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Abstract

Target detection and localization is one of the key research
challenges in sensor networks. In this paper we propose a
heterogeneous wireless sensor network integrating imaging
and non-imaging sensors to accomplish the detection and
localization task in complex urban environments. The low-
cost non-imaging sensors provide early detection and partial
localization of potential targets and direct imaging sensors
to focus on them. Accurate target location estimated by the
imaging sensors is then used to calibrate the non-imaging
SeNsors.

We evaluate our approach through simulation and imple-
mentation on a sensor network testbed that uses MicaZ motes
equipped with magnetometers and a camera to track fer-
roustargets. Our preliminary results reveal that coordination
across different sensing modalities increases localization ac-
curacy and reduces the amount of imaging data that has to
be processed by the network.

1 Introduction

In this paper we propose a heterogeneous wireless sensor
network integrating imaging and non-imaging sensors to ac-
complish the detection and localization task in complex ur-
ban environments that is one of the key research challenges
in sensor networks. Particularly, we employ magnetome-
ters to find the coarse locations of targets within our sensin
range, then utilize these information guiding the camena se
sor to compute the more precise target positions, finally cal
brate the magnetometers’ reading parameters using nanline
least-square technique based on detected accurate taget |
tions. We validate our method with both simulation data and
a real sensor network system deployed in our laboratory. In
simulation, our experimental results demonstrate thaethe
timated magnetometers’ sensing parameters converges to th
real values under low to moderate levels of camera noise, and
the calibration results can be improved with larger numifer o
magnetometers.

Our paper is organized as follows. We first illustrate the
motivation of proposing a heterogeneous sensor network for
target detection and tracking, then our detail algorithsigie
is presented in section 3. Using simulation data under con-
trolled conditions, our method is empirically validateddan
performance evaluated using our in section 4, which is fol-

Using network of sensor devices for surveillance missiopgved by the experiments from our real sensornet system de-
is to acquire, process and extract information from demloygloyed in a real complex environment. Finally we conclude
and unmanned heterogeneous sensors in all kinds of envigag-paper and discuss the future extension and improvement.

ment. This is of great practical importance for the military

Such a network can provide a fine global picture through
the collaboration of many sensors with each observing2za Motivation

coarse local view [6]. With their capabilities for distriied

sensing and in-network processing, networked sensors lar€igure 1, we illustrate an example of our system work-
expected to be widely deployed and to perform some dec#g scenario. We present a heterogenous sensing framework
tralized information processing tasks such as environahernb solve target detection, location and tracking in reali-env
monitoring, disaster recovery and urban rescue, targatitdderonment. Direct imaging sensor, such as a surveillance cam-
fication and tracking. The difficulty in flourishing these netra, can compute the target location with high precisiom, bu
works lies in in-network processing observations from semas a limited field-of-view and can not be deployed every-

sors in close geographic proximity [4].

where. Thus it may have many blind-spots in the field lack-



View We assume the sensors can then detect the target presence

and report their readinggS; }, wheres is the sensos;’s

reading for target at locatiofi;, to the base station. Based

on the sensor readings, the base station estimates thé targe

locationsTj in the global coordinates throughur collabo-

rative localization algorithm and guides the camera to track

the target. Furthermore the sensor reading paraméjeran

also be calibrated from the estimated target positionsgusin

Figure 1: Multi-modal sensor network for target tracking.thenonlinear least square consequently. As the target moves,
the current calibrated parameters are input to the lodadiza
module to predict target’s location more accurately, armahth

o the sequential target location observations from imagamy s

sor can improve the calibration accuracy of sensor parame-

ters and readings as well. Our method results in an iterative

Cam\erﬂﬁof N\ camera ical position through either GPS or GPS-less techniques [3]
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Calibration

\ﬁ’— 3.2 Localization

) ) ) Calibration Model: We assume the signal strength propa-
Figure 2: Block diagram of the proposed target tracking S¥iste according to the ideal decay function as shown in the
tem. following equation:

REVRRNRETAS)

S = Sr/d’, (1)
ing of sensing ability. However our low-cost magnetometers
or other types of non-imaging sensors, can form a denselyvhereSr is a constant describes the original signal power,
distributed wireless network in a large range of environmef is the measured signal strength at distasicand3 is the
They can be used to find target covering the whole survélgcay factor.
lance field, but with limited localization accuracy. In a-col The signal strength measured at a sensor follows the fol-
laborative manner, the non-imaging sensors in our system gaving equation
first detect and estimate the coarse target position; thpmtre
and guide imaging sensor’s field-of-view to further localiz Sa = Sr/d° + N, (2)
target’s position accurately; finally the more preciseealg- ) ) ) o ) )
cations can also help to calibrate non-imaging sensorsl-re{€ré/V1 is a zero mean white noise satisfying Gaussian dis-

ing parameters for improved coarse-level target |Oce-m-m(,ﬂtributionj In some application, we do_ not know what kind of
in the next stage. target will present and the value 8% is unknown. The de-

cay factor( is determined by the environment. We need to

Challenges . . . L
figure out how to estimate accuratein different situation.
Its accuracy influences the result of target localization.
3 Design Localization Strategy: We propose a heterogeneous wire-
less sensor network integrating imaging and non-imaging
3.1 Overview sensors to accomplish the detection and localization task i

complex urban environments. The low-cost non-imaging
We propose a unified approach by iteratively calibrating sesensors provide early detection and partial localizatigooe
sor parameters and optimizing the target locations overtintential targets and direct imaging sensors to focus on them.
Figure 2 illustrates our unified framework for calibratioAccurate target location estimated by the imaging sensors i
and target localization that includes both non-imagingeenthen used to calibrate the non-imaging sensors.
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- o . . . the following li equations to soN& 7., Yr.].
Unified Optimization: Given a group of pairs ofd, Sy,), wing linear equations to SoN&r, , 17|

whered; is the distance from a sensgraround the target to = o T2 9 9
the camera located target afig, is the signal measurement 2z - wl)XT?’ =2y =y, = ()" =21 —y1)

at that sensor, we attempt to find the value3ofvhich best —((d))? —af —y7),i=2,.., ;1 =3,..,8
satisfy EqQ. (1). This problem can be formulated as a nontinea (10)
least square problem which is numerically solved by gradien

descent optimization, given an initial We try to minimize ~ Finally, [Xr;, Y7,] can be solved from Eq. (10) by linear
the cost function least squares fitting with 3 or more sensors.

> (Sa, = Sr/d})?. ) 4 Evaluation

Assume that the target position obtained from camkraw f Matlab to impl lqorith ith
has additive zero mean Gaussian nolég As the target e first use Matlab to implement our algorithms with con-

moves, we collect more measurements from sensor readfljﬁ led simulation :]0 vatl|dat§ the apprpach.d R(_ealtllme live
as groups of @, §7,), whered” is the distance from thth monstration with onboard sensors is under implementa-

o tion.
se_r;sor tc: th? ctimera Iocatedftar?et DPZIJIOE ?atS To simulate the parameter estimation process with multi-
o g. evzsl;a © _egacc%ra;yé)_etz m;ate te ffe tg’ S:tnls?:; modal calibration, we assume the target moves with a stable
r. adingsog, (i=3...8) n _ﬁ compute arget o 'speed in a straight line i —Y plane. Some sensor nodes are
tion 7} by least squares fitting. Lét;,y;] and [X7,, Y7,]

o 4 then randomly deployed within at least 1 and at most 4 dis-
denote the senscy; and targetl;'s coordinates. By rans-ianca ynits to the target. Assume that the target signal powe

forming the signal strength propagation model, ie. equatig g | nqwn and the sensor network is synchronized. Each
1, we can get the distana from theith sensor to targetgensor node knows its own position. The sensors receive sig-
locationT; by the following equation, nal strengths according to the Eq. 2.

3 Using simulation data under controlled conditions make it
/9T
§/ S

d = (4) feasible to validate our method qualitatively, and evaduhe
performance quantitatively. In the following, we focus on
from a group of equationsa”alyzmg two quantitative metrics: the convergent speed a
accuracy ofj to the real setting and the resulting target loca-
' tion errors, from different initial valueg, of 3, group sizes
(2, — X1,)* + (yi — Yr,)* = (&)),i = 1,...,I;1 = 3,...,8. i of magnetometers for localization, meagnetometer sensing
(5) noiseN;, camera observation noisé,. More specifically,
) ) _ the standard deviation of the signal noise is set as a ratjo (
For example, if there gmst threc_e sensors fo_r the target, e W the Sr . In the simulation we choose, — 5%, 10%, the
try to solve the following equations foXr; .Yz, ] standard deviation o5 = 0.03,0.04, ..., 0.10 distance units
- - - respectively, on both X and Y coordinates. respectively.We
(1 = XTJ')Q + (v - YTJ')Z - (djl)z’ (6) alsc?investi)éate how camera sensing can compe[;sate mz)r/dilat
(22 — XTj)z ¥ (yo — YTj)2 _ (sz'){ 7 the_location inaccuracy frpm Iovy-cost magnetometers, unde
various levels of observation noise.

Then we can estimafe&(r, , Y7, |

(3 — X7,)% + (y3 — Y1,)? = (d})?, (8)
To avoid the nonlinearity of the above equations, we cdnl Influence of initial value 5,

subtract any equation to another. For example, if subtrgct

Eq. (6) from Eq. (7), we obtain ITo evaluate the influence of the initial inpdg for the non-

linear least square fitting of, we choose?, = 1, 3, 5,7, 9.
Figure 3 (a) plots the difference of the estimagednd real3
2wy — 21) X1, + 2(y2 — y1) Y1, = (d])? — 23 — y}) g Over the number of measurements with= 10% andi = 8.
_((sz')2 22— 4. ) As shown in the figurel always converges to the same value
from different initial values of3,. For the convergence af
From I Eq.5 type equations, we can have- 1 linearly to T, similar results under differertiys are illustrated in fig-
independent equations whefé — 1) >= 2 guaranteeing ure refbeta0 (b). We have the similar results under 5%,
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Figure 3: lllustration of the calibration fof and 7' verse Figure 4: lllustration of the calibration foB and 7' verse
the number of measurements for differeft when A; = the number of measurements for different group siaen
(0,0.10S57), N3 = (0,0) andi = 8. N1 = (0,0.0557) and N3 = (0, 0).

15%, 20%. Therefored, is set as 3 in the later simulatiorV1 = (0,0.0557) and Nz = (0,0.10). It is also shown

for simplicity. that 3 is more close tgs for larger group size. Figure 5 (b)
demonstrates the difference betwdeand?” and figure 5 (c)
shows the difference betwednandT. Firstly, the location

4.2 Influence of group size error decreases with more sensor readings because we have
more accurate estimation fﬂr Secondly, there is no notice-

real 5 over the number of measurements for different group

size whenN; = (0,0.05S57) and Ny = (0,0). Figure 4
(b) plots the corresponding location error. It is shown that3 Influence of signal noiseV; and camera local-
the estimation for3 along becomes more accurate with more  jzation noise /N5

sensor readings. Furthermore, the location error desease
with larger group size since we have more accufate To study the influence of signal nois¥; to the location
error, we do the simulation when there is no signal noise

) (M = (0,0)). Figure 6 showsgs — j| error and|T" — T,
Figure 5 (a) plots the difference of the and 3 over |T—T|errors for different combinations of signal noise cam-
the number of measurements for different group size whema localization noisg/; and camera localization noisé,.
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ferent values, in proportion td/’s value, but insensitive toa target is used for target tracking, with target positioii- es

Nis. Therefore we can conclude that the localization errorated by the location of the root sensor.

in terms of calibration error and target localization erier  In this paper, we focus on leveraging multi-modal sensor

mainly contributed by the camera nois&. network involving both low-cost non-imaging sensor desice
and direct image sensors collaboratively to calibrate tive n
image sensor readings, and localize the target position ove

Moreover, figure 7 illustrates the calibration results fibr d time simultaneously.

ferent camera localization nOi%ﬁs whenN; = (0,0.0557)
andi = 8. It is clear that both3 error andT" error increase

with larger\a. 6 Conclusion

The conclusion goes here.
4.4 Experimental Results
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