BOINC: A System for Public-Resource Computing and Storage

David P. Anderson
Space Sciences Laboratory
University of California at Berkeley
davea@ssl.berkeley.edu

Abstract

BOINC (Berkeley Open Infrastructure for Network Com-
puting) is a software system that makes it easy for scientists
to create and operate public-resource computing projects.
It supports diverse applications, including those with large
storage or communication requirements. PC owners can
participate in multiple BOINC projects, and can specify
how their resources are allocated among these projects. We
describe the goals of BOINC, the design issues that we con-
fronted, and our solutions to these problems.

1 Public-Resource Computing

The world’s computing power and disk space is no
longer primarily concentrated in supercomputer centers and
machine rooms. Instead it is distributed in hundreds of mil-
lions of personal computers and game consoles belonging
to the general public. Public-resource computing (also
known as ”Global Computing” or “Peer-to-peer computing”
) uses these resources to do scientific supercomputing. This
paradigm enables previously infeasible research. It also en-
courages public awareness of current scientific research, it
catalyzes global communities centered around scientific in-
terests, and it gives the public a measure of control over the
directions of scientific progress.

Public-resource computing emerged in the mid-1990s
with two projects, GIMPS and Distributed.net. In 1999, our
group launched SETI@home [1], which has attracted mil-
lions of participants worldwide. SETI@home now runs on
about 1 million computers, providing a sustained processing
rate of over 70 TeraFLOPS (in contrast, the largest conven-
tional supercomputer, the NEC Earth Simulator, provides
about 35 TeraFLOPs).

The potential resource is much larger. The number of
Internet-connected PCs is growing rapidly, and is projected
to reach 1 billion by 2015. Together, these PCs could pro-
vide many PetaFLOPs of computing power. The public-
resource approach applies to storage as well as computing.

If 100 million computer users each provide 10 Gigabytes of
storage, the total (one Exabyte, or 10'8 bytes) would exceed
the capacity of any centralized storage system.

In spite of this resource, and an abundance of promis-
ing applications, relatively few large-scale public-resource
projects have emerged. This is due in part to the lack of ap-
propriate middleware (client and server software, manage-
ment tools, user-centered web features, and so on). Some
open-source systems have been developed, such as Cosm,
jxta, and XtremWeb [4], but these systems provide only part
of the necessary functionality. Commercial systems such as
Entropia [2] and United Devices are more full-featured but
not free.

1.1 Contrast with Grid computing

Public-resource computing and Grid computing
share the goal of better utilizing existing computing re-
sources. However, there are profound differences between
the two paradigms, and it is unlikely that current Grid mid-
dleware [5] will be suitable for public-resource computing.

Grid computing involves organizationally-owned re-
sources: supercomputers, clusters, and PCs owned by uni-
versities, research labs, and companies. These resources are
centrally managed by IT professionals, are powered on most
of the time, and are connected by full-time, high-bandwidth
network links. There is a symmetric relationship between
organizations: each one can either provide or use resources.
Malicious behavior such as intentional falsification of re-
sults would be handled outside the system, e.g. by firing the
perpetrator.

In contrast, public resource computing involves an
asymmetric relationship between projects and participants.
Projects are typically small academic research groups with
limited computer expertise and manpower. Most partici-
pants are individuals who own Windows, Macintosh and
Linux PCs, connected to the Internet by telephone or cable
modems or DSL, and often behind network-address trans-
lators (NATSs) or firewalls. The computers are frequently
turned off or disconnected from the Internet. Participants

are not computer experts, and participate in a project only
if they are interested in it and receive “incentives” such as
credit and screensaver graphics. Projects have no control
over participants, and cannot prevent malicious behavior.

Accordingly there are different requirements on middle-
ware for public resource computing than for Grid com-
puting. For example, BOINC’s features such as redun-
dant computing, cheat-resistant accounting, and support for
user-configurable application graphics are not necessary in
a Grid system; in fact, most of the features described in the
remainder of this paper apply primarily to public-resource
computing.

Conversely, Grid computing has many requirements that
public-resource computing does not. A Grid architec-
ture must accommodate many existing commercial and
research-oriented academic systems, and must provide a
general mechanism for resource discovery and access. In
fact, it must address all the issues of dynamic heterogeneous
distributed systems, an active area of Computer Science re-
search for several decades. This has led to architecture such
as Open Grid Services Architecture [7], which achieve gen-
erality at the price of complexity and, to some extent, per-
formance.

2 BOINC

BOINC (Berkeley Open Infrastructure for Network
Computing) is an platform for public-resource distributed
computing. BOINC is being developed at U.C. Berkeley
Spaces Sciences Laboratory by the group that developed
and continues to operate SETI@home. BOINC is open
source and is available at http://boinc.berkeley.edu.

2.1 Goals of BOINC

BOINC'’s general goal is to advance the public re-
source computing paradigm: to encourage the creation of
many projects, and to encourage a large fraction of the
world’s computer owners to participate in one or more
projects. Specific goals include:

Reduce the barriers of entry to public-resource com-
puting. BOINC allows a research scientist with moderate
computer skills to create and operate a large public-resource
computing project with about a week of initial work and an
hour per week of maintenance. The server for a BOINC-
based project can consist of a single machine configured
with common open-source software (Linux, Apache, PHP,
MySQL, Python).

Share resources among autonomous projects.
BOINC-based projects are autonomous. Projects are not
centrally authorized or registered. Each project operates
its own servers and stands completely on its own. Never-
theless, PC owners can seamlessly participate in multiple

projects, and can assign to each project a “resource share”
determining how scarce resource (such as CPU and disk
space) are divided among projects. If most participants
register with multiple projects, then overall resource uti-
lization is improved: while one project is closed for repairs,
other projects temporarily inherit its computing power. On
a particular computer, the CPU might work for one project
while the network is transferring files for another.

Support diverse applications. BOINC accommodates
a wide range of applications; it provides flexible and scal-
able mechanism for distributing data, and its scheduling al-
gorithms intelligently match requirements with resources.
Existing applications in common languages (C, C++, FOR-
TRAN) can run as BOINC applications with little or no
modification. An application can consist of several files
(e.g. multiple programs and a coordinating script). New
versions of applications can be deployed with no participant
involvement.

Reward participants. Public-resource computing
projects must provide “incentives” in order to attract and
retain participants. The primary incentive for many par-
ticipants is credit: a numeric measure of how much com-
putation they have contributed. BOINC provides a credit-
accounting system that reflects usage of multiple resource
types (CPU, network, disk), is common across multiple
projects, and is highly resistant to “cheating” (attempts to
gain undeserved credit). BOINC also makes it easy for
projects to add visualization graphics to their applications,
which can provide screensaver graphics.

2.2 Projects using BOINC

A number of public-resource computing projects
are using BOINC. The requirements of these projects have
shaped the design of BOINC.

SETI@home, a continuation of the original
SETI@home project [1], performs digital signal pro-
cessing of radio telescope data from the Arecibo radio
observatory. A BOINC-based version of this project
has been developed, and we are currently shifting the
existing SETI@home user base (over 500,000 active
participants) to the BOINC-based version. The BOINC-
based SETI@home will use client disks to archive data,
eliminating the need for its central tape archive.

Predictor@home: [11] This project, based at The
Scripps Research Institute, studies protein behavior using
CHARMM, a FORTRAN program for macromolecular dy-
namics and mechanics. It is operational within Scripps, and
is being readied for a public launch.

Folding@home [10]. This project is based at Stanford
University. It studies protein folding, misfolding, aggrega-
tion, and related diseases. It uses novel computational meth-
ods and distributed computing to simulate time scales thou-

sands to millions of times longer than previously achieved.
A BOINC-based project has been implemented and is being
tested.

Climateprediction.net [14]. The aim of this project
(based at Oxford University) is to quantify and reduce the
uncertainties in long-term climate prediction based on com-
puter simulations. This is accomplished by running large
numbers of simulations with varying forcing scenarios (ini-
tial and boundary conditions, including natural and man-
made components) and internal model parameters. The Cli-
mateprediction.net application (a million-line FORTRAN
program) produces a 2 GB detailed output file for each
50-year simulation run (which takes about 3 PC-months).
These output files need to be uploaded and examined in a
small fraction of cases - for example, when the smaller sum-
mary output file indicates a possible bug in the model.

Climate@home. This project is a collaboration of
researchers at NCAR, MIT, UCAR, Rutgers, Lawrence
Berkeley Lab, and U.C. Berkeley. Its scientific goals are
similar to those of Climateprediction.net, but it will be using
the NCAR Community Climate System Model (CCSM).
It will collaborate with Climateprediction.net to maximize
compatibility and minimize redundant effort, and to enable
a systematic comparison of different climate models.

CERN projects. CERN (in Geneva, Switzerland) is de-
ploying a BOINC-based project on 1,000 in-house PCs, and
plans to launch the project publicly in coordination with its
50th anniversary in October 2004. The project’s current ap-
plication is a FORTRAN program that simulates the behav-
ior of the LHC (Large Hadron Collider) as a function of the
parameters of individual superconducting magnets. CERN
researchers are investigating other applications.

Einstein@home. This project involves researchers from
University of Wisconsin, U.C. Berkeley, California Insti-
tute of Technology, LIGO Hanford Observatory, University
of Glasgow, and the Albert Einstein Institute. Its purpose is
to detect certain types of gravitational waves, such as those
from spinning neutron stars, that can be detected only by
using highly selective filtering techniques that require ex-
treme computing power. It will analyze data from the Laser
Interferometry Gravitational Observatory (LIGO) and the
British/German GEO6000 gravitational wave detector.

UCB/Intel study of Internet resources. This project,
a collaboration between researchers at the U.C. Berkeley
Computer Sciences Department and the Intel Berkeley Re-
search Laboratory, seeks to study the structure and per-
formance of the consumer Internet, together with the per-
formance, dependability and usage characteristics of home
PCs, in an effort to understand what resources are avail-
able for peer-to-peer services. This project need to perform
actions at specific times of day, or in certain time ranges.
While performing these actions other BOINC applications
must be suspended. The BOINC API supports these re-

quirements.
2.3 Overview of the BOINC implementation

A BOINC project corresponds to an organization or re-
search group that does public-resource computing. It is
identified by a single master URL, which is the home page
of its web site and also serves as a directory of scheduling
servers. Participants register with projects. A project can in-
volve one or more applications, and the set of applications
can change over time.

The server complex of a BOINC project is centered
around a relational database that stores descriptions of ap-
plications, platforms, versions, workunits, results, accounts,
teams, and so on. Server functions are performed by a set
of web services and daemon processes: Scheduling servers
handles RPCs from clients; it issues work and handles re-
ports of completed results. Data servers handles file up-
loads using a certificate-based mechanism to ensure that
only legitimate files, with prescribed size limits, can be up-
loaded. File downloads are handled by plain HTTP.

BOINC provides tools (Python scripts and C++ inter-
faces) for creating, starting, stopping and querying projects;
adding new applications, platforms, and application ver-
sions, creating workunits, and monitoring server perfor-
mance. BOINC is designed to be used by scientists, not
system programmers or IT professionals; the tools are sim-
ple and well-documented, and a full-featured project can be
created in a few hours.

Participants join a BOINC-based project by visiting the
project’s web site, filling out a registration form, and down-
loading the BOINC client. The client can operate in several
modes: as a screensaver that shows the graphics of running
applications; as a Windows service, which runs even when
no users are logged in and logs errors to a database; as an
application that provides a tabular view of projects, work,
file transfers, and disk usage, and as a UNIX command-line
program that communicates through stdin, stdout and stderr,
and can be run from a cron job or startup file.

BOINC provides tools that let participants remotely in-
stall the client software on large numbers of machines, and
attach the client to accounts on multiple projects.

3 Design issues and solutions
3.1 Describing computation and data

BOINC uses a simple but rich set of abstractions for
files, applications, and data. A project defines application
versions for various platforms (Windows, Linux/x86, Mac
OS/X, etc.). An application can consist of an arbitrary set
of files.

A workunit represents the inputs to a computation: the
application (but not a particular version) a set of references
input files, and sets of command-line arguments and en-
vironment variables. Each workunit has parameters such
as compute, memory and storage requirements and a soft
deadline for completion. A result represents the result of a
computation: it consists of a reference to a workunit and a
list of references to output files.

Files (associated with application versions, workunits, or
results) have project-wide unique names and are immutable.
Files can be replicated: the description of a file includes a
list of URLs from which it may be downloaded or uploaded.
Files can have associated attributes indicating, for example,
that they should remain resident on a host after their initial
use, that they must be validated with a digital signature, or
that they must be compressed before network transfer.

When the BOINC client communicates with a schedul-
ing server it reports completed work, and receives an XML
document describing a collection of the above entities. The
client then downloads and uploads files and runs applica-
tions; it maximizes concurrency, using multiple CPUs when
possible and overlapping communication and computation.

BOINC’s computational system also provides a dis-
tributed storage facility (of computational inputs or re-
sults, or of data not related to distributed computation) as
a byproduct. This storage facility is much different from
peer-to-peer storage systems such as Gnutella, PAST [13]
and Oceanstore [9]. In these systems, files can be created
by any peer, and there is no central database of file loca-
tions. This leads to a set of technical problems (e.g. naming
and file location) that are not present in the BOINC facility.

3.2 Redundant computing

Public-resource computing projects must deal with erro-
neous computational results. These results arise from mal-
functioning computers (typically induced by overclocking)
and occasionally from malicious participants.

BOINC provides support for redundant computing, a
mechanism for identifying and rejecting erroneous results.
A project can specify that N results should be created for
each workunit. Once M < N of these have been distributed
and completed, an application-specific function is called to
compare the results and possibly select a canonical result.
If no consensus is found, or if results fail, BOINC creates
new results for the workunit, and continues this process
until either a maximum result count or a timeout limit is
reached.

Malicious participants can potentially game the system
by obtaining large numbers of results and detecting groups
of results that comprise a quorum. BOINC makes this dif-
ficult by a work-distribution policy that sends only at most
one result of a given workunit to a given user. Projects can

also limit the total number of results sent to a given host per
day.

BOINC implements redundant computing using several
server daemon processes:

e The transitioner implements the redundant comput-
ing logic: it generates new results as needed and iden-
tifies error conditions.

e The validater examines sets of results and selects
canonical results. It includes an application-specific
result-comparison function.

e The assimilater handles newly-found canonical re-
sults. Includes an application-specific function which
typically parses the result and inserts it into a science
database.

e The file deleter deletes input and output files from data
servers when they are no longer needed.

In this architecture servers and daemons can run on dif-
ferent hosts and can be replicated, so BOINC servers are
scalable. Availability is enhanced because some daemons
can run even while parts of the project are down (for exam-
ple, the scheduler server and transitioner can operate even
if the science database is down).

Some numerical applications produce different out-
comes for a given workunit depending on the machine ar-
chitecture, operating system, compiler, and compiler flags.
In such cases it may be difficult to distinguish between re-
sults that are correct but differ because of numerical vari-
ation, and results that are erroneous. BOINC provides a
feature called homogeneous redundancy for such applica-
tions. When this feature is enabled, the BOINC scheduler
send results for a given workunit only to hosts with the same
operation system name and CPU vendor. In this case, strict
equality can be used to compare results. BOINC is com-
patible with other schemes for ensuring result correctness

[8].
3.3 Failure and backoff

Public-resource computing projects may have millions
of participants and a relatively modest server complex. If
all the participants simultaneously try to connect to the
server, a disastrous overload condition will generally de-
velop. BOINC has a number of mechanisms to prevent this.
All client/server communication uses exponential backoff
in the case of failure. Thus, if a BOINC server comes up af-
ter an extended outage, its connection rate will be the long-
term average.

The exponential backoff scheme is extended to compu-
tational errors as well. If, for some reason, an application
fails immediately on a given host, the BOINC client will not

repeatedly contact the server; instead, it will delay based on
the number of failures.

3.4 Participant preferences

Computer owners generally participate in distributed
computing projects only if they incur no significant in-
convenience, cost, or risk by doing so. BOINC lets par-
ticipants control how and when their resources are used.
Using these controls, called general preferences, partici-
pants specify the hysteresis limits of work buffering on ma-
chines (which determines the frequency of network activ-
ity); whether BOINC can do work while mouse/keyboard
input is active; during what hours can BOINC do work; how
much disk space can BOINC use; how much network band-
width can BOINC use; and so on. These preferences are
edited via a web interface, and are propagated to all hosts
attached to the account. Participants can create separate sets
of preferences for computers at home, work, and school.

Some non-obvious controls are important to certain
classes of participants. For example, DSL service in
some countries has monthly transfer limits (typically a few
hundred MB). BOINC provides a preference for upload,
download and combined transfer limits over arbitrary pe-
riods. Some BOINC-based applications perform computa-
tions that are so floating-point intensive that they cause CPU
chips to overheat. BOINC allows users to specify a duty cy-
cle for such applications on a given CPU.

3.5 Credit and accounting

BOINC provides an accounting system in which there is
a single unit of credit”, a weighted combination of com-
putation, storage, and network transfer. This can be me-
tered in various ways. By default, the BOINC client runs
benchmarks on each CPU, and a result’s “’claimed credit”
is based on this benchmark and elapsed CPU time. Credit
“cheating” is made difficult using the redundancy mecha-
nism described above: Each result claims a certain amount
of credit, but is granted only the average or minimum (the
policy is project-specificed) of the claimed credit of correct
results.

Our experience with SETI@home has shown that par-
ticipants are highly motivated by credit, and are particularly
interested in their ranking relative to other users. This infor-
mation is typically displayed on web-based “leaderboards”
showing the ranking of participants or teams of participants.
There are many ways in which leaderboards can be sub-
divided, filtered, ordered, and displayed. For example, a
leaderboard might show only participants from a particu-
lar country, or only those using a single PC; and it might
rank entities by total or recent average credit. Rather than
supply all these views, BOINC provides a mechanism that

exports credit-related data (at the level of participant, team,
and host) in XML files that can be downloaded and pro-
cessed by credit statistics sites operated by third parties.
Several of these currently exist.

As part of the accounting system, BOINC provides
a cross-project identification mechanism that allows ac-
counts on different projects with the same email address to
identified, in a way that doesn’t allow email addresses to be
inferred. This mechanism allows leaderboard sites to dis-
play credit statistics summed over multiple BOINC-based
projects.

Participants demand immediate gratification; they want
to see their credit totals increase at least daily. Thus
projects with long workunits (such as the climate predic-
tion projects) need to grant credit incrementally as the
workunit is being processed. BOINC offers a trickle mes-
sages mechanism, providing bidirectional, asynchronous,
reliable, ordered messages, piggybacked onto the regular
client/server RPC traffic. This can be used to convey credit
or to report a summary of computational state; in the latter
case, reply messages can abort wayward computations.

Some projects use non-CPU computational resources.
For example, SETI@home is working with NVIDIA to
make a version of its application that can do a major portion
of the signal processing on an NVIDIA graphics coproces-
sor chip. This imposes several requirements on BOINC. To
maximize resource usage, the local scheduler must run such
applications concurrently with CPU-intensive applications.
The BOINC API allows applications to report computation
(in units of FLOPs, for example) to the core client, since
computation can no longer be measured in terms of bench-
marks and CPU times. The BOINC API also allows appli-
cations to describe the specific architectural features (e.g.
the presence of a GPU, and its model number) so that this
information can be stored in the database and made avail-
able for debugging and resource analysis.

3.6 User community features

BOINC provides participant-oriented web sites features
such as

o The ability to form teams.

e The ability to create and browse ’user profiles’ includ-
ing text and images.

e Message boards, including a dynamic FAQ system
that encourages participants to answer each others’
questions. These facilities are integrated with the ac-
counting system: credit and seniority provide a form
of reputation system [12].

These features are important in attracting and retaining
participants, and in providing a “customer support” mecha-
nism that consumes little project resources.

3.7 Handling large numbers of platforms

Although the bulk of public computing resources use the
Windows/Intel platform, there are many other platforms,
far more than can easily be accessed by a typical project.
BOINC provides a flexible and novel framework for dis-
tributing application executables. Normally, these are com-
piled and distributed by the project itself, for a given set of
platforms (those accessible to the project). This mechanism
is fine for most participants, but it’s inadequate for some,
such as:

e Participants who, for security reasons, want to only run
executables they have compiled themselves.

e Participants whose computers have platforms not sup-
ported by the project.

e Participants who want to optimize applications for par-
ticular architectures.

To meet these needs BOINC provides an anonymous
platform mechanism, usable with projects that make their
application source code available. Participants can down-
load and compile the application source code (or obtain ex-
ecutables from a third-party source) and, via an XML con-
figuration file, inform the BOINC client of these applica-
tion versions. Then, when the client communicates with
that project’s server, it indicates that its platform is “anony-
mous” and supplies a list of available application versions;
the server supplies workunits (but not application versions)
accordingly.

3.8 Graphics and screensaver behavior

The BOINC client software appears monolithic to par-
ticipants but actually consists of several components:

e The core client performs network communication
with scheduling and data servers, executes and mon-
itors applications, and enforces preferences. It is im-
plemented as a hierarchy of interacting finite-state ma-
chines, can manage unlimited concurrency of network
transfers and computations, and is highly portable.

e A client GUI provides a spreadsheet-type view of the
projects to which the host is attached, the work and
file transfers in progress, and the disk usage. It also
provides an interface for operations such as joining and
quitting projects. It communicates with the core client
via XML/RPC over a local TCP connection.

e An API, linked with application executables, that in-
teracts with the core client to report CPU usage and
fraction done, to handle requests to provide graphics,
and to provide heartbeat functionality.

e A screensaver program (implemented within the
platform-specific screensaver framework) which,
when activated, instructs the core client to provide
screensaver graphics. The core client generally
delegates graphics this to a running graphics-capable
application; if there is none, it generates graphics
itself.

BOINC also provides a framework for project prefer-
ences, specific to individual projects; this can be used, for
example, to control the appearance of visualization graph-
ics.

3.9 Local scheduling

The BOINC core client, in its decisions of when to get
work and from what project, and what tasks to execute at a
given point, implements a "local scheduling policy”. This
policy has several goals:

e To maximize resource usage (i.e. to keep all processors
busy);

o To satisfy result deadlines;

e To respect the participant’s resource share allocation
among projects;

e To maintain a minimal “variety” among projects. This
goal stems from user perception in the presence of long
workunits. Participants will become bored or confused
if they have registered for several projects and see only
one project running for several months.

The core client implements a scheduling policy, based on
a dynamic “resource debt” to each project, that is guided by
these goals.

4 Conclusion

We have described the public-resource computing
paradigm, contrasted it with Grid computing, and pre-
sented the design of a software system, BOINC, that fa-
cilitates it. BOINC is being used by several existing
projects (SETI@home, Predictor@home, climatepredic-
tion.net) and by several other projects in development.

Many areas of the BOINC design are incomplete. For
example, some projects require efficient data replication:
Einstein@home uses large (40 MB) input files, and a given
input file may be sent to a large number of hosts (in con-
trast with projects like SETI@home, where each input file
is different). In its initial form, Einstein@home will sim-
ply send the files separately to each host, using a system of
replicated data servers. Eventually we plan to use a mech-
anism such as BitTorrent [3] for efficiently replicating files
using peer-to-peer communication.

We are studying policies and mechanisms for dealing
with scarce-resource situations (i.e., when disks become full
due to expanding BOINC or non-BOINC disk usage, or
when user preferences change). These mechanisms must
enforce the participant’s resource shares. They must delete
files in a rational order based on resource share, replica-
tion level, project-specified priority, and so on. We are also
studying the issue of multiple disks; BOINC now uses stor-
age only on the disk or filesystem on which it is installed.
This mechanism must allow user to specify preferences for
whether and how alternate disks are used, and it must deal
with situations where hosts share network-attached storage.

References

[1] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. ”SETI@home: An experiment in public-
resource computing”. Communications of the ACM,
Nov. 2002, Vol. 45 No. 11, pp. 56-61.

[2] A. Chien, B. Calder, S. Elbert, K. Bhatia. "Entropia:
architecture and performance of an enterprise desktop
grid system”. Journal of Parallel and Distributed Com-
puting 63, 5. P. 597-610, May 2003

[3] B. Cohen. "Incentives Build Robustness in BitTorrent”,
Workshop on Economics of P2P systems. June 2003.

[4] Gilles Fedak, Cecile Germain, Vincent Neri, Franck
Cappello. "XtremWeb: A Generic Global Comput-
ing Platform”. IEEE/ACM — CCGRID’2001 Special
Session Global Computing on Personal Devices, May
2001, IEEE press

[5] L. Foster and C, Kesselman. Globus: A metacomput-
ing infrastructure toolkit. Int’l Supercomputer Applica-
tions, 11(2), p. 115-128, 1997.

[6] I. Foster and A. Iamnitchi. ”Death, Taxes, and the
Convergence of Peer-to-Peer and Grid Computing”. In
2nd International Workshop on Peer-to-Peer Systems
(IPTPS ’03), Feb. 2003.

[7] L Foster, C. Kesselman, J.M. Nick and S. Tuecke. ”Grid
Services for Distributed Systems Integration”, IEEE
Computer, 35 (6). 2002.

[8] C. Germain. "Result Checking in Global Computing
Systems”. ACM Int. Conf. on Supercomputing (ICS
03). 2003. P. 226-233.

[9] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, B. Zhao. Oceanstore: An Architecture for
Global-scale Persistent Storage. Proceedings of CAM
ASPLOS, November 2000.

[10] V. Pande et al., ”Atomistic Protein Folding Simula-
tions on the Submillisecond Time Scale Using World-
wide Distributed Computing”. Biopolymers, Vol. 68.
2003. P. 91-109.

[11] Predictor@home: http://predictor.scripps.edu

[12] Paul Resnick, Ko Kuwabara, Richard Zeckhauser,
Eric Friedman. “Reputation systems”, Communica-
tions of the ACM, v.43 n.12, p.45-48, Dec. 2000

[13] A. Rowstron and P. Druschel. Storage management
and caching in PAST, a large-scale persistent peer-to-
peer storage facility. Symposium on Operating System
Principles. P. 188-201. 2001.

[14] D. Stainforth et al., ”Climateprediction.net: Design
Principles for Public-Resource Modeling Research”,
Proceedings of the 14th IASTED International Confer-
ence on Parallel and Distributed Computing Systems.
(2002).

