
203

E-governance Challenges and Strategies

for Better-managed Projects

Rajat K Baisya1 and Siddhartha Paul Tiwari1*

ABSTRACT
A study on e-governance challenges and strategies for managing projects has been
attempted. Software crisis even today is a widespread affliction. Manifested as over-spent
budgets, missed deadlines, and unmet requirements, the software crisis costs is a major
threat for the currently developing e-governance sphere. Mismanaging a software
development project in case of e-governance can mean ineffectively delivering services to
its citizens. Although throngs of texts, papers, and other narratives have been written
during the past 40 years to address the subject (and challenges) of software construction
and its related activities, there is still no comprehensive solution to the problem. This is
because software engineering is a young, complex, and ever-changing discipline. For an
individual IT organization with limited resources, solving the long-standing problem of
software engineering is improbable. The authors have tried to present a number of
strategies and best practices that will help the e-governance and IT industries look
towards realistic goals and mitigate the risks inherent to software development projects.

Keywords: E-Governance, software crisis, semantics.

1. Introduction
Governments now have taken up the challenge of creating electronic infrastructure for virtual interaction
with citizens, businessmen and others for effective delivery of services with the belief that these would
bring visible advantages, such as transparency, accountability, faster and economical delivery of services,
convenience, user-friendly access, elimination or minimization of physical interface and a host of other
advantages.

E-governance spend, hence, is increasing in every country multifold.

India is not behind in these initiatives. Government has declared important policy initiatives that included
setting up of a separate Ministry of Information Technology in 1999, parliament approval of Information
Technology Act 2000, allocation 2-3 percent of budget for IT in every government department and most
importantly the announcement of National E-governance Plan (NEGP) in 2006. NEGP has stipulated
originally with a budget 33000 crores of rupees (above 6 billion dollar) that contained 100000 Community
Services Centers (CSC), covering one CSC over 6 villages, State Data Centers, State Wide Area Networks
(SWAN) and several mission mode projects in the critical areas such as Police, Customs, Income Tax,

1 Department of Management Studies, Indian Institute of Technology, New Delhi 110016, India
* Corresponding Author (E-mail:Siddhartha@google.com, Telephone: +91-9999258149)

Emerging Technologies in E-Government

204

Justice, Treasury etc.

Despite the above emphasis, there are more failure than success. For example, Standish Groups' survey
showed that 52.7% of software projects miss their schedule and financial targets, 31.1% of all projects are
canceled, and only 16.2% of the projects are completed on time and within the budget (Hayes, 1997).
E-Governance projects are unique undertakings that involve degree of uncertainty, since these projects are
complex and have a broad scope. Heeks (2002) has compiled results on failure of projects in e-governance.
The following results on e-governance projects are an eye-opener. 15% are successes- Projects, which
attained their major goals, 50% are partial successes/failures- Projects in which major goals were not
attained or significant undesirable outcomes were noticed. 35% are total failures- Projects which were
never implemented or implemented but immediately abandoned.

In India, there are several projects which are reported to struggling or branded as failed despite been
created with much hype. ‘Gyandoot’ is an example which was started with fanfare in the central state of
India ‘Madhya Pradesh’ and subsequently won International award (Stockholm Challenge). Also struggling
to survive is the big project ‘Community Information Center (CIC)’ started in 2002 with a budget of 200
Crore and much fanfare by the Ministry of Information Technology in Assam and the North Eastern states
of the country. There are 487 such centres in the North East and 219 in Assam. Problem faced by this
project is enumerated by Nomita Das2, an independent researcher, undertook a field study of these project
in January 2007 and concluded ‘There exists a sense of helplessness and isolation among advocates of the
project in the face of the response or lack thereof from the state government. In the last five years since the
inception of the project, the government had not shown an iota of interest in establishing a formal system of
studying, monitoring and improving the project. There is lack of users’ awareness, ease of interface,
motivation of the CIC staff (who are low paid, adhoc people). Regularisation of CIC staff jobs is the
foremost issue needing attention. CIC personnel made desperate attempts to be heard by writing to local
MLAs, MPs, District Commissioners, all the way up to the President of India. They also posted their
grievances on various online chat groups. At best they found a sympathetic ear, and a whole lot of
opinions’.

Garcia, and Pardo (2005) have tried to build an understanding of the challenges of e-government initiatives
and sought to derive key success strategy (KSS). Admitting that there is no single list of challenges to e-
government initiatives, there are notable consistencies across the disciplines. These consistent challenges
are proposed as primary challenges to e-government and grouped under five categories according to their
core aspect: (i) Information and data, (ii) information technology, (iii) organizational and managerial, (iv)
legal and regulatory, and (v) institutional and environmental. These challenges are important from the point
of view of the factors of effectiveness. Some of these factors are resistance to change and managers’
attitudes and behaviour. They have in fact have also suggested strategies to tackle each of these issues and
those factors have been named as key success strategies, from which factors of effectiveness and change
management can be identified easily. For example, ‘ease of use’ and ‘usefulness’ are factors which will
boost the effectiveness of the e-governance project. Similarly, ‘End user involvement’ will reduce the
resistance to change.

From software project management angle, some care would be help as enlisted by the researchers from this
discipline. This paper outlines some of the important steps needed to ensure project related issues of
handling e-government projects with the understanding that a project management approach would help

2 http://i-quench.org/edevelopment/index.php/profiling/a-primer-on-cic-project-in-assam/ (ISBN: 355 , AUTHOR:
Nomita Das, 2007, CATEGORY: General, TRACKBACK: Trackback
UTC: 2007-03-21T20:39:52-25200

Rajat K Baisya and Siddhartha Paul Tiwari / E-governance Challenges and Strategies for Better-managed Projects

205

handling all sorts of risks associated with IT project.

2. The Software Crisis – An Introduction and History
Less than three decades after the birth of programming; around the 1960’s, the software development
process reached a pathetic state. Excessive money was spent, discipline was lacking, needs were not met,
projects were cancelled and documentation either didn’t exist or was not properly managed.

The NATO Science Committee in 1968 assembled dozens of IT experts and leaders to address these issues,
these issues were eventually termed as the ‘software crisis’. They defined software engineering as the
application of a systematic, well organized and quantifiable approach towards the development, operation,
and maintenance of software, the committee was not able to decide on the ways how the so called crisis
could be tackled. As of today, basic characteristics of software development might have changed but the
software crisis still prevails and is costing the IT industry huge amount of resources and money. On an
average a software development project misses its completion date by 50%, and 75% of the projects are
either not used at all or do not perform as intended. Now, when we apply such a situation to an e-
governance project managing pivotal information and performing crucial tasks, we can clearly see that the
impact can be of a very high magnitude.

3. The Complex Nature of Software Engineering
Software engineering is a highly complex thing to begin with. Some of the key reasons that make software
engineering a challenge will be:

Ambiguous Semantics: One of the most debated questions in the IT field is whether or not the term
‘software engineering’ justifies the usage of the word engineering in the first place. The National Society of
Professional Engineers (NSPE), founded in 1934, is a group encouraging the education and safeguarding
the rights of engineers throughout the United States. In the 1990s, the NSPE filed a lawsuit to prevent the
usage of the term ‘software engineer’ as a job title; they eventually won the case a decade later. There
argument was that software engineering as a discipline does not meet the minimum criteria that other, more
common, engineering fields met.

Engineering can be defined as the application of science and its various manifestations to solve problems in
an effective manner. However, some maintain that there is very little science involved in software
engineering. They argue that software engineering only involves mathematical algorithms that operate
software, something that will be rendered useless if there are no computers; hence there is no manifestation
of the science found in nature. According to this definition, anything that is not realizable in a practical
sense is not actually engineering.

Nascent Discipline: Software engineering is comparatively a new discipline as compared to the other more
traditional branches of engineering. The process of software development comprises of numerous clearly
understood moving parts. What is difficult is to assemble these parts into a single unified working part.
This drawback of software development can prove to be a bottleneck when we talk of e-governance.

How to measure effectiveness: Imperceptible nature of software makes the process of evaluation of the
success and failure of a software development project unclear. What is the baseline for “failed” projects:
cost, time, customer satisfaction, throughput, or response time? The Six Sigma quality management
technique addresses many of these issues, but in most cases this heavyweight approach is inappropriate for
small- and medium-sized software development projects. However, in case of e-governance it is pivotal to
measure the effectiveness of software.

Emerging Technologies in E-Government

206

Many determine quality solely on the number of defects identified, but there is more to the definition.
Traditional engineering branches measure quality in standard ways, such as the temperature a piece of steel
can withstand or the speed at which a vehicle can travel. Although some software characteristics can be
measured in a comparatively straightforward fashion, other characteristics cannot. For example, how does
one determine how modifiable a component really is? How does one define a ‘small’ error? Research
comes to the conclusion that probability-based methods for measuring reliability are ineffective, but
statistical methods tend to be more robust.

Uniqueness: The chances of two different software codes being exactly alike is very less, even if they are
solving the same problem. In his book, Facts and Fallacies of Software Engineering, Robert Glass
discusses how a diverse set of problems requires a diverse set of solutions. It is basically an exception to
the rule to find a large component that is reusable across applications, let alone domain. Sure, it might be
easy to build a reusable component that parses strings and share it across many applications. It is quite a
different matter to build a generic component that computes local tax rates that can be reused across the
country or the world.

Complexity: As the enormity of the problem increases, so does the complexity of the solution associated
with it. This issue reverberates through design, construction, test, and maintenance activities, causing the
curve to rise even faster.

Error Replication: In quite a few cases errors in software occur for a very specific case that might be
difficult to replicate. What may be considered as a set of unrelated behaviors may eventually be coupled,
making debugging almost impossible.

Best Practices for improving the software development process in the e-governance scenario:
There does not exist one solution to solving all the problems that have hindered software development for
decades. According to Frederick Brooks, known for his landmark contributions to computer architecture,
operating systems, and software engineering. Brooks asserts that past developments in software
engineering address only the byproducts of the software engineering process, such as disparate
technologies and programming environments or the slow speed inherent in certain design paradigms. What
really needs to happen is for the software developers and managers to address the essence of software
engineering. In other words, they need to acknowledge that developing software is complex and software is
inherently intricate. Approaches that address the nature of software engineering include the following:

Utilize Incremental (or Iterative) Techniques: Some think of software as being evolved, rather than
built. As the variables are very complex, it is rare that the requirements are understood well enough to build
the system accurately in one attempt. Clear and stable requirements are an unattainable goal. Furthermore,
the stakeholder may not even have control over his or her own environment. Therefore, review
requirements early and often. Trying and integrating lessons learned from previous iterations into
subsequent iterations is one of the best ways to learn something. There are a number of schools of thought
on where to start early iterations — with the largest components, the riskiest components, or the least
understood components. In any case, assume the first iteration will be a waste to be thrown out.

Procure Great Designers and Developers: Subscribe to the notion that developing software is all about
people, process, and tools. While finding the right talent is only one third of this equation; it definitely is
one of the most important components. The IT industry continues to look the other way and assume that
people can be swapped in and out of a project without recourse. Instead of finding qualified personnel, the
industry often falsely relies on tools and techniques to fill in the gaps made by unskilled developers, all in
an effort to save time and money. The idea of giving special attention to software developers is not new, as
computer scientist Raymond Rubey addressed in 1978, “When all is said and done, the ultimate factor in

Rajat K Baisya and Siddhartha Paul Tiwari / E-governance Challenges and Strategies for Better-managed Projects

207

software productivity is the capability of the individual software practitioner.” In the context of more
contemporary frameworks, author and agile development practitioner James Highsmith explains that when
the façade of formal and rigid process is removed, the reason projects are successful is because of the
people.

Reuse Components: The IT industry is trying to define creation of software as a design of algorithms and
modules from the scratch. Similarly, many leaders and academicians believe that software should be
assembled and not written. There are very few atomic pieces of functionality that have not already been
authored, and developing a new system is just a matter of assembling components that have been produced
by other vendors or that are products of previous implementations. While beyond the scope of this article,
component-based development (CBD) and, more recently, a service oriented architecture attempt to
address these issues. While these techniques are certainly a right step in the right direction to achieve these
goals, component reuse has its own set of risks that need to be understood and managed. Few challenges
related with component based development include:

• Who will own the component?
• Who will maintain the component?
• Who will guarantee the component’s reliability and security?
• What happens if the component becomes obsolete?
• How do you design a component without knowing how it will be used ahead of time?
• What happens if not all components are available at the time of assembly?
• What happens if the component does not exactly meet user requirements?
• Who incurs the cost of developing the component?

Additionally, in a dynamic E-Governance environment, it is important that stakeholders realize the
importance of moving away from the narrow mentality and adopt architectures that are for the overall
betterment of the industry. Individual business units may have a myopic view of the organization and can
tend to consider only their own needs. In scenarios where the project sponsors include the IT organization,
addressing this issue at an organizational level may not be as much of a problem. It is not until these
governance questions are answered, that CBD will provide a viable “cookbook” method for constructing
software to the extent that many hope it will be.

Talking more practically; developing components for reuse is harder than developing single-use
components. Reusable components increase in complexity to accommodate their generic nature. According
to a few estimates, reusable components should be tested in a minimum of three environments before they
are considered viable.

Use Tools Effectively: Tools are the enablers of reuse and reengineering, but remember this one caveat: a
poorly understood, improperly implemented, or forced usage of a tool can sometimes cause as much, if not
more damage than not using tools at all. Limitations and dangers of tools can include stuff like cost of
acquiring & applying the tool, deficiencies of the tool, false performance expectations, and inappropriate
usage plus it leads to over dependency on the tool.

Bringing such tools into the enterprise requires a culture change and buy-in from all effected parts of the
organization. Without the proper communication, selection processes, and training, tool implementations
will result in failure. When these concepts are understood, effective use of tools can have a significant
impact on the success of the e-governance project. To use tools effectively, be sure to:

• Identify tool dependencies
• Use simple tools and simple configurations of complex tools—don’t over-engineer use of the tool
• Avoid inadequate tools — don’t use a tool for the sake of using a tool

Emerging Technologies in E-Government

208

• Develop and share tool-specific knowledge
• Communicate with management about the requirements for tools
• Keep tools upgraded
• Avoid the tool pit — Use combinations of tools as necessary, instead of looking for the

“silverbullet” tool. Make sure the tools are there only to support the people and processes, and use
only the features that improve efficiency.

• Remember that paper and pencil might be the best tools after all.

Brooks’ Law: As per the Brooks’ Law, while programming work performed increases linearly with the
number of programmers, the complexity of a project increases exponentially with the number of
programmers. Therefore, numerous numbers of programmers working on a project will become entangled
in a web of confusion. Brooks himself states: “Adding manpower to a late software project makes it later.”
Hence, careful planning and consideration should be made to decrease the severity of a late project.

The Only Thing Not Susceptible to Change Is the Fact That Things Change: Even for the most basic
of implementations, gone are the days when we can assume that only when requirements gathering
activities are complete, accurate, and immutable can we start design activities. Changes made late in the
schedule are considerably more expensive to address than those uncovered earlier. It is probably a safer bet
to choose a more flexible process that accommodates for a changing environment and presents stakeholders
with artifacts and work products for review earlier, rather than later. Conversely, do not assume that if you
expect requirements to change to a minimal or moderate degree, that you will necessarily need to use an
agile development framework. While understanding the needs we might change the design such that it is
able to accommodate making any future changes an easy to implement task.

4. Concluding Remarks
With reference to E-governance never underestimate the organizational impact and business changes that
implementing a piece of software can have. Let’s not forget fundamental project management tenets when
it comes to E-Governance projects. It is critical that communication takes place in the organization before,
during, and after the project is implemented. All too often it is the case where users find out only during an
implementation that changes are on the horizon. In many cases this results in reluctant and resentful users.
Certainly problems will occur and eliminating them in their entirety is unlikely to happen anytime soon.
Instead, set realistic goals. Take the appropriate steps to mitigate risks by not overdoing the process, being
flexible.

References

1. Gibbs, W. Wayt, “Software’s Chronic Crisis,” Scientific American, September 1994.
2. Liu, Lay, “Is Software Engineering Actually Engineering?” The Iron Warrior, October 2003.
3. Cox, Brad J. (1990), “Planning the Software Industrial Revolution,” IEEE Software Magazine — Software

Technologies of the 1990s, The Institute of Electrical and Electronics Engineers.
4. Glass, Robert (2003), Facts and Fallacies of Software Engineering, Addison Wesley
5. Woodfield, Scott N., “An Experiment on Unit Increase in Problem Complexity,” IEEE Transactions on

Software Engineering, March 1979.
6. Brooks Jr., Frederick P., “No Silver Bullet — Essence and Accidents of Software Engineering,” Computer,

20, no. 4, The Institute of Electrical and Electronics Engineers, Inc., April 1987, 10–19.
7. Mills, H.D. (1971), “Top-Down Programming in Large Systems,” Debugging Techniques in Large Systems,

ed. R. Ruskin, Prentice-Hall
8. Hohmann, Luke (1997), Journey of the Software Professional — A Sociology of Software Development,

Prentice-Hall.
9. “Brooks’Law,” http://en.wikipedia.org/wiki/Brooks%27_law
10. Gil-Garcia, J. R. and Pardo, Theresa A. (2005) “E-government success factors: Mapping practical tools to

theoretical foundations”, Government Information Quarterly Vol 22 pp- 187–216

Rajat K Baisya and Siddhartha Paul Tiwari / E-governance Challenges and Strategies for Better-managed Projects

209

11. Heeks, R. (2003), “Most eGovernment-for-Development Projects Fail: How Can Risks be Reduced?”
Institute for Development Policy and Management, University of Manchester, UK.

About the authors
R. K. Baisya is serving as Professor of Marketing & Strategic Management and also served as Head of Department of
Management Studies at IIT- Delhi for three years till September 2004) and engaged in teaching , research , training and
consultancy activities. Working as consultants to many private and public sector undertakings. Honorary Visiting
Professor of Strategic Management of a leading European Business School (ENPC International Business School ,
Paris). Prof Baisya has served for over twenty eight years in industry in very senior capacity with large Indian and
multinational corporations. He has long association with large Indian Business houses having served as President &
CEO of Emami Group of Companies , Senior Vice President (Business Development) of Reckitt & Colman of India
Ltd (now known as Reckitt Benckiser India Ltd.) , General Manager- Projects and CEO of International Business of
Escorts Ltd , Controller (Corporate Planning & Coordination) and also as Technical Controller of United Breweries
Group , Project Engineering Manager of Best Foods International (formerly known as Corn Products India Ltd) , a
Unilever company , Standards & Quality Control Manager of Herbertsons Ltd and as Development Engineer and also
as Project Manager of Parle Exports Pvt. Ltd. He made significant contribution in all these industries during his tenure
there having responsible also for launch and development of many successful new products.

Siddhartha Paul Tiwari is currently Product Specialist at Google India, Inc, based out of the Gurgaon office. He is also
a doctoral student at IIT, Delhi. Prior to joining Google, Siddhartha has had wide experience in information systems.
He has also served as a visiting faculty to Indore University. Siddhartha has served as a consultant to Impetus
Technologies. He has been actively involved with Government in various high level committees. In year 2005
Siddhartha was awarded the IT Guru Award for his efforts in the field of IT education. His current interests lie in the e-
business industry and IT strategy.

