and subscription regions in Su. As described

in the HLA Interface Specification, a range is specified as

a continuous semi open interval (lower bound, upper

bound) on a dimension. After a dimension is projected in

the x-dimension, the necessary and sufficient condition for

the two ranges to overlap is satisfaction of inequality (1).

If the two ranges overlap, it is true that two regions

are satisfied by inequality (1), (U (i):l< S(j):u) and

(S(j):l <U (i):u):
The IntersectionCalculation() algorithm determines

whether subscription regions in Sps overlap with update

regions in Slu and Sru or update regions in Spu overlap with

subscription regions in Sls and Srs because of the ordered

relation. In addition, all update regions and subscription

regions in the pivot set are overlapped, since their range

includes the pivot value. As the regions in the boundary of

the pivot set will all be overlapped, the proposed algorithm

easily achieves the calculation of the intersection in the

matching process. If there is a distribution with large over-

lapping regions, the calculation of the intersection is easily

obtained. Therefore, this approach is more efficient in

computing the large overlapping regions in each partition.

This matching process results in a matrix with overlap

information, OM. The overlap matrix is the n n matrix (n *

n the number of regions). If two regions whose handles

are (i, j) are overlapped in the d dimension, omijd is added

(+ 1). After the whole matching process, if omij in OM is

the same as the number of dimensions, d, two regions Ri

and Rj are exactly overlapped. In the example explained

in Table 3, we obtain OMx= fou1; s2; ou2; s1; ou2; s4;

ou3; s2; ou4; s3g on the x-dimension.

As described in Section 4.1, our proposed algorithm

decomposes the multidimensional space into a number of

partitions through binary partitioning. The algorithm

adopts the divide-and-conquer strategy based on the

ordered relation. The flowchart of the proposed algorithm

is presented in Figure 5. The process of the flowchart is

executed in the following steps.

1) Project all dimensions of regions in the multidi-

mensional space into one dimension through the

dimension projection algorithm.

Figure 3. Binary partition into the left-hand and right-hand partitions, Pl and Pr.

1358 Simulation: Transactions of the Society for Modeling and Simulation International 88(11)

2) Set a midpoint as the pivot value in the projected

regions using Algorithm 1.

3) Divide the projected regions into two partitions, Pl

and Pr, with six sets, Slu, Sls, Sru, Srs, Spu, and Sps,

through the binary partition.

4) Perform the matching process in the pivot set.

Also, perform the matching process between dif-

ferent partitions to compare the update regions in

Spu with the subscription regions in Srs and Sls and

the subscription regions in Sps with the update

regions in Sru and Sus using Algorithm 2. From this

matching process, our algorithm determines OM,

which stores the overlap information into an n-by-

n matrix (where n is the number of regions).

5) Iterate the pivot selection and matching process in

Pl and Pr until the remainder is never partitioned.

The binary partition-based matching algorithm is shown in

Algorithm 3. It uses two procedures, BinaryPartition()

using Algorithm 1 and IntersectionCalculation() using

Algorithm 2, for the partition process and the matching pro-

cess. BinaryPartition() is a recursive procedure that divides

regions into two partitions, and IntersectionCalculation() is

a procedure that checks the intersection between regions in

the partitions, through the ordered relation. We assume that

there are regions, RR, and g1 is the minimum lower bound

and g2 the maximum upper bound in R. Next, the regions

are projected into the TRR
d that represent the regions of the

corresponding dimension, d.

During the binary partition process, the left-hand and

right-hand partitions maintain six sets, Slu, Sru, Spu, Sls, Srs,

and Sps, through BinaryPartition(). After that, it is checked

by IntersectionCalculation() to determine whether sub-

scription regions in Sps overlap with update regions in Slu

and Sru or update regions in Spu overlap with the subscrip-

tion regions in Sls and Srs through the ordered relation. In

addition, all update regions and subscription regions in the

pivot set overlap, as these regions fall inside the bound-

aries of the partitions. It repeats these processes for

multiple rounds until all overlap information is con-

structed. Finally, the OM stores the overall overlapping

status for all dimensions.

4.4 Theoretical analysis on computational complexity

To analyze the computational complexity of the proposed

algorithm, we suppose that there are N regions. For the

simple analysis provided here, we assume that the number

of dimensions d is two in the multidimensional space.

Clearly, the runtime depends on the number of regions N

and of used dimensions d.

The process of the binary partitioning of each dimen-

sion is based on a particular pivot value. Steps 6–9 in

Algorithm 3 require an O (N) computation on average

using the BinaryPartition() procedure. Steps 21 and 22 to

find the exact position of a region in the partitions

in Algorithm 3 require an O (log N) computation by

the binary partitioning. Steps 5–11 of the

IntersectionCalculation() procedure require an O(n) com-

putation by comparing the intersection of regions between

two subset of partitions (where n is the number of regions

in a partition). Because the overlap information of all

regions is obtained by the pivot set, it is not necessary to

compare their overlap information in the left-hand and

right-hand partitions because of the ordered relation. In

cases where there is no overlapping at the binary partition-

ing with the left-hand and right-hand partitions, the match-

ing process is performed. After processing one dimension,

Steps 5–23 of this binary partition-based matching proce-

dure are repeated for all the other dimensions. The total

computational complexity of the proposed algorithm is

d * (N + n) *O (log N), which increases proportionally

with the number of dimensions d. Therefore, the computa-

tional complexity of the proposed algorithm is a

d * N *O(log N) computation. However, the actual com-

putational complexity depends on how well the binary par-

tition is achieved.

Figure 4. Matching process between Sl and Sr.

Ahn et al. 1359

5. Experimental evaluation

This section presents an experimental evaluation of the

proposed method. We compare the proposed algorithm

with the previous DDM-matching algorithms in the liter-

ature, the region-based algorithm, hybrid approach,31

and Raczy’s sort-based algorithm.7 We implemented

these algorithms with the C+ + language and processed

them in HLA-based distributed simulations. Our experi-

ments were conducted using Microsoft Windows 7 with

a 2.80 GHz Intel(R) Core(TM) i7 central processing unit

(CPU) and 8 GB of memory. We assume that our experi-

mental environment has a two-dimensional space for the

sake of clarity, as described in Section 4. Since the per-

formance of the hybrid approach depends on the number

of grid cells, we used configurations of both 10 * 10 and

100 * 100 grid cells, as Raczy et al.7 and Ayani et al.31

There are several parameters that vary and affect the

performance of a matching algorithm. One of the impor-

tant experimental parameters is the number of regions.

This parameter is capable of characterizing the entire sit-

uation of the regions for the matching process. It repre-

sents the scalability of the system. Next, we also use two

different methods to generate the location of each region

in the space. These methods have a uniform distribution

and clustered distribution, as described in Figure 6(a)

and (b). As these synthetic regions can be useful in a

variety of situations, our experiment provides realistic

region distribution to third parties for testing the DDM-

matching algorithms. Therefore, the experiment uses a

uniform distribution and clustered distribution as the

synthetic region distribution, which can achieve simple

forms of the realistic data set. In the uniform distribu-

tion, the regions are distributed randomly across the

space, whereas the clustered distribution has regions of

around k ≥ 1 clusters.

Finally, the overlap rate is defined as the proportion of

the scene volume occupied by the regions. There can be

many regions that nearly cover the space without overlap-

ping or there can be very few regions that are tightly over-

lapping that cover very little of the space. However, it is

not possible to accurately measure the number of overlap-

ping regions. We use the potential region overlaps, not the

actual region overlaps. The formulation of the overlap rate

is the percentage of the occupied regions in the total area

of space, which mean the number of potential region over-

laps, as follows:

Overlap rate

P
area of region

area of space
ð2Þ

If the space is 100*100 and one region is 1*1, where the

number of regions is fixed at 100, the overlap rate is 0.01

= 100 * (1 * 1)
100 * 100

. Note that a higher overlap rate potentially

implies a greater probability of region overlap. We use the

experimental parameters and related values summarized in

Table 4. For enhanced accuracy and reliability, we repeat

the experiment more than 30 times. A 95% confidence

interval was estimated for all experimental results.

To evaluate the performance of the proposed algorithm

in terms of the dynamic range measure, as well as the exe-

cution time for the matching process, two sets of results

are presented. Firstly, we compare the execution time (ET)

in executing the runtime required for calculating the inter-

sections for the matching process. Secondly, experiments

are carried out to test a normalized dynamic range (NDR),

which is the ratio of the dynamic range value to the over-

lap rate. In order to reflect the region modification over a

range of overlapping conditions, we define the NDR as the

Algorithm 3. Binary partition-based matching algorithm.

Input: Regions RR; dimension d
Output: n-by-n matrix, OM = (omij), where i, j∈ n
1: procedure BinaryPartitionbasedMatchingAlgorithm(Region RR)
2: if Region RR = Ø then
3: return;
4: else
5: for Each dimension, d do
6: g1 the minimum lower bound of d dimension;
7: g2 the maximum upper bound of d dimension;
8: Set a pivot value, p (g1+ g2)/ 2;
9: Use the BinaryPartition(TRR

d , p) to find six sets
Slu, Sru, Spu, Sls, Srs, Sps;

{For comparison the pivot set itself}
10: for Each region Ri∈ Spu do
11: for Each region Rj∈ Sps do
12: omijd+ + ;
13: end for
14: end for

{For comparison with the other set in the left-hand and the
right-hand partitions}

15: OMd = IntersectionCalculation(Spu, Srs);
16: OMd = IntersectionCalculation(Sps, Sru);
17: OMd = IntersectionCalculation(Slu, Sps);
18: OMd = IntersectionCalculation(Sls, Spu);
19: Sl Slu

S
Sls;

20: Sr Sru

S
Srs;

21: BinaryPartitionbasedMatchingAlgorithm(Region Sl);
22: BinaryPartitionbasedMatchingAlgorithm(Region Sr);
23: OM = OM+OMd;
24: end for
25: end if

Table 4. Three partitions of the binary partition.

Parameters Value range

The usage of the
matching algorithm

Our algorithm, region, sort, hybrid

of regions 1000–10,000
Region distribution Uniform and clustered
Overlap rate 0.01, 0.1, and 1

1360 Simulation: Transactions of the Society for Modeling and Simulation International 88(11)

ratio of the variance of the execution time to the current

execution time at the specific overlap rate, which causes

this variance. It means the robustness of the performance

of algorithms against changing of the overlapping regions,

which is able to deal with region modifications during exe-

cution. NDR is particularly useful to understand how a

matching algorithm depends on variations in the parameter

of the overlap rate. The NDR can be expressed as

NDR=
ETcurrent overlap rate� ETprevious overlap rate

ETcurrentoverlap rate

* 100 %ð Þ ð3Þ

Using Equation (3), the NDR is calculated when the num-

ber of region = 5000 is fixed. We observe that the region-

based algorithm has same execution time although the

overlap rate varies with same. We observe that the region-

based algorithm always has same execution time when the

overlap rate varies at the same number of regionsumber of

regions. The region-based algorithm is the most robust.

Thus, NDR = 0 is not presented in the following compari-

sons. In our experiments, this equation is useful to test

how robust the algorithm is to changes in the overlap rate.

5.1 Region distribution
5.1.1 Uniform distribution. Figure 7 shows the execution

time for the matching process in four algorithms when the

overlap rate is 0.01. It seems that the hybrid approach with

100 * 100 grid cells always have the best performance,

because the regions are small in one cell. However, the

hybrid algorithm did not perform well in situations where

Figure 5. Flowchart of the binary partition-based matching process using Algorithm 3.

Ahn et al. 1361

the size of the grid cells changed (i.e. the performance for

the 10 * 10 grid cells of the hybrid approach is degraded).

The proposed algorithm outperforms the other algorithms

when the overlap rate is 0.01 under the uniform distribu-

tion (except the hybrid approach, where the overlap rate is

low and the optimal 10 * 10 grid cells are used).

Figure 8 shows the execution time for the matching pro-

cess when the overlap rate is 0.1. According to this figure,

we can see that the proposed algorithm usually performs

well in this situation. The performance of the proposed

algorithm is affected by the partitioning of the regions in

the different partitions. The other algorithms have the same

result when the overlap rate is 0.01.

When the overlap rate = 1, according to Figure 9, the

proposed algorithm performs well. The proposed algo-

rithm is not the best choice when the overlap is relatively

low, but it has the advantage when the overlap rate is high.

The more regions overlap with the pivot set, the less

matching overhead is incurred in the whole matching

process. This means that the more regions are overlapped,

the better the performance of the proposed algorithm will

be. On the other hand, the performance of the sort-based

algorithm is much better than the region-based algorithm

and the hybrid approach, except for ours. When the num-

ber of regions increases and the overlap rate is high, the

performance of the region-based algorithm becomes

increasingly better than with the other overlap rate. The

hybrid approach has a higher computational overhead, par-

ticularly with 100 * 100 grid cells. This approach

degrades performance when the overlap rate is high.

According to all of the figures, we know that the hybrid

algorithm with 100 * 100 grid cells has an extremely large

computational overhead for the matching process. In gen-

eral, the proposed algorithm outperforms, on average, by

over 35% in some situations with a high overlap rate and a

uniform distribution.

Figure 7. Performance comparisons: overlap rate = 0.01 under
uniform distribution.

Figure 8. Performance comparisons: overlap rate = 0.1 under
uniform distribution.

Figure 9. Performance comparisons: overlap rate = 1 under
uniform distribution.

Figure 6. Space wherein regions are scattered under (a)
uniform and (b) clustered distribution.

1362 Simulation: Transactions of the Society for Modeling and Simulation International 88(11)

5.1.2 Clustered distribution. We next varied the overlap rate

under the clustered distribution. The second set of experi-

ments compared the execution time for the matching pro-

cess under the clustered distribution. When the regions are

distributed under the clustered distribution, there is a

greater probability of region overlap than for the uniform

distribution in the fixed number of regions. Figure 10

shows the performance comparison of the four algorithms.

The hybrid algorithm with 10 * 10 yields poor perfor-

mance compared with the other matching algorithms.

When the number of regions was more than 9000, the pro-

posed algorithm performed better than the hybrid algo-

rithm with 100 * 100. This finding suggests that the

proposed algorithm is scalable with increasing region size

and can be used for a large-scale spatial environment.

As described in Figure 11, the hybrid approach is not

much more scalable. For this same reason, the hybrid

approach checks a pair of update regions and subscrip-

tion regions within each cell. If regions overlap at a

higher rate, the performance of the hybrid approach is

much worse than the others. Even worse, they will not

perform well in the clustered distribution, since most

regions are collected at particular points. The region-

based algorithm and the sort-based algorithm perform

well when there is a high probability of finding a pair of

regions that intersect. Our proposed algorithm is the best

choice under the clustered distribution. Since the regions

in the boundary of the same partition will all be over-

lapped, the proposed algorithm can easily find the calcu-

lation of the intersection for the matching process from

the binary partitioning. This results in performance

improvement in some partitions, especially with a high

rate of overlapping regions.

Figure 12 shows the execution time for the matching

process. All experimental results are similar when the

overlap rate is 0.1. The proposed algorithm shows the

best performance compared with the other algorithms, as

expected. This shows that our proposed algorithm is scal-

able and performs well under the clustered distribution.

On average, the proposed algorithm significantly outper-

forms the previous algorithms by more than 45% when

many regions overlap in the clustered distribution.

5.2 Normalized dynamic range

As can be seen in Table 5, all NDRs under the uniform

distribution decrease with an increase in the current over-

lap rate. This means that a higher overlap rate is associated

with a lower NDR after adjusting for the overlap rate. The

NDR ranges from 46 to 50% for the hybrid approach with

Figure 12. Performance comparisons: overlap rate = 0.1 under
clustered distribution.

Figure 11. Performance comparisons: overlap rate = 0.1 under
clustered distribution.

Figure 10. Performance comparisons: overlap rate = 0.01
under clustered distribution.

Ahn et al. 1363

10 * 10, 56 to 92% for the hybrid approach with

100 * 100, 30 to 60% for the sort-based algorithm, and 24

to 43% for the proposed algorithm. Thus, the proposed

algorithm is more robust to variations in the overlap rate

than the others under the uniform distribution in terms of

the NDR.

Next, the clustered distribution is applied to compare

the NDR with the same parameters as in the previous

experiment for the dynamic range measure. As the clus-

tered distribution has a higher overlap rate in some points

and this implies a greater probability of region overlap,

Table 6 has the same trend as a result of uniform distribu-

tion’s NDR, but it is slightly different. We observe that the

NDR under the clustered distribution strictly decreases

when the overlap rate increases. In addition, the variance

of the hybrid approach is quite large, and the NDR is

higher than the others.

When the overlap rate increases from 0.1 to 1, the

variation of the NDR changes, especially in the sort-

based algorithm and the proposed algorithm. However,

the variance of the proposed algorithm (i.e. 3–36%) is

smaller than that of the sort-based algorithm (i.e. 5–

56%). Therefore, the proposed algorithm has robustness

over the range of overlapping conditions under the clus-

tered distribution.

5.3 Discussion

(1) The region-based algorithm is a brute-force

method that is simple and directly implemented.

As mentioned above, the region-based algorithm

checks all possible combinations of regions to

construct the overlap information. In such con-

texts, this algorithm is too time consuming and

can be impractical. In spite of the extensive

amount of computation, when there is a situation

of region distribution at a high overlap rate or

under the clustered distribution, the region-based

algorithm performs well compared to the other

matching algorithms, except our proposed algo-

rithm. In addition, this approach is more robust

than the other matching algorithms.

(2) The hybrid approach is based on a grid-based

algorithm, which is adopted by the brute-force

method in each grid cell to compute the intersec-

tions. It has the best performance at a low overlap

rate when the optimal grid size is used. As the

hybrid approach checks a pair of update regions

and subscription regions within each cell, the per-

formance of the hybrid approach is much worse

than the others at a high overlap rate. The hybrid

approach’s performance becomes worse when the

cells are too small in the uniform distribution of

regions. There is no easy solution to compute the

ideal grid cell’s size, which affects the algorithm’s

behavior. Even worse, it will not perform very

well in situations where the distribution of regions

is clustered. Moreover, the hybrid approach has

low NDR compared to the others.

(3) The sort-based algorithm sorts the regions accord-

ing to their coordinates in each dimension. On

average, its performance is much better than the

region-based and hybrid algorithms. It is not the

worst choice in some situations in which the char-

acteristics of the region distribution are not identi-

fied. However, the sort-based algorithm still has a

disadvantage when the overlap rate is high and

the distribution of regions is not uniform. Since

the sort-based algorithm computes the intersec-

tions globally and simultaneously, it can be used

to optimize the sorting data structure for an effi-

cient matching operation.

(4) As our algorithm avoids checking any regions

between different partitions by using the ordered

relation of partitions, it is the best choice (except

for the hybrid approach, when the overlap rate is

low and the optimal grid size is used).

Furthermore, it has additional advantages com-

pared with the other algorithms. Firstly, the pro-

posed algorithm is practical and efficient, because

it reduces the computational overhead and

improves the overall performance of the matching

process. Since the proposed algorithm reflects the

region distribution by using the concept of the

ordered relation, it easily calculates the intersec-

tion between regions on partition boundaries and

does not require unnecessary comparisons within

Table 5. Normalized dynamic range at 5000 regions under
uniform distribution.

Overlap rate
interval

Hybrid
10 _ 10

Hybrid
100 _ 100

Sort Proposed

0.01–0.1 46 92 60 43
0.1–0.5 50 78 36 27
0.5–1 46 56 30 24

Table 6. Normalized dynamic range at 5000 regions under
clustered distribution.

Overlap rate
interval

Hybrid
10 _ 10

Hybrid
100 _ 100

Sort Proposed

0.01–0.1 85 98 56 36
0.1–0.5 40 43 7 4
0.5–1 35 37 5 3

1364 Simulation: Transactions of the Society for Modeling and Simulation International 88(11)

regions in different partitions. Secondly, it is less

affected by the overlap rate. The algorithm recur-

sively performs binary partitioning, which divides

the regions into two partitions that entirely cover

those regions.

This means that there is no need to determine the overlap

information between partitions, because they already

consider whether the regions are intersected through the

ordered relation. This requires minimal computational

overhead in some partitions, especially when the rate of

overlapping regions is high. This is attributed to the

same reason as in the case of the clustered distribution.

In addition, the proposed algorithm works more robustly

than the other matching algorithms in the NDR with an

increasing overlap rate (except for the region-based

algorithm).

Overall, from the experimental results, we found that

our algorithm performs better than the others in a given

set of scenarios, especially at a high overlap rate and in a

clustered distribution. Furthermore, it improves the scal-

ability of DDM implementation for large-scale simula-

tions. Moreover, to complete the study, we tested all the

algorithms in more complex situations, such as scenarios

in which the distribution of regions is not uniform (i.e. a

clustered distribution). Therefore, the proposed algorithm

has the potential to enhance the robustness at high overlap

rates.

6. Conclusion

The focus of this paper is on matching algorithms that

have been developed for DDM in HLA-based distributed

simulations. In recent years, many DDM-matching algo-

rithms have been proposed and investigated to reduce the

higher computational overhead from the matching process.

However, as the previous works we have examined so far

do not identify the characteristics of the region distribu-

tion, it is difficult to select a matching algorithm that is

appropriate for some region-distribution situations.

Therefore, in this paper, we propose a binary partition-

based matching algorithm based on the divide-and-

conquer approach. The algorithm recursively performs

binary partitioning, which divides the regions into two par-

titions that entirely cover those regions. The proposed

algorithm is, to the best of our knowledge, the first attempt

to facilitate binary partitioning and obtain the overlap

information using the concept of an ordered relation previ-

ously not considered. The algorithm reduces the computa-

tional overhead for the matching process, since it easily

calculates the intersection between regions on partition

boundaries and does not require unnecessary comparisons

within regions in different partitions. According to the the-

oretical analysis, the proposed algorithm has an advantage

in scalability. We have developed a binary partition-based

matching algorithm in the DDM and compared its perfor-

mance with the previous matching algorithms in different

region-distribution situations. Our experimental results

show that the proposed algorithm performs better than the

previous matching algorithms across a variety of work-

loads in terms of the dynamic range measure, as well as

the execution time for the matching process. In particular,

the proposed algorithm significantly outperforms in a

given set of scenarios with a high overlap rate. In more

complex scenarios, where the distribution of regions is

clustered, not uniform, the proposed algorithm is much

better than the others. In addition, it is more robust than

the others in terms of the NDR. Moreover, the proposed

algorithm improves the scalability of DDM implementa-

tion for large-scale spatial simulations. In future works,

we plan to optimize an efficient algorithm for the initiali-

zation cost of the binary partitioning and improve further

the scalability of the proposed algorithm in more complex

dynamic scenarios. In addition, the proposed algorithm

will be extended for more general applications, such as a

real HLA-based distributed application that is more

realistic.

Acknowledgment

The authors would like to thank the anonymous referees for their

helpful and insightful suggestions.

Funding

This work was partially supported by the Defense Acquisition

Program Administration and Agency for Defense Development

(contract UD110006MD) and the Brain Korea 21 Project, BK

Electronics and Communications Technology Division, KAIST

in 2011.

References

1. Morse K and Steinman JS. Data distribution management in

HLA: multidimensional regions and physically correct filter-

ing. In: proceedings of the spring simulation interoperability

workshop, 1997, p.97S-SIW-053.

2. Hook DJV and Calvin JO. Data distribution management in

RTI 1.3. In: proceedings of the fall simulation interoperability

workshop, 1998, p.98F-SIW-206.

3. Morse KL and Petty MD. High level architecture data distri-

bution management migration from DoD 1.3 to IEEE 1516.

Concurrency Pract Ex 2004; 16: 1527–1543.

4. Petty MD and Morse KL. The computational complexity of

the high level architecture data distribution management

matching and connecting processes. Simul Model Pract

Theory 2004; 12: 217–237.

5. Tan GSH, Xu L, Moradi F, et al. An agent-based DDM filter-

ing mechanism. In: MASCOTS, 2000, pp.374–381.

6. Boukerche A, Roy A and Thomas N. Dynamic grid-based

multicast group assignment in data distribution management.

Ahn et al. 1365

In: 4th international workshop on distributed simulation and

real-time applications (DS-RT 2000), 2000, pp.47–54.

7. Raczy C, Tan GSH and Yu J. A sort-based DDM matching

algorithm for HLA. ACM Trans Model Comput Simul 2005;

15: 14–38.

8. Santoro A and Fujimoto RM. Offloading data distribution man-

agement to network processors in HLA-based distributed simu-

lations. IEEE Trans Parallel Distrib Syst 2008; 19: 289–298.

9. Dahmann JS and Morse KL. High level architecture for

simulation: an update. In: DIS-RT, 1998, pp.32–40.

10. IEEE Std 1516-2000. IEEE standard for modeling and simu-

lation (M&S) High Level Architecture (HLA) - framework

and rules, 2000.

11. Fujimoto RM. Parallel and distributed simulation systems.

New York: Wiley Interscience, 2000.

12. Dahmann JS, Fujimoto RM and Weatherly RM. The DoD

high level architecture: an update. In: Winter Simulation

Conference, 1998, pp.797–804.

13. Dahmann JS, Kuhl FS and Weatherly RM. Standards for simu-

lation: as simple as possible but not simpler the high level

architecture for simulation. Simulation 1998; 71: 378–387.

14. IEEE Std 1516-2010. IEEE standard for modeling and simu-

lation (M&S) High Level Architecture (HLA) - framework

and rules, 2010.

15. IEEE Std 1516.1-2010. IEEE standard for modeling and

simulation (M&S) High Level Architecture (HLA) - federate

interface specification, 2010.

16. IEEE Std 1516.2-2010. IEEE standard for modeling and

simulation (M&S) High Level Architecture (HLA) - Object

Model Template (OMT) specification, 2010.

17. DMSO. RTI 1.3-next generation programmer’s guide version

5, DoD, February 2002.

18. Lee JS, Zeigler BP and Venkatesan SM. Design and devel-

opment of data distribution management environment.

Simulation 2001; 77: 39–52.

19. Lee JS and Zeigler BP. Space-based communication data

management in scalable distributed simulation. J Parallel

Distrib Comput 2002; 62: 336–365.

20. Hild DR, Sarjoughian HS and Zeigler BP. DEVS-DOC: a

modeling and simulation environment enabling distributed

codesign. IEEE Trans Syst Man Cybern Part A Syst Humans

2002; 32: 78–92.

21. Lee JS and Zeigler BP. Dynamic multiplexing and high-

performance modeling in distributed simulation. Simulation

2005; 81: 365–380.

22. Duong TNB, Zhou S and Shen H. Greedy algorithms for cli-

ent assignment in large-scale distributed virtual environ-

ments. Simulation 2008; 84: 521–533.

23. Grande RED and Boukerche A. Dynamic balancing of com-

munication and computation load for HLA-based simulations

on large-scale distributed systems. J Parallel Distrib Comput

2011; 71: 40–52.

24. Lu T, Lee C, Hsia W, et al. Supporting large-scale distribu-

ted simulation using HLA. ACM Trans Model Comput Simul

2000; 10: 268–294.

25. Su-Youn Hong J-HK and Kim TG. Measurement of RTI

performance for tuning parameters to improve federation

performance in real-time war game simulation. In: proceed-

ings of the 37th summer computer simulation conference

(SCSC 2005), 2005, pp.71–76.

26. Zhou S, Cai W, Turner SJ, et al. Flexible state update

mechanism for large-scale distributed wargame simulations.

Simulation 2007; 83: 707–719.

27. Tan GSH, Zhang Y and Ayani R. A hybrid approach to data

distribution management. In: 4th international workshop on

distributed simulation and real-time applications (DS-RT

2000), 2000, pp.55–61.

28. Boukerche A and Dzermajko C. Performance evaluation of

data distribution management strategies. Concurrency Pract

Ex 2004; 16: 1545–1573.

29. Boukerche A, Gu Y and de Araujo RB. Performance analysis

of an adaptive dynamic grid-based approach to data distribu-

tion management. In: 10th IEEE international symposium on

distributed simulation and real-time applications (DS-RT

2006), 2006, pp.175–184.

30. Boukerche A and Guo Y. An efficient adaptive transmission

control scheme for large-scale distributed simulation sys-

tems. IEEE Trans Parallel Distrib Syst 2009; 20: 246–260.

31. Ayani R, Moradi F and Tan GSH. Optimizing cell-size in

grid-based DDM. In: 14st international workshop on princi-

ples of advanced and distributed simulation (PADS 2000),

2000, pp.93–100.

32. Boukerche A, McGraw NJ, Dzermajko C, et al. Grid-filtered

region-based data distribution management in large-scale

distributed simulation systems. In: Annual Simulation

Symposium, 2005, pp.259–266.

33. Pan K, Turner SJ, Cai W, et al. An efficient sort-based DDM

matching algorithm for HLA applications with a large spatial

environment. In: 21st international workshop on principles

of advanced and distributed simulation (PADS 2007), 2007,

pp.70–82.

34. Liu ES and Theodoropoulos GK. An approach for parallel

interest matching in distributed virtual environments. In:

13th IEEE/ACM international symposium on distributed

simulation and real time applications (DS-RT 2009), 2009,

pp.57–65.

35. Lo S-H, Chung YC and Pai F-P. Offloading region matching

of data distribution management with CUDA. In: 2010

International Conference on Intelligent Systems, Modelling

and Simulation, 2010.

36. Wang L, Turner SJ and Wang F. Interest management in

agent-based distributed simulations. In: 7th international

workshop on distributed simulation and real-time applica-

tions (DS-RT 2003), 2003, pp.20–29.

37. Eroglu O, Mantar HA and Sevilgen FE. Quadtree-based

approach to data distribution management for distributed

simulations. In: SpringSim, 2008, pp.667–674.

38. Cormen TH, Leiserson CE and Rivest RL. Introduction to

algorithms. Boston: MIT Press, 1990.

39. Aho AV, Ullman JD and Hopcroft JE. Data structures and

algorithms. Addison-Wesley, 1983.

40. Liu ES, Yip MK and Yu G. Lucid platform: applying HLA

DDM to multiplayer online game middleware. Comput

Entertain 2006; 4.

1366 Simulation: Transactions of the Society for Modeling and Simulation International 88(11)

Author biographies

Junghyun Ahn received his BS degree in electrical engineering

from Pusan National University in 2005 and MS degree from the

school of electrical engineering and computer science of the

Korea Advanced Institute of Science and Technology (KAIST)

in 2007. He is currently a PhD candidate at the department of

electrical engineering of the KAIST. His research interests

include methodology for modeling and simulation (M&S) of dis-

crete event systems (DEVS) and DDM in HLA/RTI.

Changho Sung received his PhD from the department of elec-

trical engineering at the KAIST, Daejeon, Korea. He has experi-

ence in defense M&S. From 2005 to 2009, he participated in the

US Republic of Korea combined exercises, such as Ulchi Focus

Lens, as a M&S Engineer. His research interests include DEVS

modeling, collaborative M&S, distributed simulation, and hybrid

simulation. He has been a postdoctoral researcher in the systems

modeling simulation laboratory at the KAIST since 2011.

Tag Gon Kim received his PhD in computer engineering with a

specialization in systems modeling and simulation from the

University of Arizona, Tucson, AZ, in 1988. He was an assistant

professor at the department of electrical and computer

engineering, University of Kansas, Lawrence, KS, US from 1989

to 1991. He joined the electrical engineering department at the

KAIST, Tajeon, Korea in fall, 1991, and has been a full profes-

sor at the electrical engineering and computer science (EECS)

department since fall, 1998. He was the president of the Korea

Society for Simulation (KSS) and the editor-in-chief for

Simulation: Transactions for Society for Computer Modeling and

Simulation International (SCS). He is a co-author of the text

book, Theory of Modeling and Simulation, Academic Press,

2000. He has published about 200 papers in M&S theory and

practice in international journals and conference proceedings. He

is very active in research and education in defense modeling and

simulation in Korea. He was/is a technical advisor for defense

M&S at various Korea government organizations, including the

Ministry of Defence, the Defence Agency for Technology and

Quality (DTAQ), the Korea Institute for Defence Analysis

(KIDA), and the Agency for Defence Development (ADD). He

developed a tools set, call DEVSimHLA, for HLA-compliant

war game models development, which has been used for the

development of three military war game models for the Navy,

Air Force, and Marines in Korea. He is a Fellow of the SCS, a

Senior Member of the IEEE and Eta Kappa Nu.

Ahn et al. 1367

