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Abstract

Target detection and localization is one of the key research
challenges in sensor networks. In this paper we propose a
heterogeneous wireless sensor network integrating imaging
and non-imaging sensors to accomplish the detection and
localization task in complex urban environments. The low-
cost non-imaging sensors provide early detection and partial
localization of potential targets and direct imaging sensors
to focus on them. Accurate target location estimated by the
imaging sensors is then used to calibrate the non-imaging
sensors.

We evaluate our approach through simulation and imple-
mentation on a sensor network testbed that uses MicaZ motes
equipped with magnetometers and a camera to track fer-
rous targets. Our preliminary results reveal that coordination
across different sensing modalities increases localization ac-
curacy and reduces the amount of imaging data that has to
be processed by the network.

1 Introduction

Using network of sensor devices for surveillance missions
is to acquire, process and extract information from deployed
and unmanned heterogeneous sensors in all kinds of environ-
ment. This is of great practical importance for the military.

Such a network can provide a fine global picture through
the collaboration of many sensors with each observing a
coarse local view [6]. With their capabilities for distributed
sensing and in-network processing, networked sensors are
expected to be widely deployed and to perform some decen-
tralized information processing tasks such as environmental
monitoring, disaster recovery and urban rescue, target identi-
fication and tracking. The difficulty in flourishing these net-
works lies in in-network processing observations from sen-
sors in close geographic proximity [4].

In this paper we propose a heterogeneous wireless sensor
network integrating imaging and non-imaging sensors to ac-
complish the detection and localization task in complex ur-
ban environments that is one of the key research challenges
in sensor networks. Particularly, we employ magnetome-
ters to find the coarse locations of targets within our sensing
range, then utilize these information guiding the camera sen-
sor to compute the more precise target positions, finally cali-
brate the magnetometers’ reading parameters using nonlinear
least-square technique based on detected accurate target loca-
tions. We validate our method with both simulation data and
a real sensor network system deployed in our laboratory. In
simulation, our experimental results demonstrate that thees-
timated magnetometers’ sensing parameters converges to the
real values under low to moderate levels of camera noise, and
the calibration results can be improved with larger number of
magnetometers.

Our paper is organized as follows. We first illustrate the
motivation of proposing a heterogeneous sensor network for
target detection and tracking, then our detail algorithm design
is presented in section 3. Using simulation data under con-
trolled conditions, our method is empirically validated and
performance evaluated using our in section 4, which is fol-
lowed by the experiments from our real sensornet system de-
ployed in a real complex environment. Finally we conclude
the paper and discuss the future extension and improvement.

2 Motivation

In Figure 1, we illustrate an example of our system work-
ing scenario. We present a heterogenous sensing framework
to solve target detection, location and tracking in real envi-
ronment. Direct imaging sensor, such as a surveillance cam-
era, can compute the target location with high precision, but
has a limited field-of-view and can not be deployed every-
where. Thus it may have many blind-spots in the field lack-
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Figure 1: Multi-modal sensor network for target tracking.

Figure 2: Block diagram of the proposed target tracking sys-
tem.

ing of sensing ability. However our low-cost magnetometers,
or other types of non-imaging sensors, can form a densely
distributed wireless network in a large range of environment.
They can be used to find target covering the whole surveil-
lance field, but with limited localization accuracy. In a col-
laborative manner, the non-imaging sensors in our system can
first detect and estimate the coarse target position; then report
and guide imaging sensor’s field-of-view to further localize
target’s position accurately; finally the more precise target lo-
cations can also help to calibrate non-imaging sensors’ read-
ing parameters for improved coarse-level target localization
in the next stage.

Challenges

3 Design

3.1 Overview

We propose a unified approach by iteratively calibrating sen-
sor parameters and optimizing the target locations overtime.

Figure 2 illustrates our unified framework for calibration
and target localization that includes both non-imaging sensor

and direct imaging sensor. Each sensor can compute its phys-
ical position through either GPS or GPS-less techniques [3].
We assume the sensors can then detect the target presence
and report their readings{Sj

di
}, whereSj

di
is the sensorsi’s

reading for target at locationTj , to the base station. Based
on the sensor readings, the base station estimates the target
locationsT̄j in the global coordinates throughour collabo-
rative localization algorithm and guides the camera to track
the target. Furthermore the sensor reading parametersβj can
also be calibrated from the estimated target positions using
the nonlinear least square consequently. As the target moves,
the current calibrated parameters are input to the localization
module to predict target’s location more accurately, and then
the sequential target location observations from imaging sen-
sor can improve the calibration accuracy of sensor parame-
ters and readings as well. Our method results in an iterative
optimization onT̄j andβj overtime.

In the following, we describe our mathematical formula-
tion of sensor parameter calibration and target localization
algorithms.

3.2 Localization

Calibration Model: We assume the signal strength propa-
gate according to the ideal decay function as shown in the
following equation:

Sd = ST /dβ , (1)

whereST is a constant describes the original signal power,
Sd is the measured signal strength at distanced, andβ is the
decay factor.

The signal strength measured at a sensor follows the fol-
lowing equation

Sd = ST /dβ + N1, (2)

whereN1 is a zero mean white noise satisfying Gaussian dis-
tribution. In some application, we do not know what kind of
target will present and the value ofST is unknown. The de-
cay factorβ is determined by the environment. We need to
figure out how to estimate accurateβ in different situation.
Its accuracy influences the result of target localization.

Localization Strategy: We propose a heterogeneous wire-
less sensor network integrating imaging and non-imaging
sensors to accomplish the detection and localization task in
complex urban environments. The low-cost non-imaging
sensors provide early detection and partial localization of po-
tential targets and direct imaging sensors to focus on them.
Accurate target location estimated by the imaging sensors is
then used to calibrate the non-imaging sensors.
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3.3 Calibration

Unified Optimization: Given a group of pairs of (̃di, Sdi
),

whered̃i is the distance from a sensorsi around the target to
the camera located target andSdi

is the signal measurement
at that sensor, we attempt to find the value ofβ which best
satisfy Eq. (1). This problem can be formulated as a nonlinear
least square problem which is numerically solved by gradient
descent optimization, given an initialβ. We try to minimize
the cost function

∑

(Sdi
− ST/d̃β

i )2. (3)

Assume that the target position obtained from camerad̃i

has additive zero mean Gaussian noiseN2. As the target
moves, we collect more measurements from sensor readings
as groups of (̃dj

i , S
j
di

), whered̃j
i is the distance from theith

sensor to the camera located target position atT̃j .
To evaluate the accuracy of estimatedβ̄, we useST , sensor

readingsSj
di

(i = 3, ..., 8) andβ̄ to compute the target loca-
tion T̄j by least squares fitting. Let[xi, yi] and [X̄Tj

, ȲTj
]

denote the sensorsi and targetT̄j ’s coordinates. By trans-
forming the signal strength propagation model, ie. equation
1, we can get the distancēdj

i from the ith sensor to target
locationT̄j by the following equation,

d̄j
i = β̄

√

ST

Sj
di

. (4)

Then we can estimate[X̄Tj
, ȲTj

] from a group of equations

(xi − X̄Tj
)2 + (yi − ȲTj

)2 = (d̄j
i )

2, i = 1, ..., I; I = 3, ..., 8.

(5)

For example, if there exist three sensors for the target, we will
try to solve the following equations for[X̄Tj

.ȲTj
]

(x1 − X̄Tj
)2 + (y1 − ȲTj

)2 = (d̄j
1
)2, (6)

(x2 − X̄Tj
)2 + (y2 − ȲTj

)2 = (d̄j
2
)2, (7)

(x3 − X̄Tj
)2 + (y3 − ȲTj

)2 = (d̄j
3
)2, (8)

To avoid the nonlinearity of the above equations, we can
subtract any equation to another. For example, if subtracting
Eq. (6) from Eq. (7), we obtain

2(x2 − x1)X̄Tj
+ 2(y2 − y1)ȲTj

= ((d̄j
1
)2 − x2

1 − y2

1)

−((d̄j
2
)2 − x2

2 − y2

2).
(9)

From I Eq.5 type equations, we can haveI − 1 linearly
independent equations where(I − 1) >= 2 guaranteeing

enough constraints. Without loss of generality we can have
the following linear equations to solve[X̄Tj

, ȲTj
].

2(xi − x1)X̄Tj
+ 2(yi − y1)ȲTj

= ((d̄j
1
)2 − x2

1
− y2

1
)

−((d̄j
i )

2 − x2

i − y2

i ), i = 2, ..., I; I = 3, ..., 8.

(10)

Finally, [X̄Tj
, ȲTj

] can be solved from Eq. (10) by linear
least squares fitting with 3 or more sensors.

4 Evaluation

We first use Matlab to implement our algorithms with con-
trolled simulation to validate the approach. Realtime live
demonstration with onboard sensors is under implementa-
tion.

To simulate the parameter estimation process with multi-
modal calibration, we assume the target moves with a stable
speed in a straight line inX−Y plane. Some sensor nodes are
then randomly deployed within at least 1 and at most 4 dis-
tance units to the target. Assume that the target signal power
ST is known and the sensor network is synchronized. Each
sensor node knows its own position. The sensors receive sig-
nal strengths according to the Eq. 2.

Using simulation data under controlled conditions make it
feasible to validate our method qualitatively, and evaluate the
performance quantitatively. In the following, we focus on
analyzing two quantitative metrics: the convergent speed and
accuracy ofβ to the real setting and the resulting target loca-
tion errors, from different initial valuesβ0 of β, group sizes
i of magnetometers for localization, meagnetometer sensing
noiseN1, camera observation noiseN2. More specifically,
the standard deviation of the signal noise is set as a ratio (rs)
of theST . In the simulation we choosers = 5%, 10%, the
standard deviation ofN2 = 0.03, 0.04, ..., 0.10 distance units
respectively, on both X and Y coordinates. respectively.We
also investigate how camera sensing can compensate or dilate
the location inaccuracy from low-cost magnetometers, under
various levels of observation noise.

4.1 Influence of initial valueβ0

To evaluate the influence of the initial inputβ0 for the non-
linear least square fitting of̄β, we chooseβ0 = 1, 3, 5 ,7, 9.
Figure 3 (a) plots the difference of the estimatedβ̄ and realβ
over the number of measurements withrs = 10% andi = 8.
As shown in the figure,̄β always converges to the same value
from different initial values ofβ0. For the convergence of̄T
to T , similar results under differentβ0s are illustrated in fig-
ure refbeta0 (b). We have the similar results underrs = 5%,
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Figure 3: Illustration of the calibration for̄β and T̄ verse
the number of measurements for differentβ0 whenN1 =
(0, 0.10ST ), N2 = (0, 0) andi = 8.

15%, 20%. Therefore,β0 is set as 3 in the later simulation
for simplicity.

4.2 Influence of group sizei

Figure 4 (a) illustrates the difference of the estimatedβ̄ and
realβ over the number of measurements for different group
size whenN1 = (0, 0.05ST ) andN2 = (0, 0). Figure 4
(b) plots the corresponding location error. It is shown that
the estimation forβ along becomes more accurate with more
sensor readings. Furthermore, the location error decreases
with larger group size since we have more accurateβ̄.

Figure 5 (a) plots the difference of thēβ and β over
the number of measurements for different group size when
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Figure 4: Illustration of the calibration for̄β and T̄ verse
the number of measurements for different group sizei when
N1 = (0, 0.05ST ) andN2 = (0, 0).

N1 = (0, 0.05ST ) andN2 = (0, 0.10). It is also shown
that β̄ is more close toβ for larger group size. Figure 5 (b)
demonstrates the difference betweenT andT̄ and figure 5 (c)
shows the difference betweeñT andT̄ . Firstly, the location
error decreases with more sensor readings because we have
more accurate estimation for̄β. Secondly, there is no notice-
able difference between figure 4 (b) and (c). (reason???)

4.3 Influence of signal noiseN1 and camera local-
ization noiseN2

To study the influence of signal noiseN1 to the location
error, we do the simulation when there is no signal noise
(N1 = (0, 0)). Figure 6 shows|β − β̄| error and|T − T̄ |,
|T̃ − T̄ | errors for different combinations of signal noise cam-
era localization noiseN1 and camera localization noiseN2.
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Under three groups ofN2 settings, the errors converge to dif-
ferent values, in proportion toN2’s value, but insensitive to
N1s. Therefore we can conclude that the localization error,
in terms of calibration error and target localization error, is
mainly contributed by the camera noiseN2.

Moreover, figure 7 illustrates the calibration results for dif-
ferent camera localization noisesN2 whenN1 = (0, 0.05ST )
andi = 8. It is clear that both̄β error andT̄ error increase
with largerN2.

4.4 Experimental Results

We plan to evaluate our approach on a sensor network test-
bed that uses MicaZ motes [7] equipped with MTS 310 mag-
netometers [8] and a camera to track ferrous targets. We
expect that coordination across different sensing modalities
increases localization accuracy and reduces the amount of
imaging data that has to be processed by the network.

5 Related Work

To make sensor devices provide valid and useful readings for
sensing detecting and tracking events, we need calibrate their
accuracies according to the expected measurement scales [2].
Particularly, [11, 2] address the global calibration problem
of large-scale, dense-deployed sensor network using a two-
phase collaborative approach [2] or a parameter estimation
by optimizing the overall system performance approach [11].
In this paper, the non-imaging sensor devices are calibrated
from the estimate of target locations from the direct imaging
sensors. This forms a collaborative, heterogeneous sensor
network for target detection and localization.

have attracted many research activities in sensor networks.
Zou and Chakrabarty [15, 16, 17] propose an energy-aware
target detection and localization strategy for cluster-based
wireless networks. Rabbatet. al [9] present a robust localiza-
tion algorithm of an isotropic energy source through kernel
average over measurements from distributed sensors. Blatt
and Hero [1] describe the aggregated projection onto convex
sets (APOCS) method by treating the localization problem in
its convex feasibility formulation. [1] employ a fast conver-
gent iterative optimization to achieve the global optimum.Li
et. al [6] estimate target position by solving a non-linear least
square problem and assuming that sensors are pre-calibrated.
Target localization based on the time-of-arrival (TOA) [5]or
the direction-of-arrival (DOA) [12] of acoustical/seismic sig-
nals is also explored. Locating victims through emergency
sensor networks in a centralized fashion is studied in [10].In

[13, 14], a spanning tree rooted at the sensor node close to
a target is used for target tracking, with target position esti-
mated by the location of the root sensor.

In this paper, we focus on leveraging multi-modal sensor
network involving both low-cost non-imaging sensor devices
and direct image sensors collaboratively to calibrate the non-
image sensor readings, and localize the target position over-
time simultaneously.

6 Conclusion

The conclusion goes here.
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for different combinations ofN1 andN2 wheni = 8.
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Figure 7: Illustration of the calibration errors,|β−β̄|, |T−T̄ |
and|T̃ − T̄ |, of β̄ andT̄ verse the number of measurements
for differentN2 whenN1 = (0, 0.05ST ) andi = 8.

7


