
Proactive-Reactive Prediction for Data Streams

Ying Yang, Xindong Wu and Xingquan Zhu
Department of Computer Science, University of Vermont

Burlington, Vermont, USA 05405

yyang, xwu, xqzhu@cs.uvm.edu

ABSTRACT
Prediction in streaming data is an important activity in var-
ious branches of science such as sociology, economics and
politics. Two major challenges offered by data streams are
(1) the underlying concept of the data may change over time;
and (2) the data may grow without limit so that it is diffi-
cult to retain a long history of raw data. Previous research
has mainly focused on manipulating relatively recent data.
The distinctive contribution of this paper is in three folds.
First, it uses a measure of conceptual equivalence to orga-
nize the data history into a history of concepts. Transition
patterns among concepts can be learned from this history
to help prediction. Second, it carries out prediction at two
levels, a general level of predicting each oncoming concept
and a specific level of predicting each instance’s class. Third,
it proposes a system RePro that incorporates reactive and
proactive mechanisms to predict in streaming data with effi-
cacy and efficiency. Experiments are conducted to compare
RePro with representative existing prediction methods on
various benchmark data sets that represent diversified sce-
narios of concept change. Empirical evidence offers inspiring
insights and suggests the proposed methodology is an advis-
able solution to prediction for data streams.

1. INTRODUCTION
Prediction for data streams is important. Streaming data
are very common in today’s world such as Internet event
logs, stock market transitional flows, or sensor network re-
ports. Streaming data have two special characteristics. First,
they are time-series data whose underlying concept may
change over time. Second, the data may grow without limit
and it is difficult to retain their complete history. Prediction
is critical in many aspects of the modern society, where peo-
ple need to know what will happen in the (sometimes very
near) future. For example, various meteorologic measures,
such as heat, humidity and wind speed, are indicative of the
weather condition. A model can be learned from previous
observations to describe the relationship between the mea-
sures and the weather. When new measures are taken, this
model can be used to predict what the weather will be.

Prediction for data streams is, however, not a trivial task.
The special characteristics of streaming data have brought
new challenges to the prediction task. The underlying con-
cept change requires updating the prediction model accord-

ingly. For example, the weather pattern may change across
seasons. A prediction model appropriate for spring may not
necessarily suit summer. Hence, the prediction process is
complicated by the need to predict, not only the outcome of
a particular observation, but also the oncoming concept in
case of a concept change. This complication is compounded
by the fact that the prediction has to be made with limited
access to the history of streaming data.

Various great ideas have been contributed to prediction for
data streams [2, 3, 5, 7, 8, 13, 15, 16]. With all due re-
spect to previous achievements, it is suggested that some
problems remain open. First, the history of data streams
is not well organized nor made good use of. Two typical
methodologies exist. One is to keep a recent history of raw
instances since the whole history is too much to be retained.
As to be explained later, this methodology may be applica-
ble to concept drift but not proper for concept shift. Another
methodology, upon detecting a concept change, discards the
history corresponding to the outdated concept and accumu-
lates instances to learn the new concept from scratch. As
to be demonstrated later, this methodology ignores experi-
ence and incurs waste when the history sometimes repeats
itself. A second open problem is that existing approaches
are mainly interested in predicting the class of each specific
instance. No significant effort has been devoted to foresee-
ing a bigger picture, that is, what the new concept will be if
a concept change takes place. This prediction, if possible, is
at a more general level and is proactive. It will help prepare
for the future and can instantly launch a new prediction
strategy upon detecting a concept change.

This paper sets out to tackle those open problems. The goals
involve (1) organizing the history of raw data into a history
of concepts. A concept represents compact and essential
knowledge abstracted from raw data. One can easily keep a
long history of concepts; (2) learning from the concept his-
tory patterns of concept transition, which may offer valuable
clues to proactive as well as reactive prediction; and (3) a
system that effectively and efficiently predict for streaming
data. In particular, Section 2 introduces some background
knowledge. It defines terms used throughout the paper. It
explains and compares different modes of concept change. It
also gives taxonomies of prediction approaches for stream-
ing data. Section 3 proposes a mechanism to build a history
of changing concepts. Key components involve a trigger

detection method, an equivalence measure named concep-
tual equivalence and a transition matrix accumulated over
time. This concept history will participate in prediction.
Section 4 introduces a system RePro that reactively as well
as proactively predicts for streaming data, utilizing the con-
cept history. Section 5 differentiates this paper from related
work. Section 6 presents empirical evaluations and discus-
sions. Section 7 gives concluding remarks.

2. BACKGROUND KNOWLEDGE
This section prepares background knowledge for a better
understanding of this paper.

2.1 Terminology
Several terms in this paper are inherited from the terminol-
ogy of classification learning. A data stream is a sequence
of instances. Each instance is a vector of attribute values.
Each instance has a class label. If its class is known, an
instance is a labeled instance. Otherwise it is an unlabeled
instance. Predicting for an instance is to decide the class of
an unlabeled instance by evidence from labeled instances.

The term concept is more subjective than objective. Fac-
ing the same data, different people may see different con-
cepts according to different perspectives or interests. In the
context of this paper, a concept is a set of rules learned
by a classification algorithm. However, the proposed mech-
anisms are applicable regardless of the learning algorithm
variations, and are hence portable.

2.2 Modes of concept change
A theme issue in streaming data research is the concept
change problem. Different modes of change have been men-
tioned in the literature1 as follows:

modes

8
<
:

concept change

�
concept drift
concept shift

sampling change
.

Concept change refers to the change of the underlying
concept over time. Concept drift describes the gradual
change of the concept [12, 14, 16]. For example, a slow
wearing piece of factory equipment might cause a gradual
change in the quality of output parts. Concept shift [9,
12] happens when the change between two concepts is more
categorical. For example, in the history of US politics, the
policy changes whenever a different party takes the govern-
ment. There are not necessarily gradual transitions between
a republican government and a democrat government. Sam-
pling change, also known as sampling shift [11] or virtual
concept drift [16], refers to the change of the data distribu-
tion. Even if the concept remains the same, this change may
often lead to revising the current model as the model’s error
may no longer be acceptable with the new data distribution.

1Sometimes there are conflicts in the literature when de-
scribing these modes. For example, the concept shift in
some papers means the concept drift in other papers and
vice versa. The definitions here are cleared up to the best
of the authors’ understanding.

Stanley [12] has suggested that from the practical point
of view, it is not essential to differentiate between concept
change and sampling change since the current model needs
to be changed in both cases.

This paper further suggests that it is important to distin-
guish between concept drift and concept shift. The differ-
ence between concept drift and concept shift resembles the
difference between a numeric variable and a nominal vari-
able. For example, it is meaningful to say that the value
5.4 is more close to 5.5 than 5.3 is. It is not meaningful
in the same way to say that a piano is more similar to a
violin than a saxophone is. Analogously, one may assume
that the current concept is always the most similar to the
oncoming concept in concept drifting because of its gradual
changing [15], whereas this assumption can often be violated
in concept shift. Both cases of concept drift and concept
shift abound in the real world. Since they have different
characteristics, they may require different optimal predic-
tion strategies.

2.3 Taxonomy of prediction approaches
Many prediction approaches in streaming data have been
proposed. Integrating various previous proposals and its
new perspectives, this paper presents a comprehensive set
of taxonomies, each of which emphasizes a different aspect
of the distinctions among prediction approaches.

Trigger-sensitive vs. Trigger-insensitive. Trigger-
sensitive approaches detect triggers, instances across which
the underlying concept changes, for prediction. Once a trig-
ger is detected, a new model is constructed for data coming
after the trigger. As a result, the data are partitioned into
segments according to triggers, each having a different un-
derlying concept. Hence these approaches are also called
segmentation algorithms [7]. Trigger-insensitive approaches
do not explicitly detect triggers. Instead, they continuously
adapt the current model to newly coming instances [5].

Incremental vs. Batch. Incremental approaches process
coming instances one by one. Batch approaches exam a
batch of instances at once [4, 14, 15].

Historical vs. Contemporary. After a trigger is detected,
historical approaches resort to the history to construct a new
model while contemporary approaches only consult data in
hand that have just triggered the concept change.

Proactive vs. Reactive. Proactive approaches foresee
what the forthcoming concept is given the current concept.
This predicted concept will take effect once a concept change
is detected. Reactive approaches do not predict what con-
cept is coming. A new prediction model is constructed upon
a trigger is detected.

3. BUILDING CONCEPT HISTORY
A mechanism is proposed here to build a history of chang-
ing concepts in streaming data. This history serves three
purposes. First, it retains essential information of the past
data. It is important to record the history especially when

it may repeat itself. However, it is very expensive, if pos-
sible at all, to keep all the streaming data whose volume
is prohibitive. In comparison, a concept is only a bunch
of abstract rules and keeping a long history of concepts is
much more tractable. Second, it stores previous concepts so
that they can be reused in the future if needed. This helps
reduce the prediction time than learning from scratch each
time when the concept changes in streaming data. Third,
the possible associations among different concepts can be
learned according to the history. This type of learning has
taken place and is very valuable through human beings’ his-
tory. For example, people have learned over time that there
exists certain transitions among seasons, such as winter com-
ing after autumn. As a result, people have been preparing
for winter during autumn, which is of great help in many
aspects of life. The following components are key to the
system of building a concept history.

3.1 A classification algorithm
This algorithm is used to abstract a concept from the raw
data. A user may choose whatever classification algorithm
of his/her interest, or choose one that appears to be good at
learning the current data. The proposed system accepts di-
versified formats of learned concepts, such as decision rules,
decision trees or even probability tables from the naive-
Bayes learning. In this particular paper, C4.5rules [10] is
employed since it is commonly used and can achieve a rea-
sonable classification accuracy in general.

3.2 A trigger detection algorithm
This algorithm finds instances, across which the underly-
ing concept has changed and the prediction model should
be modified. It is especially important when concept shift
happens, where the change may not be a smooth transition
and hence the immediate previous concept may not be the
best simulator of the current concept. For example, suppose
a democrat government succeeds a republican government.
To predict what national policies will take place, it is better
to check what happened under previous democrat govern-
ments in history, rather than check what happened under
the last republican one although it was the most recent.

Keogh and Tsymbal et al. [7, 14] have reviewed abounding
trigger detection algorithms. A sliding-window methodology
is used here. Two important parameters are the window size
and the error threshold. One by one, the current prediction
model predicts the class of coming instances. The begin-
ning of the window is always a wrongly classified instance.
Whenever the window is full and its error rate exceeds the
error threshold, the beginning instance is taken as a trigger;
otherwise, the beginning of the window is slid to the next
wrongly classified instance (if there is any) and the previous
starting instance is dropped from the window.

3.3 A measure of conceptual equivalence
This measure checks whether a concept repeats itself at dif-
ferent times. Given current data and the corresponding
learned concept, this measure calculates the degree of equiv-
alence between this concept and each distinct historical con-
cept, as in Table 1. If the measure between a newly learned

concept V and a previous concept T is above a user-defined
threshold, the system deems that V is a reappearing T .

Table 1: Measuring conceptual equivalence
Input: concept D newly learned from current data T ,
previous concept V
Output: a numeric value ∈ [-1,1], the bigger the value,
the higher the degree of conceptual equivalence between
V and T
Begin
ce = 0;
FOREACH instance I ∈ D

result1 = classify I by V ;
result2 = classify I by T ;
IF (result1 != result2) score=-1;
IF (result1 == result2)

IF (result1 == nomatch) score=0;
ELSE score=1;

ce += score;
ce = ce / |D|;
return (ce);
End

A few insights are worth mentioning in this algorithm. First,
the result of classifying an instance by a concept can be
‘approve’, ‘nomatch’ or ‘conflict class’. For example, if V
classifies I into class X but V classifies I into class Y , the
score will be -1 since conflict X does not equal to conflict Y .
If neither V nor T match I, the score is 0 since there is no
strong evidence to judge whether I stands for a discrepancy
or an equivalence between V and T .

Second, the measure circumvents syntactically comparing
two rule sets. In streaming data, instances from the same
concept may not necessarily duplicate at different times, es-
pecially when attributes involve continuous values. As a
result, two learned rule sets often differ in their faces. On
top of that, some popular online learning algorithms, such
as naive-Bayes, do not produce explicit rules at all, where
direct rule comparisons are hence inapplicable.

Third, the measure does not reply solely on comparing clas-
sification accuracies, which is not always indicative enough.
For example, if V and T classify D with poor accuracies
75% and 65% respectively, their equivalence can be very
high if they agree on classifying many instances even when
the classification is wrong.

3.4 A stable learning size
This is a parameter that specifies the number of instances
above which the learned concept can be deemed stable. In
order to be sensitive to concept change, the window size of
trigger detection is normally small. Sometimes this window
of instances are sufficient to indicate that the current con-
cept is not adequate any more, but insufficient to induce
what the adequate concept should be. If one has to learn
a new concept out of these few instances, the learned con-

cept is not stable2, and should be re-learned once a stable
learning size of instances are accumulated.

In practice, the system keeps two concept histories: a stable
H retaining stable concepts and triggers; and a temporary H
retaining possibly unstable concepts and triggers. Assume
the stable learning size is s and the instance index for the last
stable trigger is j. Each concept Ct learned between instance
j and j + s is stored in H. When s instances’ classes since j
are known, a single concept Ck is learned across [j,j + s). If
the classification accuracy of Ck is no less than the average
classification accuracy of Cts on these s instances, Ck is
deemed as a stable concept and is stored into H; and H is
updated by H. Otherwise, Cts are deemed as a series of
stable concepts and H is updated by H. Prediction always
resorts to the stable history first. This strategy is instructed
by the theory of Occam’s razor that one should not increase,
beyond what is necessary, the number of entities required to
explain anything.

3.5 The building process
Integrating all the above key components, the process of
building a concept history is illustrated in Table 2. To more
clearly explain the process, assume that the window size is
10, the stable learning size is 30 and the error threshold is
55%. A ♠ represents an instance where a stable trigger is
detected. A ♣ represents an instance where a temporary
trigger is detected. A

√
represents a correctly classified in-

stance. A × represents a wrongly classified instance. Only
instances coming after the last stable trigger and up to now
are retained for the purpose of calculating conceptual equiv-
alence. Other historical instances are not essential to keep.

4. CHOOSING PREDICTION MODELS
As mentioned in Stage 3 of Table 2, when a new trigger is
detected, it indicates that the current prediction model is
not proper any more. A different model needs to be cho-
sen to classify oncoming instances. Available information
to make this choice is: (1) a history of concepts up to this
triggers; and (2) a window size of labeled instances, which
contributed to detect this new trigger. Three different ap-
proaches to choosing a prediction model are studied here.

4.1 Reactive
A reactive approach chooses a model according to the trigger
instances.

4.1.1 Contemporary
According to Section 2.3, contemporary-reactive modeling
is trigger-sensitive, incremental, contemporary and reactive.
Upon detecting a new trigger, contemporary-reactive pre-
diction does not consult the concept history. To train a pre-
diction model, it simply uses the window of labeled instances
upon the new trigger. Then it uses this model to classify on-
coming instances. Although straightforward, this approach
risks high classification variance especially when the sliding

2For example, it is of high classification variance by overfit-
ting a small portion of instances.

Table 2: The process of building concept history

• • • • ♠ • • • • • √√√√ √√√√ √√√√ ×××× √√√√ ×××× ×××× √√√√ ×××× ×××× ×××× ×××× ××××
t-40 t t+9

Full window Stable trigger

Stage 1 Starting from t, wrong prediction is witnessed. Up to t+9,
the window is full and the error rate is 80% which is above the
error threshold. Hence, t is detected as a new trigger.

• • • • ♠ • • • • • • • • • • ♠ • • • • • • √√√√ √√√√ √√√√
t+9 t t-40

Learn Ck

Stage 2 Since there are no less than 30 instances between t-40
(last stable trigger) and t, the concept Ck learned from [t-40, t) is
stable. Use conceptual equivalence (as in Table 1) to check
whether Ck is a historical concept or a new one. Update both
stable and contemporary concept histories.

• • • • ♠ • • • • • • • • • • ♠ • • • • • • • • • ♣ √√√√ ×××× ×××× √√√√ ××××
t t+18 t-40

Temporary trigger Learn Ct

Stage 3 A new prediction model is chosen to predict for instances
coming after t+9. Assume a new trigger is detected at t+18. A
concept Ct is learned over [t, t+18), which can be unstable since it
is learned from too few instances. Store it only into the temporary
concept history.

• • • • ♠ • • • • • • • • • • ♠ • • • • • • • • • ♣ • • • • • • •
t t+18 t+29 t-40

Stable learning size, learn Ck+1

Stage 4 When time arrives at t+29, 30 instances are known. If no
(temporary) trigger happens in [t, t+29], do nothing. Otherwise,
learn a concept Ck+1 from [t, t+29]. If Ck+1’s accuracy is
competitive to temporary Ct‘s, store Ck+1 into stable history and
update temporary history by stable history. Otherwise update
stable history by temporary history.

window is small. For example, C4.5rules can almost always
form a set of rules with a high classification accuracy across
a window of instances. This prediction model, however, is
very likely to wrongly classify oncoming instances since it
seldom generalizes to the true underlying concept. As a re-
sult, another new trigger is soon detected even when the
data are from the same concept. Nonetheless, it can be a
measure of emergency if the concept is brand new and has
no history to learn from.

4.1.2 Historical
According to Section 2.3, historical-reactive modeling is
trigger-sensitive, incremental, historical and reactive. Upon
detecting a new trigger, historical-reactive prediction re-
trieves a concept from the history that is most appropriate
for the trigger instances. It tests each distinct historical con-
cept’s classification error across the trigger window. The one

with the lowest error is chosen as the new prediction model.
One merit of consulting the concept history is that each con-
cept accepted by the history is a stable classifier. Hence it
can avoid the problem taking place in the contemporary-
reactive modeling. However, there are also potential disad-
vantages. One problem happens when this new concept is
very different from every existing concept. Consequently,
the history offers a low classification accuracy on the win-
dow. Another potential concern is the efficiency issue. If
there are many distinct concepts in history, it may take a
while to test every single one across the window.

4.2 Proactive
According to Section 2.3, proactive modeling is trigger-
sensitive, incremental, historical and proactive. A proactive
approach predicts the oncoming concept given the current
concept by evidence from the concept history. The choice
can be made ahead of a trigger detection and is independent
of the trigger window. Once a new trigger is detected that
indicates the concept has changed, the predicted concept
immediately takes over the classification task.

In the proactive style, the history of concepts is treated like a
Markov Chain [6]. Markov chain is a commonly used model
for web access path prediction in information retrieval. It
involves a sequence of states where the probability of the
current state depends on the past state(s). If the probability
only depends on the immediate past state, it is a first-order
Markov chain. Otherwise it is a higher-order Markov chain.

In the context of proactive modeling, each occurrence of a
concept is a state. For example, the weather patterns nor-
mally change following the order of spring, summer, autumn
and winter. Besides, due to occasional special climate condi-
tions, abnormal concepts can take place from time to time,
such as the consecutive Hurricanes Charley, Frances, Ivan
and Jeanne during Year 2004 in south America. Suppose
the history of concepts is: spring, summer, autumn, winter,
spring, summer, hurricane, autumn, winter, spring, flood,
summer, autumn, winter, spring, summer, autumn, winter,
spring, summer, hurricane, autumn. A transition matrix
can be built and updated along the time. Table 3 shows the
final status of a first-order transition matrix3.

Table 3: Transition Matrix
Next State

Current State spring summer autumn winter hurricane flood
spring 0 4 0 0 0 1

summer 0 0 3 0 2 0
autumn 0 0 0 4 0 0
winter 4 0 0 0 0 0

hurricane 0 0 2 0 0 0
flood 0 1 0 0 0 0

Suppose that the current concept is autumn. According to
the transition matrix, in history the most frequent concept
after autumn is winter. Hence, the system will predict that

3The value in each cell can be frequency as well as proba-
bility. The latter can be approximated from the former.

if there is a concept change from autumn, it is very likely to
be winter. Accordingly, once a new trigger is detected, the
concept winter is used to classify oncoming instances. The
advantages are that the future model is chosen in advance
instead of upon trigger detection; and the reaction time to
concept change is short since there is no need to validate
historical concepts one by one as in the reactive approach.
A problem happens when there is not a state with a domi-
nant probability given the current state. For example, if the
current state is ‘summer’, the frequency of autumn being
the next one is 3 while the frequency of hurricane is 2 in
history. In this case, the first-order transition matrix does
not offer enough information to distinguish between autumn
and hurricane. One may turn to a second-order transition
matrix, that is, consult two states back into history to pre-
dict the next state. If the tie still can not be broken, one
may use a third-order transition matrix and so on so forth.
However, the higher order the matrix to maintain, the more
expensive the system becomes. Or, one can incorporate a
reactive approach into the proactive approach to break ties,
which is the topic of the following section.

4.3 RePro, coalition of strength
As addressed above, reactive and proactive modeling each
excels in different scenarios. A system RePro (reactive plus
proactive), as in Table 4, incorporates them together and
uses one’s strength to offset another’s weakness.

As a result, if the proactive component of RePro foresees
multiple probable concepts given the current concept, one
can use the reactive component as a tie breaker. The other
way around, if there are many historical concepts, the proac-
tive component can offer a short list to the reactive compo-
nent and speed up the process. If both the proactive and
historical-reactive modeling incur low accuracy in the new
trigger window, it indicates that the new concept is very dif-
ferent from historical ones. Hence, a contemporary-reactive
classifier can help to cope with the emergency. Nonetheless,
as explained in Section 3.4, in order to avoid the high clas-
sification variance problem, when a stable learning size of
labeled instances are accumulated, one should update the
contemporary-reactive concepts by a stable concept.

5. RELATED WORK
Many approaches have been published that predict in
concept-changing scenarios. Two typical mechanisms are
discussed here. More comprehensive reviews can be found
in various informative survey papers [7, 14].

The FLORA system [16] is related to RePro in the sense that
it stores old concepts and reuses them if appropriate. How-
ever, it is oriented to data of small sizes instead of streaming
data [5]. It represents concepts by conjunctions of attribute
values and measures the conceptual equivalence by syntac-
tical comparison. This is less applicable in streaming data,
as will be demonstrated in Section 6.3.2. The concepts are
stored only for the reactive purpose. FLORA does not ex-
plore their associations and hence can not be proactive.

The weighted classifier ensemble (WCE) approach [15] rep-

Table 4: RePro: reactive+proactive
Input: A concept history containing a list of distinct
historical concepts C DIS, a concept sequence C SEQ
and a transition matrix C TRA. A window of instances
I WIN that has just triggered the concept change. A
probability threshold thresholdprob. A classification ac-
curacy threshold thresholdaccu

Output: a prediction model to predict for oncoming in-
stances.
Begin
clast = the last stable concept in C SEQ;
// Proactive
cprobable(s) = concept(s) whose probability given clast is
bigger than thresholdprob, according to C TRA;
IF a single cprobable exists

return cprobable;
IF multiple cprobable’s exist

// Reactive historical
FOREACH cprobable

calculate its accuracy on I WIN ;
IF the highest accuracy is bigger than thresholdaccu

return cprobable acquiring highest accuracy;
ELSE
// Reactive contemporary

return the concept learned from I WIN ;
IF no cprobable exists

FOREACH concept chistorical ∈ C DIS
calculate its accuracy on I WIN ;

IF the highest accuracy is bigger than thresholdaccu

return chistorical acquiring highest accuracy;
ELSE
// Reactive contemporary

return the concept learned from I WIN ;
End

resents a big family of algorithms that ensemble learners
for prediction. In this work, it is proved that a carefully
weighted classifier ensemble built on a set of data partitions
S1, S2, · · · , Sn is more accurate than a single classifier built
on S1 ∪ S2 ∪ Sn. To classify a coming instance, WCE di-
vides its previous data into sequential chunks of fixed size,
builds a classifier from each chunk, and composes a classi-
fier ensemble where each classifier is weighted proportional
to its classification accuracy on the chunk most recent to
the instance to be classified. WCE relates to RePro in the
sense that it uses a history of concepts (classifiers). How-
ever, the quality of this history is controlled by an arbitrary
chunk size k. There is no trigger detection nor conceptual
equivalence. As a result, sub-optimal prediction accuracy
can be witnessed in the following situations, which can be
more striking when concept shifts than when concept drifts.

1. In the most recent data chunk that is the gauge to
weigh classifiers in the ensemble, the majority of the
instances are from the previous concept instead of the
new one. As illustrated below, an instance of concept
Ψ is to be classified. Because the majority of instances
in chunk C1 are of concept Ω, classifiers suitable for Ω

(such as C1 and C2) will be ironically given a higher
priority than those suitable for Ψ (such as C4).

To be classified

… Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ψ Ψ Ψ Ψ Ψ Ψ …

Past

Chunk
… C1 C2 C3 C4 Learned classifier

Chunk Chunk Chunk

2. WCE needs to update data chunks for learning clas-
sifiers upon receiving new labeled instances. Since it
has to retain raw data, WCE can only hold a rela-
tively recent history in the context of streaming data
whose volume is otherwise prohibitive. If the previ-
ous concept had a long run and dominates the recent
history, consulting this history does not necessarily
help prediction. As illustrated below, when classify-
ing an instance of concept Ψ, most classifiers are still
indulged in the previous concept Ω. As a result, even
when the most recent data chunk favors instances of Ψ,
its correct weighing can be overshadowed by the large
number of improper classifiers (a single high-weight C4

against many low-weight C1, C2 and C3s).

To be classified

… Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ …

Past

Chunk Chunk Chunk
…

Chunk
C1 C2 C3 C4 Learned classifier

The concept-adapting very fast decision tree (CVFDT) [5]
is one of the most well-known systems that achieves effi-
cient classification in streaming data. It represents a pop-
ular methodology that continuously adapts the prediction
model to coming instances. It starts with a single leaf and
starts collecting labeled instances from a data stream. When
it knows enough data so that it knows with high confi-
dence which attribute is the best to partition the data with,
it turns the leaf into an internal node, splits on that at-
tribute and starts learning at the new leaves recursively.
CVFDT maintains a window of training instances and keeps
its learned tree up-to-date with this window by monitoring
the quality of its old decisions as instances move into and
out of the window. In particular, whenever a new instance
comes, three things take place: (1) it is added to the statis-
tics at all the nodes in the tree that it passes through, (2)
the last instance in the window is forgotten from every node
where it had previously had an effect, and (3) the validity of
all statistical tests are checked. CVFDT periodically scan
the internal nodes of the tree looking for those where the
chosen split attribute would no longer be selected. If this
happens, CVFDT detects a concept change. It then starts
growing an alternate tree in parallel which is rooted at the
newly-invalidated node. When the alternate tree is more
accurate on new data than the original one, the original is
replaced by the alternate and freed. CVFDT relates to Re-
Pro in the sense that it is trigger-sensitive. However, upon
detecting a concept change, CVFDT builds a new predic-
tion model from scratch. To some extent, it resembles the

contemporary-reactive modeling. In cases where history re-
peats itself, CVFDT can not take advantage of previous
experience and hence may be less efficient. Between the gap
where the old model is outdated and the new model has not
matured, the prediction accuracy may suffer.

In summary, the taxonomy (according to Section 2.3) of each
discussed approach is in Table 5.

Table 5: Taxonomy of methods
Method Trigger Learning History Action
RePro sensitive incremental historical proactive

/reactive
FLORA sensitive incremental historical reactive
WCE insensitive batch historical reactive
CVFDT sensitive incremental contemporary reactive

In the following section of experimental evaluations, empiri-
cal comparisons will be conducted among RePro, WCE and
CVFDT to verify the above understandings 4.

6. EXPERIMENTS
Experiments are conducted to evaluate the efficacy and effi-
ciency of RePro for prediction in streaming data. In particu-
lar, three hypotheses are to be verified. First, RePro incor-
porates the strength of reactive and proactive prediction,
and offers a rapport of high prediction accuracy and low
time consumption. Second, it is advisable to use conceptual
equivalence when building a concept history, which improves
prediction efficiency with little loss of prediction accuracy.
Third, RePro is able to outperform existing popular predic-
tion mechanisms for various types of concept changes.

6.1 Data
Many papers have been published dealing with streaming
data. For experimental data, authors sometimes choose par-
ticular real-world data sets that they have private access to.
A potential problem is that these private data sets are sel-
dom reusable by other researchers because of organization
policies. In their inspiring paper, Keogh and Kasetty have
advocated using benchmark data sets that allow public ac-
cess and allow fair comparisons among rival methods [7].
Kolter and Maloof agreed with this ideology by using only
benchmark data sets in their experiments [8]. This paper as
well employs three benchmark data sets covering all types
of concept changes that have been studied in Section 2.2:
concept drift, concept shift and sampling change. When ap-
plicable, the instances are randomly generated taking time
as the seed. Hence, the reappearance of concepts does not
necessarily mean the reappearance of instances, which bet-
ter simulates the real world.

6.1.1 Hyperplane
This data set can simulate the scenario of concept drift by
continuously moving a hyperplane [5, 8, 13, 14, 15]. A

4FLORA is not involved since it is not oriented to handling
streaming data’s large amount.

hyperplane in a d-dimensional space is denoted by equa-
tion:

Pd
i=1 wixi = w0, where each vector of variables

< x1, ..., xd > is a randomly generated instance and is uni-
formly distributed in the multidimensional space [0, 1]d. In-

stances satisfying
Pd

i=1 wixi ≥ w0 is labeled as positive,
and otherwise negative. The value of each coefficient wi is
continuously changed, as illustrated in Figure 1, so that the
hyperplane is gradually drifting in the space. Besides, the
value of w0 is always set as 1

2

Pd
i=1 wi so that roughly half

of the instances are positive, and the other half are negative.

-3

-2

-1

0

1

2

3

1 1201 2401 3601 4801 6001 7201 8401 9601 10801
Time Stamp

W
 i

 (

Figure 1: To simulate concept drift, a hyperplane
gradually moves by continuously changing each wi.
Particularly in this experiment, the changing range
is [-3,+3] and the changing rate is 0.005 per instance.

6.1.2 Stagger
This data set can simulate the scenario of concept
shift [8, 12, 14, 16]. Each instance consists of
three attribute values: color ∈ {green, blue, red},
shape ∈ {triangle, circle, rectangle}, and size
∈ {small, medium, large}. There are three alterna-
tive underlying concepts, A: if color = red∧ size = small,
class= positive; otherwise, class= negative; B: if color
= green∨ shape = circle, class= positive; otherwise,
class= negative; and C: if size = medium ∨ large,
class= positive; otherwise, class= negative. Particularly
in this experiment, 500 instances are randomly generated
according to each concept. Besides, one can simulate
different real-world situations by controlling the transition
among concepts from stochastic (say, B and C equally
probably coming after A) to deterministic (say, B always
coming after A). This is made possible by tuning the z
parameter of Zipfian distribution, which will be detailed in
Appendix A to avoid distraction from the main text.

6.1.3 Network intrusion
This is another public accessible streaming data set and can
simulate the scenario of sampling change [1]. This data set
was used for the 3rd International Knowledge Discovery and
Data Mining Tools Competition. It includes a wide variety
of intrusions simulated in a military network environment.
The task is to build a prediction model capable of distin-
guishing between normal connections (Class 1) and network
intrusions (Class 2,3,4,5). Different periods witness bursts
of different intrusion classes, as in Figure 2. Assume all data
are simultaneously available, a rule set can be learned that

well classify each type of intrusion5. Hence one may think
that there is only a single concept underlying the data. How-
ever, in the context of streaming data, a learner’s observa-
tion is limited since instances come one by one. For example,
the prediction model built during time [0, 786] will become
incapable right afterwards.

4

5

3

2

1

0 786 1132 1503 1884 2007 2012 Time Stamp

Class

Figure 2: Network intrusion is typical sampling
change. Class 1, 2... are not numeric but nominal.

6.2 Rival methods
As discussed in Section 5, two representative methods for
prediction in streaming data, the weighted classifier ensem-
ble (WCE) [15] and the concept-adapting very fast decision
tree (CVFDT) [5], are taken as straw men to empirically
evaluate the proposed system RePro.

The original implementation of WCE specifies a parameter
chunk size s. It does not update the ensemble until another
s instances have come and been labeled. Readers may be
curious about the performance of WCE under different fre-
quencies of updating the ensemble. Hence, a more dynamic
version, dynamic WCE (DWCE), is also implemented here.
DWCE specifies two parameters,a chunk size s and a buffer
size f (normally f < s). Instead of waiting for a full chunk,
once f new instances are labeled, DWCE repartitions data
into chunks of size s, and retrain and re-ensemble classifiers.
According to empirical evidence as detailed in Appendix B,
the smaller the chunk size, the lower error WCE gets. With
the same chunk size, DWCE with a smaller buffer size can
outperform WCE in accuracy. WCE and DWCE with pa-
rameter settings that have produced the lowest error rates
are taken to compare with RePro.

As for CVFDT, the software published by its authors is
used (http://www.cs.washington.edu/dm/vfml). There are
abundant parameters. Various parameter settings are tested
and the best results are taken to compare with RePro.

6.3 Results and analysis
The empirical results are presented and analyzed here.

6.3.1 RePro, combining strength
As theoretically analyzed in Section 4, the reactive and
proactive approaches each have their own pros and cons in
predicting for streaming data. RePro can be a coalition of

5For example, C4.5rules [10] can achieve a 100% classifica-
tion accuracy on the whole data set.

their strength. The empirical results have verified these un-
derstandings. Experiments are conducted on different Stag-
ger data streams which possess different degrees of random-
ness in concept transitions6. With the z value of Zipfian
distribution increasing, the concept transition changes from
stochastic to deterministic. For example, the transition ma-
trix when z = 0.5, z = 1 and z = 7 respectively is presented
in Table 6.

Table 6: Transition matrix with different Zipfian dis-
tributions in Stagger

z = 0.5 z = 1 z = 7
Concept A B C A B C A B C

A - 4 4 - 5 1 - 8 0
B 2 - 5 3 - 7 0 - 8
C 5 4 - 3 5 - 8 0 -

The corresponding prediction error rate and time of each
modeling method are depicted in Figure 3. Contemporary-
reactive (Reactive (C.)) modeling does not consult history
and its performance is inordinate. It is fast but its error rate
is always high. Historical-reactive (Reactive (H.)) modeling
exhaustively inspects each distinct historical concept. Its
prediction error is hence to some degree independent of the
z value and is always low. But its prediction time is in
general longer than proactive modeling. Proactive modeling
is more sensitive to the determinism of transitions among
concepts. Hence its error rates and time decrease as the
z value increases. RePro makes use of reactive modeling to
reduce mistakes while takes advantage of proactive modeling
to speed up prediction. Hence, it can achieve a rapport
between efficiency and efficacy. Please be noted that the
time reduction of the proactive approach compared with the
reactive approach is not huge in Stagger because Stagger
only has three concepts. More striking efficiency boost can
be expected in data that involve more alternative concepts.

Throughout the following paper, unless otherwise men-
tioned, the Stagger data set means Stagger with z = 1 of
the Zipfian distribution, simulating the most common case
in the real world where the transitions among concepts are
probabilistic, and neither deterministic nor totally random.

6.3.2 Conceptual equivalence, advisable strategy
As theoretically analyzed in Section 3, it is advisable to use
conceptual equivalence (CE) when building a concept his-
tory. It can shorten the candidate list in reactive modeling.
It also helps reveal associations among concepts and helps
learn transition matrix in proactive modeling. The empirical
evidence has supported these understandings.

RePro is tested in all three data sets, both with and without
conceptual equivalence. Presented in Figure 4, a brick bar
represents the ratio equal to error rate with CE divided by
error rate without CE. A solid bar represents the ratio equal

6One can not manipulate these degrees in the Hyperplane or
network intrusion data, for which no results are presented.

0.013

0.015

0.017

0.019

0.021

0.023

0.025

0.027

0.5 0.6 0.8 1 3 5 7 9

z value of Zipfian distribution

E
rr

o
r

ra
te

Reactive (C.) Reactive (H.) Proactive RePro

26

29

32

35

38

41

44

0.5 0.6 0.8 1 3 5 7 9

T
im

e
(s

ec
.)

Figure 3: RePro incorporates the efficacy of Reac-
tive and the efficiency of Proactive.

to prediction time without CE divided by prediction time
with CE. In every data set, the error increase (if any) caused
by using CE is marginal (ratio ≈ 1), whereas the efficiency
is largely boosted by using CE. The boost tends to become
more significant with the history growing.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Stagger Hyperplane Intrusion

R
at

io

Error rate Time

Figure 4: Conceptual equivalence boosts prediction
efficiency with little loss of accuracy.

These results are particularly attractive because the pro-
posed equivalence measure circumvents syntactically com-
paring instances or concepts in streaming data. Take Hy-
perplane as example. Two sequences of 500 instances7 are

7The sample size is chosen to avoid observation noise caused
by high classification variance.

produced by the same underlying concept. Their class distri-
butions are also the same: 50% positive and 50% negative
instances. However, since the xis are randomly produced
along time, instances between the two sequences seldom
overlap. Neither do the rule sets learned by C4.5rules from
each sequence repeat each other as in Table 7. Accordingly,
without conceptual equivalence, the reappearance of a con-
cept can often be treated as two different concepts, which is
not advisable. In contrast, the proposed conceptual equiva-
lence measure with a proper threshold (0.9 in this case) will
successfully identify that the two concepts are equivalent.

6.3.3 Comparing with rivals
As theoretically analyzed in Section 5, compared with ex-
isting representative approaches, RePro provides a more ef-
fective and efficient solution to predicting in data streams.
The empirical results have supported these expectations.

The prediction error and time of each method, RePro, WCE,
DWCE and CVFDT, on each data set, Stagger, Hyperplane
and Network Intrusion are illustrated in Figure 5. The in-
cremental reports are depicted in Figure 6, 7 and 8, detailing
their prediction performance along time.

Generally, RePro achieves lower error rates than all other
methods in all data sets except for DWCE in Hyperplane,
in which case RePro is far more efficient than DWCE. As a
matter of fact, DWCE’s time overhead is prohibitively high,
making it almost unfeasible for predicting in streaming data.

0

0.05

0.1

0.15

0.2

E
rr

o
r

ra
te

Stagger Hyperplane Intrusion

RePro WCE DWCE CVFDT

3647 8165 21302

0
200
400
600
800

1000
1200
1400
1600
1800
2000

T
im

e
(s

ec
.)

Stagger Hyperplane Intrusion

Figure 5: Performance comparison in prediction ef-
ficacy and efficiency.

Table 7: Directly comparing learned rules does not always offer a good indication to the concept reappearance.
Rules learned from the first sequence
1: Att1<=0.41, Att3<=0.39⇒Class=+ (100%)
3: Att1<=0.28, Att3<=0.53⇒Class=+ (100%)
5: Att1<=0.28, Att2>0.35, Att3<=0.66⇒Class=+ (100%)
14: Att1<=0.8, Att2>0.32, Att3<=0.24⇒Class=+ (100%)
17: Att1<=0.72, Att2>0.55, Att3<=0.51⇒Class=+ (100%)
18: Att2>0.55, Att3<=0.23⇒Class=+ (100%)
20: Att1<=0.93, Att2>0.68, Att3<=0.51⇒Class=+ (100%)
23: Att1<=0.53, Att1>0.43, Att2>0.76⇒Class=+ (100%)
25: Att1<=0.85, Att2>0.93⇒Class=+ (100%)
8: Att1<=0.43, Att2>0.41, Att3<=0.8⇒Class=+ (98.7%)
12: Att1<=0.73, Att2>0.19, Att3<=0.24⇒Class=+ (98.3%)
9: Att1<=0.27, Att2>0.41⇒Class=+ (98.3%)
7: Att1>0.28, Att2<=0.41, Att3>0.39⇒Class=- (100%)
11: Att1>0.43, Att2<=0.19⇒Class=- (100%)
13: Att1>0.73, Att2<=0.32⇒Class=- (100%)
15: Att1>0.8, Att2<=0.55⇒Class=- (100%)
16: Att1>0.43, Att2<=0.55, Att3>0.24⇒Class=- (100%)
19: Att1>0.72, Att2<=0.68, Att3>0.23⇒Class=- (100%)
21: Att1>0.93, Att3>0.23⇒Class=- (100%)
26: Att1>0.85, Att3>0.51⇒Class=- (100%)
4: Att2<=0.35, Att3>0.53⇒Class=- (98.1%)
6: Att2<=0.41, Att3>0.66⇒Class=- (97.9%)
24: Att1>0.53, Att2<=0.93, Att3>0.51⇒Class=- (97.7%)
10: Att1>0.27, Att3>0.8⇒Class=- (95%)

default:Class=-

Rules learned from a second sequence
1: Att1<=0.33, Att3<=0.47⇒Class=+ (100%)
2: Att1<=0.67, Att3<=0.09⇒Class=+ (100%)
4: Att1<=0.67, Att2>0.1, Att3<=0.21⇒Class=+ (100%)
6: Att1<=0.39, Att2>0.18, Att3<=0.47⇒Class=+ (100%)
8: Att1<=0.67, Att2>0.38, Att3<=0.47⇒Class=+ (100%)
13: Att1<=0.28, Att2>0.27, Att3<=0.73⇒Class=+ (100%)
17: Att2>0.55, Att3<=0.38⇒Class=+ (100%)
19: Att2>0.9, Att3<=0.53⇒Class=+ (100%)
22: Att1<=0.64, Att2>0.77, Att3<=0.78⇒Class=+ (100%)
23: Att1<=0.74, Att2>0.55, Att3<=0.56⇒Class=+ (100%)
20: Att1<=0.37, Att2>0.55⇒Class=+ (98.4%)
10: Att2>0.37, Att3<=0.15⇒Class=+ (97.5%)
3: Att1>0.33, Att2<=0.1, Att3>0.09⇒Class=- (100%)
7: Att1>0.39, Att2<=0.38, Att3>0.21⇒Class=- (100%)
9: Att1>0.67, Att2<=0.37⇒Class=- (100%)
11: Att1>0.67, Att2<=0.55, Att3>0.15⇒Class=- (100%)
14: Att2<=0.55, Att3>0.73⇒Class=- (100%)
15: Att1>0.28, Att2<=0.55, Att3>0.47⇒Class=- (100%)
18: Att1>0.86, Att2<=0.9, Att3>0.38⇒Class=- (100%)
25: Att1>0.64, Att3>0.56⇒Class=- (100%)
21: Att1>0.37, Att2<=0.77, Att3>0.53⇒Class=- (97.6%)
26: Att1>0.37, Att3>0.78⇒Class=- (97.5%)
12: Att2<=0.27, Att3>0.47⇒Class=- (97.5%)

default:Class=-

Specifically in Stagger (Figure 6), the concept shifts among
A, B and C every 500 instances as indicated by the grid lines.
At the beginning, RePro’s prediction error increases upon
each concept change and decreases later when a proper pre-
diction model is chosen. With time going by and the concept
history growing longer, RePro learns better the transitions
among concepts, adjusts faster to the concept change and
can achieve the lowest error rate. The second best method
is CVFDT. Compared with RePro, CVFDT always learns
a concept from scratch upon trigger detection no matter
whether this concept is a reappearance of an old one. This
rebuild needs time and incurs high classification variance
before the classifier becomes stable. Hence it has a slower
adaption to the concept change and incurs more prediction
errors than RePro. Although DWCE is as expected better
than WCE in terms of prediction accuracy, both are trigger-
insensitive which is inadvisable and produces highest error
rates in the context of concept shift.

In Hyperplane (Figure 7), the hyperplane (concept) drifts up
and down. This is the niche for WCE and DWCE because
the most recent data are always the most similar to the new
ones. Nonetheless, RePro offers surprisingly good prediction
accuracy that is competitive with WCE and DWCE. An
insight into RePro reveals that the conceptual equivalence
measures all concepts with wi ∈ [−3, 0] as equivalent and all
with wi ∈ (0, +3] as equivalent. Otherwise the hyperplanes
are too close to be worth differentiating. As a result, a
concept sequence of A, B, A, B, A, B, A, B, · · · is learned.
To classify an instance of a latter B, RePro employs a former
B. This is no less effective than classifying an instance by its
recent instances when the concept drifts. As for CVFDT, it
incurs the highest error rate. The reason is that the concept
of
Pd

i=1 wixi ≥ w0 is not an easy one to learn and CVFDT

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2001 4001 6001 8001 10001 12001

Time stamp

E
rr

o
r
ra

te

(

RePro

DWCE

CVFDT

WCE

Figure 6: Incremental report on Stagger (concept
shift)

does not consult the history. CVFDT needs to wait for a
long period of time and see many labeled instances before
it builds a new stable classifier from scratch, during which
period many prediction mistakes have been made. This is
compounded by the dilemma that the concept may soon
change again after this (relatively long) waiting period and
the newly-stabled classifier has to be discarded at that time8.

8These error rates may sometimes be higher than those re-
ported in the original work [5]. It is because the original
work used a much larger data size. There are many more
instances coming after the new classifier becomes stable and
hence can be classified correctly. This surmounts the mis-
classifications and the average error rate is hence lower.

0.14

0.19

0.24

0.29

0.34

0.39

1 2401 4801 7201 9601 12001 14401 16801 19201 21601

Time stamp

E
rr

o
r
ra

te

 (

RePro
DWCE

CVFDT

WCE

Figure 7: Incremental report on Hyperplane (con-
cept drift)

In Network Intrusion (Figure 8), sampling change takes
place. In this particular case, transitions among different
intrusion types are more random than deterministic. Hence,
the reactive component of RePro often takes over the predic-
tion task. Because an intrusion type sometimes re-appear
itself in the data stream, RePro is able to reuse historical
concepts and achieve the lowest prediction error. CVFDT
acquires competitive performance because the concept of
each intrusion type is much easier to learn even if starting
from scratch. Again WCE and DWCE witness suboptimal
results because there does not necessarily exist continuality
among intrusion types. Hence the recent concepts are not
always the most appropriate to use.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 4001 8001 12001160012000124001280013200136001400014400148001

Time stamp

E
rr

o
r
ra

te

(

RePro

DWCE

CVFDT

WCE

Figure 8: Incremental report on Network Intrusion
(sampling change)

In summary, RePro excels in scenarios of concept shift and
sampling change. It also offers competitive accuracy when
concept drifts. In all cases, RePro is very efficient.

7. CONCLUSION

Human beings live in a changing world whose history may
repeat itself. Hence, both foreseeing into the future and
retrospecting into the history are important. This paper
has proposed a novel mechanism to organize, into a concept
history, data that stream in the time space. As a result,
the problem of the intractable amount of streaming data is
solved since concepts are much more compact than raw data
while still grasp the essential information. Besides, patterns
among concept transitions can be learned from this history,
which helps foresee the future. This paper has also proposed
a novel system RePro to predict for the concept-changing
streaming data. Not only can RePro conduct a reactive
prediction: detecting the concept change and accordingly
modifying the prediction model for oncoming instances; but
also RePro can conduct a proactive prediction: foreseeing
the coming concept given the current concept. By making
good use of the concept history, and incorporating reactive
and proactive modeling, RePro is able to achieve both effec-
tive and efficient predictions in various scenarios of concept
change, including concept shift, concept drift and sampling
change. Although different types of changes have differ-
ent characteristics and require different optimal solutions,
a challenge in reality is that one seldom knows beforehand
what type of change is happening. Hence a mechanism like
RePro that performs well in general is very useful.

Both theoretical analysis and empirical evidence here have
presented a framework into this new direction of reactive-
proactive prediction. Some further work is named bellow.

• The transitions among concepts can be of higher or-
der. Currently, RePro involves first-order transitions,
that is, predicting the oncoming concept given the cur-
rent (single) concept. It is interesting to delve more
into past concept influences. For example, what if a
sequence of concepts up to now determines the next
concept? Intuitively, a longer sequence brings a more
accurate prediction. However, maintaining a higher-
order transition matrix is not necessarily a trivial job.
The accuracy-efficiency trade-off is worth exploring.

• This paper has not focused on parameter tuning for
RePro. Although it has already outperformed alterna-
tive methods without sophisticated parameter tuning,
RePro may further improve by automating its parame-
ter selection. For example, the window size, the stable
learning size or the threshold of conceptual equivalence
can possibly be adjusted according to different difficul-
ties of learning a concept along the time.

• Different durations of a concept’s existence in his-
tory may indicate different futures. For instance, a
three-year drought may bring more drastic social after-
math than a half-year drought. Hence, a concept re-
occurring with meaningfully different durations may
be treated as distinct concepts in the history, which
may have a great utility in reality. This investigation
will most likely involve domain knowledge.

In summary, its encouraging present and inspiring future
suggest that the proposed proactive-reactive methodology

is promising to make a better sense of this changing world
and to achieve a better prediction for data streams.

8. REFERENCES
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A

framework for clustering evolving data streams. In
Proceedings of the 29th International Conference on
Very Large Data Bases, pages 81–92, 2003.

[2] V. Ganti, J. Gehrke, and R. Ramakrishnan. Demon:
Mining and monitoring evolving data. IEEE
Transactions on Knowledge and Data Engineering,
13(1):50–63, 2001.

[3] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y.
Loh. Boat-optimistic decision tree construction. In
Proceedings ACM SIGMOD international conference
on Management of data, pages 169–180, 1999.

[4] M. B. Harries and K. Horn. Learning stable concepts
in a changing world. In PRICAI Workshops, pages
106–122, 1996.

[5] G. Hulten, L. Spencer, and P. Domingos. Mining
time-changing data streams. In Proceedings of the 7th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 97–106,
2001.

[6] R. Jain. The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling.
Wiley-Interscience, NY, April 1991. Winner of ‘1991
Best Advanced How-To Book, Systems’ award from
the Computer Press Association.

[7] E. Keogh and S. Kasetty. On the need for time series
data mining benchmarks: a survey and empirical
demonstration. In Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 102–111, 2002.

[8] J. Z. Kolter and M. A. Maloof. Dynamic weighted
majority: A new ensemble method for tracking
concept drift. In Proceedings of the 3rd International
IEEE Conference on Data Mining, pages 123–130,
2003.

[9] C. Lanquillon and I. Renz. Adaptive information
filtering: Detecting changes in text streams. In
Proceedings of the 8th International Conference on
Information and Knowledge Management, pages
538–544, 1999.

[10] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, 1993.

[11] M. Salganicoff. Tolerating concept and sampling shift
in lazy learning using prediction error context
switching. Artificial Intelligence Review,
11(1-5):133–155, February 1997.

[12] K. O. Stanley. Learning concept drift with a
committee of decision trees, 2003. Technical Report
AI-03-302, Department of Computer Sciences,
University of Texas at Austin.

[13] W. N. Street and Y. Kim. A streaming ensemble
algorithm (sea) for large-scale classification. In
Proceedings of the 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 377–382, 2001.

[14] A. Tsymbal. The problem of concept drift: definitions
and related work, 2004. Technical Report
TCD-CS-2004-15, Computer Science Department,
Trinity College Dublin.

[15] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining
concept-drifting data streams using ensemble
classifiers. In Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 226–235, 2003.

[16] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Machine Learning,
23(1):69–101, 1996.

APPENDIX
A. SIMULATING CONCEPT TRANSITION

IN STAGGER
With the help of Zipfian distribution [6], the three concepts
of Stagger can compose different sequences, simulating dif-
ferent scenarios among concept transitions (from stochastic
to deterministic). This helps get a complete picture of a
prediction method’s performance as if in the diversity of the
real world. Two steps compose this procedure.

Zipfian distribution is commonly observed in many phenom-
ena [6], where the frequency of occurrence of the nth ranked
item is Zipf(n) = 1

nz and z(≥ 0) is a parameter controlling
the skewness of the distribution. The probability of occur-
rence of items starts high and tapers off. The bigger z is,
the fewer items that occur very often.

A.1 Producing transition matrix
To produce a transition matrix of a concept, say A, firstly
the remaining concepts B and C are randomly ordered,
the first one acquiring the highest rank as 1. For exam-
ple, rank(C)=1 and rank(B)=2. Secondly, each concept’s
Zipfian value is calculated using its rank. For example,
Zipf(C) = 1

1z and Zipf(B) = 1
2z . Thirdly, the Zipfian value

of each concept is normalized so that they sum to 1. For ex-
ample C is associated with 0.75 and B with 0.25. These
values 0.75 and 0.25 correspond to the probabilities of A
transiting to C and B respectively in the transition matrix.
Hence, the smaller z is, the smaller the difference among
the probabilities, and the more stochastic the concept tran-
sition becomes. Hence one can simulate different scenarios
by changing z.

Once the transition matrix is built, one can accordingly pro-
duce a sequence of concepts.

A.2 Producing concept sequence
First, randomly pick up a concept, say A, to begin the se-
quence with. Then, produce a random number that is uni-
formly distributed in [0,1). If rand ∈ [0, 0.75), the next
concept is C. If rand ∈ [0.75, 1), the next concept is B. As
a result, the probability of C coming after A is 75% while B
after A is 25%, which consists with the transition matrix.

Once the second concept is selected, the same selection pro-
cedure is applied to it to produce the third concept. The
procedure goes on and on, building a sequence of concepts.

A number of instances can be produced for each concept in
the sequence, composing a data stream.

B. WCE AND DWCE
Empirical observations here supplement the discussion
about WCE and DWCE in Section 6.2.

As illustrated in Figure 9 for WCE, the smaller the chunk
size9, the lower the prediction error. One possible reason is
that the smaller the chunk size, the less likely that a chunk
involves instances from different concepts, and the less inor-
dinate the ensemble classifiers may be.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

100 200 300 400 500

Chunk size

E
rr

o
r

ra
te

Stagger Hyperplane Intrusion

Figure 9: For WCE, a smaller chunk size leads to a
lower prediction error.

As illustrated in Figure 10, compared with WCE of the same
chunk size, for example size=100, DWCE achieves lower er-
ror rates. The smaller the buffer size, the more frequently
DWCE adapts the ensemble to new instances, hence the
lower the error rate whereas the higher the time overhead.
This trade-off may not be desirable for streaming data since
the loss of efficiency tends to overwhelm the gain of efficacy.

9Of course, the chunk size should still be sufficient to avoid
high classification variance.

0

0.05

0.1

0.15

0.2

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Buffer size (percentage of chunk size 100)

E
rr

o
r

ra
te

Stagger Hyperplane Intrusion

0

5000

10000

15000

20000

25000

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
T

im
e

(s
ec

.)

Figure 10: For DWCE, a smaller buffer size de-
creases prediction error but shoots up prediction
time.

