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I. IntroductionMotion is a prominent source of temporal variations in image sequences. In order to model andcompute motion, an understanding is needed as to how images (and therefore image motion) areformed. Motion in image sequences acquired by a video camera is induced by movements of objectsin a 3-D scene and by camera motion. Thus, camera parameters, such as its 3-D motion (rotation,translation) or focal length, play an important role in image motion modeling. If these parameters areknown precisely, only object motion needs to be recovered. However, this scenario is rather rare andboth object and camera motion usually need to be computed. The 3-D motion of objects and camerainduces 2-D motion on the image plane via a suitable projection system. It is this 2-D motion, alsocalled apparent motion or optical ow1, that needs to be recovered from intensity and color informationof a video sequence. 2-D motion �nds diverse applications in video processing and compression as wellas in computer vision, primarily because the temporal correlation of intensities (and color) in an imagesequence is very high in the direction of motion.In video compression, the knowledge of motion helps remove temporal data redundancy and thereforeattain high compression ratios; motion estimation became a fundamental component of such standardsas H.261, H.263 and the MPEG family [12], [49], [45], [46]. Although motion models used by the olderstandards are very simple (one 2-D vector per block), the new MPEG-4 standard2 o�ers an alterna-tive (region-based) model permitting increased e�ciency and exibility [75], [47]. In video processing,motion information is used for standards conversion (motion-compensated 3-D sampling structure con-version), noise suppression (motion-compensated �ltering) or deblurring (motion-compensated restora-1Although in computer vision literature a distinction is often made between 2-D motion and optical ow [42], here we will usethe term 2-D motion to denote either apparent motion or optical ow. This is consistent with video compression terminologywhere the description of variations in an image is of direct interest regardless of its compliance with the physical cause of thatvariation.2Detailed information about MPEG standards can be obtained from MPEG home page at www.cselt.it/mpeg.



2 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)tion) [86]. In computer vision, 2-D motion usually serves as an intermediary in the recovery of cameramotion or scene structure [42].To compute motion trajectories, three basic elements need to be speci�ed. First, underlying modelsmust be selected, e.g., motion model (representation, region of support), model relating motion andimage data (observation model), motion boundary model, occlusion model. The choice of models andtheir parameters is application-dependent; for example the occlusion model may not be relevant fora block-based compression whereas it would be essential in image analysis. Secondly, an estimationcriterion must be identi�ed. Such a criterion may take di�erent forms, such as a simple mean-squarederror over a block, a robust criterion (e.g., with saturation for large errors), or a complex rate-distortionor Bayesian criterion involving multiple terms. Thirdly, a search strategy must be implemented to de-termine the motion parameters that optimize the selected criterion. In general, by a suitable selectionof search strategy, one can trade, to a large extent, optimization performance against computationalload. The strategy may be deterministic or stochastic in nature. Exhaustive and simpli�ed searchmethods as well as deterministic relaxation belong to the most popular schemes and include, as specialcases, block matching and gradient-based methods. Among the best known deterministic relaxationmethods are iterated conditional modes and highest con�dence �rst. Mean �eld techniques stemmingfrom statistical mechanics are important deterministic optimization techniques based on the approx-imation of a partition function. Stochastic relaxation techniques, including simulated annealing, aredominant among the stochastic approaches. An important element of the optimization strategy is itshierarchical implementation in order to avoid the violation of some underlying assumptions (e.g., localintensity linearity) and/or reduce the computational complexity of the algorithm.II. ModelsA. Motion RepresentationConsider a point on an object moving in 3-D space. Let its position at time t be X = X(t) =(X(t); Y (t); Z(t))T 2 IR3 expressed in camera coordinates. (X(t); t) de�nes a curve in 3-D space overtime which we refer to as the world motion trajectory. For any two time instants t and � , the worldmotion trajectory identi�es a 3-D displacement in positionDt;� (X) =X(�)�X(t):For a review of 3-D motion and its relationship to the apparent 2-D motion of interest here, the readeris referred to [1], [63].An image acquisition system projects the 3-D world onto a 2-D image plane with image coordinatesx = (x; y)T 2 �, where � is a sampling grid, usually an orthogonal lattice. Upon this projection,world motion trajectories result in (2-D) motion trajectories (x(t); t). We adopt the de�nition of a2-D motion trajectory proposed in [24]: a trajectory is de�ned only in the time interval in which theassociated point is visible in the image. Thus, assuming non-transparent objects, each spatio-temporalposition (x; t) belongs to a motion trajectory of one visible point only. As depicted in Fig. 1, the 2-Ddisplacement can be expressed, similarly to the 3-D displacement, as followsdt;� (x) = x(�)� x(t): (1)
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Fig. 1. Motion trajectory x(t) and associated displacement vector dt;� (x).In general, a motion �eld is a vector-valued function of continuous spatial coordinates. In practicalapplications, this function is often described in a parametric form using a �nite, usually small, numberof parameters.Since 2-D motion results from the projection of moving 3-D objects onto the image plane, a modelfor 2-D motion �elds can be derived from models describing 3-D motion, 3-D surface function andcamera projection geometry. If these models are parametric, the resulting 2-D motion model will beparametric as well. As a simple example, consider a 3-D planar patch undergoing 3-D a�ne motionunder orthographic projection. The 3-D a�ne motion can be written as followsD(X) = (R� I)X + s: (2)In general, the 3�3 matrix R = (rij) has 9 degrees of freedom, and the translational motion vectors = (s1; s2; s3)T has another 3 degrees of freedom. Equation (2) includes rigid motion as a special case.Then, R is a rotation matrix, i.e., its columns (rows) are orthonormal, thus allowing only 3 degrees offreedom corresponding to the three rotation axes.Let the planar patch be speci�ed by three parameters �, �, , as follows,�X + �Y + Z = 1: (3)The camera model provides two additional scalar equations mapping 3-D world coordinates onto 2-Dcoordinates of the image plane. For an orthographic projection, the following relationship holds:x = cX; y = cY ; c 2 IR: (4)Substituting equations for the camera model (4) and for the 3-D surface (3) into (2), one readilyobtains a model for 2-D motion which, for the given example, becomes the 2-D a�ne modeld(x) = (A� I)x+ b;



4 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)with A =  r11 � � r13 r12 � � r13r21 � � r23 r22 � � r23 ! ; b =  c r13 + cs1c r23 + cs2 ! :This model has been extensively used in the literature for 2-D motion representation [4], [61]. Clearly,a 2-D motion model does not uniquely correspond to one 3-D model; identical 2-D motion models mayresult from di�erent assumptions about 3-D motion, surface and camera projection models.Table I summarizes some parametric models for 2-D motion and provides possible underlying as-sumptions. The �rst four models are illustrated in Fig. 2; for each model, an example of motion vector�eld is shown along with the corresponding motion-compensated square. The simplest (translational)model for 2-D motion is used in the existing coding standards [12], [49], [45], [46]. It accounts for a rigidtranslational 3-D motion under orthographic projection resulting in a spatially-constant 2-D motion.Clearly, motion compensation with such �elds preserves any 2-D shape. With a�ne motion, parallellines remain parallel in the motion-compensated image. The 3-D a�ne motion of planar patches underperspective camera model leads to an 8-parameter model which is linear in projective coordinates [90].It can be easily seen that this model includes the 2-D a�ne model as a special case; lines remain linesafter motion compensation. A quadratic model was proposed in [22] to describe 3-D a�ne motion ofparabolic surfaces under orthographic projection. It includes as special cases the 2-D a�ne model anda close Taylor approximation of the 8-parameter model. As can be seen in Fig. 2, motion compensationwith this model does not preserve lines.All models discussed so far are parametric and involve a �xed number of parameters. Such modelscan be used e�ciently for the estimation, interpretation and transmission of certain classes of motion�elds. These models, however, are not capable of describing arbitrary 2-D motion �elds.A di�erent description of motion �elds can be provided by vector �elds represented on a rectangularlattice or a mesh. In this way the number of parameters varies with the number of considered pixels.O�-lattice vectors of the motion �eld can be approximated by suitable interpolation of the sampled �eld[66]. In general, the interpolation kernel H (Table I) has a small support, such that a motion vector isusually interpolated from at most four samples. The frequently used bilinear interpolation kernel is atensor product of horizontal and vertical 1-D triangular kernels. Recently, an interesting generalizationof this model has been presented [65], where H is a complete multiresolution basis implemented usinga perfect-reconstruction non-separable subband scheme. When the motion sampling lattice involvesat least one site per image pixel, the motion �elds are called dense. Obviously dense motion �eldsprovide a fairly general description of motion, but estimation, interpretation and transmission thereofinvolve large amounts of data.Another frequently-used model employs a triangular mesh; motion vectors of a dense �eld are inter-polated from three motion vectors at the corners of each triangle. When the motion is sampled on apredetermined mesh, the interpolation will be, in general, imprecise at discontinuities in the motion�eld. Therefore, adaptive meshes have been proposed [92], [86] that select the sampling points in sucha way that the interpolated area of the motion �eld contains pixels from one moving object only.Typically, those points lie on intensity edges of the image.As with to image intensity patterns, motion �elds are highly correlated spatially. Therefore, it



TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999) 5TABLE IMotion models2-D model 3-D modelNumber ofparameters Motion �eld 3-D surfacefunction 3-Dmotion CameramodelTranslational 2 d(x) = (a1; b1)T arbitrary rigid 3-Dtranslation orthographicA�ne 6 d(x) =  a1 a2b1 b2 !x+ a3b3 ! planar 3-D a�ne orthographicProjective linear 8 d(x) =  a1+a2x+a3y1+a4x+b4yb1+b2x+b3y1+a4x+b4y !� x planar 3-D a�ne perspectiveQuadratic 12 d(x)= a1+a2x+a3y+a6x2+a5xy+a4y2b1+b2x+b3y+b6x2+b5xy+b4y2! parabolic 3-D a�ne orthographicSampled 2 per �2pixels d(x) =Xi;j  aijbij !H(x�� � i; y �� � j) 'smooth' as speci�edby interpolationkernel H arbitrary
Polynomial 2jKjmotion-adaptive d(x) = X(i;j)2K aijbij !xiyj 'smooth' as speci�edby K arbitrary

can be expected that such �elds can be e�ciently represented using linear transforms followed byzeroing of high frequency components. For example, the polynomial transform given in the last rowof Table I includes most of the parametric models as special cases for relatively few coe�cients. ForK = f(0; 0); (0; 1); (1; 0)g, the polynomial description reduces to a 2-D a�ne description, while thequadratic model is obtained forK = f(0; 0); (0; 1); (1; 0); (0; 2); (1; 1); (2; 0)g. The number of coe�cientscan be adapted to the actual complexity of the scene, e.g., such that the error of motion-compensatedprediction is su�ciently small [82], [51]. Clearly, for a su�ciently large set of parameters the polynomialdescription allows representation of arbitrary motion �elds.By its de�nition, the displacement (1) can only capture the �rst-order dynamics of a moving point(constant-velocity motion). However, it has been shown that second-order temporal models capturingboth velocity and acceleration can substantially improve the performance of motion-compensatedpredictive coding [29] and standards conversion [71]. To capture these second-order e�ects, eachmotion trajectory must be modeled explicitly. For example, it may be represented by two vectors:



6 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)

(a) (b) (c) (d)Fig. 2. Examples of parametric motion vector �elds (sampled) and corresponding motion-compensated predictions ofa centered square: (a) translational; (b) a�ne; (c) projective linear; and (d) quadratic. See Table I for modeldescriptions.instantaneous velocity _x and acceleration �x [13]:x(�) � x(t) + _x(t)(� � t) + �x(t)2 (� � t)2: (5)Such a temporal modeling can be applied in addition to the spatial modeling described thus farin Table I. Although representation of motion trajectory �elds rather than displacement �elds isadvantageous in certain applications, larger amounts of motion information must be processed and/ortransmitted [13].In the remainder of the paper, v(x) = _x(t) = (ut(x); vt(x))T will denote velocity of an image pointat (x; t); ut and vt are horizontal and vertical velocity components, respectively. We shall omit thesubscript or the argument whenever it is clear from the context.B. Region of support for motion representationAs discussed in the preceding section, 2-D motion in an image can be described spatially by amodel from Table I. Models from this table di�er in terms of the number of parameters and also interms of the functional dependence of d(x) on those parameters. In general, the higher the number ofparameters, and thus the higher the function order, the more precise the description of the motion �eld.At the same time, however, an excessive number of parameters may result in motion \overmodeling"(excessive number of degrees of freedom; important in video processing and computer vision) andincreased coding cost (important in video coding). In this case, the motion estimation accuracy mayactually decrease. This is due to ill-posedness of motion estimation; for example no unique solution



TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999) 7may exist. The precision of the motion �eld also depends on the region of support R � � for themodel, i.e., the set of image points to which the model applies. Since the true motion �eld ~d is rarelypurely translational or divergent or exhibits other regularity, the smaller the region of support R, thebetter the approximation. The quality of approximation for a given motion �eld d can be measured,for example, by the mean-squared errorE2d = 1jRjXx2R k~d(x)� d(x)k2: (6)Thus, for a given number of parameters the precision of a motion �eld can be adjusted by choosing asuitable region of support R. Unfortunately, the error E2d can be measured only if ~d is known, i.e., forcomputer-generated (synthetic) images. In the following sections, we discuss di�erent support regionsproposed in the literature, both with �xed and variable size.

(a) (b)

(c) (d)Fig. 3. Various regions of support for a motion model: (a) global; (b) dense; (c) block-based; and (d) region-based. Theimplicit underlying scene is of \head-and-shoulders" type as captured by the region-based model in (d).B.1 Global motionThe most constrained yet simplest case is global motion, i.e., motion such that all image points aredisplaced in a uniform manner. The region of support for such model consists of the whole image(Fig. 3.a) R = �; (7)where it is assumed that the sampling grid � is an orthogonal lattice: � = f1; : : : ; Kg �f1; : : : ; Lg,with K;L being the numbers of columns and lines in the image. The global motion is usually camera-



8 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)induced, as is the case of a camera pan or zoom. It is the simplest case since motion of all image pointscan be described by a small set of parameters (e.g., a�ne; Table I) related to camera parameters [93],[69], [30]. At the same time, this is the most constrained case, since very few parameters describe themotion of all image points; only simple motion �elds can be represented in this manner. The globalmotion model has been extensively used in computer vision, but has only recently found applicationsin video coding. It has recently been adopted in phase II of the MPEG-4 standard [48], [79], [60];in sequences with clear camera pan/zoom, substantial rate savings have been achieved compared tostandard methods based solely on local block motion estimation.B.2 Motion of individual image pointsAt the other extreme of the spectrum, region of support may consist of a single image point (Fig. 3.b)[43], [68], [2], [59]: Rx = fxg; x 2 �:Then, motion of each image point can be described by a set of parameters such as displacementin the case of linear motion, or velocity/acceleration in the case of quadratic trajectories (equation(5)). This pixel-based or dense motion representation is the least constrained one since at least 2parameters describe movement of each image point, and thus at least 2�K�L parameters are used torepresent motion in an image. Consequently, a very large number of motion �elds can be representedby all possible combinations of parameter values. At the same time, the method is the most complexdue to the number of parameters involved. Although from a purely computational point of view,it may not be the most demanding technique, pixel-based motion estimation is de�nitely one of themost demanding approaches. Dense motion representation has found applications in computer vision,e.g., for the recovery of 3-D structure, and in video processing (standards conversion, deblurring,noise reduction). Its direct use in video compression has only shown reasonable success in the formof pel-recursive motion estimation. In this approach, �rst a motion vector for each image point iscausally predicted from previously estimated and transmitted motion vectors. Then, an update to thisprediction is computed while minimizing the motion-compensated prediction error [73]. Clearly, thereis no physical reason for causal spatial prediction of motion or for the choice of any particular directionin this prediction. However, noncausal estimation and transmission of pixel-based motion �elds hasnot proved successful to date; the potential gains from a more precise motion description are usuallyoutweighted by the need to transmit thousands of motion parameters. Current work continues in thedirection of parametric approximations of dense motion such as those given in Table I.B.3 Motion of regionsBetween the two extremes above, one can �nd methods that apply motion models from Table I toimage regions. The motivation is to insure a more accurate modeling (smaller approximation error(6)) of motion �elds than in the global motion case and a reduced number of parameters in comparisonwith the dense motion. The simplest image partitioning is into nonoverlapping rectangular regions



TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999) 9Rmn of �xed size BK�BL, referred to as blocks, whose union covers the whole image (Fig. 3.c):Rmn = fx = (i; j)T 2 � : (m� 1)BK < i � mBK ; (n� 1)BL < j � nBLg;m = 1; : : : ; K=BK; n = 1; : : : ; L=BL:Block partitioning with simple translational motion is used today in all digital video compressionstandards, i.e., H.261, H.263, MPEG-1 and MPEG-2 [12], [49], [45], [46]. Although very successful inhardware implementations due to its simplicity, this model is very imprecise if used on images withgeneral motion, e.g., rotation, zoom, deformation. To increase the number of degrees of freedom,a�ne motion models have been proposed in conjunction with the same rectangular partitioning [4],[61]. Such models permit a reduction of the approximation error (6) within each rectangular blockand at the same time assure a better match of intensities along motion trajectories.A�ne motion of rectangular blocks of image points is hardly a precise model for arbitrary motion inimage sequences; objects in natural 3-D scenes rarely result in rectangular projections onto the imageplane. Thus, a more general image partitioning is necessary. The reasoning is that for objects withsu�ciently smooth 3-D surface and 3-D motion, the induced 2-D motion �elds in the image plane canbe suitably described by models from Table I if applied to the area of object projection. A naturalimage partitioning can be provided by the image acquisition process itself. Since typically several 3-Dobjects move in front of a camera, it is straightforward to group all pixels arising from one surface of a3-D object into one region. Not all 3-D objects, however, move independently (e.g., car and its driver).Therefore, it is more interesting to �nd image partitioning such that all image points in a region arisefrom objects that undergo one motion. Then, motion parameters can be estimated from all the imagepoints in a moving region. In both cases, however, a region is described as follows (Fig. 3.d)Rn = �n � �;where all arbitrarily-shaped regions �n are non-overlapping and their union covers the complete image.To �nd a motion-induced partition, certain knowledge about motion is necessary, and vice versato �nd motion parameters a partition is needed. The problem is often solved by �rst applying asegmentation followed by motion estimation [94] or by �rst estimating motion parameters and followingwith segmentation [25]. Since the two processes are not independent, a more appropriate solution isto carry out joint motion estimation and motion-based image segmentation. This can be done inan interleaved fashion, where estimation and segmentation steps alternate [22] or by a simultaneousestimation of segmentation labels and motion parameters at each location [84], [15]. Although theproblem is quite di�cult, some interesting results have been achieved to date.It is important to realize that in the case of arbitrarily-shaped regions, motion representation foreach region consists of a set of motion parameters and of a region boundary description. Comparedto models based on rectangular blocks (block-based models), a region-based model has a capacity toperform better image matching at the cost of a more complex representation. This trade-o� is well-known in video compression, since both intensity/color residual (image matching error) and motioninformation must be transmitted over a limited-capacity channel. The di�culty lies in �nding acompromise between a precise, but rate-costly, motion representation that gives a small intensity/color



10 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)residual and a coarse motion information that results in an increased residual [85], [35], [25]. This isa very active area of research today. The resulting region-based image description is similar to thedescription language of computer graphics, thus somewhat merging worlds that for a long time havebeen considered unrelated. This enriches both worlds; for example, objects from natural imagery canbe added to computer graphics, while functionalities, so far reserved for computer graphics, can beapplied to natural imagery (object-based image manipulation).

(a) (b)Fig. 4. Typical videoconferencing images at QCIF (176�144) resolution: (a) \Carphone" (frame 171), and (b) \MissAmerica" (frame 6).In general, image partitioning based on �xed rectangular blocks under translations is outperformed,in terms of intensity/color residual, by region-based a�ne motion models [20]. While the formeris simple to implement in hardware, the latter requires fairly sophisticated image analysis. As acompromise, partitioning methods based on rectangular variable-size blocks have been investigated[14], [70], [26]. In such an approach, block size is locally reduced wherever a smaller block sizeimproves motion compensation, i.e., reduces the intensity/color residual. Certainly, this increases thecomplexity of image partition, but for simple tree-based schemes, such as quadtree block splitting, theoverhead is small [70]. Motion estimation with variable-size blocks has been shown to give substantialgains in practice, and is presently used in the H.263 video compression standard [49]; 16�16 blocksare allowed to be individually split into four 8�8 blocks.Motion compensation using arbitrarily-shaped regions has been adopted in the MPEG-4 standard[47]. Although only local translational motion of (partial) blocks is exploited, rather than higher-orderparametric motion of complete regions, the approach results in substantial compression gains; visualquality of images is signi�cantly improved around object boundaries (reduced \mosquito e�ects").To demonstrate the impact of various regions of support on the motion estimates, Fig. 5 shows resultsfor block-, pixel- and region-based motion models computed for a typical videoconferencing material(Fig. 4). Note the lack of detail due to the low resolution (16�16 blocks) of the block-based approach,but approximately correct motion of objects. The pixel-based model results in a smooth estimatewith more spatial detail but at the cost of reduced precision, especially within the window of the car.As can be seen, the region-based model assures both accuracy and detail; although the associatedsegmentation does not correspond exactly to the objects as perceived by humans, it nevertheless
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(a) block-based motion (b) pixel-based motion

(c) region-based motion (d) regions for (c)Fig. 5. Typical motion �elds computed from sequence \Carphone" (Fig. 4.a) for di�erent regions of support: (a) block-based (16�16 blocks); (b) pixel-based (globally-smooth as in (17)); and (c,d) region-based with a�ne motion model(Table I). For details of the region-based algorithm, see [20].closely delineates object boundaries. The impact of various regions of support on motion-compensatedprediction and prediction error is shown in Fig. 6. Note the blocking artifacts for the block-basedmotion model and the associated 4dB penalty in the peak prediction error as compared with the pixel-based model. The 0.5dB penalty of the region-based model is small enough to make the region- andpixel-based prediction images virtually identical. This may be important in video processing, since theregion-based model would allow object manipulation without signi�cant quality penalty (assumingthat semantically-meaningful segmentations are available). The region-based model shows a 3.6dBprediction gain compared to the block motion, however this is o�set to a large extent by the increasedamount of data needed for model description (motion parameters and shape of regions). Presently,various approaches to joint motion segmentation and estimation are being developed worldwide. Thisseems to be a very promising framework both for video compression and video processing.B.4 Hierarchical motion modelsThe practical concept of a variable-size block for motion models [14], [70], [26] can be regarded as aspecial case of hierarchical representation that has been often exploited in computer vision applications[11], [28], [76]. In such a representation, the estimate (in this case motion) can be modeled at multiplelevels of detail, making it possible to extract coarse characteristics �rst and subsequently to add �ner
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(a) block-based prediction (b) block-based prediction error (31.8dB)

(c) pixel-based prediction (d) pixel-based prediction error (35.9dB)

(e) region-based prediction (f) region-based prediction error (35.4dB)Fig. 6. Typical motion-compensated prediction and prediction error (� 2) for di�erent regions of support (Fig. 5). Thenumerical measure shown is a peak prediction gain expressed in dB.details [37].In Fig. 7 we show a multiresolution representation of a motion �eld in dual form. On the left, amotion �eld is represented at multiple resolutions and multiple scales at the same time. Note that wefollow the de�nitions of resolution and scale proposed in [91]. On the right, is shown an equivalentrepresentation that can be obtained from the left representation by upsampling and interpolation.This representation is at multiple resolutions but at a single scale.The multiresolution/multiscale representation from Fig. 7 (left) captures coarse motion propertiesat the higher levels of the pyramid while allowing for progressively more detail when descending inthe pyramid. Due to scale change, motion vectors located 2 pixels apart at the lowest resolution are8 pixels apart at full resolution for a 3-level pyramid with dyadic subsampling. Consequently, for
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Fig. 7. Dual representation of a motion �eld at multiple resolutions: at multiple scales (left) and at a single scale(right). The representations are equivalent (identical information) since one can be obtained from the other by�ltering/downsampling or upsampling/interpolation operators [91].models imposing spatial interaction between neighboring motion vectors (e.g., smoothness), longer-range interactions are enforced at lower resolution (higher scale) levels while shorter-range ones arerecovered at higher resolution (lower scale) levels of the pyramid.As mentioned above, the two representations in Fig. 7 are equivalent. The multiscale representation(left) is used in practical estimation algorithms due to its computational e�ciency, whereas the single-scale representation (right) is more transparent for certain theoretical considerations, for example, toassure consistency of motion models between di�erent resolutions [40]. This will be further discussedin Section IV-F.The single-scale representation can be also thought of as a motion model with adjustable region ofsupport. Early example of such a model, where motion parameters are con�ned to large blocks �rstand then �ne-tuned using smaller blocks, was shown in [3]. This allows early capture of macroscopicmotion properties and their subsequent re�nement. This approach can be taken further by allowinga spatially nonuniform adjustment of the size of the region of support as is done, for example, inquadtree splitting [70], [26].C. Interdependence of motion and image dataAt the very essence of every motion estimation algorithm lie assumptions about the relationshipbetween motion parameters and image intensity. Let gt(x) be the image intensity at position (x; t).The usual, and reasonable, assumption made is that image intensity remains constant along the motiontrajectory. This assumption implies, among others, that any intensity change is due to motion, thatscene illumination is constant, and that object surfaces are opaque (Lambertian surfaces). Althoughthese constraints are almost never satis�ed exactly, the constant-intensity assumption approximatelydescribes the dominant properties of natural image sequences, and motion estimation methods basedon it usually work well.Let s be a variable along a motion trajectory. Then, the constant-intensity assumption translates



14 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)into the following constraint equation dgds = 0: (8)By applying the chain rule, the above equation can be written as the well-known motion constraintequation [43] @g@xu+ @g@yv + @g@t = (rg)Tv + @g@t = 0; (9)where r = (@=@x ; @=@y)T denotes the spatial gradient and v = (u ; v)T is the velocity. The aboveconstraint equation, whether in the above continuous form or as a discrete approximation, has servedrecently as the basis for many algorithms estimating linear motion [58], [8], [39]. The same assumptionhas been used to estimate nonlinear motion trajectories based on multiple images; in [17] the constraint(8) was expressed in the frequency domain, while in [13] it was applied directly to intensities. Note thatequation (9) applied at one position (x; t) is underconstrained, since it only determines the componentof velocity v in the direction of image gradient. Due to this so-called aperture problem, additionalconstraints must be used to uniquely solve for v [43], [41].Since color is a very important attribute of images, a possible extension of the above model would beto include chromatic image components into the constraint equation. The motivation is that in areasof uniform intensity but substantial color detail, the inclusion of a color-based constraint could provebene�cial. Let g = (g1; :::; gK)T be a vector of attributes associated with an image; for example, itsluminance and two chrominances as de�ned in the ITU-R 601 recommendation. Then, the constant-intensity and constant-color constraints can be written jointly in a vector form as follows:@g@xu+ @g@y v + @g@t = ~0: (10)In general, estimates obtained using this constraint are more reliable than those calculated usingequation (9) due to the additional information exploited. However, although equation (10) is a vectorequation, di�erent components of g may be closely related and therefore additional constraints maybe needed. We will return to these constraints in the next section.The assumption about intensity constancy is usually only approximately satis�ed, but it is par-ticularly violated when scene illumination changes. As an alternative, a constraint based on spatialgradient's constancy in the direction of motion has been proposed [88], [5]drgds = ~0: (11)This equation can be rewritten as follows:" @2g=@x2 @2g=@x@y@2g=@x@y @2g=@y2 # v + @(rg)@t = ~0: (12)It relaxes the constant-intensity assumption but requires that the amount of dilation and rotation inthe image be negligible, a limitation often satis�ed in practice3. Note that although both (11) and3It is worthwhile noting that even when the constant-intensity assumption is valid, the intensity gradient changes its amplitudeunder dilation and its direction under rotation.



TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999) 15(12) are linear vector equations with 2 unknowns (u and v), in practice they do not lend themselvesto the direct computation of motion, but need to be supported by an appropriate motion model. Theprimary reason for this is that, in practice, the constraints are not satis�ed exactly. Furthermore, theconstraint (12) is based on second-order image derivatives. They are di�cult to compute reliably dueto the high-pass nature of the operator; usually data smoothing must be performed �rst [88], [21]. Toassure smoothness of the resulting motion �elds post-�ltering is often applied as well [21]. In order toalleviate problems associated with noise, vanishing gradients, etc., that may lead to ill-posedness, analternative approach based on the minimization of a norm of drg=ds under a smoothness constrainthas been developed [89]. The approach has been demonstrated to be very robust in the presence oftime-varying illumination.A di�erent approach to handling nonconstant intensity in the direction of motion is via explicit mod-eling of the illumination [34], [64]. The approach is promising, although requires complex minimizationsince in addition to the motion �eld also illumination �elds must be estimated.The constraints discussed above �nd di�erent applications in practice. A discrete version of theconstant-intensity constraint (9) is often applied in video compression since it results in small motion-compensated prediction error. Although motion can be computed also based on color using the vectorconstraint (10), experience shows that the small gains achieved do not justify the substantial increasein complexity. However, motion estimation from color data is useful in video processing tasks (e.g.,motion-compensated �ltering, resampling), where any motion errors may result in visible distortions.Moreover, the vector constraint is interesting for estimating motion from multiple data sources (e.g.,range/intensity data). Finally, the gradient-based constraint (11) is often employed in computer visionto �nd the true motion despite varying illumination.III. Estimation criteriaVarious motion representations as well as the relationship between motion and images discussed inthe previous section can be used now to formulate an estimation criterion. There is no unique criterionfor motion estimation, however. The di�culty in establishing a good criterion is primarily caused bythe fact that motion in images is not directly observable4 and that particular dynamics of intensity inan image sequence may be induced by more than one motion (nonuniqueness). Another problem isthat most of the models discussed above are far from ideal. For example, the constant-intensity modelexpressed through the motion constraint equation (9) is underconstrained and at the same time is oftenviolated due to factors such as noise, nonopaque surface reections, occlusions or spatio-temporallyvarying illumination. Therefore, all attempts to establish suitable criteria for motion estimation requirefurther implicit or explicit modeling of the image sequence.4We can only see the result of motion but not the motion itself; we cannot measure motion directly but have to use indirectmeasurements, such as an intensity change.



16 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)A. DFD-based criteriaAn important class of criteria arising from the constant-intensity assumption (8) aims at the mini-mization of the following error"t;� (x) = gt(x)� ĝt;� (x); 8x 2 R (13)where ĝt;� (x) = g� (x+dt;� (x)) is called a motion-compensated prediction of gt(x). If R is a completeimage (R = �), this error is called a displaced frame di�erence (DFD), however when R is a block or anarbitrarily-shaped region, the corresponding error is called a displaced block di�erence or a displacedregion di�erence. As before, subscripts may be omitted when notation is clear from the context.Since, in general, dt;� (x) is real-valued, intensities at positions outside of the sampling lattice � mustbe recovered by a suitable interpolation method. For estimation methods not requiring intensitygradients, C0 interpolators that assure continuous interpolated intensity are usually su�cient. Thecase of methods employing intensity gradients will be discussed in Section III-C.Motion �elds calculated solely by minimization of the magnitude of the prediction error (13) are,in general, highly sensitive to noise if the number of pixels in the region of support R is not largecompared to the number of motion parameters estimated or if the region is poorly textured [38,Chapter 16]. However, such a minimization may yield good estimates for parametric motion modelswith few parameters and a reasonable region size.To measure the magnitude of the prediction error " (13) a common choice is an Lp norm. For theL2 norm, this corresponds to the mean-squared motion-compensated prediction error:J1(d) =Xx2R (gt(x)� g� (x+ d(x)))2 : (14)This criterion, although very often used, is unreliable in the presence of outliers; even for a single largeerror "(x), "2(x) is very large and by overcontributing to J1 it biases the estimate of d. Therefore, amore robust mean absolute error criterionJ2(d) =Xx2R jgt(x)� g� (x+ d(x))j (15)is the criterion of choice in practical video coders today. This criterion is less sensitive to bias dueto the piecewise linear dependence of J2 on ", and at the same time is less involved computationally.Also, the median-squared error criterionJ3(d) = medx2R (gt(x)� g� (x+ d(x)))2 ;due to the use of a median operator, and a criterion based on the (di�erentiable) Lorentzian functionJ4(d) =Xx2R log �1 + (gt(x)� g� (x+ d(x)))2=2�2� ;due to the saturation of the error function for outliers (� is a scale parameter), perform well but requiremore computations. An interesting discussion of robust estimation criteria in the context of motionestimation can be found in [8].



TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999) 17B. Frequency-domain criteriaAnother class of criteria for motion estimation uses transforms, such as the Fourier transform F . Forexample, due to its shift property, the 2-D Fourier transform of an image undergoing spatially-constantmotion, i.e., gt(x) = g� (x+ b), satis�esFfgt(x)gFfg�(x)g = exp(j2�fTb);where f = (fx; fy)T denotes 2-D spatial frequency. Hence, b can be directly estimated from the phase,but all standard precautions need to be taken to remove phase ambiguity (phase wrapping with theperiod of 2�). This idea can be extended for constant-velocity motion with b = v(� � t) (� > t) bynoting that for �=0, gt(x) = g0(x) � �(x� vt) (16)where �(x) is the Dirac delta function and \�" denotes the convolution. Taking the 3-D Fouriertransform of (16) it can be easily shown [50] thatFfgt(x)gFfg0(x)g = �(fTv + ft)with ft being the temporal frequency. Clearly, in the case of a uniformly translating image under theconstant-intensity assumption, the Fourier spectrum is zero everywhere in the 3-D spatio-temporalfrequency space (fx; fy; ft), except in a plane with orientation uniquely de�ned by the velocity v =(u; v)T (Fig. 8). Then, the estimation of v is reduced to the search for maximum-occupancy planes inthe 3-D spectrum. This can be done using, e.g., Wigner distribution [50]. Unfortunately, due to thelack of suitable theorems, the above spectral techniques cannot be applied to arbitrary motion modelsfrom Table I.
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Fig. 8. Nonzero plane in the 3-D Fourier spectrum of an image sequence without motion (darker plane) and with aspatially-constant motion v (brighter plane).C. RegularizationInstead of dealing with the underconstrained nature of equation (9) by restricting the motion modelto a few parameters, another approach is to explicitly model additional constraints. This can be done



18 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)by a weak constraint on the estimate itself reecting the empirical observation that typical motion�elds are spatially smooth. In a pivotal contribution, Horn and Schunck [43] have penalized thesquared error resulting from the motion constraint equation (9) by a smoothness term, thus yielding,for continuous xJ(v) = Z Z �rTg(x)v(x) + @g(x)@t �2 + � �kru(x)k2 + krv(x)k2� dx: (17)In practice, when dealing with discrete (sampled) images, the integral is replaced by a summationwhile the derivatives are replaced by their discrete approximations. In [43], for example, an average of�rst-order di�erences computed over a 2� 2� 2 cube was used. Since �rst-order di�erences are poorderivative approximations, they can severely bias solutions to (17); using higher-order di�erences doesnot necessarily solve the problem. One solution is to use C1 interpolators that produce continuousintensity and continuous �rst derivative of the intensity [55]; the derivative can be found by convolvingthe intensity with the derivative of the interpolating kernel. In general, small-kernel operators arepreferable since the operation must be applied to all pixels. Good results for a discrete variant of (17)[58] have been obtained with bi-cubic C1 interpolator developed in [53]. Another interesting solution(and discussion of the problem) can be found in [77] where a joint optimization of derivative andblurring �lters in the frequency domain is described.The smoothness term in (17) regularizes the ill-posed problem of motion estimation (aperture e�ect),thus turning it into a well-posed problem5 [87]. Then, the scalar � balancing the constant-intensityassumption against motion smoothness is termed a regularization constant. For practical reasons, theequation (17) is often expressed in discrete form where the �rst term is replaced by J1(d) (13) andthe second term becomes a discrete version of the Laplacian operator [59]. This formulation is oftenreferred to as regularized, although formally it is not since the �rst term is no longer quadratic buthighly irregular in d. This irregularity is due to the dependence of J1 on d through the image datag�(x + d(x)). Hence, the overall criterion may have multiple minima thus making the problem stillill-posed. This is unlike the formulation in (17) where both terms are directly quadratic in d thusassuring a unique minimum.Due to the smoothness term, equation (17) is often referred to as the weak membrane model [9]; inphysics J describes the energy of a membrane extended by v and reaching its minimum in the steadystate. The data term accounts for external forces while the smoothness term accounts for elastic forceswith � being the elasticity constant.An undesired property of the smoothness term in (17) is that it enforces smooth motion across thewhole image, while realistic motion �elds exhibit discontinuities at object boundaries. In order to avoidsmoothing across object boundaries, intensity edges may be extracted and the smoothness term mayonly be applied along those edges [41]. This procedure is motivated by the observation that objectboundaries often coincide with intensity edges. For the same reason, an oriented smoothness constrainthas been proposed [68], [67] that applies smoothing only along the direction of a locally-constantintensity. Investigations in [78] show that the oriented-smoothness constraint is the only plausible one5According to Hadamard's de�nition, a problem is called well-posed if it has a unique solution that continuously depends on thedata.



TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999) 19among all separable constraints of the same order. It was also proposed to preserve boundaries inmotion �elds by nonstationary autoregressive modeling [27] or by a line process representing motiondiscontinuities (smoothness suspended across line elements switched on) [44], [57]. Example of suchadaptively-smooth motion �eld and the associated line process is shown in Fig. 9. Note the improvedmotion discontinuities at object boundaries. However, since the line process model (discontinuity) isvery local, a better object delineation is usually achieved by the region-based approach (Fig. 5.c and5.d).

(a) pixel-based motion (adaptive smoothness) (b) line process for (a)Fig. 9. Typical motion �eld computed from sequence \Carphone" (Fig. 4.a) for a dense adaptively-smooth (line process)motion model (for example, a combination of (21), (26) and (27)).D. Bayesian criteriaA general framework for motion �eld estimation is provided by Bayesian methods [59]. Let motion�eld d be a realization of a random �eldD with given a posteriori probability distribution. An estimateis computed as a special realization of this a posteriori distribution, such as the mean or the mode.When a motion �eld is to be estimated given the image gt+1 (realization of Gt+1) and the previousimage gt, the a posteriori probability distribution can be formally written, using the Bayes rule, asfollows P (D = djGt+1 = gt+1; gt) = P (Gt+1 = gt+1jD = d; gt) � P (D = d; gt)P (Gt+1 = gt+1; gt) ; (18)where P is a probability measure. In this notation, the semicolon indicates that subsequent variablesare only deterministic parameters. For a given pair of images, the denominator is a normalizingconstant. The two factors in the numerator are modeled separately based on the observation modeland a priori model, respectively. To be more speci�c, let us consider the maximum a posteriori (MAP)estimate of D. Then, we haved̂ = argmaxd P (D = djGt+1 = gt+1; gt)= argmaxd P (Gt+1 = gt+1jD = d; gt) � P (D = d; gt) (19)= argmind f� log[P (Gt+1 = gt+1jD = d; gt)]� log[P (D = d; gt)]g:The �rst term denotes the likelihood of an image given a motion �eld and the previous image. With thegiven d and gt, one can compute the motion-compensated prediction of Gt+1. A common observation



20 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)model is to assume that the likelihood is completely speci�ed by a random �eld E that models thedisplaced frame di�erence (13)P (Gt+1 = gt+1jD = d; gt) = P (E = "): (20)Various distributions have been proposed for P (E = "), e.g., zero-mean white Gaussian [56],P (E = ") = �2��2��jRj=2 exp �Px2R "(x)22�2 ; (21)Laplacian, and segment-wise stationary generalized Gaussian [84]. Also, special consideration has beengiven to violations of the constant-intensity assumption; robust estimation via suppression of outliers[8], modeling of varying illumination [64] and of occlusions [23], [84] are but a few examples.With the displaced frame di�erence model (20), the last formulation in (19) can be related tominimum description length (MDL) estimation [72]. It is well-known from the coding theory that anoptimal encoder attains the code length of �log(P (y)) for coding the sample y of a random variable Y .The code length is also referred to as the description length or self-information [19]. In hybrid videocoding schemes, motion is transmitted to the receiver along with the displaced frame di�erence signal.To achieve high compression, lossy transmission can be applied to both or to either one, howeverat the cost of reducing image quality. Hence, the �rst term under minimization in (19) denotes thedescription length for the displaced frame di�erence, while the second term denotes the descriptionlength for the motion �eld. Therefore, from a data compression point of view, the MAP estimate d̂is the motion �eld that minimizes the overall theoretical code length for lossless encoding of a videosequence. This relationship has been used in rate-constrained motion estimation [85], [35] where thecoding gain resulting from the transmission of a motion vector is related to its cost (description length).It is worthwhile to note that for a motion �eld with a uniform a priori distribution, the a posterioridistribution (18) depends on the displaced frame di�erence only. In other words, from a statisticalpoint of view, methods that minimize the displaced frame di�erence only, perform maximum likelihoodestimation.To incorporate prior knowledge into the estimate d̂ (19), an a priori distribution P (D = d; gt)for displacements must be selected. Numerous forms for this distribution have been proposed in theliterature. In order to exploit correlation of displacements at adjacent sites, the a priori distributionmay favor displacements close to some expected displacement �d(x) (deterministic but unknown):P (D(x) = d(x); gt) = 12��2d exp�kd(x)� �d(x)k22�2dThe expected displacement �d(x) may be computed via causal prediction from displacement estimatesat adjacent sites and from previous frames. The scalar � = 12�2d may be viewed as a regularizationconstant balancing small displaced frame di�erence and high correlation of motion �elds.Although a spatially-causal model is advantageous computationally, spatial causality cannot bejusti�ed in displacement �elds, unlike for time-dependent signals such as speech. Elegant noncausalmodels capturing properties such as \smoothness" are provided by Gibbs/Markov random �elds [33].Those random �elds require speci�cation of a neighborhood system G, i.e., neighborhood Gx � � foreach site x2�. Neighborhood systems satisfy the following conditions



TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999) 21� no site is its own neighbor; x 62 Gx; 8x 2 �,� neighborhood membership is symmetric; x 2 Gy , y 2 Gx; 8x;y 2 �.Fig. 10 depicts �rst- and second-order neighborhood structures, often used in image processing, thatconsist of four and eight nearest sites, respectively. Another important element of Gibbs random �eldde�nition is a clique. A clique c is a subset of �, such that any two di�erent elements from c areneighbors (Fig. 10). The set of all cliques will be denoted by C and dc will denote a vector of elementsof d associated with the sites in c.
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other sites (b)Fig. 10. Neighborhoods and cliques for (a) �rst-order and (b) second-order neighborhood systems.A (discrete-valued) Gibbs/Markov random �eld D with respect to a neighborhood system G can bede�ned by the Gibbs distribution P (D = d) = 1Z exp (�H(d)) (22)where the Hamiltonian H and the partition sum Z are de�ned as followsH(d) = Xc2C Vc(dc); (23)Z = Xd exp (�H(d)) : (24)In these de�nitions, Vc may be any real function of variables dc, that is the variables at sites within theclique c. The only, although nontrivial, condition on P to be a well-de�ned distribution is that Z2IRbe �nite. Continuous-valued Gibbs distributions are de�ned in the same way except for the partitionsum which is replaced by an integral called the partition function.An important feature of Gibbs/Markov �elds is the following Markov property:P (D(x) = d(x)jD(y) = d(y); 8y 6= x) = P (D(x) = d(x)jDy = dy; 8y 2 Gx):The conditional distribution of a single variable D(x) is completely speci�ed by the variables Dywithin the neighborhood of x. For this reason, the conditional distribution is often referred to as thelocal characteristic.As mentioned above, smoothness constraints can be easily modeled by Gibbs/Markov random �elds,for example by a �rst- or second-order Gibbs/Markov random �eld with the following pair potentialVfx;yg(d(x);d(y)) = �kd(x)� d(y)kn; 8fx;yg 2 C (25)



22 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)and a vanishing potential for all cliques comprising other number of elements than two. This modelyields a discretized version of the weak membrane model (17) for the Euclidean norm and n = 2.By constructing the a priori distribution P (D = d; gt) = P (D = d) from (22) and (25), and bycombining it with any of the discussed observation models, the MAP criterion (19) becomes well-de�ned.Gibbs/Markov random �elds also allow explicit modeling of discontinuities. A straightforward wayis to model the discontinuities by a binary-valued line �eld on a dual lattice (Fig. 11). A line �eld bcan be incorporated into the Bayesian formulation by replacing D and d in (19) by (D; B) and (d; b),respectively. The line process does not inuence the observation model, while the a priori model for(D; B) is now de�ned by the following Gibbs/Markov random �eld:Vfx;y;zg (d(x);d(y); b(z)) = �dkd(x)� d(y)k2(1� b(z)); 8fx;y; zg 2 C; (26)Vfzg (b(z)) = �bb(z); 8fzg 2 C: (27)The motion smoothness constraint in Vfx;y;zg is suspended whenever the line process is switched \on"(b(z)=1). At the same time Vfzg, de�ned for single-element cliques, penalizes the introduction ofdiscontinuities. This model can be improved by extending the neighborhood of line elements andconsidering cliques as depicted in Fig. 11 in order to favor continuity and smoothness of the lineprocess [55], [32]. An extended line process that models discontinuities between motion vectors withintwo-element motion vector cliques of the second-order neighborhood model has been proposed in [10].The resulting line process includes four line elements per pixel.
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Fig. 11. Line �eld lattice with neighborhood system and some associated cliques.Another way to model discontinuities explicitly is by the introduction of segmentation [82], [16], [83].The segmentation can be represented by a generic label �eld s(x), where all pixels of the same regionpossess the same label. Then, the region of support for the smoothness constraint can be limitedto the same-label sites and the a priori distribution of the label �eld can be modeled by a �rst- or



TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999) 23second-order Gibbs/Markov random �eld:Vfx;yg (d(x);d(y); s(x); s(y)) = �dkd(x)� d(y)k2�(s(x)� s(y)) +�s(1� �(s(x)� s(y))); 8fx;yg 2 C:The delta function in the �rst term suspends the smoothness constraint across region boundaries.The second term favors compact regions with short boundaries. Although being formally similarto the line process, the segmentation o�ers the advantage that images are partitioned meaningfullyand individual segments tend to undergo continuous motion. Since segments correspond to continuoussurfaces of objects in the real world, the segmentation may be considered not only as a tool to estimatediscontinuous motion but also as a valuable information in itself.It is worthwhile to note that the motion smoothness constraint can be also extended in the temporaldirection [74], [8], [7] or in the direction of motion trajectories [83]. An even further extension ofthis idea is explicit modeling of motion trajectories and estimation of the associated parameters.For example, in [13] motion trajectories are modeled by second-order curves (equation (5)) and theirparameters (velocity and acceleration) are estimated from several frames using deterministic relaxation.As shown in Fig. 12, such a model can give unquestionable gains in motion-compensated video sequenceinterpolation; reduction of the reconstruction error due to the inclusion of acceleration is evident bothvisually (around mouth and eyes) and numerically. Possible applications for this approach are in videostandards conversion and in very low bit rate video coding in order to reconstruct missing frames atthe receiver (transmission is usually at lower temporal rates).IV. Search strategiesWith models expressing our knowledge about motion and images speci�ed, and an estimation crite-rion selected, what remains to be done is to identify an estimation procedure. This procedure involvesan optimization of the selected criterion with respect to the parameters of the chosen model. For densemotion �elds, the number of unknowns may be large as may be their state spaces; exhaustive searchover the complete state space is, with rare exceptions, computationally prohibitive. Below, we discussfaster search strategies.A. MatchingFor a small number of motion parameters and a small state space, the most common search strategywhen minimizing a prediction error is matching. In this approach, motion-compensated predictionsfor various motion candidates are compared with the original image within the region of support ofthe motion model. The candidate yielding the best match for a given criterion becomes the optimalestimate. For small state spaces, as is the case in block-constant motion models used in today'svideo coding standards, the full state space of each motion vector can be examined. This leads toexhaustive-search block matching.Assuming that the estimation criterion J(d) is varies slowly within the state space near the motionestimate sought, hierarchical search strategies can be applied to reduce the computational complexity.These strategies aim at successive improvement of the estimate over subsequent levels of the hierarchy.



24 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)

(a) interpolation - linear (b) error - linear (30.26dB) (c) velocity for quadratic model
(d) interpolation - quadratic (e) error - quadratic (36.91dB) (f) acceleration for quadratic model

(g) interpolation image - linear (h) error - linear (30.71dB) (i) velocity for quadratic model

(j) interpolation - quadratic (k) error - quadratic (37.27dB) (l) acceleration for quadratic modelFig. 12. Interpolated and error images as well as velocity and acceleration �elds for motion-compensated interpolation ofsequence \Miss America" (Fig. 4.b) using linear and quadratic trajectories (equation (5)) under global smoothnessconstraint (17): (a-f) frame 6; and (g-l) frame 14. In each case 5 images were used in the estimation; for details ofthe algorithm, see [13]. The numerical measure shown is an interpolation error expressed in dB.



TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999) 25At each level, only a small number of motion candidates is examined. Fig. 13 illustrates a hierarchicalsearch in the case of three-step block matching; the higher the level of hierarchy, the lower the searchresolution. A coarse estimate is computed at the highest level as the best match among all motion
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dFig. 13. Three-step search strategy for block matching.vector candidates. The state space at this level can be considered as a subsampled version of motionvector's state space at full resolution. At lower levels, the estimate is successively re�ned by testing aset of nearby vector candidates. Clearly, hierarchical techniques do not guarantee �nding the globaloptimum; they may be trapped in a local optimum of the estimation criterion, i.e., the reduction inthe computational load compromises the quality of motion estimates. Note that in the example ofFig. 13, the motion model is not hierarchical, i.e., neither multiscale nor multiresolution (as discussedin Section II-B.4); it is the search strategy that is hierarchical. Other hierarchical search strategieswill be discussed in Section IV-F.B. RelaxationFor dense motion �elds based on a noncausal model, simultaneous optimization of all parameters (of-ten hundreds of thousands) may be computationally prohibitive6. To alleviate the problem, relaxationtechniques construct a sequence of estimates such that consecutive estimates di�er in one variable atmost. Lets consider the estimation of a dense motion �eld d. A series of motion �elds d(0);d(1); : : : isconstructed such that any two consecutive estimates d(k�1);d(k) di�er at most at a single site xk whichis either predetermined by some site-visiting order, e.g., line scanning, or selected randomly. Hence, ateach step of the relaxation procedure only motion vector of a single site needs to be computed whilevectors at all other sites remain unchanged.In a deterministic relaxation, each motion vector is selected from its respective state space with100% certainty. For example, a new local estimate is computed by minimizing the given criterion;variables are updated one after another and the criterion is monotonically improved step by step. Awell-known deterministic relaxation technique is the method of iterated conditional modes (ICM) [6].For the Bayesian estimation criterion (19), the optimal motion vector is selected from its full state6Although pel-recursive methods that are based on a causal model for dense motion are computationally inexpensive, theiraccuracy is usually lower than that of methods based on noncausal motion models.



26 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)space as followsd(k)(xk) = argmaxd(xk)P (D(xk) = d(xk);D(x) = d(k�1)(x); 8x 6= xkjGt+1 = gt+1; gt):For a Gibbs/Markov �eld, the above expression is signi�cantly simpli�ed since the conditional proba-bility distribution of a single variable D(xk) is completely speci�ed by its neighborhood. Then,d(k)(xk) = argmaxd(xk) �(d(xk))where �(d(xk)) = P (D(xk) = d(xk)jD(x) = d(k�1)(x); 8x 2 Gxk ; Gt+1 = gt+1; gt):This makes relaxation techniques particularly suitable for the estimation of Gibbs/Markov �elds.Computational complexity can be further reduced by selecting d(k)(xk) from a limited set of motionvector candidates, as proposed in Bayesian block matching [80]. Deterministic relaxation techniques arecapable of correcting spurious motion vectors in the initial state d(0). Their major drawback, however,is that they often get trapped in a local optimum near the initial state. Therefore, the availability ofa good initial state that may include large-scale information about the optimum is crucial.The dependence on a good initial state is reduced in stochastic relaxation. In contrast to deterministictechniques, the motion vector under consideration is selected randomly thus allowing (with a smallprobability) a momentary deterioration of the criterion. One of the earliest stochastic relaxationtechniques was the Metropolis algorithm [62]. In its adaptation to the estimation of motion vectors[55] only two candidate vectors are considered during each relaxation step: the vector from the previousiteration d(k�1)(xk) and a new candidate vector d(xk) randomly selected from a single-site state space.Moreover, the site xk is selected randomly as well. If the new candidate has larger probability than theprevious one, this new vector is accepted; otherwise, the new candidate is accepted with probabilityQ(k) = �(d(xk))�(d(k�1)(xk))and the previous estimate d(k�1)(xk) is kept with probability 1�Q(k). Clearly, the lower the probabilityof the new candidate d(xk), the lower the likelihood of its acceptance.Another important stochastic relaxation technique for Gibbs/Markov random �elds is the Gibbssampler [33] that selects d(k)(xk) randomly with probability �(d(xk)). It can be shown that theestimates d(k) of both the Metropolis algorithm and the Gibbs sampler become independent of theinitial state d(0) and maximize the a posteriori distribution when k approaches in�nity.In order to �nd the MAP estimate, these algorithms can be combined with simulated annealing[54], [33]. This optimization technique simulates physical systems of a large number of particles. Inequilibrium, such systems follow a Boltzmann distributionP (D = d) = 1Z(T ) exp (�H(d)kBT ); (28)where kB denotes the Boltzmann constant, T is the absolute temperature, and H is the Hamiltonianof the system. By writing the a posteriori distribution forD in the form of equation (28) and selecting



TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999) 27realizations of D for a monotonically-decreasing annealing schedule Tk (k = 0; 1; : : : ), annealing of aphysical system is simulated. Clearly, for Tk approaching zero, P (�) converges to a Dirac impulse atthe MAP estimate. For a su�ciently large T0 and a su�ciently slow annealing schedule, simulatedannealing with either the Metropolis algorithm or the Gibbs sampler can be shown to converge to theMAP estimate. However, the required annealing schedule is extremely slow. In practice, simulatedannealing is applied with a faster annealing schedule, thus yielding suboptimal results.C. HCF methodAnother deterministic optimization technique for Markov random �elds that updates a single site ineach step is the highest con�dence �rst (HCF) algorithm [18]. In contrast to relaxation schemes, itssite visiting schedule is not �xed but is driven by the input data. Initially, all the sites are markedas \uncommitted". A new a priori probability is de�ned based on the original one by modifying theclique potentials Vc of equation (23) as followsV 0c = ( Vc if all sites in c are \committed",0 otherwise.Hence, a site does not inuence its neighbors until it is committed. The site-visiting order is controlledby the non-positive stability �eldSd(x) = ( H(dopt1)�H(dopt2) if x is \uncommitted",H(dopt1)�H(d) otherwise,where dopt1 = argmind̂ H(d̂) with d̂(y) = d(y) 8y 6= x;dopt2 = arg mind̂6=dopt1H(d̂) with d̂(y) = d(y) 8y 6= x;denote two �elds with the best and second-best vectors, respectively, at site x given the vectors at allother sites. At each step, a site with the minimum stability Sd(x) is updated and marked as \com-mitted". The procedure stops when the complete �eld is \committed" and the complete stability �eldis zero. At the beginning, the HCF algorithm selects sites with a \peaked" likelihood function whichtypically is the case for highly-structured regions. Later, the algorithm includes more and more sitesthat may not possess such ideal likelihood function, and thus building on the neighborhood informa-tion of already estimated sites. Since only variables at \committed" sites inuence the optimizationand initially all the sites are \uncommitted", the estimated �eld is independent of the initial state.D. Gradient-based optimizationGradient-based techniques require an estimation criterion J(d) that is di�erentiable. Since thiscriterion depends on motion parameters via the image function g, such as in (14), it is usually ap-proximated by a Taylor expansion with respect to motion parameters. Then, the di�erentiation of theTaylor-approximated criterion involves di�erentiation and interpolation of image intensities, alreadydiscussed in Section III-C. Due to the Taylor approximation, the model is applicable only in a small



28 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)vicinity of the desired motion estimate. Therefore, it comes as no surprise that gradient-based esti-mation is reported to yield accurate estimates only in regions of small motion; the approach fails ifmotion is large. This can be partially compensated for by low-pass �ltering of image sequences. Dueto the loss of image detail, however, accuracy of the estimates su�ers. A solution to this problem isto use this less accurate estimate as an initial state for estimation based on non�ltered images. Thisapproach is discussed in Section IV-F.E. Mean �eld techniquesMuch work on the theoretical analysis of Gibbs/Markov random �elds has been performed in equilib-rium statistical mechanics. Mean �eld approaches have proven a powerful tool for the approximationof the mean of such �elds.As outlined in Section IV-B, the MAP estimate of a �eld governed by a distribution such as in equa-tion (28) can be found as its mean for T ! 0. A fundamental di�erence between mean �eld annealingand stochastic annealing is that the former is a deterministic procedure and has been demonstrated inpractice to converge quickly. Moreover, mean �eld optimization does not necessitate annealing but canbe performed at zero or any other temperature right from the start. In many experiments, however, itwas found that higher temperatures prove bene�cial during the beginning of optimization due to theimproved smoothness of the objective function.The motivation for mean �eld techniques is based on the important result from statistical mechanicsstating that mean values of a Gibbs/Markov random �eld can be obtained from its partition function.For this purpose, the partition function Z is considered to be a function of the data. Therefore, mean�eld approaches �rst formulate the desired mean �eld through the partition function and then approxi-mate the partition function by assuming that this sum is governed by realizations near the equilibriumstate. Then, one can bene�t from the property that typical optimization criteria exhibit fewer localoptima at higher temperatures. Hence, one can design deterministic optimization procedures that �ndinitial estimates at high temperatures and improve them by decreasing the temperature (annealing).Let us concisely illustrate the above ideas for the following example (see equations (17) and (25))H(d) =Xx (gx(x)dx(x) + gy(x)dy(x) + �g(x))22�2 + � Xfx;yg2C kd(x)� d(y)k2;where (gx; gy)T = rg denote the spatial image derivatives, �g = gt � gt�1 is the frame di�erenceand d(x) = (dx(x); dy(x))T . Based on the prior distribution (28), the mean �eld of the horizontaldisplacement at temperature T is de�ned by�dx(x) =Xd dx(x) 1Z exp (�H(d)kBT );where �dx denotes the expectation of dx. This can be rewritten in terms of the partition function as�dx(x) = ��2kBTZ Xd @2@�g(x)@gx(x) exp (�H(d)kBT ) = ��2kBTZ @2Z@�g(x)@gx(x) : (29)The mean �eld of the vertical component �dy can be found in the same way. Expression of the mean�eld through the partition function Z above does not directly provide an optimization procedure,



TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999) 29since exact computation of the partition function is, in general, a prohibitive task. Instead, mean �eldoptimization is based upon approximation of the partition function, e.g., by saddle point approximation[31] or mean �eld approximation [95]. The latter is based upon the assumption, that the inuence ofthe neighboring motion vectors d(y);y 2 Gx on a single motion vector d(x) can be approximated bythe inuence of the mean of the neighbors �d(y). Then, one can approximate the Hamiltonian H byHmf as follows H(d) =Xx (rTg(x)d(x) + �g(x))22�2 + �2 Xy2Gx kd(x)� d(y)k2Hmf(d) =Xx (rTg(x)d(x) + �g(x))22�2 + �2 Xy2Gx kd(x)� �d(y)k2=Xx Hmfx(d(x))which is separable with respect to x, so that Hmfx(d(x)) depends on the motion vector at site x only.Hence, the partition function Zmf de�ned by Hmf through (24) is also separable in x and can be usedin the computation of the mean �eld via equation (29):Z � Zmf =Yx Xd(x) (rTg(x)d(x) + �g(x))22�2 + �2 Xy2Gx kd(x)� �d(y)k2:It is worth noting that the mean �eld calculation at site x depends on the mean �eld values atthe neighboring sites. Hence, iterative schemes, often similar to relaxation procedures, are used inoptimization. Since mean �eld annealing starts at higher temperatures, where local optima are lessdistinctive, it tends to avoid some of them. However, in contrast to simulated annealing, it cannotguarantee to reach the global optimum.F. Hierarchical optimizationThe search strategies presented in the preceding sections are often computationally expensive. Tolower this computational burden, the hierarchical motion representations discussed in Section II-B.4are often exploited as follows.In the multiresolution/multiscale approach (left side of Fig. 7), the motion �eld is represented overa multiresolution pyramid. Usually a dyadic structure is employed. Assuming, for simplicity, that �is an orthogonal sampling grid, the grid at level � can be de�ned as follows�(�) = fxjx 2 �; 2��x 2 IN2g;where IN is the set of all integer numbers. The motion �eld represented on grid �(�) is denoted by d(�).Clearly, the grid at the lowest level (�=0) is the original image grid, �(0) = �, and the motion �eld atthat level d(0) is the desired estimate. Likewise, the image sequence may be represented at multipleresolutions by successive low-pass �ltering and subsampling.In a multiresolution/multiscale motion estimation, motion parameters are computed at the lowestresolution �rst [36]. The computational load of this task is low as compared to the estimation atfull resolution because the dimension of the state space of motion vector �elds is reduced by 22�



30 TO APPEAR IN IEEE SIGNAL PROCESSING MAGAZINE (JULY 1999)and the amplitude of motion is reduced by 2�. Also, due to the scale change between levels of themotion pyramid, as discussed in Section II-B.4, methods based on a spatial smoothness constraint(e.g., equation (17)) converge much faster than their nonhierarchical counterparts. In consequence,a coarse estimate is found very rapidly at the highest level, especially by fast schemes such as thedeterministic relaxation. By a suitable projection this estimate is decreased in scale to serve as aninitial state for the motion estimate at the next lower level of the pyramid. More detailed informationis added at this level by the same or another optimization scheme. This procedure is repeated untilan estimate at the lowest level of the pyramid is found.While the estimation criterionH(d) = H(0)(d(0)) has been formulated for motion �elds on the originalimage grid �(0), appropriate criteria H(�)(d(�)) for motion at all other levels need to be de�ned formultiresolution optimization. This has often been performed through heuristic modi�cations of H(0).However, a more consistent way can be derived by recalling the equivalence between multiresolutionrepresentations at multiple scales and at a single scale as illustrated in Fig. 7. A �eld at any level � ofthe left pyramid in Fig. 7 can be reduced in scale by a suitable projection �(�) and thus be transferredinto the equivalent �eld in the right pyramid. Since all �elds are now represented at a single scale, theestimation criterion is naturally formulated at all levels.H(�)(d(�)) = H(�(�)(d(�)))In this equation, the same estimation criterion H is applied to all �elds �(�)(d(�)) in the single scalepyramid [40]. For several forms of the HamiltonianH, reformulations have been derived for H(�) usingsingle scale [40] or multiscale representation of the image sequence [81]. These reformulations do notrequire explicit scale reduction and hence further improve computational e�ciency.Fig. 14 illustrates the results of a multiresolution/multiscale motion estimation for a synthetic imagepair. Note that the smooth increase in vector amplitude (a�ne motion) in the true �eld, is pro-gressively recovered throughout the estimated motion pyramid. On the other hand, Fig. 15 showsresults of region-based multiresolution/multiscale motion estimation for a natural image. The un-derlying estimation criterion is based on Gibbs/Markov random �elds; details can be found in [83].The estimated �elds are, in general, consistent with human perception. Nevertheless, the estimatesreveal some phenomena frequently observed in motion estimation. Local problems persist in areas ofnonunique motion, such as the moving reections on the table. Furthermore, the segmentation showscertain degree of inaccuracy in low-texture areas and between segments of similar motion. The lattere�ect is due to low \motion contrast", a phenomenon similar to low image contrast in intensity-basedsegmentation. Note that the resulting estimate of uncovered background regions is close to reality.Instead of transferring motion information strictly from the top to the bottom in the estimation pyra-mid, methods have also been developed that transfer the information in both directions within thepyramid [28], [52]. This approach, unlike the top-to-bottom approach, implements a feedback fromhigher-resolution estimates to lower-resolution levels thus facilitating recovery of motion errors at lowerresolutions. However, the control strategy in such a bi-directional ow algorithm is not trivial.
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(a) (b)Fig. 14. (a) Synthetic image pair at multiple resolutions, and (b) multiresolution/multiscale motion estimate (left) andthe underlying true motion (right). The true motion �eld of the inner rectangle is an example of a�ne motionsimilar to that shown in Fig. 2.b. For more details see [83].V. Summary and conclusionsWe have reviewed the estimation of 2-D motion from time-varying images, paying particular at-tention to the underlying models, estimation criteria and optimization strategies. Several parametricand nonparametric models for the representation of motion vector �elds and motion trajectory �eldshave been discussed. For a given region of support, these models determine the dimensionality of theestimation problem as well as the amount of data that has to be subsequently interpreted or transmit-ted. Also, the interdependence of motion and image data has been addressed. We have shown thateven ideal constraints may not provide a well-de�ned estimation criterion. Therefore, the data termof an estimation criterion is usually supplemented with a smoothness term which may be expressedexplicitly or implicitly via a constraining motion model. We have paid a particular attention to thestatistical criteria based on Markov random �elds. Since the optimization of an estimation criteriontypically involves a large number of unknowns, we have presented several fast search strategies.We did not cover all possible aspects of 2-D motion estimation, but we believe that this paper shouldbe helpful to researchers and practitioners working in the �elds of video compression and processing,as well as in computer vision. Although the understanding of issues involved in the computation ofmotion has signi�cantly increased over the last decade, we are still far from generic, robust, real-timemotion estimation algorithms. The selection of the best motion estimator is still highly dependent onthe application. Nevertheless, a broad variety of estimation models, criteria and optimization schemescan be treated in a uni�ed framework presented here, thus allowing a direct comparison and leadingto a deeper understanding of the properties of the resulting estimators.
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Fig. 15. Results for region-based multiresolution motion estimation applied to the sequence \Salesman": (a) originalframe 121; (b) original frame 125; (c) subsampled motion �eld estimate and segmentation boundaries superimposedover frame 121; (d) occlusion areas; (e) horizontal and (f) vertical motion shown as intensity.


