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Finite Sample Analysis of Two-Pass Cross-Sectional Regressions

ABSTRACT

We investigate the finite sample properties of the two-pass cross-sectional regression (CSR) method-

ology, which is popular for estimating risk premia and testing beta pricing models. We find that

the finite sample distributions of the estimated risk premia differ significantly from their asymp-

totic distributions. In particular, the risk premia estimates obtained from the second-pass CSR of

average returns on estimated betas can be seriously biased even when the number of time series

observations is reasonably large. In addition, the standard error of the estimated risk premia based

on the asymptotic distribution overstates the actual standard error. We show that popular adjusted

estimators in the literature have no finite integral moments and therefore cannot be used to correct

the bias. We propose a new bias adjustment of the estimated zero-beta rate and risk premia and

we show that the adjusted version has a smaller bias than the unadjusted version.



In the empirical asset pricing literature, the popular two-pass cross-sectional regression (CSR)

methodology developed by Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973) is

often used for estimating of risk premia and testing beta asset pricing models. Although there are

many variations on this two-pass methodology, its basis setup always involves two steps. In the first

pass, the betas of the test assets are estimated using the usual ordinary least squares (OLS) time

series regression of returns on some common factors. In the second pass, the returns on test assets

are regressed on the estimated betas obtained from the first pass. By running this second-pass CSR

on a period-by-period basis, we obtain a time series of the intercept and the slope coefficients. The

average values of the intercept and the slope coefficients are then used as estimates of the zero-beta

rate and the risk premia.

Since betas are estimated with errors in the first pass time series regression, the errors-in-

variables (EIV) problem is introduced in the second-pass CSR. Measurement errors in the estimated

betas cause two problems. The first problem is that the estimated zero-beta rate and risk premia

are biased. However, as the length of the times series used to estimate betas increases to infinity,

Shanken (1992) shows that the estimation errors of the betas approach to zero and hence the

estimated zero-beta rate and risk premia from the second pass CSR are still consistent. The second

problem is that the standard errors of the estimated zero-beta rate and risk premia that are due

to Fama and MacBeth (1973) are inconsistent. Shanken (1992) proposes an asymptotically valid

EIV adjustment of the standard errors.

Unlike the asymptotic results which are nicely presented by Shanken (1992), finite sample

analysis of the two-pass CSR is largely unavailable in the literature. Aside from some simulation

studies like Affleck-Graves and Bradfield (1993) and Shanken and Zhou (2000), there is very little

understanding of the finite sample properties of the estimated zero-beta rate and risk premia from

the second-pass CSR. For example, while we know that the estimated risk premium is biased, we do

not know the magnitude, direction, or determining parameters of this bias. Although the estimated

zero-beta rate and risk premia from the second-pass CSR are consistent, it is not clear that their

finite sample biases are negligible. In many applications, betas of test assets are estimated using

as few as 60 monthly observations, so it is reasonable to suspect that the asymptotic results may

not be entirely relevant. In addition, it is also unclear how well the unadjusted standard errors

and Shanken’s EIV adjusted standard errors approximate the true standard errors of the estimated
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zero-beta rate and risk premia.

We provide a finite sample analysis of the biases and variances of the estimated zero-beta rate

and risk premia from the second-pass CSR, for both the cases of ordinary least squares (OLS) and

generalized least squares (GLS). For the single factor case, we provide analytical expressions of the

finite sample bias and variance of the estimated zero-beta rate and risk premium. For the multi-

factor case, we provide a simple and fast simulation approach in obtaining the biases and variances.

For reasonable choices of parameters, we show that the finite sample bias of the risk premium can

be more than 80% when betas are estimated using only 60 monthly observations. Even when betas

are estimated using as many as 600 monthly observations, the bias can still be as high as 30% of

the true value. In addition, we find that the unadjusted and EIV adjusted standard errors tend to

overstate the true standard errors of the estimated zero-beta rate and risk premium. The biases in

the point estimate of the risk premium coupled with the overstatement of its standard error can

lead researchers to wrongly accept the null hypothesis of zero risk premium even when the risk

premium is actually nonzero.

Attempts to correct the bias in the CSR estimators are available in the literature. These

include the adjusted estimators of Litzenberger and Ramaswamy (1979) and Kim (1995). While

these estimators are shown to be consistent when the number of assets goes to infinity, there is

also little understanding of their finite sample properties. In this paper, we also present a finite

sample analysis of these adjusted estimators. Surprisingly, we find that the first moments of these

adjusted estimators do not exist and hence they cannot be used to correct the bias. Based on our

analysis of the bias, we propose a new bias adjustment of the point estimates of the zero-beta rate

and risk premium. Simulation results show that our bias-adjusted estimators perform better than

the unadjusted estimators in finite samples.

The rest of the paper is organized as follows. Section 1 provides an overview of the two-pass

CSR methodology and summarizes existing results and previous attempts to correct the biases in

the CSR estimators. Section 2 presents a fast simulation approach that allows us to obtain the

distribution and the moments of the estimated zero-beta rate and risk premia for the general multi-

factor case. It also provides theoretical results on the existence of moments for the unadjusted and

adjusted estimators. Section 3 presents analytical results of the finite sample bias and variance of

the estimated zero-beta rate and risk premium for the single factor case. Section 4 presents our
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new bias-adjusted estimators of the zero-beta rate and risk premium. Section 5 presents simulation

results to examine the robustness of our analysis as well as to evaluate how well our bias-adjusted

estimators of the zero-beta rate and risk premium perform in finite samples. Section 6 concludes

the paper. The Appendix contains proofs of all propositions.

1. Overview of the Two-Pass Methodology

1.1 Two-Pass Cross-Sectional Regressions

Traditional asset pricing theories, such as those of Sharpe (1964), Lintner (1965), Black (1972),

Merton (1973), Ross (1976) and Breeden (1979), relate the expected return on a financial asset to

its covariances (or betas) with some systematic risk factors. Let Yt = [f ′t, R
′
t]
′ be an N +K vector

where ft is the realization of K systematic factors at time t and Rt is the return on N test assets

at time t. Denote the mean and variance of Yt as

µ = E[Yt] ≡

[
µ1

µ2

]
, (1)

V = Var[Yt] ≡

[
V11 V12

V21 V22

]
, (2)

where V is assumed to be nonsingular. If the K-factor asset pricing model holds, the expected

returns of the N assets are given by

µ2 = 1Nγ0 + βγ1 = Hγ, (3)

where 1N is an N -vector of ones, β = V21V
−1
11 , H = [1N , β], and γ = [γ0, γ

′
1]
′. Under this setup, γ0

is usually called the zero-beta rate and γ1 is called the risk premia associated with the K factors.

Suppose we have T observations of Yt. The popular two-pass CSR approach estimates γ by

first estimating β using an OLS regression of Rt on a constant term and ft

Rt = α+ βft + εt, t = 1, . . . , T, (4)

where εt is the regression residual at time t. Defining the sample mean and variance of Yt as

µ̂ =
1
T

T∑
t=1

Yt ≡

[
µ̂1

µ̂2

]
, (5)

V̂ =
1
T

T∑
t=1

(Yt − µ̂)(Yt − µ̂)′ ≡

[
V̂11 V̂12

V̂21 V̂22

]
, (6)
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the OLS estimate of β is given by

β̂ = V̂21V̂
−1
11 . (7)

Equipped with the estimated betas from the first pass, the second pass runs a CSR of µ̂2 on

Ĥ = [1N , β̂]. The second-pass CSR can be run in various ways, the most popular being the OLS

CSR. Under the OLS CSR, the estimated γ is given by

γ̌ = (Ĥ ′Ĥ)−1(Ĥ ′µ̂2). (8)

The variance of εt in (4) is given by

Σ = V22 − V21V
−1
11 V12. (9)

If Σ is known, then a more efficient estimate of γ can be obtained using a true GLS CSR in the

second pass. The true GLS estimate of γ is given by

γ̃ = (Ĥ ′Σ−1Ĥ)−1(Ĥ ′Σ−1µ̂2). (10)

In most applications, Σ is unknown and needs to be estimated. In practice,

Σ̂ = V̂22 − V̂21V̂
−1
11 V̂12 (11)

replaces the Σ in the true GLS CSR. When T > N +K, the inverse of Σ̂ exists and it is possible to

run the CSR using Σ̂−1 as the weighting matrix. The resulting estimate of γ from this estimated

GLS CSR is given by

γ̂ = (Ĥ ′Σ̂−1Ĥ)−1(Ĥ ′Σ̂−1µ̂2). (12)

There are other ways of running the second-pass CSR, but they are not as common as OLS and

GLS, so we limit our discussion to the OLS and the true and estimated GLS cases. Nevertheless,

our results can be easily generalized to other versions of the second-pass CSR.

In the discussion above, we assumed that the same β̂ is used throughout the entire sample

period, which allows us to simply run a single CSR of µ̂2 on Ĥ to estimate γ. Although this

approach is quite popular, there are also quite a lot of studies that allow β̂ to change throughout

the sample period. For example, the popular Fama-MacBeth (1973) methodology runs the OLS

CSR on a period-by-period basis by regressing realized return Rt on Ĥt = [1N , β̂t], where β̂t is the
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estimated betas of the N assets at time t, typically estimated from an earlier period. For example,

the time t estimate of the OLS CSR estimate of γ is given by

γ̌t = (Ĥ ′
tĤt)−1(Ĥ ′

tRt). (13)

By repeating this OLS CSR period by period, we get a time series of γ̌t and the resulting estimate

of γ is simply the time series average of γ̌t. In this paper, we focus on the constant beta case, but

some of our results are also applicable to the time-varying beta case with some slight modifications,

and we will note the required modifications in the subsequent analysis.

1.2 Existing Results

For finite sample inference, we assume that Yt is i.i.d. normal. Nevertheless, we will use sim-

ulation to examine the robustness of our results to departures from normality. Under the nor-

mality assumption, it is well known that µ̂ and V̂ are independent, with µ̂ ∼ N(µ, V/T ) and

T V̂ ∼ WN+K(T − 1, V ), where WN+K(T − 1, V ) is an (N +K)-dimensional central Wishart dis-

tribution with T − 1 degrees of freedom and covariance matrix V .

In many situations, one is interested in the properties of the estimated γ conditional on the

realizations of the factors. Conditional on µ̂1,

µ̂2 ∼ N(α+ βµ̂1,Σ/T ). (14)

When the asset pricing model is correct,

α = µ2 − βµ1 = 1Nγ0 + βγ1 − βµ1, (15)

so conditional on µ̂1,

µ̂2 ∼ N(1Nγ0 + βγ̄1,Σ/T ), (16)

where γ̄1 = γ1 − µ1 + µ̂1 and it is called the ex post risk premia by Shanken (1992).1

Conditional on V̂11, β̂ and Σ̂ are independent of each other, with distributions

vec(β̂) ∼ N(vec(β), (T V̂11)−1 ⊗ Σ), (17)

T Σ̂ ∼ WN (T −K − 1,Σ). (18)
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The above are standard results from the normality assumption. One can refer to Muirhead (1982,

Theorem 10.1.2) for the proof of these results.2 Note that β̂ and Σ̂ are functions of elements of V̂ ,

so they are also independent of µ̂2.

While the distributions of µ̂2, β̂, and Σ̂ are known, the estimated γ is a complicated function of

these random variables, so obtaining the distribution or the moments of the estimated γ in finite

samples is nontrivial. In the existing literature, there are two methods to make inferences about γ.

The first method ignores the fact that β̂ is estimated with error. If we treat Ĥ as H, then

γ̌ ∼ N

(
γ,

1
T

(H ′H)−1(H ′V22H)(H ′H)−1

)
, (19)

γ̃ ∼ N

(
γ,

1
T

(H ′Σ−1H)−1(H ′Σ−1V22Σ−1H)(H ′Σ−1H)−1

)
. (20)

Using the fact that

V22 = Σ + βV11β
′ = Σ +H

[
0 0′K

0K V11

]
H ′, (21)

where 0K is a K-vector of zeros, we can write the variance of γ̌ and γ̃ as

Var[γ̌] =
1
T

(
(H ′H)−1(H ′ΣH)(H ′H)−1 +

[
0 0′K

0K V11

])
, (22)

Var[γ̃] =
1
T

(
(H ′Σ−1H)−1 +

[
0 0′K

0K V11

])
. (23)

As for the estimated GLS case, one often ignores the estimation error in Σ̂ and relies on (20) to

make statistical inferences.

Note that if β is known, then

γ̌t = (H ′H)−1H ′Rt ∼ N(γ, (H ′H)−1H ′V22H(H ′H)−1), (24)

and γ̌t is i.i.d. normal. Therefore, using a time-series of OLS CSR estimates γ̌t of length T , one can

perform a t-test of H0 : a′γ = c, where a is a constant (K + 1)-vector and c is a constant scalar,

using the test statistic
1
T

∑T
t=1 a

′γ̌t − c

s(a′γ̌t)/
√
T

∼ tT−1, (25)

where s(a′γ̌t) is the sample standard deviation of the time series a′γ̌t and tT−1 is the central t-

distribution with T − 1 degrees of freedom. This is the foundation of the popular t-test that is
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used by Fama and MacBeth (1973) and many other studies. A similar t-test can also be performed

using the GLS CSR estimates.

In reality, β is estimated with error, so the EIV problem is introduced in the second-pass CSR

when β̂ is used instead of the true β. Shanken (1992) provides a nice asymptotic analysis of this

problem. He shows that although β is estimated with error, the estimation error in β̂ goes to zero

as T goes to infinity and the second-pass CSR estimate of γ is T -consistent. However, the usual

standard error for the estimated γ is inconsistent, and we need an adjustment to account for the

estimation errors in β̂. Shanken (1992) shows that3

√
T (γ̌ − γ) A∼ N

(
0K+1, (1 + γ′1V

−1
11 γ1)(H ′H)−1(H ′ΣH)(H ′H)−1 +

[
0 0′K

0K V11

])
, (26)

√
T (γ̃ − γ) A∼ N

(
0K+1, (1 + γ′1V

−1
11 γ1)(H ′Σ−1H)−1 +

[
0 0′K

0K V11

])
, (27)

√
T (γ̂ − γ) A∼ N

(
0K+1, (1 + γ′1V

−1
11 γ1)(H ′Σ−1H)−1 +

[
0 0′K

0K V11

])
. (28)

For statistical inference, one replaces the terms β, Σ, γ1, and V11 in the asymptotic variance with

their sample counterparts.

While the asymptotic results of Shanken (1992) are elegant, their relevance for the applications

that are typically encountered is questionable. In many studies, β is estimated using as few as

60 monthly observations and β̂ can be very volatile, so there may be a serious finite sample bias

in the estimated γ from the second-pass CSR. In addition, the asymptotic variance may also be

inappropriate for finite sample analysis. To evaluate how relevant the asymptotic results are, one

can perform a simulation experiment. However, a typical simulation study requires us to specify

µ and V and simulate T observations of Yt in order to draw one realization of the estimated γ.

Aside from being time-consuming, the conclusion is specific to a given choice of µ and V , so one

cannot generalize from such simulation studies. As a result, not much has been done to document

the finite sample behavior of the second-pass CSR estimate of γ. In the next section, we present

a simplification of the problem which allows us to reduce the number of parameters as well as to

deliver a speedy simulation method that frees us from having to simulate T observations of Yt for

every draw of the estimated γ. This analysis also provides us with some new results.
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1.3 Adjusted Estimators

Since the estimators of γ in the two-pass CSR are subject to the EIV problem, they are biased in

general. There have been some attempts in the literature to come up with adjusted estimators of γ

to reduce this bias. The first attempt is due to Litzenberger and Ramaswamy (1979) who develop

an adjustment for the weighted least squares CSR. Shanken (1992) later generalizes and improves

this adjusted estimator. The idea behind this adjusted estimator is that while Ĥ is an unbiased

estimator of H, Ĥ ′AĤ is in general not an unbiased estimator of H ′AH where A is an N × N

matrix, so by subtracting the bias from Ĥ ′AĤ one hopes to improve the finite sample properties

of the two-pass CSR estimators. Under this adjustment, the OLS, true GLS and estimated GLS

CSR estimators of γ are, respectively,

γ̌LR =

(
Ĥ ′Ĥ −

[
0 0′K

0K tr(Σ̂)V̂ −1
11 /(T −K − 1)

])−1

(Ĥ ′µ̂2), (29)

γ̃LR =

(
Ĥ ′Σ−1Ĥ −

[
0 0′K

0K NV̂ −1
11 /T

])−1

(Ĥ ′Σ−1µ̂2), (30)

γ̂LR =

(
Ĥ ′Σ̂−1Ĥ −

[
0 0′K

0K NV̂ −1
11 /(T −N −K − 2)

])−1

(Ĥ ′Σ̂−1µ̂2). (31)

Under some conditions, Shanken (1992) shows that these adjusted estimators are N -consistent, i.e.,

when the number of assets goes to infinity, these adjusted estimators converge to [γ0, γ̄
′
1]
′.

Another adjusted estimator that is N -consistent is due to Kim (1995), who develops an EIV-

adjusted estimator of γ for the one-factor case. Here, we generalize his estimator to the K-factor

case and provide a simple analytical expression for this estimator.4 The idea behind Kim’s adjusted

estimator is to choose γ0, γ̄1, and β to minimize a quadratic form g′Ω−1g where

g(β, γ0, γ̄1) =

[
µ̂2 − 1Nγ0 − βγ̄1

vec(β̂)− vec(β)

]
=

[
µ̂2 − 1Nγ0 − (γ̄′1 ⊗ IN )b

b̂− b

]
, (32)

with b = vec(β), b̂ = vec(β̂), and

Ω =

[
Σ/T ON×NK

ONK×N V̂ −1
11 ⊗ Σ/T

]
=

[
1 0′K

0K V̂ −1
11

]
⊗ Σ/T. (33)

It makes sense to use Ω−1 as the weighting matrix because under the normality assumption, Ω is

the variance of g conditional on µ̂1 and V̂11. We call the estimator of γ from this procedure as
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“Kim’s true GLS estimator” and denoted it as γ̃K . However, when Σ is not known, we replace

Σ by Σ̂ in Ω and the resulting estimator is denoted as γ̂K . For completeness, we also present the

adjusted OLS estimator γ̌K , in which we replace Σ by IN .

In obtaining γ̌K , γ̃K , and γ̂K , one needs to minimize g′Ω−1g. Although the objective function

is nonlinear in the parameters, it turns out that a simple analytical solution is available. The

following lemma provides this solution.

Lemma 1. Let

G =

 1 0 0′K
0 0 0′K

0K 0K V̂ −1
11

 (34)

and

Ǎ = [µ̂2, Ĥ]′[µ̂2, Ĥ], (35)

Ã = [µ̂2, Ĥ]′Σ−1[µ̂2, Ĥ], (36)

Â = [µ̂2, Ĥ]′Σ̂−1[µ̂2, Ĥ]. (37)

Suppose x = [x1, x
′
2]
′ is the eigenvector associated with the largest eigenvalue of Ã−1G, where x1

is the first element of x. Kim’s true GLS estimator is given by γ̃K = −x2/x1. γ̌K and γ̂K are

obtained by replacing Ã with Ǎ and Â respectively.

Lemma 1 provides an analytical solution to Kim’s estimator which greatly facilitates its use, es-

pecially for the multi-factor case. Of particular interest is γ̂K , which turns out to be numerically

identical to the maximum likelihood estimator of γ under the normality assumption, so Lemma 1

can also be used to compute the maximum likelihood estimator of γ.5 While both the adjusted

estimators of Litzenberger and Ramaswamy (1979) and Kim (1995) are N -consistent, there is little

understanding of their finite sample properties. In the next section, we provide a surprising the-

oretical result which suggests that none of these adjusted estimators have integral moments when

N and T are both finite.
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2. Finite Sample Analysis

2.1 Simulation Method

Before we discuss our simulation method, we first distinguish between the conditional and uncon-

ditional distributions of γ̌, γ̃, and γ̂. By conditional distribution, we mean the distribution of the

estimated γ conditional on the sample mean and variance of the K factors, i.e., µ̂1 and V̂11. As the

derivation of the unconditional distribution is based on the results from the conditional distribution,

we provide the conditional distribution analysis first.

The issue at hand is how to simulate γ̌, γ̃, and γ̂ conditional on a given value of µ̂1 and V̂11. From

(16)–(18), the conditional distributions of µ̂2, β̂ and Σ̂ are known, eliminating the need to directly

simulate T observations of Yt to obtain γ̌, γ̃, and γ̂.6 While this approach is substantially faster than

the traditional simulation method of simulating a time series of Yt, it requires specification of a large

number of parameters, namely, γ, β, and Σ. We would like to simplify the problem by reducing

the number of random variables that are needed to construct γ̌, γ̃, and γ̂. This simplification also

allows us to understand the essential parameters that determine the distributions of γ̌, γ̃, and γ̂.

2.1.1 OLS CSR

We turn our attention to the OLS case first. Although the OLS CSR estimate of γ only involves

µ̂2 and β̂, we still need to know Σ to simulate µ̂2 and β̂ if we use (16) and (17). To reduce the

number of parameters, first apply the partitioned matrix inverse formula to (Ĥ ′Ĥ)−1 and obtain

(Ĥ ′Ĥ)−1Ĥ ′ =

[
1
N [1′N − (1′N β̂)(β̂′Mβ̂)−1β̂′M ]

(β̂′Mβ̂)−1β̂′M

]
, (38)

where M = IN − 1N (1′N1N )−11′N . With this expression, write the OLS CSR estimate of γ1 and γ0

as

γ̌1 = (β̂′Mβ̂)−1(β̂′Mµ̂2), (39)

γ̌0 =
1
N

(
1′N µ̂2 − 1′N β̂γ̌1

)
. (40)

Let PΛP ′ be the eigenvalue decomposition of Σ
1
2MΣ

1
2 , where Λ = Diag(λ1, . . . , λN−1) with λ1 ≥

· · · ≥ λN−1 > 0 being the N − 1 nonzero eigenvalues of Σ
1
2MΣ

1
2 , and P is an N × (N − 1)

matrix with its ith column equal to the eigenvector of Σ
1
2MΣ

1
2 associated with λi. Denote ν =
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Σ−
1
2 1N/(1′NΣ−11N )

1
2 . Then Σ

1
2MΣ

1
2 ν = 0N , so ν is orthogonal to P . Together, P and ν form an

orthonormal basis of RN and

νν ′ + PP ′ = IN . (41)

Defining Y and Z as the following linear transformations of µ̂2 and β̂,

Y =

[
Y1

Y2

]
=

[ √
Tν ′Σ−

1
2 µ̂2

√
TP ′Σ−

1
2 µ̂2

]
, (42)

Z =

[
Z1

Z2

]
=

 √
Tν ′Σ−

1
2 β̂V̂

1
2

11
√
TP ′Σ−

1
2 β̂V̂

1
2

11

 , (43)

γ̌0 and γ̌1 can be written as functions of Y and Z. Starting with γ̌1,

γ̌1 = (β̂′Mβ̂)−1(β̂′Mµ̂2)

= (β̂′Σ−
1
2 Σ

1
2MΣ

1
2 Σ−

1
2 β̂)−1(β̂′Σ−

1
2 Σ

1
2MΣ

1
2 Σ−

1
2 µ̂2)

= (β̂′Σ−
1
2PΛP ′Σ−

1
2 β̂)−1(β̂′Σ−

1
2PΛP ′Σ−

1
2 µ̂2)

= V̂
1
2

11(Z
′
2ΛZ2)−1(Z ′2ΛY2). (44)

As for γ̌0,

γ̌0 =
1
N

(
1′N µ̂2 − 1′N β̂γ̌1

)
=

1
N

[1′NΣ
1
2 (νν ′ + PP ′)Σ−

1
2 µ̂2 − 1′NΣ

1
2 (νν ′ + PP ′)Σ−

1
2 β̂γ̌1]

=
1√
T

[
(1′NΣ−11N )−

1
2Y1 + ξ′Y2 −

[
(1′NΣ−11N )−

1
2Z1 + ξ′Z2

]
(Z ′2ΛZ2)−1(Z ′2ΛY2)

]
, (45)

where ξ = (P ′Σ
1
2 1N )/N . Under this approach, we need to simulate Y and Z instead of µ̂2 and

β̂. Although the number of random variables remains the same, we need to know much less to

simulate Y and Z. Conditional on µ̂1 and V̂11, Y1, Y2, Z1, and Z2 are independent of each other

and have the following normal distribution

Y ∼ N

([ √
T (ν ′Σ−

1
2 1Nγ0 + δγ̄1)√
Tηγ̄1

]
, IN

)
, (46)

vec(Z) ∼ N

vec

 √
TδV̂

1
2

11
√
TηV̂

1
2

11

 , IK ⊗ IN

 , (47)

where δ = ν ′Σ−
1
2β and η = P ′Σ−

1
2β. Therefore, conditional on µ̂1 and V̂11, one only needs to know

ξ, 1′NΣ−11N , γ0, γ̄1, δ, η, and Λ to simulate γ̌. In fact, multiplying Λ by a constant would not
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change the distribution, so the distribution of γ̌ only depends on λi/λN−1 for i = 1, . . . , N − 2.

Aside from N and T , the above analysis suggests that the conditional distribution of γ̃ can be

written as a function of only N(K + 2) +K − 1 parameters.

2.1.2 True GLS CSR

While the true GLS CSR estimate of γ depends on β̂, µ̂2, and Σ, it turns out that the distribution

of γ̃ is easier to simulate than γ̌. Using the partitioned matrix inverse formula on (Ĥ ′Σ−1Ĥ)−1,

γ̃1 = (β̂′Σ−
1
2 (IN − νν ′)Σ−

1
2 β̂)−1(β̂′Σ−

1
2 (IN − νν ′)Σ−

1
2 µ̂2)

= (β̂′Σ−
1
2PP ′Σ−

1
2 β̂)−1(β̂′Σ−

1
2PP ′Σ−

1
2 µ̂2)

= V̂
1
2

11(Z
′
2Z2)−1(Z ′2Y2), (48)

γ̃0 =
1

1′NΣ−11N
(1′NΣ−1µ̂2 − 1′NΣ−1β̂γ̃1)

=
1

(1′NΣ−11N )
1
2

(ν ′Σ−
1
2 µ̂2 − ν ′Σ−

1
2 β̂γ̃1)

=
1

T
1
2 (1′NΣ−11N )

1
2

[Y1 − Z1(Z ′2Z2)−1(Z ′2Y2)]. (49)

Comparing (48) and (49) with (44) and (45), the distribution of the true GLS γ̃ can be obtained

as a special case of the distribution of OLS γ̌ by setting ξ = 0N−1 and Λ = IN−1. While we can

simulate γ̃ by simulating Y and Z, we present here a much more efficient method for simulating γ̃.

Let Θ = T V̂
1
2

11η
′ηV̂

1
2

11 and [Q1, Q2] be an orthonormal basis of RN−1 where

Q1 =
√
TηV̂

1
2

11Θ
− 1

2 . (50)

Defining Z3 = Q′1Z2 and Z4 = Q′2Z2, it is easy to verify that Z3 and Z4 are independent of each

other and that

vec(Z3) ∼ N
(
vec(Θ

1
2 ), IK2

)
, (51)

vec(Z4) ∼ N
(
0K(N−K−1), IK(N−K−1)

)
. (52)

Writing W4 = Z ′4Z4, W4 ∼WK(N −K − 1, IK) and it is independent of Z3. Since Q1Q
′
1 +Q2Q

′
2 =

IN−1,

Z ′2Z2 = Z ′2[Q1, Q2][Q1, Q2]′Z2 = Z ′3Z3 + Z ′4Z4 = Z ′3Z3 +W4. (53)

12



From (48), conditional on µ̂1, V̂11, and Z2, γ̃1 is normally distributed and its mean and variance

are given by

E[γ̃1|µ̂1, V̂11, Z2] = V̂
1
2

11(Z
′
2Z2)−1(Z ′2

√
Tηγ̄1) = V̂

1
2

11(Z
′
3Z3 +W4)−1Z ′3Θ

1
2 V̂

− 1
2

11 γ̄1, (54)

Var[γ̃1|µ̂1, V̂11, Z2] = V̂
1
2

11(Z
′
2Z2)−1V̂

1
2

11 = V̂
1
2

11(Z
′
3Z3 +W4)−1V̂

1
2

11, (55)

which depend on Z2 only through Z3 and W4. Therefore, conditional on µ̂1, V̂11, Z3, and W4,

γ̃1 ∼ N

(
V̂

1
2

11(Z
′
3Z3 +W4)−1Z ′3Θ

1
2 V̂

− 1
2

11 γ̄1, V̂
1
2

11(Z
′
3Z3 +W4)−1V̂

1
2

11

)
. (56)

From (49), conditional on µ̂1, V̂11, and γ̃1, γ̃0 is normal and its mean and variance are given by

E[γ̃0|µ̂1, V̂11, γ̃1] = γ0 + h(γ̄1 − γ̃1), (57)

Var[γ̃0|µ̂1, V̂11, γ̃1] =
1 + γ̃′1V̂

−1
11 γ̃1

T (1′NΣ−11N )
, (58)

where h = (1′NΣ−1β)/(1′NΣ−11N ). Therefore, conditional on µ̂1, V̂11, and γ̃1,

γ̃0 ∼ N
(
γ0 + h(γ̄1 − γ̃1), (1 + γ̃′1V̂

−1
11 γ̃1)/(T1′NΣ−11N )

)
. (59)

In summary, we suggest the following steps to simulate the conditional distribution of γ̃:

1. Simulate Z3 using vec(Z3) ∼ N(vec(Θ
1
2 ), IK2) and W4 ∼WK(N −K − 1, IK), independently

of each other.

2. Simulate γ̃1 using (56).

3. Simulate γ̃0 using (59).

Note that this approach requires us to simulate Z3, W4, and a (K + 1)-dimensional normal distri-

bution to generate a realization of γ̃. Since Z3 and W4 are K-dimensional random matrices, the

computation time only depends on K but not N . As the number of factors K is typically small

but the number of test assets N can be large, our approach provides an extremely efficient method

of simulating the conditional distribution of γ̃.

This simulation method also allows us to understand the essential parameters that determine

the conditional distribution of γ̃1 and γ̃0. Conditional on µ̂1 and V̂11, from (56) and (59), the

distribution of γ̃1 only depends on Θ and γ̄1 but the distribution of γ̃0 also depends on γ0, 1′NΣ−11N ,

and 1′NΣ−1β. As Θ is symmetric, the conditional distribution of γ̃ only depends on (K+1)(K+4)/2

parameters, which are far fewer than in the OLS case.
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2.1.3 Estimated GLS CSR

At first sight, the estimated GLS CSR appears to be much more complicated than the true GLS

CSR because one needs to simulate Σ̂ in order to compute γ̂. However, the analysis provided here

shows that simulating γ̂ does not require much more effort than simulating γ̃, and there is no need

to simulate Σ̂. To prepare for our derivation, we define Ã and Â as in (36) and (37). The only

difference between Â and Ã is that Â has Σ̂ in the middle but Ã has the true Σ in the middle.

Using Theorem 3.2.11 of Muirhead (1982), conditional on µ̂2 and β̂,

Â−1 ∼WK+2(T −N + 1, Ã−1/T ). (60)

Our first task is to express γ̃ and γ̂ as elements of Ã−1 and Â−1. Partition Â into 2 by 2 blocks

with dimension 1 and K +1, respectively. Denote Âij as the (i, j)th block of Â and Âij the (i, j)th

block of Â−1. Ãij and Ãij are similarly defined for Ã and Ã−1. From the partitioned matrix inverse

formula, it is easy to verify that

γ̃ = Ã−1
22 Ã21 = −Ã21(Ã11)−1,

γ̂ = Â−1
22 Â21 = −Â21(Â11)−1. (61)

Conditional on µ̂2 and β̂, from (60),

Â11 ∼W1(T −N + 1, Ã11/T ). (62)

It follows that

U =
TÂ11

Ã11
∼ χ2

T−N+1, (63)

and U is independent of µ̂2 and β̂, and hence independent of Ã11. Therefore, we have

(Â11)−1 =
T (Ã11)−1

U
=
T (Ã11 − Ã12Ã

−1
22 Ã21)

U
. (64)

Conditional on µ̂2, β̂, and Â11, from Theorem 3.2.10 of Muirhead (1982),

Â21 ∼ N(Ã21(Ã11)−1Â11, Ã−1
22 Â

11/T ), (65)

and hence

γ̂ = −Â21(Â11)−1 ∼ N(γ̃, (Â11)−1Ã−1
22 /T ). (66)
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Conditional on µ̂2, β̂, and Â11, or equivalently conditional on µ̂2, β̂, and U , we can now use (64)

to obtain the conditional distribution of γ̂ as

γ̂ ∼ N

(
γ̃,

(Ã11 − Ã12Ã
−1
22 Ã21)Ã−1

22

U

)
. (67)

With some algebra,

(Ã11 − Ã12Ã
−1
22 Ã21)Ã−1

22

=
(
Y ′2 [IN−1 − Z2(Z ′2Z2)−1Z ′2]Y2

)
1+Z1(Z′

2Z2)−1Z′
1

T (1′NΣ−11N )
− Z1(Z′

2Z2)−1V̂
1
2

11

T
1
2 (1′NΣ−11N )

1
2

− V̂
1
2

11 (Z′
2Z2)−1Z′

1

T
1
2 (1′NΣ−11N )

1
2

V̂
1
2

11(Z
′
2Z2)−1V̂

1
2

11

 . (68)

Note that conditional on Z2, U1 ≡ Y ′2 [IN−1 − Z2(Z ′2Z2)−1Z ′2]Y2 is independent of Z ′2Y2, hence U1

is independent of γ̃1, and U1 ∼ χ2
N−K−1(ω), with its noncentrality parameter ω given by

ω = T γ̄′1η
′[IN−1 − Z2(Z ′2Z2)−1Z ′2]ηγ̄1

= γ̄′1V̂
− 1

2
11 Θ

1
2 [IK − Z3(Z ′3Z3 +W4)−1Z ′3]Θ

1
2 V̂

− 1
2

11 γ̄1

= γ̄′1V̂
− 1

2
11 Θ

1
2 (IK + Z3W

−1
4 Z ′3)

−1Θ
1
2 V̂

− 1
2

11 γ̄1, (69)

which only depends on Z2 through Z3 and W4. With these results, we can simulate the conditional

distribution of γ̂ using the following steps:

1. Simulate Z3 using vec(Z3) ∼ N(vec(Θ
1
2 ), IK2) and W4 ∼WK(N −K − 1, IK), independently

of each other.

2. Simulate γ̃1 using (56).

3. Simulate Z1 using (47), independently of Z3 and W4. Then simulate γ̃0 using

γ̃0 ∼ N

γ0 + hγ̄1 −
Z1V̂

− 1
2

11 γ̃1

T
1
2 (1′NΣ−11N )

1
2

,
1

T (1′NΣ−11N )

 . (70)

4. Simulate U ∼ χ2
T−N+1 and U1 ∼ χ2

N−K−1(ω) independently of each other, where ω is given

by (69).

5. Simulate γ̂ using

γ̂ ∼ N

γ̃, U1

U


1+Z1(Z′

3Z3+W4)−1Z′
1

T (1′NΣ−11N )
−Z1(Z′

3Z3+W4)−1V̂
1
2

11

T
1
2 (1′NΣ−11N )

1
2

− V̂
1
2

11 (Z′
3Z3+W4)−1Z′

1

T
1
2 (1′NΣ−11N )

1
2

V̂
1
2

11(Z
′
3Z3 +W4)−1V̂

1
2

11


 .
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Note that in comparison to simulating γ̃, we only need to generate two additional chi-squared

random variables U and U1 and one additional K-vector of normal random variables Z1 to simulate

γ̂. Therefore, our approach of simulating γ̂ is very efficient. In addition, we do not need to know

any additional parameters (like Σ) to simulate γ̂, which suggests that the conditional distribution

of γ̂ depends on the same (K+1)(K+4)/2 parameters that determine the conditional distribution

of γ̃.

Besides providing a speedy simulation method, our analysis of the estimated GLS CSR also has

the added benefit of relating the mean and variance of γ̂ to the mean and variance of γ̃, as given

in the following lemma.

Lemma 2. Assuming T > N +K, conditional on µ̂1 and V̂11, the means and variances of γ̂ from

the estimated GLS and γ̃ from true GLS, when they exist, are related to each other by the following

relationship

E[γ̂|µ̂1, V̂11] = E[γ̃|µ̂1, V̂11], (71)

Var[γ̂|µ̂1, V̂11] = Var[γ̃|µ̂1, V̂11] +
1

T −N − 1
E[(Ã11 − Ã12Ã

−1
22 Ã21)Ã−1

22 |µ̂1, V̂11]. (72)

Unconditionally,

E[γ̂] = E[γ̃], (73)

Var[γ̂] = Var[γ̃] +
1

T −N − 1
E[(Ã11 − Ã12Ã

−1
22 Ã21)Ã−1

22 ]. (74)

This lemma suggests that the expected value, and hence the bias of γ̂ from the estimated GLS

CSR, is exactly the same as its true GLS CSR counterpart. Therefore, to find the bias of γ̂, simply

use the corresponding results from true GLS, which is easier to derive. However, the variance of

γ̂ is larger than that of γ̃, so using the estimated Σ̂ instead of the true Σ introduces additional

volatility into the estimated γ, especially when N is large relative to T . Therefore, while γ̃ from

the true GLS CSR is more efficient than γ̌ from the OLS CSR, there is no guarantee that γ̂ from

the estimated GLS CSR is more efficient than γ̌ in finite samples, particularly when N is large

relative to T .
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2.1.4 Extensions

So far we have focused our discussions on simulating the conditional distributions of γ̌, γ̃, and γ̂.

To simulate their unconditional distributions, one only needs to simulate µ̂1 and V̂11 before drawing

Y , Z, and U . Under the normality assumption,

µ̂1 ∼ N(µ1, V11/T ), (75)

T V̂11 ∼ WK(T − 1, V11), (76)

and they are independent of each other, so simulating the unconditional distribution of the es-

timated γ is relatively easy. In fact, our simulation approach can be used even when ft is not

normally distributed. As long as one can simulate µ̂1 and V̂11, and εt in (4) is i.i.d. normal when

conditional on µ̂1 and V̂11, our method can still be used to simulate the unconditional distribution

of the estimated γ.

Our simulation method can also be extended to the situation in which the beta used in the

second-pass CSR is estimated from a period that is different from that of the realized return, which

is often the case in the Fama-MacBeth regression. Suppose the first T periods are used to estimate

β, but the second-pass CSR is run using realized returns of period t, where t > T . The OLS CSR

estimate of γ at time t is

γ̌t = (Ĥ ′Ĥ)−1(Ĥ ′Rt). (77)

Comparing (77) to (8), the only difference is that Rt is used instead of µ̂2 as the dependent

variable. As Rt and µ̂2 are both independent of β̂, simulating γ̌t requires very little modification

of our simulation approach. Conditional on ft (instead of µ̂1 as before),

Rt ∼ N(1Nγ0 + βγ̄1t,Σ), (78)

where γ̄1t = γ1 − µ1 + ft and is independent of β̂. By changing the definition of Y to

Y =

[
Y1

Y2

]
=

[
ν ′Σ−

1
2Rt

P ′Σ−
1
2Rt

]
∼ N

([
ν ′Σ−

1
2 1Nγ0 + δγ̄1t

ηγ̄1t

]
, IN

)
, (79)

we can then write

γ̌1t = (β̂′Mβ̂)−1(β̂′MRt) =
√
T V̂

1
2

11(Z
′
2ΛZ2)−1(Z ′2ΛY2), (80)

γ̌0t =
1
N

(
1′NRt − 1′N β̂γ̌1t

)
= (1′NΣ−11N )−

1
2Y1 + ξ′Y2 −

[
(1′NΣ−11N )−

1
2Z1 + ξ′Z2

]
(Z ′2ΛZ2)−1(Z ′2ΛY2). (81)
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Therefore, conditional on ft and V̂11, we can simulate Y and Z to generate γ̌t. For true GLS and

estimated GLS, we can make the same modification to obtain the distribution of γ̃t and γ̂t. Note

that in our original setup, T refers to the length of the time series used to estimate β as well as

to the length of the times series used to compute the average return µ̂2. Under the setting for

the Fama-MacBeth regression that we discuss here, T is only used to denote the length of the

beta estimation period. The dependent variable here is no longer the average return over the beta

estimation period but the realized return in a different period. The Fama-MacBeth CSR can be

repeated for many periods to obtain a time series of γ̌t, but the length of the time series of γ̌t has

no relation to the length of the beta estimation period (T ).

2.2 Moments of CSR Estimates of Zero-Beta Rate and Risk Premia

2.2.1 Existence of Moments

Asymptotically, γ̌, γ̃, and γ̂ have a normal distribution according to (26)–(28), so all the moments

of the estimated γ exist in the asymptotic distribution. However, in finite samples, only a finite

number of the moments of γ̌, γ̃, and γ̂ exist. The following proposition presents this result, which

appears to be largely unknown in the finance literature.

Proposition 1. Conditional on µ̂1 and V̂11, the s-th moment of the second-pass OLS and true

GLS CSR estimators of γ exists if and only if s < N −K. For the estimated GLS CSR, the s-th

moment of γ̂ exists if and only if s < min[N −K,T −N + 1].

Proposition 1 suggests that the conditional s-th moment of the estimated γ does not exist if

s ≥ N −K, so the unconditional s-th moment of the estimated γ also does not exist if s ≥ N −K.

Proposition 1 provides the first clue that the asymptotic distribution can be problematic for finite

sample inference. For example, when just N = 2 assets are used to estimate the CAPM (i.e.,

K = 1), we can estimate γ, but none of its moments exist (because its distribution has heavy

tails). When the CAPM is estimated using N = 3 assets, the mean of the estimated γ exists,

but its variance does not. In general, we expect that when K approaches N , the finite sample

distribution of the estimated γ becomes less and less normal. Note that for the OLS and the true

GLS cases, Proposition 1 suggests that the existence of moments depends on N and K but not on

T . If s ≥ N −K and the s-th moment of the estimated γ does not exist, then having a longer time
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series does not help. Therefore, the traditional practice of using the normal or the t-distribution

with T − 1 degrees of freedom to make inference about γ can be problematic even for large T .

Contrary to the CSR estimators which have at least some finite moments, the following proposi-

tion suggests that the adjusted estimators of Litzenberger and Ramaswamy (1979) and Kim (1995)

(which includes the maximum likelihood estimator as a special case) actually have no integral

moments in finite samples.

Proposition 2. Conditional on µ̂1 and V̂11, the s-th moment of the adjusted estimators γ̌LR, γ̃LR,

γ̂LR, γ̌K , γ̃K , and γ̂K does not exist for s ≥ 1 when N and T are finite.

The result in Proposition 2 is actually quite general and it is not limited to the normality case. It

suggests that the mean and variance of these adjusted estimators do not exist, so if one uses the

mean squared error criterion to compare estimators, these adjusted estimators are definitely inferior

to the unadjusted CSR estimators. This result is quite ironic because these adjusted estimators

were developed to reduce the bias of the CSR estimators but their means do not exist.

Intuitively, the adjusted estimators do not have integral moments because their distribution has

heavy tails. The heavy tails arise because these adjusted estimators can all be written as a ratio

of two functions of µ̂2 and β̂, and there is a set of points of µ̂2 and β̂ such that the numerator is

nonzero but the denominator is zero. When there is a sufficient probability in the neighborhood

of this set of points, the tail is so fat that the mean of the adjusted estimators fails to exist. The

consequence of the nonexistence of moments is that occasionally there will be some extreme outliers

from these adjusted estimators that will render these adjusted estimators unreliable.

Shanken (1992) shows that the GLS CSR estimator γ̂ has the same asymptotic distribution as

the maximum likelihood estimator (which is the same as γ̂K), yet Propositions 1 and 2 suggest that

their finite sample properties are vastly different, with the latter having no integral moments. While

these results are somewhat surprising and unknown in the finance literature, they can be anticipated

to some extent from various studies of simultaneous equations models in the econometrics literature.

For the estimation of simultaneous equations models, there have been extensive studies on the

relative merits of limited information maximum likelihood (LIML) method and of two stage least

squares (2SLS). Although these two methods are asymptotically equivalent, they have very different

finite sample properties. It was shown in the econometrics literature that the distribution of
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the LIML estimator has tails similar to those of a multivariate Cauchy distribution, which has

no integral moments, whereas the 2SLS estimator has tails similar to those of a multivariate t-

distribution, which has some finite integral moments.7 In our context, Kim’s adjusted estimator

γ̂K is analogous to the LIML estimator and the two-pass GLS CSR estimator γ̂ is analogous to the

2SLS estimator. As a result, it is not entirely surprising that some of the integral moments of γ̂

exist but no integral moments of γ̂K exist.

It should be emphasized that outlier behavior is only one characteristic of the finite sample

distribution of an estimator, so one should not dismiss the usefulness of the adjusted estimators

of Litzenberger and Ramaswamy (1979) and Kim (1995) simply because they do not have integral

moments. While having no finite first moment, the adjusted estimators of γ may actually approach

their asymptotic distributions more rapidly than the unadjusted ones. Nevertheless, one needs to

be careful in interpreting the simulation results of these adjusted estimators. It is because the

adjusted estimators have no integral moments, the sample mean and variance from the simulations

cannot be used to approximate the true mean and variance.

In the previous subsection, we showed that one can approximate the conditional distribution

of the estimated γ by simulating Y1, Y2, Z1, and Z2. However, if one is only interested in the first

and the second moments of the estimated γ, then one only needs to simulate Z2. The rest of this

subsection discusses the conditional and unconditional mean and variance of the estimated γ. For

notational brevity, we use Ec and Varc to denote mean and variance when conditional on µ̂1 and

V̂11, i.e., Ec[X] ≡ E[X|µ̂1, V̂11] and Varc[X] ≡ Var[X|µ̂1, V̂11].

2.2.2 Mean

From Proposition 1, the conditional mean of γ̌, γ̃, and γ̂ exists when N > K +1.8 From Lemma 2,

the conditional mean of γ̂ and γ̃ are the same, so we only need to present the results for γ̌ and

γ̃ here. We start with the OLS CSR estimate of γ. Conditional on µ̂1 and V̂11, Y2 and Z2 are

independent, so from (44),

Ec[γ̌1] = V̂
1
2

11E
c[(Z ′2ΛZ2)−1Z ′2]ΛE

c[Y2] =
√
T V̂

1
2

11E
c[(Z ′2ΛZ2)−1Z ′2]Ληγ̄1. (82)

This expression suggests that conditional on µ̂1 and V̂11, the expected value of γ̌1 depends on η, Λ

and γ̄1. In order to obtain the conditional mean of γ̌1, we need to evaluate Ec[(Z ′2ΛZ2)−1Z ′2]. For

20



the case of K = 1, this expectation can be evaluated directly and we present the results in the next

section. For K > 1, no simple expression for Ec[(Z ′2ΛZ2)−1Z ′2] is available, but a large number of

Z2 can be drawn to approximate the expectation by using the average value of (Z ′2ΛZ2)−1Z ′2. Note

that in approximating Ec[γ̌1], we need merely to simulate Z2 and there is no need to simulate Y2.

Besides saving computational time, our approach is more accurate because there is only one source

of simulation error which is due to the use of the average value of (Z ′2ΛZ2)−1Z ′2 to approximate

Ec[(Z ′2ΛZ2)−1Z ′2]. There is no need to worry about approximation errors from simulating Y2.

Defining h = (1′NΣ−1β)/(1′NΣ−11N ), the conditional mean of γ̌0 is

Ec[γ̌0] = γ0 + h(γ̄1 − Ec[γ̌1]) + ξ′ηγ̄1 − ξ′Ec[Z2(Z ′2ΛZ2)−1Z ′2]Ληγ̄1, (83)

using the fact that Y1, Y2, and Z1 are all independent of Z2. Aside from η, Λ, and γ̄1, the conditional

mean of γ̌0 also depends on γ0, ξ, and h. In order to obtain Ec[γ̌0], we can use the average value

of Z2(Z ′2ΛZ2)−1Z ′2 from the simulations to approximate Ec[Z2(Z ′2ΛZ2)−1Z ′2].

Taking the unconditional expectation of both sides of (82) and (83),

E[γ̌1] =
√
TE[V̂

1
2

11(Z
′
2ΛZ2)−1Z ′2]Ληγ1, (84)

E[γ̌0] = γ0 + h(γ1 − E[γ̌1]) + ξ′ηγ1 − ξ′E[Z2(Z ′2ΛZ2)−1Z ′2]Ληγ1. (85)

The only difference between obtaining the conditional and unconditional mean of γ̌ is that in

addition to Z2, we also need to simulate V̂11 for the unconditional mean. In each simulation, we

first simulate V̂11 using (76) and then Z2 using (47). We can then approximate E[V̂
1
2

11(Z
′
2ΛZ2)−1Z ′2]

using the average value of V̂
1
2

11(Z
′
2ΛZ2)−1Z ′2 from the simulations.

The mean of γ̃ is easy to obtain. We simply set ξ = 0N−1 and Λ = IN−1 in the expressions for

the OLS case. For the conditional mean,

Ec[γ̃1] =
√
T V̂

1
2

11E
c[(Z ′2Z2)−1Z ′2]ηγ̄1 = V̂

1
2

11E
c[(Z ′3Z3 +W4)−1Z ′3]Θ

1
2 V̂

− 1
2

11 γ̄1, (86)

Ec[γ̃0] = γ0 + h(γ̄1 − Ec[γ̃1]). (87)

Therefore, the conditional mean of γ̃1 only depends on Θ and γ̄1, whereas the conditional mean of γ̃0

depends on Θ, γ0, γ̄1 and (1′NΣ−1β)/(1′NΣ−11N ). In addition, we only need to simulate Z3 and W4

to approximate Ec[γ̃1], which is much faster than simulating Z2 when N is large. Unconditionally,

E[γ̃1] = E[V̂
1
2

11(Z
′
3Z3 +W4)−1Z ′3Θ

1
2 V̂

− 1
2

11 ]γ1, (88)
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E[γ̃0] = γ0 + h(γ1 − E[γ̃1]). (89)

From the expressions above, the unconditional biases of both OLS and GLS estimates of γ0 and

γ1 depend on the value of γ1 but not the value of γ0, so the actual value of the zero-beta rate

is irrelevant in determining the bias of the estimated γ. For the special case that γ1 = 0K (i.e.,

expected returns are constant across assets), the unconditional biases for both OLS and GLS

estimates of γ are zero.

The expressions for the unconditional mean of γ̂ and γ̃ that we derived above assume that the

dependent variable in the second-pass CSR is µ̂2. However, the unconditional mean remains the

same if Rt is used as the dependent variable, where t > T (i.e., returns of the test assets fall outside

of the beta estimation period). This is because Rt (with t > T ) and µ̂2 are both independent

of β̂ and have the same unconditional mean µ2 = 1Nγ0 + βγ1. Therefore, the expectation of the

estimated γ that we derive here can also be used for the case of the Fama-MacBeth regression.

2.2.3 Variance

From Proposition 1, the conditional second moment of γ̌, γ̃, and γ̂ exists when N > K+2. Starting

with the OLS case, using the fact that Y2 and Z2 are independent and that

Ec[Y2Y
′
2 ] = IN−1 + Tηγ̄1γ̄

′
1η
′, (90)

the conditional second moment of γ̌1 is

Ec[γ̌1γ̌
′
1] = V̂

1
2

11E
c[D2 + TD1γ̄1γ̄

′
1D

′
1]V̂

1
2

11, (91)

where

D1 = (Z ′2ΛZ2)−1(Z ′2Λη), (92)

D2 = (Z ′2ΛZ2)−1(Z ′2Λ
2Z2)(Z ′2ΛZ2)−1. (93)

With (91) and (82), the conditional variance of γ̌1 is

Varc[γ̌1] = Ec[γ̌1γ̌
′
1]− Ec[γ̌1]Ec[γ̌1]′. (94)

After some straightforward but tedious algebra, the conditional variance of γ̌0 is

Varc[γ̌0] =
1 + Ec[γ̌′1V̂

−1
11 γ̌1]

T (1′NΣ−11N )
+
ξ′ξ − 2Ec[D3(Z ′2ΛZ2)−1Z ′2Λξ] + Varc[D3V̂

− 1
2

11 γ̌1]
T
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= Varc[D3D1γ̄1] +
1 + Ec[tr(D2 + TD1γ̄1γ̄

′
1D

′
1)]

T (1′NΣ−11N )

+
ξ′ξ + Ec[D3D2D

′
3 − 2D3(Z ′2ΛZ2)−1Z ′2Λξ]

T
, (95)

where

D3 =
√
ThV̂

1
2

11 + ξ′Z2. (96)

For the unconditional variances of γ̌1 and γ̌0, use the fact that µ̂1 and V̂11 are independent and that

E[γ̄1γ̄
′
1|V̂11] = E[γ̄1γ̄

′
1] =

V11

T
+ γ1γ

′
1 (97)

to obtain

Var[γ̌1] = E[V̂
1
2

11(D2 +D1V11D
′
1 + TD1γ1γ

′
1D

′
1)V̂

1
2

11]− E[γ̌1]E[γ̌1]′, (98)

Var[γ̌0] = Var[D3D1γ1] +
1 + E[tr(D2 +D1V11D

′
1 + TD1γ1γ

′
1D

′
1)]

T (1′NΣ−11N )

+
ξ′ξ + E[aV11a

′ +D3D2D
′
3 − 2D3(Z ′2ΛZ2)−1Z ′2Λξ]
T

, (99)

where a = h + ξ′η − D3D1. For the true GLS case, the conditional variances of γ̃1 and γ̃0 are

obtained by setting Λ = IN−1 and ξ = 0N−1 in the OLS case, and

Varc[γ̃1] = V̂
1
2

11E
c[D̃2 + TD̃1γ̄1γ̄

′
1D̃

′
1]V̂

1
2

11 − Ec[γ̃1]Ec[γ̃1]′, (100)

Varc[γ̃0] = hVarc[γ̃1]h′ +
1 + Ec[tr(D̃2 + TD̃1γ̄1γ̄

′
1D̃

′
1)]

T (1′NΣ−11N )
, (101)

where

D̃1 = (Z ′2Z2)−1(Z ′2η) = T−
1
2 (Z ′3Z3 +W4)−1Z ′3Θ

1
2 V̂

− 1
2

11 , (102)

D̃2 = (Z ′2Z2)−1 = (Z ′3Z3 +W4)−1. (103)

The unconditional variance of γ̃1 and γ̃0 are obtained similarly to be

Var[γ̃1] = E[V̂
1
2

11(D̃2 + D̃1V11D̃
′
1 + TD̃1γ1γ

′
1D̃

′
1)V̂

1
2

11]− E[γ̃1]E[γ̃1]′, (104)

Var[γ̃0] = hVar[γ̃1]h′ +
1 + E[tr(D̃2 + D̃1V11D̃

′
1 + TD̃1γ1γ

′
1D̃

′
1)]

T (1′NΣ−11N )

+
hV11h

′ − 2hE[
√
T V̂

1
2

11D̃1]V11h
′

T
. (105)
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Unlike the mean of γ̂, the variance of γ̂ from the estimated GLS is not the same as the variance of

γ̃ from the true GLS. From Lemma 2,

Varc[γ̂1] = Varc[γ̃1] +
V̂

1
2

11E
c[(Y ′2 [IN−1 − Z2(Z ′2Z2)−1Z ′2]Y2)D̃2]V̂

1
2

11

T −N − 1

= Varc[γ̃1] +
V̂

1
2

11E
c[E[U1D̃2|Z2]]V̂

1
2

11

T −N − 1
= Varc[γ̃1] + ∆c, (106)

where U1 = Y ′2 [IN−1 − Z2(Z ′2Z2)−1Z ′2]Y2 and

∆c =
Ec[(N −K − 1 + ω)V̂

1
2

11D̃2V̂
1
2

11]
T −N − 1

, (107)

with ω defined in (69). The last equality follows because, conditional on µ̂1, V̂11 and Z2, U1

∼ χ2
N−K−1(ω) and its expected value is N −K − 1 + ω. Similarly, the conditional variance of γ̂0 is

given by

Varc[γ̂0] = Varc[γ̃0] +
Ec[U1(1 + Z1D̃2Z

′
1)]

T (T −N − 1)(1′NΣ−11N )

= Varc[γ̃0] +
Ec[(N −K − 1 + ω)(1 + TδV̂

1
2

11D̃2V̂
1
2

11δ
′ + tr(D̃2))]

T (T −N − 1)(1′NΣ−11N )

= Varc[γ̃0] + h∆ch′ +
Ec[(N −K − 1 + ω)(1 + tr(D̃2))]

T (T −N − 1)(1′NΣ−11N )
, (108)

with the second last equality following from the identity E[x′Ax] = µ′xAµx + tr(AVx), where x is a

vector of random variables with mean µx and covariance matrix Vx.

Unconditionally, from Lemma 2,

Var[γ̂1] = Var[γ̃1] + ∆, (109)

where ∆ = E[∆c] and

Var[γ̂0] = Var[γ̃0] + h∆h′ +
E[((N −K − 1) + Tγ′1C̃γ1 + tr(C̃V11))(1 + tr(D̃2))]

T (T −N − 1)(1′NΣ−11N )
, (110)

with C̃ = η′[IN−1−Z2(Z ′2Z2)−1Z ′2]η = V̂
− 1

2
11 Θ

1
2 (IK +Z3W

−1
4 Z ′3)

−1Θ
1
2 V̂

− 1
2

11 . Note that as in the case

of the mean, the expressions for the variance given in this subsection are all written as functions of

expectations of some functions of Z2 and V̂11. In order to approximate these expectations, we just
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need to simulate Z2 and V̂11 and use the average simulated values of these functions to approximate

their expectations. For the GLS case, we do not even need to simulate Z2, since simply simulating

Z3 and W4 will suffice.

It is interesting to note that the conditional and unconditional variances of both the OLS and

the GLS estimators of γ0 and γ1 depend on the value of γ1 but not γ0, so the actual value of the

zero-beta rate is irrelevant in determining the variance of the estimated γ. The reason that γ1 but

not γ0 plays a role in determining the variance of the estimated γ is that there are measurement

errors in the betas but not in the vector of ones. In fact, even as T → ∞, the expressions of the

asymptotic variance of the estimated γ in (26)–(28) indicate that the measurement errors in the

betas still have an effect on the variance of the estimated γ, an effect nicely summarized by the

term γ′1V
−1
11 γ1.

3. Analytical Results for the Single Factor Case

3.1 Finite Sample Distribution of Estimated Risk Premia

In the previous section, we suggested that one can simulate the conditional distribution of γ̌ by

simulating some normal random variables Y and Z. The conditional first and second moments

of γ̌ can be approximated by simulating only Z2 (an (N − 1) ×K normal random variable). For

unconditional first and second moments, V̂11 must also be simulated. For the GLS case, γ̃ and γ̂

can be simulated without simulating Z2 and Y2. Only simulation of some K-dimensional random

vectors and matrices is required to simulate γ̃ and γ̂. While this approach is much faster than the

traditional approach of simulating data on the returns and the factors, we would ideally like to

evaluate the moments of the estimated γ without doing a simulation. In this section, we present

the analytical results for the single factor case,9 a special case albeit one of great importance in

the finance literature. The capital asset pricing model (CAPM) and the consumption capital asset

pricing model (CCAPM) are both single factor models, making it worthwhile to understand the

behavior of the estimated γ for the single factor case.

In fact, when K = 1, we can even evaluate the exact conditional distribution of the estimated

risk premium for the OLS and the true GLS CSR. In order to obtain the conditional distribution

of γ̌1 of the OLS CSR, we need to evaluate the conditional distribution of (Z ′2ΛZ2)−1Z ′2ΛY2. When
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K = 1, Z2 is just an (N − 1)-vector of normal random variables. Let X = [Y ′2 , Z
′
2]
′. Then

conditional on µ̂1 and V̂11, X ∼ N(µX , I2N−2), and

µX =

[ √
Tηγ̄1

√
TηV̂

1
2

11

]
. (111)

Defining

A =

[
O(N−1)×(N−1) Λ/2

Λ/2 O(N−1)×(N−1)

]
, (112)

B =

[
O(N−1)×(N−1) O(N−1)×(N−1)

O(N−1)×(N−1) Λ

]
, (113)

it is easy to show that (X ′AX)/(X ′BX) = (Z ′2ΛY2)/(Z ′2ΛZ2), and from (44), we can write

γ̌1 = V̂
1
2

11

(
X ′AX

X ′BX

)
, (114)

and

P [γ̌1 > c|µ̂1, V̂11] = P

X ′AX

X ′BX
>

c

V̂
1
2

11

∣∣∣∣∣∣ µ̂1, V̂11

 = P

X ′

A− c

V̂
1
2

11

B

X > 0

∣∣∣∣∣∣ µ̂1, V̂11

 . (115)

LetQDQ′ be the eigenvalue decomposition of A−cV̂ −
1
2

11 B, whereD is an n-dimensional (n ≤ 2N−2)

diagonal matrix of the nonzero eigenvalues of A − cV̂
− 1

2
11 B and Q is an (2N − 2) × n matrix with

its columns being the corresponding eigenvectors. Defining x = Q′X, we can then write

P [γ̌1 > c|µ̂1, V̂11] = P [x′Dx > 0|µ̂1, V̂11]. (116)

Conditional on µ̂1 and V̂11, x ∼ N(Q′µX , In), so x′Dx is just a linear combination of n independent

χ2
1 random variables, and the probability can be easily evaluated using the numerical procedure

suggested by Imhof (1961).10 Similarly, to obtain the conditional distribution of γ̃1 from the true

GLS, simply set Λ = IN−1 in the above procedure.

3.2 Mean of Estimated Zero-Beta Rate and Risk Premium

It turns out that for the single factor case, the conditional and unconditional means of the estimated

γ can be written as 1-dimensional integrals. Starting with the case of the OLS CSR, we present

the conditional mean of γ̌ in the following proposition.
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Proposition 3. For the single factor case, the conditional means of the second-pass OLS CSR

estimators of γ1 and γ0 exist for N ≥ 3 and they are given by

Ec[γ̌1] =

T V̂11

2

∫ 1

0
g1

(
N−1∏
i=1

ai

) 1
2

e
TV̂11

2

PN−1
i=1 η2

i (aiy−1)y
N−3

2 dy

 γ̄1, (117)

Ec[γ̌0] = γ0 + h(γ̄1 − Ec[γ̌1]) +
(
ξ′η − c

)
γ̄1, (118)

with h = (1′NΣ−1β)/(1′NΣ−11N ) and

c = Ec

[
Z ′2ξη

′ΛZ2

Z ′2ΛZ2

]
=

1
2

∫ 1

0
(g2 + T V̂11g1g3y)

(
N−1∏
i=1

ai

) 1
2

e
TV̂11

2

PN−1
i=1 η2

i (aiy−1)y
N−3

2 dy, (119)

where

ai =
1

λ∗i − (λ∗i − 1)y
, (120)

ηi is the i-th element of η = P ′Σ−
1
2β, ξi is the i-th element of ξ = P ′Σ

1
2 1N/N , λ∗i = λi/λN−1,

g1 =
∑N−1

i=1 aiλ
∗
i η

2
i , g2 =

∑N−1
i=1 aiλ

∗
i ηiξi, and g3 =

∑N−1
i=1 aiηiξi.

Although (117) and (119) look complex, they are only 1-dimensional integrals and can be easily

when η2
i , ξi, and λ∗i are known.

For the true and the estimated GLS CSR, the conditional mean of the estimated γ is obtained

by substituting λ∗i = 1 and ξi = 0 in the OLS case. The resulting expressions are very simple and

are summarized in the following proposition.

Proposition 4. For the single factor case, the conditional means of the second pass GLS CSR

estimators of γ1 and γ0 exist for N ≥ 3 and they are

Ec[γ̂1] = Ec[γ̃1] =

(
T V̂11η

′η

2

∫ 1

0
e

TV̂11η′η
2

(y−1)y
N−3

2 dy

)
γ̄1, (121)

Ec[γ̂0] = Ec[γ̃0] = γ0 + h(γ̄1 − Ec[γ̃1]). (122)

In fact, numerical integration is not needed to obtain the conditional expected value of the estimated

γ from the second-pass GLS CSR. The following lemma presents a simplification formula.

Lemma 3. Suppose b is a positive scalar and n is a nonnegative integer. Then

b

∫ 1

0
eb(y−1)y

n
2 dy =

n
2∑

r=0

(
n
2 − r + 1

)
r

(−b)r
−
(

n
2

)
!e−b

(−b)
n
2

(123)
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for even n, where (a)r = a(a+ 1) · · · (a+ r − 1) with (a)0 ≡ 1, and

b

∫ 1

0
eb(y−1)y

n
2 dy =

n−1
2∑

r=0

(
n
2 − r + 1

)
r

(−b)r
−

(
3
2

)
(n−1)/2

(−b)
n−1

2

D(
√
b)√
b

(124)

for odd n, where

D(x) = e−x2

∫ x

0
et

2
dt (125)

is Dawson’s integral, which is readily available in many mathematical programs.

If we define

κ̃ =
θ

2

∫ 1

0
e

θ(y−1)
2 y

N−3
2 dy, (126)

where θ = T V̂11η
′η, then Ec[γ̃1] = κ̃γ̄1. As κ̃ depends on V̂11 but not µ̂1, we also have

E[γ̃1|V̂11] = κ̃γ1, (127)

and we can think of κ̃ − 1 as the percentage bias of γ̃1 conditional on V̂11. Note that κ̃ is only a

function of θ and N , so these two parameters jointly determine the conditional percentage bias of

γ̃1. The following lemma describes some properties of κ̃.

Lemma 4. Conditional on V̂11, κ̃ is an increasing function of θ and a decreasing function of N ,

and 0 < κ̃ < 1. As θ approaches infinity, κ̃ approaches one.

Lemma 4 suggests that γ̃1 (and also γ̂1) are biased toward zero, and the magnitude of the percentage

bias is an increasing function of N and a decreasing function of T V̂11η
′η. To understand what

T V̂11η
′η represents, write the GLS CSR of µ̂2 on 1N and β as an OLS CSR of

Σ−
1
2 µ̂2 = Σ−

1
2 1Nγ0 + Σ−

1
2βγ1 + e, (128)

where e is an N -vector of error terms. Premultiplying both sides by P ′ and noting that P ′Σ−
1
2 1N =

0N−1,

P ′Σ−
1
2 µ̂2 = P ′Σ−

1
2βγ1 + ε, (129)

where ε = P ′e. Let y = P ′Σ−
1
2 µ̂2. Then we can think of the true GLS CSR estimate of γ1 as being

obtained by running the following OLS regression

yi = γ1ηi + εi, i = 1, . . . , N − 1 (130)
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when β is known. Of course, we do not use the true β but the estimated β in the CSR. Define

η∗i = P ′Σ−
1
2 β̂ = ηi + ni, where ni is the measurement error of η∗i . Therefore, the regression that is

run is actually

yi = γ1η
∗
i + ε∗i , i = 1, . . . , N − 1. (131)

The resulting estimate of γ1 from this OLS regression is

γ̃1 =
∑N−1

i=1 η∗i yi∑N−1
i=1 (η∗i )2

. (132)

Note that this is the classical EIV problem and the bias depends on the ratio of
∑N−1

i=1 η2
i /(N−1) =

η′η/(N − 1) (the signal) to Var[ni] (the noise). Note that conditional on V̂11,

n = P ′Σ−
1
2 β̂ − P ′Σ−

1
2β ∼ N(0N−1, (T V̂11)−1IN−1), (133)

so the ni’s are independent of each other and their variance is (T V̂11)−1. With this analysis,

T V̂11η
′η/(N−1) is a measure of signal-to-noise ratio in the estimated betas, which explains why the

percentage bias of γ̃1 is a decreasing function of θ for a fixed N . This result is largely consistent with

the traditional EIV analysis in the regression framework, which suggests that when the independent

variable is measured with error, the estimated slope coefficient in the regression is biased toward zero

and the bias depends on the signal-to-noise ratio of the independent variable. The only difference

is that the traditional EIV analysis provides only asymptotic results when N →∞ and we provide

exact finite sample results here. Lemma 4 suggests that there are two ways to reduce the bias of

γ̃1: one is to increase the length of the time series, the other is to use test assets that have a wide

dispersion in β. As for the effect of the number of test assets, from Lemma 4, κ̃ is a decreasing

function of N for a fixed value of T V̂11η
′η. However, the effect of increasing N on the bias is not

clear because η′η also typically increases with N . If we reasonably assume that η′η/(N − 1) is a

constant for different choices of N , then we can find out whether κ̃ is an increasing function of

N . In Figure 1, we plot κ̃ as a function of T V̂11η
′η/(N − 1) for N = 5, 10, 25, and 100 over the

range 0 ≤ T V̂11η
′η/(N − 1) ≤ 10 (which covers the range of T V̂11η

′η/(N − 1) that we encounter in

typical applications). As Figure 1 shows, if η′η/(N − 1) is constant across different choices of N ,

then the bias is an increasing function of N , but the difference in bias between different choices of

N is quite small.11 This also suggests that while κ̃ is a function of T V̂11η
′η and N , the bias of the

GLS estimate of γ1 is mostly determined by the signal-to-noise ratio T V̂11η
′η/(N − 1).
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Figure 1 about here

The analysis of the bias of γ̌1, however, is far more complicated. Denote κ̌ as

κ̌ =
T V̂11

2

∫ 1

0

(
N−1∑
i=1

aiλ
∗
i η

2
i

)(
N−1∏
i=1

ai

) 1
2

e
TV̂11

2

PN−1
i=1 η2

i (aiy−1)y
N−3

2 dy. (134)

Similar to the case of κ̃, E[γ̌1|V̂11] = κ̌γ1 and we can interpret κ̌ − 1 as the percentage bias of

γ̌1 conditional on V̂11. Unlike the case of κ̃, which depends only on N and T V̂11η
′η, the case of κ̌

depends on λ∗i , η
2
i , N , and T V̂11, so the individual elements of Λ and η are important in determining

the bias of γ̌1. It is important to note that κ̌1 is not bounded above by one, and γ̌1 is not necessarily

biased toward zero. In fact, for some choices of λ∗i and ηi, κ̌ > 1. The intuition that EIV cause the

slope coefficient to be biased toward zero does not apply here because unlike in the case of GLS

CSR, the measurement errors of the independent variable (β̂) are in general correlated with each

other in the OLS CSR. In general, depending on the values of λi and ηi, the bias of γ̌1 can be more

or less than that of γ̃1. The following lemma compares κ̌ and κ̃ for two extreme cases.

Lemma 5. If η1 6= 0 and η2 = · · · = ηN−1 = 0, then κ̌ ≥ κ̃. If η1 = · · · = ηN−2 = 0 and ηN−1 6= 0,

then κ̌ ≤ κ̃. The equalities hold if and only if λ1 = λN−1.

Heuristically, Lemma 5 suggests that when η2
1 is large and η2

2 to η2
N−1 are small (i.e., when Σ−

1
2β is

close to being proportional to the eigenvector associated with the largest eigenvalue of Σ
1
2MΣ

1
2 ),12

the bias of the GLS CSR estimate of γ1 may be more severe than the bias of the OLS CSR estimate

of γ1. On the contrary, if η2
N−1 is large but η2

1 to η2
N−2 are small (i.e., when Σ−

1
2β is close to being

proportional to the eigenvector associated with the smallest nonzero eigenvalue of Σ
1
2MΣ

1
2 ), then

0 < κ̌ ≤ κ̃ < 1 and the bias of the OLS CSR estimate of γ1 is more severe than the bias of the GLS

CSR estimate of γ1. Since there is no theoretical relation between β and Σ, it is not clear whether

we should expect the OLS or the GLS CSR estimate of γ1 to have more bias. It is also important

to note that the bias of the OLS CSR estimate of γ1 is not invariant to repackaging of the original

N test assets. If we construct N new portfolios from the N original test assets, the bias of the

resulting new estimate of γ̌1 is in general different from that of the old estimate obtained using the

original N assets. This is not the case for γ̃ and γ̂, which are invariant to portfolio repackaging of

the original N test assets.13
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So far we have discussed the conditional means of γ̌, γ̃, and γ̂. The unconditional means can be

obtained by using the facts that T V̂11/V11 ∼ χ2
T−1 and is independent of µ̂1. In order to facilitate

our presentation of the unconditional results, we define two 1-dimensional integrals. The first

integral is

ϕm,n(g) =
∫ 1

0
g(y)

(
N−1∏
i=1

ai

) 1
2

y
m
2[

1 + V11
∑N−1

i=1 η2
i (1− aiy)

]n
2

dy, (135)

where ai is defined as in (120), g is a function of y, and m > −2. The second integral is defined as

φm =
∫ 1

0

y
m
2

[1 + V11η′η(1− y)]
T+1

2

dy. (136)

In fact, φm is a special case of ϕm,n(g), with g(y) = 1, λ∗i = 1 and n = T + 1. Note that φm can

also be written as

φm = 2F1

(
m+ 2

2
,
T + 1

2
,
m+ 4

2
,

V11η
′η

1 + V11η′η

)
, (137)

where

2F1(a, b, c, x) =
∞∑

r=1

(a)r(b)r

(c)r

xr

r!
(138)

is the hypergeometric function, which is readily available in many mathematical programs. Us-

ing these two 1-dimensional integrals, the following proposition provides the expressions for the

unconditional means of γ0 and γ1 from the second-pass CSR.

Proposition 5. For the single factor case, the unconditional means of the second pass OLS CSR

estimators of γ1 and γ0 exist for N ≥ 3 and they are E[γ̌1] = κ̌uγ1 where

κ̌u =
(T − 1)V11

2
ϕN−3,T+1(g1), (139)

and

E[γ̌0] = γ0 + h(γ1 − E[γ̌1]) +
(
ξ′η − cu

)
γ1, (140)

with h = (1′NΣ−1β)/(1′NΣ−11N ) and

cu = E

[
Z ′2ξη

′ΛZ2

Z ′2ΛZ2

]
=

1
2
ϕN−3,T−1(g2) +

(T − 1)V11

2
ϕN−1,T+1(g1g3), (141)

where g1 to g3 are defined as in Proposition 3. In addition, the unconditional means of the second-

pass GLS CSR estimators of γ1 and γ0 exist for N ≥ 3 and they are E[γ̂1] = E[γ̃1] = κ̃uγ1 where

κ̃u =
(T − 1)V11η

′ηφN−3

2
, (142)
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and

E[γ̂0] = E[γ̃0] = γ0 + h(γ1 − E[γ̃1]). (143)

From Proposition 5, the unconditional percentage bias of γ̃1 depends on V11η
′η, N , and T . As

0 < κ̃ < 1, κ̃u = E[κ̃] is also bounded by 0 and 1. The unconditional percentage bias of γ̌1

depends on V11, η2
i , λ

∗
i , N , and T . Just as in the conditional case, κ̃u can be greater than or

less than κ̌u depending on the value of the parameters λ∗i and ηi. Without knowing the value of

these parameters, it is not clear whether the GLS or the OLS CSR estimate of γ1 has more bias

unconditionally.

3.3 Variance of Estimated Zero-Beta Rate and Risk Premium

Similarly to the conditional and unconditional mean, the conditional and unconditional variance

of the estimated γ can also be written as 1-dimensional integrals for the single factor case. As

the conditional variance is less relevant for statistical inference, we only present the results on

unconditional variance.14 Nevertheless, the results for the conditional variance of the estimated γ

can be easily obtained from the proof in the Appendix.

Starting with the case of the OLS CSR, the unconditional variance of γ̌ is presented in the

following proposition.

Proposition 6. For the single factor case, the unconditional variances of the second-pass OLS

CSR estimators of γ1 and γ0 exist for N ≥ 4. The unconditional variance of γ̌1 is

Var[γ̌1] =
(T − 1)(T + 1)V 2

11

4T
ϕd

N−3,T+3(g4 + ag2
1) +

(T − 1)V11

4T
ϕd

N−5,T+1(g5 + ag6)− κ̌2
uγ

2
1 , (144)

where ϕd
m,n(g) = ϕm,n(g)− ϕm+2,n(g), g1 =

∑N−1
i=1 aiλ

∗
i η

2
i , g4 =

∑N−1
i=1 a2

iλ
∗
i
2η2

i , g5 =
∑N−1

i=1 aiλ
∗
i
2,

g6 =
∑N−1

i=1 aiλ
∗
i
2η2

i , a = Tγ2
1 + V11 with ai, ηi and λ∗i defined in Proposition 3, and κ̌u is defined

as in (139). The expression for Var[γ̌0] is given in the Appendix.

For the true GLS CSR, the variance of γ̃ can be obtained by setting λ∗i = 1 and ξi = 0 in the

expressions for the OLS case. After some simplification, the results are given in the following

proposition.
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Proposition 7. For the single factor case, the unconditional variances of the second-pass true GLS

CSR estimators of γ1 and γ0 exist for N ≥ 4. The unconditional variance of γ̃1 is

Var[γ̃1] =
(T − 1)V11

4T
[
(N − 2)aη′ηφN−3 + [2− (N − 4)aη′η]φN−5

]
− κ̃2

uγ
2
1 , (145)

where a = Tγ2
1 + V11 and κ̃u is defined as in (142). The expression for Var[γ̃0] is given in the

Appendix.

Finally, the next proposition presents the unconditional variance of the estimated γ from the

estimated GLS CSR.

Proposition 8. For the single factor case, the unconditional variances of the second pass estima-

tors of γ1 and γ0 from the estimated GLS CSR exist for N ≥ 4. The unconditional variance of γ̂1

is

Var[γ̂1] = Var[γ̃1] + ∆, (146)

where

∆ =
(N − 2)(T − 1)V11

4T (T −N − 1)
[(aη′η + 2)φN−5 − aη′ηφN−3], (147)

and a = Tγ2
1 + V11. The expression for Var[γ̂0] is given in the Appendix.

4. Bias-adjusted Estimators of Zero-Beta Rate and Risk Premium

Since the second-pass CSR estimators of γ0 and γ1 are biased in finite samples, we would like to

correct this bias. In this section, we present a bias-adjusted version of the two-pass CSR estimators

of the zero-beta rate and the risk premium. We focus our discussion on the single factor case

because we have an analytical solution of the finite sample bias. Our method, however, can be

extended to the multi-factor case provided that the simulation method is used to approximate the

finite sample bias. For the GLS CSR, we only focus on the estimated GLS case as it is typically

more relevant than the true GLS case.

If the value of κ̃ in (126) and κ̌ in (134) are known, then we can construct the following adjusted

OLS estimators and estimated GLS estimators of γ1

γ̌a
1 = γ̌1/κ̌, (148)

γ̂a
1 = γ̂1/κ̃. (149)
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As E[γ̌1|V̂11] = κ̌γ1 and E[γ̂1|V̂11] = κ̃γ1, the adjusted estimators are unbiased conditional on V̂11,

and hence are also unconditionally unbiased. For the zero-beta rate, the adjusted OLS and GLS

estimators are given by

γ̌a
0 = γ̌0 −

h(1− κ̌) + ξ′η − c

κ̌
γ̌1, (150)

γ̂a
0 = γ̂0 −

h(1− κ̃)
κ̃

γ̂1, (151)

where h = (1′NΣ−1β)/(1′NΣ−11N ) and c is defined as in (119). To construct the unbiased estimators

of γ0, we need to know κ̃ and h for the GLS case. For the OLS case, ξ′η and c must also be

known. Similarly to the adjusted estimators for γ1, γ̂a
0 and γ̌a

0 are conditionally and unconditionally

unbiased.

In practice, κ̃ and κ̌ are in general unknown, so they must be estimated. In addition, the

evaluation of κ̌ and c involves numerical integration, which makes the adjusted estimators somewhat

difficult to use. We therefore propose the following approximation of κ̌, c and κ̃.15

Lemma 6. Using a Taylor series expansion, κ̌, c, and κ̃ can be approximated by

κ̌a =
1

(tr(Λ) + θ1)3
(
θ1[(tr(Λ) + θ1)2 + 2θ2] + 2[tr(Λ2)θ1 − tr(Λ)θ2]

)
, (152)

ca =
c2 + c1θ1
tr(Λ) + θ1

[
1− 2(c3 + 2c1θ2)

(c2 + c1θ1)(tr(Λ) + θ1)
+

2(tr(Λ2) + 2θ2)
(tr(Λ) + θ1)2

]
, (153)

κ̃a =
θ[(N − 1 + θ)2 + 2θ]

(N − 1 + θ)3
, (154)

where θ1 = T V̂11η
′Λη, θ2 = T V̂11η

′Λ2η, c1 = ξ′η, c2 = ξ′Λη, c3 = ξ′Λ2η, and θ = T V̂11η
′η.

To evaluate κ̌a and ca, η, ξ, and Λ must be estimated. It is natural to estimate them with their

sample estimates η̂ = P̂ ′Σ̂−
1
2 β̂, ξ̂ = P̂ ′Σ̂

1
2 1N/N and Λ̂, where P̂ Λ̂P̂ ′ is the eigenvalue decomposition

of Σ̂
1
2M Σ̂

1
2 , with Λ̂ = Diag(λ̂1, . . . , λ̂N−1) being a diagonal matrix of the N −1 nonzero eigenvalues

of Σ̂
1
2M Σ̂

1
2 , and the columns of P̂ are the corresponding eigenvectors.

We now turn to the problem of estimating κ̃a. From (154), κ̃a is only determined by θ = T V̂11η
′η

and N , and the only unknown quantity is η′η. A sensible approach to estimate κ̃a is to replace η′η

in (154) by η̂′η̂. However, when N is large relative to T , such a procedure could lead to a severely

upwardly-biased estimate of η′η. The following lemma gives the conditional distribution of V̂11η̂
′η̂

and its expectation.
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Lemma 7. Conditional on V̂11,

V̂11η̂
′η̂ ∼ (N − 1)

(T −N)
FN−1,T−N (T V̂11η

′η), (155)

where FN−1,T−N (T V̂11η
′η) is a noncentral F -distribution with N − 1 and T −N degrees of freedom

and a noncentrality parameter T V̂11η
′η, and

E[V̂11η̂
′η̂|V̂11] =

(
T

T −N − 2

)
V̂11η

′η +
N − 1

T −N − 2
. (156)

Lemma 7 shows that V̂11η̂
′η̂ tends to overestimate V̂11η

′η, and the overstatement is particularly

severe when N is relatively large to T . As κ̃ is an increasing function of T V̂11η
′η, using the sample

estimate of η̂′η̂ instead of the true η′η will tend to overestimate κ̃a. This, in turn, implies that on

average, the adjusted estimator γ̂a
1 will still be biased toward zero.

To account for this problem, one may like to use the unbiased estimator of θ = T V̂11η
′η instead

of the sample estimator. From Lemma 7, the unbiased estimator of θ is given by

θ̂u = (T −N − 2)V̂11η̂
′η̂ − (N − 1). (157)

However, this estimator has three problems. First, θ̂u can be negative with positive probability,

which is unreasonable as θ can only be positive. Second, when θ̂u is close to zero, the estimated

κ̃a is also close to zero and the adjusted estimator γ̂a
1 = γ̂1/κ̃

a is extremely large, causing the

distribution of the adjusted estimator to have fat tails, especially when T is small. Third, while θ̂u

is an unbiased estimator of θ, 1/κ̃a is not a linear function of θ, so the resulting adjusted estimator

of γ1 can still be severely biased.

From Lemma 7, we have X = (T − N)V̂11η̂
′η̂/(N − 1) ∼ FN−1,T−N (θ), so the problem of

estimating θ using X is equivalent to the problem of estimating the noncentrality parameter of a

noncentral F -distribution using a single observation. This problem has been studied by a number of

researchers in statistics and various attempts were made to improve upon the unbiased estimator.

For example, Rukhin (1993) and Kubokawa, Robert, and Saleh (1993) both propose estimators

that are superior to the unbiased estimator of θ under the quadratic loss function. However, the

quadratic loss function on the noncentrality parameter is not entirely appropriate for our application

here. Our objective is to come up with a good estimator of 1/κ̃a that is a nonlinear function of

θ. If an estimator of θ takes a value that is very close to zero, then the implied estimator of 1/κ̃a
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will be very large. In order for the implied estimator of 1/κ̃a to be well-behaved, our estimator of

θ must not take very small values. For this purpose, a more sensible loss function on θ̂ is a Stein’s

type loss function which takes the following form

L(θ, θ̂) =
θ̂

θ
− log

(
θ̂

θ

)
− 1. (158)

Note that the term − log(θ̂/θ) takes a large value when θ̂/θ is small. Therefore, this loss function

heavily penalizes estimators of θ that have a high probability of taking small values. By adopting

an estimator of θ that minimizes this loss function, the event of making a large adjustment to γ̂1

is less likely to occur.

Using this Stein’s type loss function, Fourdrinier, Philippe, and Robert (2000) provide a Bayes

estimator under the improper prior π(θ) = θb, where b > 0. However, their estimator is designed

to estimate the noncentrality parameter of a noncentral chi-squared distribution, so we need to

extend their analysis to the case of the noncentral F -distribution. The following lemma presents

the Bayes estimator of θ under Stein’s loss function.

Lemma 8. Under Stein’s loss function (158), the Bayes estimator of θ for the class of improper

priors π(θ) = θb where b > 0 is

θ̂ = 2b
2F1

(
1 + b, T−1

2 , N−1
2 , z

1+z

)
2F1

(
b, T−1

2 , N−1
2 , z

1+z

) , (159)

where 2F1 is the hypergeometric function and z = V̂11η̂
′η̂.

In Figure 2, we plot θ̂ and θ̂u as a function of z for N = 10, T = 100, and b = 0.5. It can be seen

that θ̂ is an increasing and convex function of z. When z is equal to zero, θ̂ = 2b = 1. As z gets

larger, θ̂ becomes more like a linear function of z and behaves almost like the unbiased estimator

θ̂u = (T −N − 2)z− (N − 1). To understand why it makes sense to use θ̂ as an estimator of θ, note

that (T −N − 2)z behaves almost like a χ2
N−1(θ) random variable and it has an expected value of

θ+N−1. When (T −N−2)z is very large, it is more likely that part of its large value is due to the

upward bias of N − 1, so we adjust the estimator θ̂ downward by making it less than (T −N − 2)z.

However, when (T − N − 2)z is small, we should not subtract N − 1 from (T − N − 2)z because

even if θ = 0, a small (T − N − 2)z (say less than N − 1) indicates that (T − N − 2)z is in fact
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less than its expected value. Therefore, we should subtract a smaller amount from (T −N − 2)z,

causing θ̂ to be a nonlinear function of z. When z is very small, we want θ̂ to be even greater than

(T −N − 2)z because in this situation (T −N − 2)z is unusually small. As the minimum of θ̂ is 2b,

we can choose a value of b such that 2b is an absolute lower bound of θ. For our empirical work,

we choose b = 0.5 because we believe that in most empirical applications, it would be very unlikely

to find test assets that have a θ that is less than one.

Figure 2 about here

In order to obtain the adjusted OLS and GLS estimator of γ0 in (151), we also need to estimate

the value of h = (1′NΣ−1β)/(1′NΣ−11N ). To estimate h, we simply use its sample estimate ĥ =

(1′N Σ̂−1β̂)/(1′N Σ̂−11N ).

Note that when estimated κ̌a, ca, and κ̃a are used instead of κ̌, c, and κ̃ in constructing the

adjusted estimators, the adjusted estimators are no longer unbiased. Nevertheless, it is reasonable

to expect that by making these adjustments, the bias of the estimated γ is reduced in finite samples.

Since it is nontrivial to obtain the finite sample distribution of our adjusted estimators, we rely on

simulation experiments to examine the performance of the adjusted estimators. While the adjusted

and unadjusted estimators can have very different properties in finite samples, both κ̌ and κ̃ converge

to one at a rate of 1/T , so our adjusted estimators have exactly the same asymptotic distributions

as the unadjusted ones, and the asymptotic results of Shanken (1992) are also applicable to our

adjusted estimators.

5. Simulation Experiment

5.1 Experimental Design

We perform simulation experiments to examine the robustness of our analytical results to departures

from normality and the finite sample properties of our adjusted second-pass CSR estimators of the

zero-beta rate and the risk premium. In choosing parameters for our simulation experiments, we

attempt to cover a wide range of possible test assets and factors that are used in empirical studies.

For the number of test assets, we consider three cases, N = 10, 25, and 100. For the 10 assets

case, the parameters of the assets are chosen to mimic the 10 size-ranked portfolios of the NYSE.
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For the 25 assets case, the parameters are chosen to mimic the 25 size and book-to-market-ranked

portfolios of the combined NYSE-AMEX-NASDAQ. For the 100 assets case, the parameters are

chosen to mimic the 100 size and beta-ranked portfolios of the NYSE. For the parameters of the

factor, we consider two cases. In the first case, the parameters of the factor are chosen to mimic

the behavior of the value-weighted NYSE market portfolio. In the second case, the parameters

are chosen to mimic the behavior of the growth rate of per capita consumption in nondurables.

The main difference between these two factors is that the value-weighted market return explains

a substantial portion of the variation of returns of well-diversified stock portfolios, whereas the

growth rate of consumption has low explanatory power on the returns of stock portfolios.

We collect monthly returns for the three sets of portfolios over the period 1941/2–2002/12.

The sample estimates of β and Σ from this period are used to determine the parameters for our

simulations. For the growth rate of per capita consumption in nondurables, we only have monthly

data starting from 1959/2, so the parameters for the low explanatory factor case are determined

using sample estimates of β and Σ over the period 1959/2–2002/12. In Table 1, we report a summary

of the parameters for our three sets of portfolios under the two different factor assumptions. For

the factor with high explanatory power, the parameters are reported in Panel A. The betas in the

10 assets case have lower cross-sectional variations than in the other two cases. This is because

over the sample period 1941/1–2002/12, the estimated betas of the ten size ranked portfolios range

from only 0.96 to 1.15, and they are not all that different from each other. Table 1 also reports the

signal-to-noise ratio V11η
′η/(N −1) (multiplied by 100) for our three sets of test assets. The signal-

to-noise ratio is highest for the 100 assets case, so we can expect that the GLS CSR estimator of the

risk premium has the least bias in this case. However, the value of signal-to-noise ratio is chosen

based on the sample estimates η̂′η̂. From Lemma 6, the sample estimate η̂′η̂ tends to overestimate

the true η′η, especially when N is large, so it is entirely possible that the higher signal-to-noise

ratio for the 100 assets case is due to this bias. We do not attempt to make an adjustment here.

Instead, we think of the signal-to-noise ratio for the 100 assets case as an upper bound on what we

can expect from real world data when the factor resembles the return on a market portfolio.

Table 1 about here

Panel B reports the parameters for the case in which the factor has low explanatory power.
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When the factor is chosen to mimic the growth rate of per capita consumption, the cross-sectional

variations of the betas across the portfolios tend to be higher than in the case in which the factor has

high explanatory power. However, as the factor has lower explanatory power, the variance of the

residuals from the regression of returns on factors is also higher. This implies that the consumption

betas of the portfolios are estimated with a lot of noise, and, as a result, the signal-to-noise ratios

in Panel B are much lower than the corresponding ones in Panel A.

For each case, Table 1 reports the three largest and three smallest (standardized) nonzero

eigenvalues of the matrix Σ
1
2MΣ

1
2 . If Σ

1
2MΣ

1
2 is proportional to the identity matrix, then the

standardized eigenvalues should all equal one. Instead, λ1 is much higher than λN−1 in all cases.

This suggests that the OLS and GLS CSR estimators of the risk premium can have very different

properties. Table 1 also reports the absolute values of ηi = p′iΣ
− 1

2β corresponding to the three

largest and three smallest eigenvalues, where pi is the eigenvector of Σ
1
2MΣ

1
2 associated with λi.

Although there is no theoretical relation between Σ and β, we typically find in the data that η2
1 to

η2
3 are much larger than η3

N−3 to η2
N−1. From Lemma 5, it is expected that with our choice of λ2

i

and η2
i the GLS CSR estimator of γ1 has more bias than the OLS CSR estimator of γ1.

5.2 Biases in Estimated Zero-Beta Rate and Risk Premium

With our chosen parameters, we can compute the expected value of the CSR estimators of γ0 and γ1

using the formulas in Proposition 5. Table 2 reports the unconditional biases of the OLS and GLS

CSR estimators of γ0 and γ1, both as a percentage of the value of the true γ1. As the percentage

bias is independent of the choice of values of γ0 and γ1, the numbers in Table 1 are applicable to

all choices of γ0 and γ1, as long as γ1 6= 0. Also note that the estimators from the true GLS and

the estimated GLS have the same bias, so we do not need to distinguish between these two versions

of GLS here. Panel A reports the results for the factor with high explanatory power. When the

length of the beta estimation period is T = 60 months, the betas of the portfolios are estimated

with a lot of noise and there is a severe bias in the estimated zero-beta rate and risk premium. For

the 10 assets case, the biases for the GLS CSR estimators of γ0 and γ1 are 75.3% and −75.8%,

respectively. As for the OLS CSR, the bias is smaller but it is still high at 59.9% and −56.8% for

γ̌0 and γ̌1. When T increases, the biases for both the OLS and GLS CSR estimators tend to be

lower. However, even for T as high as 600 months, the GLS CSR estimator of risk premium still

39



shows a −21% bias. Similar patterns also hold for the 25 and 100 assets cases. However, as the

signal-to-noise ratio is higher for the 25 and 100 assets case, the biases are of smaller magnitude

but they are still rather significant, especially when T is small.

Table 2 about here

Panel B reports the results for the factor with low explanatory power. As the consumption

betas are estimated with a lot of noise, the percentage biases of the CSR estimators of γ0 and γ1

are huge. When T = 60 months, the bias of the GLS estimator of γ1 is more than −80% for all

three sets of test assets. Even when T = 600 months is used to estimate the consumption betas,

the bias of the GLS estimator of the risk premium is still more than −30%. Given the huge bias of

the estimated risk premium, it would be quite difficult to find the consumption betas to be priced

even if the consumption CAPM is exactly correct. As in the case of Panel A, the OLS estimators

have smaller biases than the GLS estimators but the biases are still significant. As T increases,

the bias of the OLS estimator does not always exhibit the same monotonic pattern as in the GLS

case. For example, when N = 10, the bias of γ̌1 falls from −61.3% to −1.2% as T increases from

60 months to 360 months. However, when T rises to 480 months, the bias of γ̌1 turns positive and

increases to 2.4%, and further increases to 3.6% when T goes up to 600 months. Although not

shown in the table, the bias of γ̌1 will eventually approach zero as T increases further. However,

for intermediate values of T , there is no guarantee that a longer beta estimation period will reduce

the bias of the OLS estimator, nor is there any guarantee that the bias of γ̌1 will be negative.

5.3 Comparison of Asymptotic and Finite Sample Standard Deviation

For statistical inference, we need to know the standard deviation of the CSR estimators of γ0 and

γ1. Traditionally, asymptotic results are used for this purpose. With the results in Propositions 6–

8, we now know the finite sample standard deviation of these estimators. Table 3 reports the

asymptotic and finite sample standard deviation of the OLS and estimated GLS CSR estimators

of γ0 and γ1. Panel A contains the results for the factor with high explanatory power and Panel B

contains the results for the factor with low explanatory power. In computing the asymptotic and

finite sample standard deviation of the CSR estimators, we need to make an assumption about

the value of γ1. As the high explanatory power factor case is chosen to mimic the value-weighted
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return of the market, we assume γ1 is 0.6% per month. By choosing this value, we have the CAPM

in mind which suggests that the risk premium of the market beta should be the expected excess

return on the market portfolio. For the low explanatory power case, we choose γ1 to be 0.028%

per month. In choosing this value, we have the consumption CAPM in mind, which suggests that

under a utility function with constant relative risk aversion, the risk premium for the consumption

beta should be (see Breeden, Gibbons, and Litzenberger (1989))

γ1 =
ρVar[ct]

1− ρE[ct]
, (160)

where ρ is the coefficient of relative risk aversion, and ct is the growth rate of aggregate consumption.

Using our monthly data on the growth rate of per capita consumption, we estimate the mean and

standard deviation of ct to be 0.105%/month and 0.947%/month, respectively. Then, by assuming

ρ = 5, γ1 = 0.028%/month.

Table 3 about here

The asymptotic standard deviations in Table 3 are computed based on (26) and (28) using the

true parameters (after dividing the asymptotic variance by T ). These are EIV-adjusted standard

errors from Shanken (1992). The unadjusted ones are very close to the EIV-adjusted ones, so we do

not report them separately. As for the finite sample standard deviations, they are based on formulas

in Propositions 6 and 8. By comparing the asymptotic and finite sample standard deviations, we

find that the asymptotic standard deviation tends to overstate the finite sample standard deviation,

especially when T is small. Together with the bias documented in Table 2, the overstatement of the

standard error of the estimated risk premium can lead to incorrectly accepting the null hypothesis

H0 : γ1 = 0 even though the true γ1 is nonzero. As a result, it is hard to find evidence that a factor

is priced when the beta estimation period is short.

Table 3 also allows us to compare the merits of the estimators from OLS and the estimated GLS.

It is well known that the true GLS CSR estimator is more efficient than the OLS CSR estimator.

However, since Σ has to be estimated, it is not clear that the advantage of the true GLS CSR

estimator carries over to the estimated GLS CSR estimator. As a result, many researchers opt to

use the simpler OLS CSR estimator. Table 3 shows that when N = 10 and N = 25, the estimated

GLS continues to dominate the OLS in terms of estimation efficiency, even for T as short as 60
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months, and the improvement is often very big. When N = 100, the only case that the OLS

estimator is superior is when T = 120. In this case, T is close to N , so Σ̂ is very volatile, which

leads to added volatility to the estimated GLS estimator. Other than this case, the estimated GLS

estimator largely dominates OLS the estimator in terms of estimation efficiency. Therefore, unless

T is very close to N , it is advisable to choose the estimated GLS CSR estimator over the OLS CSR

estimator if one is concerned about estimation efficiency.

5.4 Nonnormal Distributions

While the analytical results in this paper are derived under the assumption of multivariate normal-

ity, we have good reason to believe that they work fairly well even though the factors and returns

are not normally distributed. For example, the work of MacKinlay (1985) and Zhou (1993) shows

that although the F -test of Gibbons, Ross, and Shanken (1989) for testing the mean-variance effi-

ciency of a given portfolio relies on the multivariate normality of the residuals, it is rather robust

to departures from normality. To examine if our finite sample results on the CSR estimators of the

zero-beta rate and the risk premium are robust to departures from normality, we consider the case

in which the factor has a t-distribution with five degrees of freedom, and the residuals of the test

assets have a multivariate t-distribution with five degrees of freedom. Under this alternative dis-

tribution assumption, the factor and the returns have fat tails, which is often the case in the data.

As we cannot obtain the finite sample distribution of the CSR estimators under the t-distribution

assumption, we rely on simulation. In order to easily compare with our results under normality

and nonnormality, we simulate the factor and the returns of the test assets using exactly the same

µ and V as in the normality case. Table 4 presents the percentage bias of the OLS and estimated

GLS estimators of γ0 and γ1 under our alternative distribution assumption using exactly the same

format as in Table 2. The results are based on 100,000 simulations. By comparing Tables 2 and

4, the percentage biases of the CSR estimators under the two distribution assumptions are fairly

close to each other, with the only exceptions being the GLS case with N = 100 and T is small.

Table 4 about here

Table 5 reports the finite sample standard deviations of the OLS and estimated GLS CSR esti-

mators of γ0 and γ1 in the 100,000 simulations under the t-distribution assumption. By comparing
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Tables 3 and 5, the analytical results for the normality case again prove to be a very good approxi-

mation to the t-distribution case, even when T is small. The only noticeable difference again comes

from the GLS case with N = 100 and T is small. This robustness result is not surprising because

while β̂ is not exactly normal and Σ̂ is not exactly Wishart when the residuals are not multivariate

normally distributed, such approximations are in fact quite good even for moderate sizes of T . In

view of the simulation evidence here, our analytical finite sample results are good approximations

even when the factor and the returns are not multivariate normally distributed.

Table 5 about here

5.5 Simulation Results on Bias-adjusted Estimators

We now turn to the bias-adjusted estimators. To evaluate their performance, we rely on simulation.

However, since the bias-adjusted estimators only depend on µ̂2, β̂, and Σ̂, so there is no need to

simulate the returns and the factors. In fact, using the same approach as in Section 2.2, we only

need to simulate β̂ and Σ̂ or a normalized version of them in order to approximate the mean and

variance of the adjusted estimators.16 Using the same parameters as before, we simulate the bias-

adjusted estimators of γ0 and γ1 under the OLS and the estimated GLS CSR for 100,000 times.

Table 6 reports the percentage biases of the adjusted estimators of γ0 and γ1. Comparing Tables 2

and 6, there is a dramatic reduction of biases for the bias-adjusted estimators as compared to the

unadjusted estimators. When T is small, the bias-adjusted estimators do not offer a sufficient bias

adjustment. This is because the adjustment factor used is based on estimated rather than true

parameters, and the estimated parameters are less reliable when T is small. It should be noted

that there are a few cases (N = 10 and T > 240) where the bias-adjusted OLS estimator actually

over-adjusts, leading to even more bias than the unadjusted estimator. As a whole, however, our

bias-adjusted estimators are quite effective in reducing the bias in the unadjusted estimators, even

if they do not totally eliminate the bias.

Table 6 about here

The reduction of bias has its cost, namely, the increase in the volatility of the estimator,

which occurs even if we the true adjustment factor is known. For example, the GLS bias-adjusted
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estimator of γ1 is given by γ̂a
1 = γ̂1/κ̃, so Var[γ̂a

1 ] = Var[γ̂1]/κ̃2. Since κ̃ < 1, Var[γ̂a
1 ] > Var[γ̂1]. In

addition, using the estimated κ̃ instead of the true κ̃ adds yet another source of variability to γ̂a
1 ,

so our bias-adjusted estimators are more volatile than the unadjusted estimators. Table 7 reports

the finite sample standard deviations of the bias-adjusted estimators in the 100,000 simulations.

By comparing Tables 3 and 7, when T is small and the bias of the unadjusted estimator is large,

there is a big increase in the volatility of the bias-adjusted estimator as compared to the unadjusted

estimator. The trade-off between the bias and volatility of the adjusted and unadjusted estimators

depends on the application, so it is difficult to generalize. However, in many empirical asset pricing

studies, the value of the risk premium is of central importance, so a heavily biased estimator of the

risk premium is seriously misleading. In fact, it will be even more misleading if such an estimator

is less volatile because this incorrectly suggests that the risk premium estimate is more accurate

than it really is.

Table 7 about here

6. Conclusion

Due to its easy implementation, the two-pass CSR methodology has been used extensively to es-

timate risk premia associated with systematic factors. Despite the methodology’s simplicity, the

finite sample properties of the estimated risk premiua from this two-pass approach are complicated

by the EIV problem associated with the use of estimated betas in the second-pass CSR. Tradition-

ally, researchers have either ignored the EIV problem or relied on the asymptotic results of Shanken

(1992). Neither approach addresses the issue of correcting the finite sample bias of the estimated

zero-beta rate and risk premia.

We analyze the finite sample bias and variance of the estimators of the zero-beta rate and risk

premia from the second-pass CSR. Under the normality assumption, we give explicit expressions

for the finite sample bias and variance of the estimated zero-beta rate and risk premium for the

single factor case. For the multi-factor case, we offer an efficient simulation approach to obtain

the finite sample bias and variance of the estimated zero-beta rate and risk premia. For the single

factor case, we find that the GLS CSR estimator of the risk premium on average underestimates

the true risk premium. For reasonable choices of parameters, this understatement is very severe,
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especially when the beta estimation period is short. For the OLS CSR, the estimated risk premium

can overestimate or underestimate the true risk premium. For reasonable choices of parameters,

we find that the bias of the risk premium from the OLS CSR is still negative and it tends to be

smaller than that from the GLS CSR. While our analytical results are derived under the normality

assumption, simulation evidence suggests that they are fairly robust to departures from normality.

While the unadjusted CSR estimators can have serious biases, the popular adjusted estimators

due to Litzenberger and Ramaswamy (1979) and Kim (1995) do not fare any better. In fact,

under fairly general conditions, we show that these adjusted estimators do not even have finite

first moments. As a result, they cannot be used to correct the bias of the unadjusted estimators.

We suggest a simple bias adjustment to the second-pass CSR estimators of the zero-beta rate

and the risk premium to correct their finite sample biases.17 Using simulations, we find that our

adjusted version of the second-pass CSR estimators of the zero-beta rate and risk premium can

significantly reduce the bias of the unadjusted estimators. Since the value of the risk premium is

of central importance in many finance applications, researchers should be cautious in relying on

the unadjusted estimated risk premium from the second-pass CSR for making inferences, especially

when the beta estimation period is short. It is up to future research to ascertain whether the failure

of the CAPM as documented by some recent empirical studies can be partly explained by the EIV

problem and whether there will be more support for the CAPM using our adjusted estimators of

the zero-beta rate and the risk premium.
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Appendix

Proof of Lemma 1. Since the proofs of γ̌K and γ̂K are almost identical to that of γ̃K , we only

provide the proof of γ̃K here. The objective is to choose γ0, γ̄1, and b to minimize

f(γ0, γ̄1, b) = g′Ω−1g. (A1)

Conditional on γ0 and γ̄1, g is linear in b. Writing g = y −Xb, where

X =

[
γ̄′1 ⊗ IN

INK

]
=

[
γ̄′1

IK

]
⊗ IN , (A2)

y =

[
µ̂2 − 1Nγ0

b̂

]
, (A3)

it is easy to show that the b that minimizes (A1) is b∗ = (X ′Ω−1X)−1(X ′Ω−1y). Conditional on

b∗, write f as a function of γ0 and γ̄1 alone:

f(γ0, γ̄1) = y′[Ω−1 − Ω−1X(X ′Ω−1X)−1X ′Ω−1]y. (A4)

Since X ′Ω−1X = (γ̄1γ̄
′
1 + V̂11)⊗ TΣ−1,

(X ′Ω−1X)−1 =

(
V̂ −1

11 − V̂ −1
11 γ̄1γ̄

′
1V̂

−1
11

1 + γ̄′1V̂
−1
11 γ̄1

)
⊗ (Σ/T ) (A5)

and

Ω−1 − Ω−1X(X ′Ω−1X)−1X ′Ω−1 =
[1, −γ̄′1]′[1, −γ̄′1]⊗ TΣ−1

1 + γ̄′1V̂
−1
11 γ̄1

. (A6)

Using the fact that

([1, −γ̄′1]⊗ Σ−
1
2 )y = ([1, −γ̄′1]⊗ Σ−

1
2 )vec([µ̂2 − 1Nγ0, β̂])

= vec
(
Σ−

1
2 [µ̂2 − 1Nγ0, β̂][1, −γ̄′1]′

)
= Σ−

1
2 (µ̂2 − 1Nγ0 − β̂γ1), (A7)

write

f(γ0, γ̄1) =
T (µ̂2 − 1Nγ0 − β̂γ1)′Σ−1(µ̂2 − 1Nγ0 − β̂γ1)

1 + γ̄′1V̂
−1
11 γ̄1

=
Tx′Ãx

x′Gx
, (A8)

where x = [1, −γ0, −γ̄′1]′. Choosing x to minimize f(λ0, λ̄1) is the same as choosing x to maximize

(x′Gx)/(x′Ax). By the Rayleigh-Ritz theorem,

max
x

x′Gx

x′Ãx
= λ1, (A9)
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where λ1 is the largest eigenvalue of Ã−
1
2GÃ−

1
2 . As Ã−

1
2GÃ−

1
2 and Ã−1G share the same set of

eigenvalues, the maximum is attained when x is proportional to the eigenvector of Ã−1G associated

with λ1, because with this choice of x, Ã−1Gx = λ1x and hence x′Gx = x′ÃÃ−1Gx = λ1x
′Ãx, so

the maximum of x′Gx/(x′Ãx) is attained. This completes the proof. Q.E.D.

Proof of Lemma 2. Conditional on µ̂1, V̂11, µ̂2, β̂, and U , from (67),

E[γ̂|µ̂1, V̂11, µ̂2, β̂, U ] = γ̃. (A10)

Taking the expectation of both sides with respect to µ̂2, β̂, and U , the law of iterated expectations

gives

E[γ̂|µ̂1, V̂11] = E[γ̃|µ̂1, V̂11]. (A11)

Taking the expectation of both sides with respect to µ̂1 and V̂11,

E[γ̂] = E[γ̃]. (A12)

Similarly, conditional on µ̂1, V̂11, µ̂2, β̂, and U , from (67),

Var[γ̂|µ̂1, V̂11, β̂, µ̂2, U ] =
(Ã11 − Ã12Ã

−1
22 Ã21)Ã−1

22

U
. (A13)

Conditional on µ̂1 and V̂11,

Var[γ̂|µ̂1, V̂11] = Var[E[γ̂|µ̂1, V̂11, µ̂2, β̂, U ]|µ̂1, V̂11] + E[Var[γ̂|µ̂1, V̂11, β̂, µ̂2, U ]|µ̂1, V̂11]

= Var[γ̃|µ̂1, V̂11] + E

[
1
U

(Ã11 − Ã12Ã
−1
22 Ã21)Ã−1

22

∣∣∣ µ̂1, V̂11

]
= Var[γ̃|µ̂1, V̂11] +

1
T −N − 1

E
[
(Ã11 − Ã12Ã

−1
22 Ã21)Ã−1

22

∣∣∣ µ̂1, V̂11

]
, (A14)

where the last equality follows because U is independent of Y and Z and E[1/U ] = 1/(T −N − 1).

Finally, the unconditional variance of γ̂ is

Var[γ̂] = Var[E[γ̂|µ̂1, V̂11]] + E[Var[γ̂|µ̂1, V̂11]]

= Var[E[γ̃|µ̂1, V̂11]] + E[Var[γ̃|µ̂1, V̂11]] +
1

T −N − 1
E[(Ã11 − Ã12Ã

−1
22 Ã21)Ã−1

22 ]

= Var[γ̃] +
1

T −N − 1
E[(Ã11 − Ã12Ã

−1
22 Ã21)Ã−1

22 ], (A15)

where the second equality follows from (A11) and (A14). This completes the proof. Q.E.D.
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Proof of Proposition 1. We first prove the necessary and sufficient conditions for the existence of

the conditional s-th moment of γ̌1. Theorem 1 of Kinal (1980) establishes the following lemma.

Kinal’s Lemma. Let A be a p× q matrix of normal random variables, where p > q, and let C be a

p-vector of normal random variables. Suppose xi = [Ci, Ai]′ ∼ N(µi, siIq+1) where Ai is the i-th

row of A and xi are independent across i. Then, the s-th moment of (A′A)−1A′C exists if and only

if s < p− q + 1.

Writing A = Λ
1
2Z2, C = Λ

1
2Y2, conditional on µ̂1 and V̂11, A and C are normally distributed,

and [Ci, Ai]′ has variance λiIN , so A and C satisfy the conditions of Kinal’s lemma. This implies

that the conditional s-th moment of (Z ′2ΛZ2)−1(Z ′2ΛY2) exists (which in turn implies that the

conditional s-th moment of γ̌1 = V̂
1
2

11(Z
′
2ΛZ2)−1(Z ′2ΛY2) exists) if and only if s < N −K.

For γ̌0, from (45),

γ̌0 =
1√
T

[
(1′NΣ−11N )−

1
2Y1 + ξ′Y2 −

[
(1′NΣ−11N )−

1
2Z1 + ξ′Z2

]
(Z ′2ΛZ2)−1(Z ′2ΛY2)

]
. (A16)

Conditional on µ̂1 and V̂11, the term (1′NΣ−11N )−
1
2Y1 +ξ′Y2 has a normal distribution and all of its

moments exist. The s-th moment of the term Z1(Z ′2ΛZ2)−1(Z ′2ΛY2) exists if and only if s < N−K.

This is because Z1 is normally distributed (with all moments existing) and is independent of

(Z ′2ΛZ2)−1(Z ′2ΛY2), the finite s-th moment of which exists if and only if s < N −K. Finally, all

of the moments of the last term ξ′Z2(Z ′2ΛZ2)−1(Z ′2ΛY2) exist because Y2 is normally distributed

(with all moments existing) and is independent of ξ′Z2(Z ′2ΛZ2)−1Z ′2 (all moments of which exist).

This is because for any (N − 1)-vector c, from the Cauchy-Schwarz inequality,

(ξ′Z2(Z ′2ΛZ2)−1Z ′2c)
2 ≤ (ξ′Z2(Z ′2ΛZ2)−1Z ′2ξ)(c

′Z2(Z ′2ΛZ2)−1Z ′2c) < K2(ξ′Λ−1ξ)(c′Λ−1c), (A17)

The second inequality follows because, by writing x = Λ−
1
2Z2 and dmax as the largest eigenvalue of

Λ
1
2Z2(Z ′2ΛZ2)−1Z ′2Λ

1
2 ,

ξ′Z2(Z ′2ΛZ2)−1Z ′2ξ

ξ′Λ−1ξ
=
x′[Λ

1
2Z2(Z ′2ΛZ2)−1Z ′2Λ

1
2 ]x

x′x
≤ dmax < tr(Λ

1
2Z2(Z ′2ΛZ2)−1Z ′2Λ

1
2 ) = K.

(A18)

Therefore, |ξ′Z2(Z ′2ΛZ2)−1Z ′2c| is bounded from above and all of its moments exist. Since, condi-

tional on µ̂1 and V̂11, all moments exist for all the terms of γ̌0 except for one term which has a

finite s-th moment if and only s < N −K, it follows that the conditional s-th moment of γ̌0 exists

if and only if s < N −K.
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The proof for γ̃ is the same as the proof for γ̌ except for setting Λ = IN−1. As for γ̂ from the

estimated GLS, from (67) and (68),

γ̂ = γ̃ + U−
1
2 (Ã11 − Ã12Ã

−1
22 Ã21)

1
2 Ã

− 1
2

22 Y3, (A19)

where Y3 ∼ N(0K+1, IK+1) and is independent of Y2, Z1, Z2, and U . For the first term, the

conditional s-th moment of γ̃ exists if and only if s < N − K. As for the second term, all of

the moments of Y3 exist and Y3 is independent of Y2, Z2, and U , so we only need to consider

the existence of moments for U−
1
2 and (Ã11 − Ã12Ã

−1
22 Ã21)

1
2 Ã

− 1
2

22 . Since U ∼ χ2
T−N+1, then U−

s
2

exist if and only if s < T − N + 1 (see, for example, Johnson, Kotz, and Balakrishnan (1995,

Chapter 27)). As Ã11 − Ã12Ã
−1
22 Ã21 = (Y ′2 [IN−1 − Z2(Z ′2Z2)−1Z ′2]Y2)/T ≤ Y ′2Y2/T and Y ′2Y2 has

a noncentral chi-squared distribution with all of its moments existing, so all the moments of the

term Ã11 − Ã12Ã
−1
22 Ã21 also exist. Finally, from (68), the s-th moment of Ã

− 1
2

22 exists if and only

if the s-th moment of (Z ′2Z2)−
1
2 exists. The proof of Theorem 1 in Kinal (1980) (see also Magnus

(1990)) establishes that the s-th moment of (Z ′2Z2)−
1
2 exists if and only if s < N −K. Combining

these results, the conditional s-th moment of γ̂ exists if and only if s < min[N −K,T − N + 1].

This completes the proof. Q.E.D.

Proof of Proposition 2. We only prove the nonexistence of moments for γ̃LR and γ̃K here. The

proofs for the other cases are similar. We first present a general theorem on the existence of

moments that is due to Sargan (1976).18

Sargan’s Theorem. If θ̂ = ψ(p)/φ(p), where p is a random vector and θ̂ is a scalar function of p,

and there exists a p0 in the domain of definition of p such that

1. ψ(p) is continuous at p0 with ψ(p0) 6= 0,

2. φ(p) has continuous derivatives at p0, denoted by φp, for which φ′pφp > 0 and φ(p0) = 0,

3. p has a continuous density function f with f(p0) > 0,

then E[|θ̂|s] = ∞ for s ≥ 1.

In order to apply this theorem to prove that γ̃LR and γ̃K have no integral moments, we just need

to show that elements of these two estimators can be written as ratios of two functions of µ̂2 and

β̂, and that there is some choice of µ̂2 and β̂ such that the denominator is zero but the numerator
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is not. In addition, we need to show that φp has at least one nonzero element. Condition 3 in

Sargan’s Theorem is automatically satisfied because µ̂2 and β̂ are normally distributed conditional

on µ̂1 and V̂11.

For γ̃LR, we define ω = Σ−
1
2 1N , Y = Σ−

1
2 µ̂2, Z = Σ−

1
2 β̂ and p = [Y, vec(Z)′]′. Write

γ̃LR = W−1

[
ω′Y

Z ′Y

]
=

adj(W )
|W |

[
ω′

Z ′

]
Y, (A20)

where adj(W ) stands for the adjoint of the W matrix, which is given by

W (p) =

[
ω′ω ω′Z

Z ′ω Z ′Z −NV̂ −1
11 /T

]
. (A21)

Under this expression, |W (p)| is the function φ(p) in Sargan’s Theorem. Let ei be a K-vector of all

zeros except for its i-th element, which is equal to one. When V̂11 is positive definite, the matrix

NV̂ −1
11 /T + IK − eie

′
i is also positive definite, and let NV̂ −1

11 /T + IK − eie
′
i = PΛP ′, where Λ is

a diagonal matrix which contains the eigenvalues, and the columns of P are the corresponding

eigenvectors. Let Z∗ = QΛ
1
2P ′, where Q is an N × K matrix with Q′Q = IK and the columns

of Q are orthogonal to ω. Note that the ith column of Z∗ cannot be a zero vector (otherwise,

the i-th diagonal element of NV̂ −1
11 /T would be zero, contradicting the fact that V̂11 is positive

definite), so without loss of generality, assume its (j, i)-th element is nonzero (i.e., Z∗ji 6= 0). Now,

let Z0 = Z∗ + ωe′i and Y0 = hj where hj is an N -vector of all zeros except for its j-th element,

which is equal to one. With this choice of p0 = [Y0, vec(Z0)′]′,

W (p0) =

[
ω′ω (ω′ω)e′i

(ω′ω)ei IK + (ω′ω − 1)eie′i

]
(A22)

and we can easily verify that

adj(W (p0))

[
ω′

Z ′0

]
Y0 = (ω′ω)

[
−Z∗ji
Z∗jiei

]
, (A23)

so the first and the (i + 1)-th elements are nonzero. However, for p = p0, the function in the

denominator of γ̃LR is zero because

|W (p0)| = (ω′ω)|IK + (ω′ω − 1)eie′i − (ω′ω)eie′i| = 0. (A24)

Since
∂|W (p)|
∂Z

= (ω′ω)
∂|Z ′CZ −NV̂ −1

11 /T |
∂Z

= 2(ω′ω)CZadj(Z ′CZ −NV̂ −1
11 /T ), (A25)
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where C = IN − ω(ω′ω)−1ω′, use CZ0 = Z∗ and Z ′0CZ0 −NV̂ −1
11 /T = IK − eie

′
i to obtain

∂|W (p)|
∂Z

∣∣∣∣
p=p0

= 2(ω′ω)Z∗adj(IK − eie
′
i) = 2(ω′ω)Z∗eie′i, (A26)

which is a nonzero matrix as the i-th column of Z∗ is a nonzero vector. Therefore, the derivative

condition is satisfied. Note that in the proof above, we have shown that the first and the (i+ 1)-th

elements of γ̃LR have no integral moments. However, the choice of i is entirely arbitrary, so by

varying i, all the elements of γ̃LR can be shown to have no integral moments.

Turning our attention to γ̃K , we need to find the eigenvector associated with the largest eigenvalue

of Ã−1G. This involves solving the equation Ã−1Gx = λx, or equivalently (G − λÃ)x = 0K+2.

Using the same notation as before,

(G− λÃ)x =

 1− λY ′Y −λY ′ω −λY ′Z
−λω′Y −λω′ω −λω′Z
−λZ ′Y −λZ ′ω V̂ −1

11 − λZ ′Z

x = 0K+2. (A27)

Let Q = [q1, · · · qK+1] be an N × (K + 1) matrix such that Q′Q = IK+1 and the columns of Q

are orthogonal to ω. Let Y0 = qK+1 and Z0 = [q1, · · · , qi−1,
1
2(qi +ω/(ω′ω)

1
2 ), qi+1, · · · , qK ]V̂

− 1
2

11 .

When p = p0, the problem becomes
1− λ 0 0′K

0 −λω′ω −λ
2 (ω′ω)

1
2 e′iV̂

− 1
2

11

0K −λ
2 (ω′ω)

1
2 V̂

− 1
2

11 ei V̂
− 1

2
11 [(1− λ)IK + 1

2λeie
′
i]V̂

− 1
2

11

x = 0K+2. (A28)

Solving this problem, λ1 = 4, and the associated eigenvector is x = [x1, x2, x
′
3]
′, where x1 = 0 and

x2 =
1

[1 + 4(ω′ω)e′iV̂11ei]
1
2

6= 0, (A29)

x3 = −2(ω′ω)
1
2 V̂

1
2

11eix2. (A30)

In particular, the i-th element of x3 is e′ix3 = −2(ω′ω)
1
2 (e′iV̂

1
2

11ei)x2 6= 0. Since γ̃K
0 = −x2/x1 and

γ̃K
1 = −x3/x1, with our choice of p0, the numerators for γ̃K

0 and the i-th element of γ̃K
1 are nonzero

but their denominators are zero. As the choice of i is arbitrary, it remains to verify the derivative

condition. From (A27),

x1 = − 1
Y ′Y − d

(Y ′ωx2 + Y ′Zx3). (A31)
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Differentiating x1 with respect to vec(Z),

∂x1

∂vec(Z)
=

−λ
(1− λY ′Y )2

[
(1− λY ′Y )

∂(Y ′ωx2 + Y ′Zx3)
∂vec(Z)

− δ

]
=

−λ
(1− λY ′Y )2

[
(1− λY ′Y )

(
Y ′ω

∂x2

∂vec(Z)
+ Y ′Z

∂x3

∂vec(Z)
+ x3 ⊗ Y

)
− δ

]
,(A32)

where the last term is obtained using the identity Y ′Zx3 = (x3 ⊗ Y )′vex(Z) and ∂(a′y)/∂y = a,

and

δ = (Y ′ωx2 + Y ′Zx3)
∂(Y ′Y − d)
∂vec(Z)

. (A33)

Evaluating (A32) at p = p0, we have δ = 0N(K+1) and hence

∂x1

∂vec(Z)

∣∣∣∣
p=p0

=
4
3
(x3 ⊗ qK+1). (A34)

Since both x3 and qK+1 are nonzero vectors, 4
3(x3⊗qK+1) is also a nonzero vector, and the derivative

condition is satisfied. This completes the proof. Note that the normality assumption on µ̂2 and β̂ is

not needed in the proof. All that is needed is that conditional on µ̂1 and V̂11, the joint distribution

of µ̂2 and β̂ is absolutely continuous with nonzero density. Q.E.D.

Proof of Propositions 3. Using a lemma from Sawa (1972), Hoque (1985, Theorems 1 and 2) and

Magnus (1986, Theorem 6) show that, for a ratio of quadratic forms of normal random variables

Q =
X ′AX

X ′BX
, (A35)

where X ∼ N(µX , In), A is a symmetric matrix and B is a positive semidefinite matrix, we have

E[Q] =
∫ ∞

0

µ′X(In + 2tB)−1A(In + 2tB)−1µX + tr((In + 2tB)−1A)

|In + 2tB|
1
2

× exp
(
µ′X [(In + 2tB)−1 − In]µX

2

)
dt (A36)

E[Q2] =
∫ ∞

0

t

|In + 2tB|
1
2

exp
(
µ′X [(In + 2tB)−1 − In]µX

2

)
×([

µ′X(In + 2tB)−1A(In + 2tB)−1µX + tr((In + 2tB)−1A)
]2 + 2tr(((In + 2tB)−1A)2)

+ 4µ′X(In + 2tB)−1A(In + 2tB)−1A(In + 2tB)−1µX

)
dt. (A37)

Let X = [Y ′2 , Z
′
2]
′ and let A and B be defined as in (112) and (113). Then Q = (Z ′2ΛY2)/(Z ′2ΛZ2)

and X ∼ N(µX , I2(N−1)) when conditional on µ̂1 and V̂11, where µX is defined as in (111). Substi-
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tuting A, B, and µX into (A36) and (A37),

Ec

[
V̂

1
2

11

Z ′2ΛY2

Z ′2ΛZ2

]
=

(∫ ∞

0

T V̂11η
′(Λ−1 + 2tIN−1)−1η

|IN−1 + 2tΛ|
1
2

exp

(
T V̂11η

′[(IN−1 + 2tΛ)−1 − IN−1]η
2

)
dt.

)
γ̄1,(A38)

Ec

[
V̂11

(
Z ′2ΛY2

Z ′2ΛZ2

)2
]

=
∫ ∞

0

t

|IN−1 + 2tΛ|
1
2

exp

(
T V̂11η

′[(IN−1 + 2tΛ)−1 − IN−1]η
2

)
×
[
γ̄2

1

(
T 2V̂ 2

11

[
η′(Λ−1 + 2tIN−1)−1η

]2 + T V̂11η
′Λ(IN−1 + 2tΛ)−1Λη

)
+ V̂11

(
tr(Λ2(IN−1 + 2tΛ)−1) + T V̂11η

′Λ(IN−1 + 2tΛ)−2Λη
)]

dt. (A39)

Using a change of variables y = 1/(1 + 2tλN−1) in (A38) and the fact that 1/(1 + 2tλi) = aiy, we

obtain (117). For (118), the expression follows from (83), and the expression of c is obtained from

(A36) by substituting X = Z2, µX =
√
T V̂

1
2

11η, A = (ξη′Λ + Ληξ′)/2, and B = Λ. This completes

the proof. Q.E.D.

Proof of Lemma 3. Repeated use of integration by parts gives

b

∫ 1

0
y

n
2 eb(y−1)dy = 1−

n
2

b
+

(
n
2

) (
n
2 − 1

)
b2

− · · ·+ (−1)
n
2

(
n
2

)
!

b
n
2

(1− e−b)

=

n
2∑

r=0

(
n
2 − r + 1

)
r

(−b)r
−
(

n
2

)
!e−b

(−b)
n
2

(A40)

for even n, and

b

∫ 1

0
y

n
2 eb(y−1)dy = 1−

n
2

b
+

(
n
2

) (
n
2 − 1

)
b2

− · · ·+ (−1)
n−1

2

(
n
2

)
· · ·
(

3
2

)
b

n−1
2

(
1− D(

√
b)√
b

)

=

n−1
2∑

r=0

(
n
2 − r + 1

)
r

(−b)r
−

(
3
2

)
(n−1)/2

(−b)
n−1

2

D(
√
b)√
b

(A41)

for odd n. This completes the proof. Q.E.D.

Proof of Lemma 4. As N ≥ 3 for the first moment of γ̃1 to exist, so y
N−3

2 is a nonincreasing function

of N for 0 ≤ y ≤ 1, and κ̃ is also a nonincreasing function of N for a fixed θ. It then follows that

the upper bound of κ̃ is

κ̃ =
θ

2
e−

θ
2

∫ 1

0
y

N−3
2 e

θ
2
ydy ≤ θ

2
e−

θ
2

∫ 1

0
e

θ
2
ydy = 1− e−

θ
2 < 1. (A42)
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In order to show that κ̃ is an increasing function of θ, integration by parts gives

∂κ̃

∂θ
=

1
2
− N − 3 + θ

4

∫ 1

0
y

N−3
2 e

θ
2
(y−1)dy. (A43)

For 0 ≤ y ≤ 1, f(y) = 1− ycec(1−y) ≥ 0 for c ≥ 0, because for 0 ≤ y ≤ 1, f ′(y) = cec(1−y)yc−1(y −

1) ≤ 0 and f(y) is nonincreasing. Since f(1) = 0, f(y) ≥ 0 for 0 ≤ y ≤ 1. Putting c = N−3
2 into

f(y), y
N−3

2 ≤ e(
N−3

2 )(y−1) for 0 ≤ y ≤ 1 and hence

∂κ̃

∂θ
≥ 1

2
− N − 3 + θ

4

∫ 1

0
e(

N−3+θ
2 )(y−1)dy =

1
2
e−(N−3+θ

2 ) > 0. (A44)

Using the inequality ec(y−1) ≥ yc for 0 < y < 1, a lower bound for κ̃ is

κ̃ =
θ

2

∫ 1

0
y

N−3
2 e

θ
2
(y−1)dy ≥ θ

2

∫ 1

0
y

N−3
2 y

θ
2 dy =

θ

N − 1 + θ
> 0. (A45)

As θ →∞, both the lower bound (A45) and the upper bound (A42) of κ̃ approach one. Therefore,

limθ→∞ κ̃ = 1. This completes the proof. Q.E.D.

Proof of Lemma 5. When η1 = · · · = ηN−2 = 0, use the fact that λ∗N−1 = 1 and aN−1 = 1 to write

κ̌ =
T V̂11η

2
N−1

2

∫ 1

0

(
N−1∏
i=1

ai

) 1
2

e
TV̂11η2

N−1
2

(y−1)y
N−3

2 dy ≤ T V̂11η
′η

2

∫ 1

0
e

TV̂11η′η
2

(y−1)y
N−3

2 dy = κ̃,

(A46)

where the inequality follows from the fact that 0 ≤ ai ≤ 1.

When η2 = · · · = ηN−1 = 0, use a change of variables y = 1/(1 + 2tλ1) in (A38) instead of

y = 1/(1 + 2tλN−1) to get

κ̌ =
T V̂11

2

∫ 1

0

(
N−1∑
i=1

bi

(
λi

λ1

)
η2

i

)(
N−1∏
i=1

bi

) 1
2

e
TV̂11

2

PN−1
i=1 η2

i (biy−1)y
N−3

2 dy, (A47)

where bi = λ1/[λi − (λi − λ1)y]. Putting η2 = · · · = ηN−1 = 0 into (A47),

κ̌ =
T V̂11η

2
1

2

∫ 1

0

(
N−1∏
i=1

bi

) 1
2

e
TV̂11η2

1
2

(y−1)y
N−3

2 dy ≥ T V̂11η
′η

2

∫ 1

0
e

TV̂11η′η
2

(y−1)y
N−3

2 dy = κ̃, (A48)

where the inequality follows from the fact that bi ≥ 1. Note that the inequalities are equalities

if and only if ai = 1 and bi = 1 for 1 ≤ i ≤ N − 1, which hold if and only if λ1 = λN−1. This

completes the proof. Q.E.D.
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Proof of Proposition 5. Replacing T V̂11 by V11v in the integral for the conditional mean, where

v ∼ χ2
T−1, and using the fact that the density function of v is

f(v) =
1

Γ
(

T−1
2

) (1
2

)T−1
2

v
T−3

2 e−
v
2 , (A49)

we can integrate the conditional mean using the density function of v. After some simplification

and using the identity ∫ ∞

0
vne−avdv =

Γ(n+ 1)
an+1

(A50)

for a > 0, we obtain the unconditional mean. This completes the proof. Q.E.D.

Proof of Proposition 6. With the expression of γ̌1 in (44) and using a change of variables of

y = 1/(1 + 2tλN−1) in (A39),

Ec[γ̌2
1 ] = E

[
V̂11

(
Z ′2ΛY2

Z ′2ΛZ2

)2
]

=
V̂11

4

∫ 1

0

[
T γ̄2

1(T V̂11g
2
1y + g6) + (T V̂11g4y + g5)

](N−1∏
i=1

ai

) 1
2

× e
TV̂11

2

PN−1
i=1 η2

i (aiy−1)y
N−5

2 (1− y)dy. (A51)

Since γ̄1 is independent of V̂11 and E[γ̄2
1 ] = γ2

1 + V11
T = a

T ,

E[γ̌2
1 |V̂11] =

V̂11

4

∫ 1

0

[
T V̂11(g4 + ag2

1)y + (g5 + ag6)
](N−1∏

i=1

ai

) 1
2

× e
TV̂11

2

PN−1
i=1 η2

i (aiy−1)y
N−5

2 (1− y)dy. (A52)

Then, by integrating the above expression with respect to the density function of V̂11 as in the

proof of Proposition 5 and using the fact that E[γ̌1] = κ̌uγ1, we obtain (144).

The unconditional variance of γ̌0 is

Var[γ̌0] = h2E[γ̌2
1 ] +

V11

T
[h+ ξ′η − (hκ̌u + cu)]2

+
ξ′ξ − 2(hQ1 +Q2) + 2hQ4 +Q5 − a(hκ̌u + cu)2

T
+

1 +Q3

T (1′NΣ−11N )
, (A53)

where h = (1′NΣ−1β)/(1′NΣ−11N ), cu is defined in (141), and Q1 to Q5 are the following 1-

dimensional integrals:

Q1 =
(T − 1)V11

2
ϕN−3,T+1(g2), (A54)
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Q2 =
1
2
ϕN−3,T−1

(
N−1∑
i=1

aiλ
∗
i ξ

2
i

)
+

(T − 1)V11

2
ϕN−1,T+1(g2g3), (A55)

Q3 =
(T − 1)V11

4
ϕd

N−3,T+1(g4 + ag2
1) +

1
4
ϕd

N−5,T−1(g5 + ag6), (A56)

Q4 =
(T − 1)(T + 1)V 2

11

4
ϕd

N−1,T+3((g4 + ag2
1)g3)

+
(T − 1)V11

4
ϕd

N−3,T+1 ((g5 + ag6)g3 + 2g7 + 2ag1g2) , (A57)

Q5 =
(T − 1)(T + 1)V 2

11

4
ϕd

N+1,T+3((g4 + ag2
1)g

2
3)

+
(T − 1)V11

4
ϕd

N−1,T+1

(
(g5 + ag6)g2

3 + (g4 + ag2
1)g8 + 4(g7 + ag1g2)g3

)
+

1
4
ϕd

N−3,T−1

(
(g5 + ag6)g8 + 2

N−1∑
i=1

a2
iλ
∗
i
2ξ2i + 2ag2

2

)
, (A58)

where g1 to g3 are defined as in Proposition 3, g7 =
∑N−1

i=1 a2
iλ
∗
i
2ηiξi and g8 =

∑N−1
i=1 aiξ

2
i .

For the proof of Var[γ̌0], define D4 = (Z ′2ΛY2)/(Z ′2ΛZ2) and D5 = (Z ′2Λξ)/(Z
′
2ΛZ2), then define

the constants Q1 to Q5 as Q1 = E[
√
T V̂

1
2

11D5], Q2 = E[D5(ξ′Z2)], Q3 = E[D2
4], Q4 = E[D2

4(ξ
′Z2)],

and Q5 = E[D2
4(ξ

′Z2)2]. We now show that Q1 to Q5 are given by the expressions (A54)–(A58).

The proof of Q1 is similar to the proof of E[γ̌1], the proof of Q2 is similar to the proof of cu in

Proposition 5, and the proof of Q3 is similar to the proof of E[γ̌2
1 ], so we do not repeat them

here. It remains to prove the expressions for Q4 and Q5. Theorem 5 of Magnus (1990) provides

the expressions for E[(X ′AX)2(a′X)/(X ′BX)2] and E[(X ′AX)2(X ′CX)/(X ′BX)2], where a is

a vector, B is a positive semidefinite matrix, and A and C are symmetric matrices. With the

appropriate choice of A and B as in Proposition 3,

Ec

[
√
T V̂

1
2

11

(
Z ′2ΛY2

Z ′2ΛZ2

)2

(ξ′Z2)

]

=
∫ ∞

0

t

|IN−1 + 2tΛ|
1
2

exp

(
T V̂11η

′[(IN−1 + 2tΛ)−1 − IN−1]η
2

)

×

{[(
T V̂

1
2

11γ̄1η
′Λ(IN−1 + 2tΛ)−1η

)2

+ tr
(
(IN−1 + 2tΛ)−1Λ2

)
+ T γ̄2

1η
′Λ2(IN−1 + 2tΛ)−1η

+ T V̂11η
′Λ2(IN−1 + 2tΛ)−2η

]
T V̂11ξ

′(IN−1 + 2tΛ)−1η + 2T V̂11η
′Λ2(IN−1 + 2tΛ)−2ξ

+ 2T γ̄2
1

(
T V̂11η

′Λ(IN−1 + 2tΛ)−1η
) (
η′Λ(IN−1 + 2tΛ)−1ξ

)}
dt, (A59)

Ec

[(
Z ′2ΛY2

Z ′2ΛZ2

)2

(Z ′2ξξ
′Z2)

]
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=
∫ ∞

0

t

|IN−1 + 2tΛ|
1
2

exp

(
T V̂11η

′[(IN−1 + 2tΛ)−1 − IN−1]η
2

)

×

{[(
T V̂

1
2

11γ̄1η
′Λ(IN−1 + 2tΛ)−1η

)2

+ tr
(
(IN−1 + 2tΛ)−1Λ2

)
+ T γ̄2

1η
′Λ2(IN−1 + 2tΛ)−1η

+ T V̂11η
′Λ2(IN−1 + 2tΛ)−2η

] [
ξ′(IN−1 + 2tΛ)−1ξ + T V̂11

(
η′(IN−1 + 2tΛ)−1ξ

)2]
+ 4T 2V̂11γ̄

2
1

(
η′Λ(IN−1 + 2tΛ)−1η

) (
η′Λ(IN−1 + 2tΛ)−1ξ

) (
η′(IN−1 + 2tΛ)−1ξ

)
+ 2T γ̄2

1

(
η′Λ(IN−1 + 2tΛ)−1ξ

)2 + 2ξ′Λ2(IN−1 + 2tΛ)−2ξ

+ 4T V̂11

(
η′Λ2(IN−1 + 2tΛ)−2ξ

) (
η′(IN−1 + 2tΛ)−1ξ

)}
dt. (A60)

With a change of variables y = 1/(1+2tλN−1) and taking the unconditional expectation, we obtain

the expressions for Q4 and Q5.

From the first expression of (95),

Varc[γ̌0] =
ξ′ξ − 2(hEc[

√
T V̂

1
2

11D5] + Ec[D5(ξ′Z2)]) + Varc[h
√
T V̂

1
2

11D4 +D4(ξ′Z2)]
T

+
1 + Ec[D2

4]
T (1′NΣ−11N )

. (A61)

Using the formula for unconditional variance,

Var[γ̌0] = E[Varc[γ̌0]] + Var[Ec[γ̌0]]

=
1 +Q5

T (1′NΣ−11N )
+
ξ′ξ − 2(hQ1 +Q2) + E[Varc[h

√
T V̂

1
2

11D4 +D4(ξ′Z2)]]
T

+ Var[[h+ ξ′η − (hκ̌+ c)]γ̄1], (A62)

where κ̌ and c are defined in Proposition 3. Using the following simplifications

E[Varc[h
√
T V̂

1
2

11D4 +D4(ξ′Z2)]]

= E[Ec[h2T V̂11D
2
4 + 2h

√
T V̂

1
2

11D
2
4(ξ

′Z2) +D2
4(ξ

′Z2)2]]− E[Ec[h
√
T V̂

1
2

11D4 +D4(ξ′Z2)]2]

= Th2E[γ̌2
1 ] + 2hQ3 +Q4 − aE[(hκ̌+ c)2], (A63)

Var[[(h+ ξ′η)− (hκ̌+ c)]γ̄1]

= Var[E[(h+ ξ′η)− (hκ̌+ c)]γ̄1|γ̄1]] + E[Var[[(h+ ξ′η)− (hκ̌+ c)]γ̄1|γ̄1]]

=
V11

T
[(h+ ξ′η)− (hκ̌u + cu)]2 +

a

T

(
E[(hκ̌+ c)2]− (hκ̌u + cu)2

)
, (A64)

we arrive at the expression in (A53). This completes the proof. Q.E.D.
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Proof of Proposition 7. By setting λ∗i = 1 in the expression of Var[γ̌1],

Var[γ̃1] =
(T − 1)V11

4T

[
(T + 1)V11ϕ

d
N−3,T+3(η

′η + a(η′η)2) + ϕd
N−5,T+1(N − 1 + aη′η)

]
− κ̃2

uγ
2
1 .

(A65)

When λ∗i = 1, denote φm,n = ϕm,n(1). Note that when n = T + 1, we simply write φm,T+1 as φm.

Using these notations,

Var[γ̃1] =
(T − 1)V11

4T
[
(T + 1)V11η

′η(1 + aη′η)(φN−3,T+3 − φN−1,T+3)

+ (N − 1 + aη′η)(φN−5 − φN−3)
]
− κ̃2

uγ
2
1 . (A66)

Using integration by parts,

φN−3,T+3 =
2− (N − 3)φN−5

(T + 1)V11η′η
, (A67)

φN−1,T+3 =
2− (N − 1)φN−3

(T + 1)V11η′η
. (A68)

Substituting these two expressions into (A66), we get (145).

The unconditional variance of γ̃0 is obtained by setting λ∗i = 1 and ξi = 0 in the expression of

Var[γ̌0], i.e.,

Var[γ̃0] = h2E[γ̃2
1 ] +

V11

T
h2(1− κ̃u)2 − ah2κ̃2

u

T
+

1 + Q̃3

T (1′NΣ−11N )

= h2Var[γ̃1] +
V11

T
h2(1− 2κ̃u) +

1 + Q̃3

T (1′NΣ−11N )
, (A69)

where h = (1′NΣ−1β)/(1′NΣ−11N ) and

Q̃3 =
(T − 1)V11

4
ϕd

N−3,T+1(η
′η + a(η′η)2) +

1
4
ϕd

N−5,T−1(N − 1 + aη′η)

=
(T − 1)V11η

′η(1 + aη′η)
4

(φN−3 − φN−1) +
(N − 1 + aη′η)

4
(φN−5,T−1 − φN−3,T−1).(A70)

Using integration by parts,

φN−5,T−1 =
2− (T − 1)V11η

′ηφN−3

N − 3
, (A71)

φN−3,T−1 =
2− (T − 1)V11η

′ηφN−1

N − 1
. (A72)

Substituting these two expressions into (A70),

Q̃3 =
N − 1 + aη′η

(N − 1)(N − 3)
− (T − 1)V11η

′η

4

[
(N − 2)aη′η

N − 1
φN−1 +

2− (N − 4)aη′η
N − 3

φN−3

]
. (A73)
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This completes the proof. Q.E.D.

Proof of Proposition 8. From (107) and (109), for K = 1,

∆ =
E[((N − 2) + T γ̄2

1C̃)V̂11D̃2]
T −N − 1

=
(N − 2)E[V̂11D̃2] + aE[V̂11C̃D̃2]

T −N − 1

=
1

T −N − 1

{
[(N − 2) + aη′η]E

[
V̂11

Z ′2Z2

]
− aE

[
V̂11

(
Z ′2η

Z ′2Z2

)2
]}

. (A74)

Using a similar method as in the proof of Proposition 3,

E

[
V̂11

Z ′2Z2

]
=

(T − 1)V11

2T
φN−5, (A75)

E

[
V̂11

(
Z ′2η

Z ′2Z2

)2
]

=
(T − 1)V11η

′η

4T
[(N − 2)φN−3 − (N − 4)φN−5] . (A76)

Substituting these two expressions in (A74), we obtain the expression for ∆ in Proposition 8.

The unconditional variance of γ̂0 is

Var[γ̂0] = Var[γ̃0] + h2∆ +
(N − 2)d

(T −N − 1)T (1′NΣ−11N )
, (A77)

where h = (1′NΣ−1β)/(1′NΣ−11N ) and

d =
(N − 2)(N − 1 + aη′η)

(N − 1)(N − 3)
− (T − 1)V11η

′η

4

(
aη′η

N − 1
φN−1 +

aη′η + 2
N − 3

φN−3

)
. (A78)

To prove this expression, set K = 1 in (110) and get

Var[γ̂0] = Var[γ̃0] + h2∆ +
E[((N − 2) + Tγ2

1C̃ + V11C̃)(1 + D̃2)]
T (T −N − 1)(1′NΣ−11N )

= Var[γ̃0] + h2∆ +
(N − 2) + (N − 2)E[D̃2] + a(E[C̃] + E[C̃D̃2])

T (T −N − 1)(1′NΣ−11N )
. (A79)

Using a similar method as in the proof of Proposition 3, we can show that

E[D̃2] = E

[
1

Z ′2Z2

]
=

1
N − 3

− (T − 1)V11η
′η

2(N − 3)
φN−3, (A80)

E[C̃] = η′η − E

[
Z ′2ηη

′Z2

Z ′2Z2

]
=

(N − 2)η′η
N − 1

[
1− (T − 1)V11η

′η

2
φN−1

]
, (A81)

E[C̃D̃2] = η′ηE[D̃2]− E

[(
Z ′2η

Z ′2Z2

)2
]

= (N − 2)η′η
[

1
(N − 1)(N − 3)

+
(T − 1)V11η

′η

4

(
φN−1

N − 1
− φN−3

N − 3

)]
. (A82)
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Substituting these expressions into (A79) and after some simplification, we obtain the expression

for Var[γ̂0]. This completes the proof. Q.E.D.

Proof of Lemma 6. From (114), E[γ̌1] = V̂
1
2

11E[(X ′AX)/(X ′BX)]. Let x = X ′AX, y = X ′BX,

µx = E[x], and µy = E[y]. Applying a Taylor series expansion to x/y at (µx, µy) and dropping all

the terms of order higher than 2,

E

[
x

y

]
≈ µx

µy

(
1− Cov[x, y]

µxµy
+

Var[y]
µ2

y

)
. (A83)

From Graybill (1983, p.367), we have

µx = T V̂
1
2

11(η
′Λη)γ̄1, (A84)

µy = tr(Λ) + T V̂11(η′Λη), (A85)

Var[y] = 2tr(Λ2) + 4T V̂11(η′Λ2η), (A86)

Cov[x, y] = 2T γ̄1(η′Λ2η)V̂
1
2

11. (A87)

Therefore,

κ̌ =
V̂

1
2

11E[X′AX
X′BX ]
γ̄1

≈
θ3
1 + 2tr(Λ)θ2

1 +
(
(tr(Λ))2 + 2tr(Λ2) + 2θ2

)
θ1 − 2tr(Λ)θ2

(tr(Λ) + θ1)3
= κ̌a, (A88)

where θ1 = T V̂11(η′Λη) and θ2 = T V̂11(η′Λ2η).

Using a similar derivation, it is straightforward to show that

c ≈ c2 + c1θ1
tr(Λ) + θ1

[
1− 2(c3 + 2c1θ2)

(c2 + c1θ1)(tr(Λ) + θ1)
+

2(tr(Λ2) + 2θ2)
(tr(Λ) + θ1)2

]
= ca, (A89)

where c1 = ξ′η, c2 = ξ′Λη and c3 = ξ′Λ2η.

For κ̃a, let Λ = IN−1. Then θ1 = θ2 = θ = T V̂11η
′η and (A88) becomes

κ̃ ≈ θ[(N − 1 + θ)2 + 2θ]
(N − 1 + θ)3

= κ̃a. (A90)

This completes the proof. Q.E.D.

Proof of Lemma 7. Let

Â = [1N , β̂]′Σ̂−1[1N , β̂], (A91)

Ã = [1N , β̂]′Σ−1[1N , β̂]. (A92)

60



From Theorem 3.2.11 of Muirhead (1982), conditional on β̂,

Â−1 ∼W2(T −N, Ã−1/T ). (A93)

Note that the (2, 2) elements of Â−1 and Ã−1 are given by 1/η̂′η̂ and 1/η̃′η̃, respectively, where

η̃ = P ′Σ−
1
2 β̂ ∼ N(η, IN−1). (A94)

Therefore, conditional on β̂, from (A93),

1
η̂′η̂

∼W1

(
T −N,

1
T η̃′η̃

)
(A95)

and hence

V =
T η̃′η̃

η̂′η̂
∼ χ2

T−N . (A96)

Since the distribution of V is independent of β̂ and hence independent of η̃′η̃,

V̂11η̂
′η̂ ∼ T V̂11η̃

′η̃

V
. (A97)

Finally, conditional on V̂11, T V̂11η̃
′η̃ ∼ χ2

N−1(T V̂11η
′η). Using the definition of the noncentral F -

distribution, we then obtain the distribution of V̂11η̂
′η̂. The expectation of V̂11η̂

′η̂ is simply obtained

from the expected value of a noncentral F -distribution, which is available from Johnson, Kotz, and

Balakrishnan (1995, Ch. 30). This completes the proof. Q.E.D.

Proof of Lemma 8. The Bayes estimator with respect to the loss function in (158) is the estimator

that minimizes the posterior risk ∫ ∞

0

[
θ̂

θ
− log

(
θ̂

θ

)]
f(θ|z)dθ, (A98)

where f(θ|z) is the posterior density of θ and z = V̂11η̂
′η̂. Taking the derivative of (A98) with

respect to θ̂,

θ̂ =
1∫∞

0 θ−1f(θ|z)dθ
. (A99)

As the posterior of θ is

f(θ|z) =
f(z|θ)π(θ)∫∞

0 f(z|θ)π(θ)dθ
=

θbf(z|θ)∫∞
0 θbf(z|θ)dθ

, (A100)

substituting (A100) in (A99),

θ̂ =

∫∞
0 θbf(θ|z)dθ∫∞

0 θb−1f(θ|z)dθ
. (A101)
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From Johnson, Kotz, and Balakrishnan (1995, Ch. 30, p.484), the density function of z is

f(z|θ) =
e−

θ
2 z

N−3
2

B
(

N−1
2 , T−N

2

)
(1 + z)

T−1
2

∞∑
r=0

[
z

2(1 + z)

]r
(

T−1
2

)
r(

N−1
2

)
r

θr

r!
, (A102)

where B(a, b) is the beta function. Using (A50),

∫ ∞

0
θdf(z|θ)dθ =

z
N−3

2 2d+1

B
(

N−1
2 , T−N

2

)
(1 + z)

T−1
2

∞∑
r=0

Γ(d+ r + 1)

(
T−1

2

)
r(

N−1
2

)
r

(
z

1+z

)r

r!

=
z

N−3
2 2d+1Γ(d+ 1)

B
(

N−1
2 , T−N

2

)
(1 + z)

T−1
2

2F1

(
d+ 1,

T − 1
2

,
N − 1

2
,

z

1 + z

)
. (A103)

Using this identity in both the numerator and denominator of (A101), we obtain our Bayes estimator

in (159). This completes the proof. Q.E.D.
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FOOTNOTES

1. Our analysis focuses on the case in which the asset pricing model is correct because this is

the case in which γ is well-defined. Nevertheless, it is easy to generalize our results to the case of

general µ2 in which the K-factor asset pricing model does not hold.

2. See also Lemma 1 of Shanken (1992).

3. Jagannathan and Wang (1996) and Ahn and Gadarowski (1999) provide asymptotic results for

more general cases.

4. Kim’s estimator is developed for Fama-MacBeth regressions which use rolling betas. Here we

present the results only for the constant beta case. Generalizing the results to the rolling beta case

is straightforward.

5. Proof is available upon request. Shanken and Zhou (2000) also provide the analytical solution

to the maximum likelihood estimation of γ but our expression here is slightly simpler than theirs.

6. The conditional distributions in (16)–(18) only depend on the multivariate normality assump-

tion of εt in (4). There is no need to assume that Yt is jointly normal.

7. See Anderson (1982) and Phillips (1983) for a review of this literature. Phillips (1984, 1985)

provides the exact density function of the LIML estimators.

8. For the GLS CSR, we also need T > N for the mean of γ̂ to exist, but this condition is

automatically satisfied because we need T > N +K for the estimated GLS to be feasible.

9. Although we can obtain analytical expressions for the moments of the estimated γ for the multi-

factor case, the expressions involve zonal polynomials and they are difficult to evaluate. Therefore,

we recommend using the simulation approach to obtain the moments of the estimated γ for the

multi-factor case.

10. See Davies (1980), Farebrother (1990), Ansley, Kohn, and Shively (1992), and Lu and King

(2002) for improvements to and implementation issues with this numerical method. Forchini (2001)

provides an explicit expression for the cumulative density function of X ′AX/(X ′BX).

11. In practice, there is another advantage of using smaller N in the two-pass CSR. This advantage

is that when a few well diversified portfolios are used instead of a large number of individual stocks
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as test assets, the variance of the residuals of the test assets (Σ) is typically smaller and hence

η′η/(N − 1) is larger, which further reduces the bias.

12. Since η = P ′Σ−
1
2β, we have ηi = P ′iΣ

− 1
2β, where Pi is the eigenvector associated with the i-th

largest eigenvalue of Σ
1
2MΣ

1
2 .

13. See Kandel and Stambaugh (1995) for a discussion of the invariance property of the GLS CSR

estimator. Their analysis is based on the population measures of µ2 and β, but it can be easily

generalized to show that γ̃1 and γ̂1 are invariant to portfolio repackaging.

14. Conditional on µ̂1, the returns and hence the estimated γ1 are much less volatile than uncon-

ditionally. However, for statistical inference purposes, we are more interested in finding the value

of γ1 rather than the value of γ̄1 = γ1 − µ1 + µ̂1. As a result, when making inference on γ1, we

need to take into account the sampling variability of µ̂1 by using the unconditional variance of the

estimated γ1.

15. Paolella (2003) evaluates various schemes for approximating the mean of the ratio of quadratic

forms of normal random variables and find that the approximation based on a Taylor series expan-

sion is the most accurate. In our application, the adjusted estimator of γ based on the approximate

formulas produce almost identical results to those based on the exact formulas.

16. Details are available upon request.

17. A set of Matlab programs for calculating the adjusted estimators is available upon request.

18. See also Theorem 3.9.1 of Phillips (1983).
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Table 1
Summary of Parameters in Simulation Experiments

Panel A: Factor with high explanatory power (V
1
2

11 = 4.092)

N = 10 N = 25 N = 100

σβ 0.049 0.109 0.245
σ̄ε 2.362 2.934 3.816

100V11η
′η/(N − 1) 0.520 1.728 2.071

i λi/λ̄ |ηi| λi/λ̄ |ηi| λi/λ̄ |ηi|

1 6.551 2.759 9.749 5.530 28.128 5.601
2 1.000 2.418 4.712 2.250 6.159 20.768
3 0.431 3.013 1.686 0.613 3.799 9.348

N − 3 0.154 0.206 0.177 1.411 0.135 3.566
N − 2 0.130 0.202 0.158 2.175 0.125 1.244
N − 1 0.112 0.137 0.157 2.841 0.122 1.315

Panel B: Factor with low explanatory power (V
1
2

11 = 0.747)

N = 10 N = 25 N = 100

σβ 0.255 0.336 0.481
σ̄ε 5.088 5.428 6.079

100V11η
′η/(N − 1) 0.227 0.309 0.351

i λi/λ̄ |ηi| λi/λ̄ |ηi| λi/λ̄ |ηi|

1 6.356 16.606 11.554 17.630 25.705 20.859
2 1.012 2.900 4.236 4.903 10.583 12.235
3 0.488 6.990 1.449 10.277 4.369 2.712

N − 3 0.165 2.330 0.152 9.710 0.117 6.179
N − 2 0.140 0.868 0.136 10.246 0.110 1.797
N − 1 0.127 4.552 0.116 1.875 0.098 14.304

The table presents a summary of the parameters of the test assets and factors used in our simulation
experiments. The factor in Panel A is chosen to have high explanatory power on the returns of the test
assets whereas the factor in Panel B is chosen to have low explanatory power on the returns of the test
assets. For each panel, the table presents the standard deviation (in percentages) of the factor (V

1
2

11)
and three sets of parameters, each corresponding to different numbers of test assets (N). For each case,
the table presents the cross-sectional standard deviation of beta (σβ), the average standard deviation
(in percentages) of the regression residuals for the test assets (σ̄ε), and the GLS cross-sectional variance
of the normalized beta (V11η

′η/(N −1)). In addition, the table also presents the three largest and three
smallest normalized eigenvalues (λi/λ̄) of the matrix Σ

1
2MΣ

1
2 and the corresponding absolute values

of ηi = p′iΣ
− 1

2β, where pi is the eigenvector associated with λi.
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Table 2
Unconditional Percentage Biases of Zero-Beta Rate and Risk Premium Estimators
from Second-Pass Cross-Sectional Regressions

Panel A: Factor with high explanatory power

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌0 γ̌1 γ̃0 γ̃1 γ̌0 γ̌1 γ̃0 γ̃1 γ̌0 γ̌1 γ̃0 γ̃1

60 59.9 −56.8 75.3 −75.8 32.8 −29.9 49.1 −48.9 18.7 −16.6 45.0 −45.2
120 35.4 −33.2 59.5 −59.9 16.5 −14.8 31.8 −31.7 9.8 −8.6 28.7 −28.8
240 13.6 −12.3 41.2 −41.5 7.7 −6.7 18.6 −18.5 5.0 −4.4 16.6 −16.7
360 5.6 −4.7 31.2 −31.4 4.9 −4.3 13.1 −13.1 3.4 −2.9 11.7 −11.7
480 2.2 −1.6 25.1 −25.2 3.5 −3.1 10.1 −10.1 2.5 −2.2 9.0 −9.0
600 0.7 −0.2 20.9 −21.0 2.8 −2.4 8.3 −8.2 2.0 −1.8 7.3 −7.4

Panel B: Factor with low explanatory power

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌0 γ̌1 γ̃0 γ̃1 γ̌0 γ̌1 γ̃0 γ̃1 γ̌0 γ̌1 γ̃0 γ̃1

60 60.8 −61.3 60.9 −88.0 70.1 −65.1 34.6 −84.5 76.4 −66.3 13.0 −82.9
120 38.6 −36.4 54.0 −78.0 50.0 −43.7 29.8 −72.7 57.2 −47.2 11.1 −70.5
240 15.1 −11.1 43.7 −63.1 28.4 −22.0 23.2 −56.7 36.7 −28.3 8.5 −54.2
360 5.4 −1.2 36.4 −52.6 18.2 −12.7 19.0 −46.3 26.5 −19.6 6.9 −44.0
480 1.3 2.4 31.1 −44.9 12.8 −8.1 16.0 −39.1 20.6 −14.8 5.8 −37.0
600 −0.4 3.6 27.0 −39.0 9.7 −5.7 13.8 −33.8 16.7 −11.8 5.0 −32.0

The table presents the unconditional biases of the OLS and GLS CSR estimators of the zero-beta rate
(γ0) and the risk premium (γ1) as a percentage of the true value of the risk premium for different lengths
of beta estimation period (T ) and for different numbers of test assets (N) when the factors and returns
are multivariate normally distributed. The factor in Panel A is chosen to have high explanatory power
on the returns of the test assets whereas the factor in Panel B is chosen to have low explanatory power
on the returns of the test assets. The true GLS and the estimated GLS CSR estimators of γ0 and γ1

have the same bias, except that the estimated GLS is infeasible for T = 60 and N = 100.
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Table 3
Asymptotic and Finite Sample Standard Deviation of Zero-Beta Rate and Risk Pre-
mium Estimators from Second-Pass Cross-Sectional Regressions

Panel A: Factor with high explanatory power

Asymptotic Standard Deviation

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1

60 3.956 3.952 2.453 2.525 1.585 1.693 0.834 0.983 0.521 0.807 n/a n/a
120 2.797 2.794 1.734 1.785 1.121 1.197 0.590 0.695 0.368 0.570 0.266 0.457
240 1.978 1.976 1.226 1.262 0.793 0.846 0.417 0.492 0.260 0.403 0.188 0.323
360 1.615 1.613 1.001 1.031 0.647 0.691 0.340 0.401 0.213 0.329 0.154 0.264
480 1.398 1.397 0.867 0.893 0.561 0.598 0.295 0.348 0.184 0.285 0.133 0.229
600 1.251 1.250 0.776 0.798 0.501 0.535 0.264 0.311 0.165 0.255 0.119 0.204

Finite Sample Standard Deviation

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1

60 2.702 2.696 1.485 1.445 1.202 1.269 0.830 0.828 0.482 0.692 n/a n/a
120 2.307 2.319 1.248 1.245 0.960 1.030 0.563 0.603 0.351 0.527 0.572 0.614
240 1.831 1.846 1.013 1.025 0.734 0.788 0.402 0.451 0.253 0.387 0.229 0.313
360 1.556 1.567 0.876 0.891 0.616 0.660 0.331 0.377 0.209 0.321 0.172 0.254
480 1.373 1.382 0.782 0.798 0.541 0.579 0.288 0.331 0.181 0.279 0.144 0.221
600 1.241 1.248 0.713 0.729 0.487 0.521 0.259 0.299 0.163 0.251 0.126 0.198

The table presents the unconditional standard deviations (in percentages per month) of the OLS and
estimated GLS CSR estimators of the zero-beta rate (γ0) and the risk premium (γ1) for different
lengths of sample period (T ) and for different numbers of test assets (N) when the factors and returns
are multivariate normally distributed. The factor in Panel A is chosen to have high explanatory power
on the returns of the test assets whereas the factor in Panel B is chosen to have low explanatory power
on the returns of the test assets. The value of γ1 is assumed to be 0.6% per month for Panel A and
0.028% per month for Panel B. For each panel, two measures of standard deviations are presented, the
first based on the asymptotic variance formula from Shanken (1992) and the second based on the exact
finite sample standard deviation of the estimators.
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Table 3 (Continued)
Asymptotic and Finite Sample Standard Deviation of Zero-Beta Rate and Risk Pre-
mium Estimators from Second-Pass Cross-Sectional Regressions

Panel B: Factor with low explanatory power

Asymptotic Standard Deviation

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1

60 0.817 0.768 0.705 0.682 0.681 0.653 0.459 0.367 0.490 0.456 n/a n/a
120 0.578 0.543 0.499 0.482 0.481 0.462 0.324 0.260 0.346 0.322 0.226 0.134
240 0.409 0.384 0.353 0.341 0.340 0.327 0.229 0.184 0.245 0.228 0.160 0.095
360 0.334 0.314 0.288 0.278 0.278 0.267 0.187 0.150 0.200 0.186 0.131 0.078
480 0.289 0.272 0.249 0.241 0.241 0.231 0.162 0.130 0.173 0.161 0.113 0.067
600 0.258 0.243 0.223 0.216 0.215 0.207 0.145 0.116 0.155 0.144 0.101 0.060

Finite Sample Standard Deviation

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1

60 0.776 0.517 0.638 0.283 0.632 0.338 0.580 0.188 0.563 0.194 n/a n/a
120 0.574 0.472 0.447 0.258 0.445 0.313 0.355 0.152 0.376 0.186 0.562 0.159
240 0.425 0.398 0.323 0.228 0.319 0.272 0.238 0.128 0.252 0.167 0.209 0.076
360 0.353 0.341 0.268 0.207 0.265 0.241 0.191 0.114 0.201 0.151 0.153 0.063
480 0.306 0.299 0.235 0.191 0.232 0.217 0.165 0.104 0.173 0.138 0.127 0.056
600 0.273 0.267 0.212 0.178 0.209 0.198 0.147 0.096 0.154 0.127 0.111 0.051
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Table 4
Unconditional Percentage Biases of Zero-Beta Rate and Risk Premium Estimators
from Second-Pass Cross-Sectional Regressions under Nonnormality

Panel A: Factor with high explanatory power

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1

60 55.6 −52.5 72.6 −73.0 33.4 −29.7 44.1 −43.0 18.9 −17.1 n/a n/a
120 35.4 −33.1 57.4 −57.7 17.4 −15.0 29.3 −28.6 9.7 −8.8 21.0 −21.3
240 14.0 −12.5 40.2 −40.3 8.0 −6.9 17.5 −17.2 4.9 −4.3 13.2 −13.2
360 5.4 −4.3 30.7 −30.7 4.9 −4.3 12.5 −12.5 3.3 −2.7 9.7 −9.6
480 2.6 −1.7 24.7 −24.7 3.3 −2.9 9.7 −9.7 2.5 −2.0 7.8 −7.7
600 0.6 0.1 20.5 −20.5 2.6 −2.2 7.9 −7.9 1.9 −1.6 6.4 −6.4

Panel B: Factor with low explanatory power

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1

60 52.7 −60.3 61.2 −86.1 67.9 −65.5 34.7 −81.7 66.8 −67.5 n/a n/a
120 32.0 −37.5 47.8 −74.2 52.4 −43.9 26.1 −69.9 49.5 −47.7 5.2 −61.7
240 17.9 −11.7 43.8 −61.6 30.2 −23.5 21.3 −54.8 35.1 −28.7 7.4 −45.8
360 5.2 1.0 35.0 −50.2 19.8 −12.1 17.7 −45.2 27.5 −19.3 7.4 −37.5
480 1.1 3.9 27.5 −40.5 15.6 −7.3 16.7 −38.4 21.7 −15.0 6.4 −32.8
600 −1.8 5.5 23.4 −34.4 12.6 −4.9 14.2 −32.7 18.6 −11.6 5.2 −28.6

The table presents the unconditional biases of the OLS and estimated GLS CSR estimators of the
zero-beta rate (γ0) and the risk premium (γ1) as a percentage of the true value of the risk premium for
different lengths of the beta estimation period (T ) and for different numbers of test assets (N). The
factor in Panel A is chosen to have high explanatory power on the returns of the test assets whereas
the factor in Panel B is chosen to have low explanatory power on the returns of the test assets. The
returns on the test assets have the same mean, variance and betas as those used in Table 2 except that
the factors here have a t-distribution with five degrees of freedom, and the residuals of the test assets
have a multivariate t-distribution with five degrees of freedom. The results in the table are based on
100,000 simulations.

73



Table 5
Unconditional Standard Deviation of Zero-Beta Rate and Risk Premium Estimators
from Second-Pass Cross-Sectional Regressions under Nonnormality

Panel A: Factor with high explanatory power

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1

60 2.705 2.697 1.450 1.417 1.211 1.277 0.763 0.787 0.491 0.697 n/a n/a
120 2.299 2.311 1.220 1.220 0.958 1.027 0.532 0.584 0.353 0.528 0.480 0.554
240 1.825 1.839 0.997 1.011 0.733 0.787 0.386 0.440 0.253 0.386 0.203 0.302
360 1.548 1.559 0.868 0.884 0.615 0.659 0.320 0.370 0.208 0.320 0.156 0.247
480 1.368 1.377 0.774 0.792 0.539 0.576 0.281 0.326 0.181 0.279 0.132 0.216
600 1.240 1.246 0.707 0.724 0.485 0.519 0.254 0.296 0.163 0.251 0.118 0.194

Panel B: Factor with low explanatory power

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1 γ̌0 γ̌1 γ̂0 γ̂1

60 0.776 0.525 0.601 0.281 0.631 0.345 0.510 0.184 0.563 0.205 n/a n/a
120 0.573 0.473 0.430 0.255 0.447 0.313 0.328 0.148 0.378 0.189 0.452 0.148
240 0.424 0.394 0.317 0.226 0.320 0.270 0.227 0.125 0.253 0.167 0.182 0.072
360 0.351 0.337 0.265 0.206 0.264 0.239 0.185 0.112 0.202 0.150 0.138 0.060
480 0.307 0.297 0.233 0.190 0.232 0.215 0.160 0.102 0.174 0.137 0.117 0.054
600 0.274 0.266 0.211 0.177 0.209 0.196 0.143 0.095 0.155 0.127 0.103 0.049

The table presents the unconditional standard deviations (in percentages per month) of the OLS and
estimated GLS CSR estimators of the zero-beta rate (γ0) and the risk premium (γ1) for different lengths
of sample period (T ) and for different numbers of test assets (N). The factor in Panel A is chosen to
have high explanatory power on the returns of the test assets whereas the factor in Panel B is chosen
to have low explanatory power on the returns of the test assets. The value of γ1 is assumed to be 0.6%
per month for Panel A and 0.028% per month for Panel B. The returns on the test assets have the same
mean, variance and betas as those used in Table 3 except that the factors here have a t-distribution
with five degrees of freedom, and the residuals of the test assets have a multivariate t-distribution with
five degrees of freedom. The results in the table are based on 100,000 simulations.
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Table 6
Unconditional Percentage Biases of Bias-Adjusted Estimators of Zero-Beta Rate and
Risk Premium from Second-Pass Cross-Sectional Regressions

Panel A: Factor with high explanatory power

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌a
0 γ̌a

1 γ̂a
0 γ̂a

1 γ̌a
0 γ̌a

1 γ̂a
0 γ̂a

1 γ̌a
0 γ̌a

1 γ̂a
0 γ̂a

1

60 24.8 −23.5 23.0 −23.1 5.9 −4.7 −17.3 17.2 n/a n/a n/a n/a
120 −3.1 3.7 −10.4 10.4 −0.9 1.4 −5.7 5.7 1.0 −0.5 −2.1 2.1
240 −13.5 13.5 −21.4 21.5 −1.0 1.2 −1.0 1.0 0.3 −0.1 −0.1 0.1
360 −11.2 11.1 −15.4 15.5 −0.6 0.7 −0.4 0.4 0.2 0.0 0.0 0.0
480 −8.4 8.2 −9.7 9.8 −0.4 0.5 −0.3 0.3 0.1 0.0 0.0 0.0
600 −6.3 6.1 −6.1 6.1 −0.2 0.3 −0.2 0.2 0.1 0.0 0.0 0.0

Panel B: Factor with low explanatory power

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌a
0 γ̌a

1 γ̂a
0 γ̂a

1 γ̌a
0 γ̌a

1 γ̂a
0 γ̂a

1 γ̌a
0 γ̌a

1 γ̂a
0 γ̂a

1

60 30.9 −33.7 40.3 −58.1 41.9 −41.9 13.1 −30.5 n/a n/a n/a n/a
120 0.7 2.2 18.8 −26.8 16.7 −13.4 −4.1 11.1 28.4 −20.6 −0.6 6.8
240 −18.6 24.6 −4.6 7.0 −1.3 4.6 −9.9 25.0 10.7 −4.8 −1.7 11.0
360 −19.2 23.8 −13.3 19.6 −5.3 7.1 −7.0 17.3 4.9 −0.9 −0.5 3.1
480 −15.1 18.1 −15.4 22.4 −5.7 6.4 −4.0 10.1 2.5 0.1 −0.2 1.5
600 −11.3 13.1 −14.4 21.1 −5.1 5.1 −2.3 6.0 1.4 0.4 −0.1 0.9

The table presents the unconditional biases of the bias-adjusted estimators of the zero-beta rate (γ0)
and the risk premium (γ1) from the OLS and estimated GLS CSR, as a percentage of the true value of
the risk premium for different lengths of beta estimation period (T ) and for different numbers of test
assets (N) when the factors and returns are multivariate normally distributed. The factor in Panel A is
chosen to have high explanatory power on the returns of the test assets whereas the factor in Panel B
is chosen to have low explanatory power on the returns of the test assets. The results in the table are
based on 100,000 simulations.
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Table 7
Unconditional Standard Deviation of Bias-Adjusted Estimators of Zero-Beta Rate and
Risk Premium from Second-Pass Cross-Sectional Regressions

Panel A: Factor with high explanatory power

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌a
0 γ̌a

1 γ̂a
0 γ̂a

1 γ̌a
0 γ̌a

1 γ̂a
0 γ̂a

1 γ̌a
0 γ̌a

1 γ̂a
0 γ̂a

1

60 7.776 7.757 5.937 5.988 1.704 1.777 2.192 2.266 n/a n/a n/a n/a
120 5.169 5.154 4.427 4.475 1.172 1.240 0.919 0.995 0.386 0.575 0.826 0.907
240 2.828 2.821 2.665 2.701 0.807 0.860 0.501 0.566 0.267 0.405 0.271 0.377
360 1.979 1.976 1.768 1.797 0.654 0.697 0.384 0.439 0.216 0.330 0.193 0.288
480 1.585 1.583 1.296 1.321 0.564 0.602 0.322 0.371 0.186 0.286 0.157 0.243
600 1.358 1.356 1.032 1.054 0.504 0.537 0.283 0.327 0.166 0.256 0.135 0.214

Panel B: Factor with low explanatory power

N = 10 N = 25 N = 100

OLS GLS OLS GLS OLS GLS

T γ̌a
0 γ̌a

1 γ̂a
0 γ̂a

1 γ̌a
0 γ̌a

1 γ̂a
0 γ̂a

1 γ̌a
0 γ̌a

1 γ̂a
0 γ̂a

1

60 1.820 1.743 1.426 1.287 0.840 0.665 1.010 1.052 n/a n/a n/a n/a
120 1.321 1.386 1.041 1.122 0.588 0.547 0.579 0.778 0.381 0.282 0.707 0.676
240 0.798 0.959 0.727 0.866 0.397 0.393 0.324 0.456 0.257 0.223 0.217 0.200
360 0.543 0.615 0.554 0.679 0.312 0.309 0.229 0.291 0.206 0.186 0.155 0.119
480 0.404 0.446 0.441 0.543 0.263 0.258 0.183 0.207 0.177 0.162 0.128 0.091
600 0.325 0.348 0.361 0.441 0.231 0.225 0.158 0.163 0.157 0.145 0.111 0.076

The table presents the unconditional standard deviations (in percentages per month) of the bias-adjusted
estimators of the zero-beta rate (γ0) and the risk premium (γ1) from the OLS and estimated GLS
CSR for different lengths of sample period (T ) and for different numbers of test assets (N) when the
factors and returns are multivariate normally distributed. The factor in Panel A is chosen to have high
explanatory power on the returns of the test assets whereas the factor in Panel B is chosen to have
low explanatory power on the returns of the test assets. The value of γ1 is assumed to be 0.6% per
month for Panel A and 0.028% per month for Panel B. The results in the table are based on 100,000
simulations.
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Figure 1
Conditional expected value of the second pass GLS cross-sectional regression estimate of the risk
premium for the single factor case. The figure plots κ̃ = E[γ̃1|V̂11]/γ1 as a function of T V̂11η

′η/(N−
1) for different values of N , where γ̃1 is the second-pass GLS CSR estimate of the risk premium,
N is the number of test assets, T is the number of time series observations used to estimate β, V̂11

is the realized variance of the factor, and η′η/(N − 1) is a measure of the dispersion of β across the
test assets.
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Figure 2
Representation of two estimators of T V̂11η

′η for different values of V̂11η̂
′η̂. The figure plots two

estimators of θ = T V̂11η
′η as a function of z = V̂11η̂

′η̂ when N = 10 and T = 100. The dotted
line is for the estimator θ̂u = (T − N − 2)V̂11η̂

′η̂ − (N − 1), which is an unbiased estimator of θ.
The solid line is for the estimator θ̂ = 2b2F1(1 + b, (T − 1)/2, (N − 1)/2, z/(1 + z))/2F1(b, (T −
1)/2, (N − 1)/2, z/(1 + z)), where 2F1 is the hypergeometric function and b is set to 0.5. θ̂ is the
Bayes estimator of θ under Stein’s loss function and a prior of π(θ) = θb.
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