
Tableau-Based Model Checking in the PropositionalMu-Calculus�Rance CleavelandDepartment of Computer ScienceBox 8206North Carolina State UniversityRaleigh, North Carolina 27695-8206, USAAbstractThis paper describes a procedure, based around the construction of tableau proofs,for determining whether �nite-state systems enjoy properties formulated in the propo-sitional mu-calculus. It presents a tableau-based proof system for the logic and provesit sound and complete, and it discusses techniques for the e�cient construction ofproofs that states enjoy properties expressed in the logic. The approach is the basisof an ongoing implementation of a model checker in the Concurrency Workbench, anautomated tool for the analysis of concurrent systems.1 IntroductionOne area of program veri�cation that has proven amenable to automation involves the anal-ysis of �nite-state processes. While computer systems in general are not �nite-state, manyinteresting ones, including a variety of communication protocols and hardware systems, are,and their �nitary nature enables the development and implementation of decision proceduresthat test for various properties.Model checking has proven a useful means for automatically ascertaining the correctnessof such systems [2, 7, 11, 13, 27]. In this approach, one uses a logic to specify the desiredproperties of a system and a decision procedure to determine automatically if the \startstate" of the system in question satis�es these formulas. Various temporal and modal logicshave been investigated, and several case studies have pointed to the practical bene�ts of thisform of veri�cation [3, 4, 5].One particularly expressive logic is the propositional mu-calculus [16]. A wide varietyof \branching time" logics [12, 17, 21], including dynamic logic [14] and many temporallogics, have uniform encodings in this logic, and it also may be used to characterize fullythe behavior of �nite-state processes [22]; these facts make it a natural candidate for use inmodel checking. In this paper we develop a sound and complete proof system, and from it�Research supported by British Science and Engineering Research Council grant GC/D69464. The resultsin this paper were obtained while the author was a research associate at the University of Sussex in Brighton,England. 1



� ::= Aj Xj :�j � _ �j hai�j �X:�X may not appear negatively in � in the proposition �X:�.Figure 1: The syntax of the propositional mu-calculus.a model checker, for determining whether states in a �nite-state system satisfy propositionsin the propositional mu-calculus, and we discuss techniques for the e�cient construction oftableau, or top-down, proofs in this logic. Such a proof-based approach has several usefulproperties. In contrast to semantics-based strategies [13], our technique does not requirethat every state in the system be examined in order to determine if a particular state hasa property, unless the property renders such an analysis necessary. Another is that featuresof proof systems that have been developed for similar logics may be carried over into ourproof system, and therefore to the the model checker. Of particular interest in this regardare the compositional proof systems for sublogics of the mu-calculus developed by Stirling[23, 24], which allow properties of systems consisting of parallel components to be deducedon the basis of the properties enjoyed by each component. Typically, model checkers verifysystems of parallel processes by modeling parallelism as interleaving; this can result in acombinatorial explosion in the size of the state space of the system as a function of the sizesof its components. Compositional model checking represents one approach to overcoming thisproblem [6]; however, developing such model checkers is very di�cult. By applying Stirling'stechniques to the proof system contained in this paper, it is likely that a compositional proofsystem for the full mu-calculus, and hence a compositional model checker, can be developed.The remainder of the paper is organized as follows. In section 2 the syntax and semanticsof the propositional mu-calculus are presented. Section 3 contains a presentation of thetableau system and a sample tableau proof, while section 4 establishes its soundness andcompleteness. Section 5 brie
y considers techniques for an e�cient implementation, and thelast section contains our conclusions and directions for future work.2 Syntax and SemanticsSyntactically, the propositional mu-calculus is parameterized with respect to a set A ofatomic formulas, a set V (disjoint fromA) of propositional variables, and a set Act of actions.In what follows A will be ranged over by A; :::, Act will be ranged over by a; :::, V by X; :::,and formulas by �; :::. Figure 1 describes the syntax of propositions. The symbols : and_ represent negation and disjunction, respectively, while hai is a modal operator indexed byaction a. The formula �X:� is a recursive formula; the recursion operator � binds all free2



occurrences of X in �, in the usual sense.1 The syntactic restriction on the body of �X:�stipulates that any occurrences of X in � must occur inside the scope of an even number ofnegations.We shall use the standard conventions for representing ^ and ) . The proposition [a]�is derived notation for :hai:�, and �X:� for :�X::�[:X=X], where �[�=X] representsthe simultaneous replacement of free occurrences of X in � by �, with bound variables in �renamed as necessary to prevent capture of free variables in �.The following standard de�nitions are useful.De�nition 2.1 Let � be a formula. The length of �, j�j, is de�ned inductively as follows.1. � 2 A [ V ) j�j = 1.2. � is :�0; hai�0; �X:�0 ) j�j = j�0j+ 1.3. � is �1 _ �2 ) j�j = j�1j+ j�2j+ 1.De�nition 2.2 Let � and � be formulas. The immediate subterm relation is de�ned by:� �I � exactly when one of the following hold.1. � is :�.2. � is � _ �0 or �0 _ � for some �0.3. � is hai�.4. � is �X:�.The strict subterm relation, �, is de�ned as �+I , the transitive closure of �I , while � isde�ned as ��I , the transitive and re
exive closure of �I.Formulas are given meaning relative to a transition system and a function interpretingatomic propositions. Transition systems may be thought of as representations of the oper-ational behavior of processes; formally, they are triples of the form hS;Act ;!i, where Sis a set of states, Act a set of actions, and ! a relation, called the transition relation, onS � Act � S representing the state transitions resulting from the \execution" of actions.We shall write s a! s0 in lieu of hs; a; s0i 2!, and we shall sometimes say that s has ana-transition if s a! s0 for some s0. Models for the mu-calculus are quadruples of the formhS;Act ;!;V i, where hS;Act ;!i is a transition system and V is a function, called the val-uation, mapping A to sets of states. We shall also use environments, which map variables tosets of states, as a means of interpreting free propositional variables. If e is an environment,then e[X 7! S] represents the environment e with X \updated" to S.Semantically, propositions correspond to the sets of states for which they are \true". Themeaning function [[�]]M, where M is a model, is described in �gure 2; in the �gure, and inthe remainder of the paper, we omit explicit reference to M when the model is clear fromthe context. Atomic formulas, variables, negation and disjunction are interpreted in the1It should be noted that this account of the logic di�ers slightly from the standard account in that �X:�corresponds to a greatest �xed point operator, whereas the usual version of the logic has a least �xed pointoperator that is usually written �X:�. These logics are, however, expressively equivalent.3



[[A]]e = V (A)[[X]]e = e(X)[[:�]]e = S � [[�]]e[[�1 _ �2]]e = [[�1]]e[ [[�2]]e[[hai�]]e = �a([[�]]e); where �a(S) = f s0 j 9s 2 S: s0 a! s g[[�X:�]]e = [fS � S j S � [[�]]e[X 7! S] gFigure 2: The semantics of propositions.obvious fashion, while the modal proposition hai� represents the set of states having ana-transition into a state contained in the meaning of �.The interpretation of �X:� is somewhat more complicated. For any set X , h2X ;�;[;\iforms a complete lattice. A function � over this lattice is monotonic if, whenever X1 �X2; �(X1) � �(X2). By the Tarski-Knaster theorem [26], any monotonic function � over thislattice has a greatest �xed point, ��, and a least �xed point, ��, given by�� = [fS � X j S � �(S) g; and�� = \fS � X j �(S) � S g:As the next result shows, the syntactic restrictions on � guarantee that, given an environmente, the function � de�ned by �(S) = [[�]]e[X 7! S]is monotonic over the lattice de�ned by 2S and hence has a greatest �xed point; this greatest�xed point is taken as the meaning of �X:�.Lemma 2.3 Suppose X does not appear negatively in �. Then the function �(S) de�nedby [[�]]e[X 7! S] is monotonic.Proof. De�ne a function �(S) over 2S to be anti-monotonic if S1 � S2 implies that�(S2) � �(S1). The lemma is a consequence of the following slightly stronger result.Let �(S) = [[�]]e[X 7! S]. If X does not appear negatively in � then � ismonotonic, and if X does not appear positively in � then � is anti-monotonic.The proof follows from the monotonicity of _ and hai and the anti-monotonicity of : by astraightforward induction on the structure of �. 2The next lemma establishes a connection between the (syntactic) notion of substitutionand the (semantic) notion of function application. This leads to a corollary about thesemantics of unrolling recursive propositions; from these results, it is possible to establishthat [[�X:�]]e corresponds to ��, where �(S) = [[�]]e[X 7! S].Lemma 2.4 Let � and � be formulas, X be a variable, e and environment, and � thefunction �(S) = [[�]]e[X 7! S]. Then [[�[�=X]]]e= �([[�]]e).4



Proof. The proof is by induction on the structure of �. The induction hypothesis statesthat if �0 � �, then for all e, [[�0[�=X]]]e = [[�0]]e[X 7! [[�]]e]. Most cases are routine; herewe consider the case when � is �Y:�0. From the de�nition of substitution we may assumethat Y is not free in �. Given the de�nition of [[�]] it follows that[[�[�=X]]]e = [fS j S � [[�0[�=X]]]e[Y 7! S] g= [fS j S � [[�0]]e[Y 7! S][X 7! [[�]]e[Y 7! S]] gby the induction hypothesis= [fS j S � [[�0]]e[Y 7! S][X 7! [[�]]e] gsince Y is not free in �= [[�]]e[X 7! [[�]]e]:2Corollary 2.5 [[�X:�]]e = [[�[�X:�=X]]]e.The proposition �X:� may also be interpreted as an in�nite conjunction when S is �nite.In this case the complete lattice h2S ;�;[;\i is �nite, and every monotonic function over thislattice is therefore continuous. The greatest and least �xed points of a continuous function� over a complete lattice may be characterized as�� = 1\i=0 �i�� = 1[i=0 �̂iwhere �0 = S�i+1 = �(�i)�̂0 = ;�̂i+1 = �(�̂i):Now let True represent the proposition �X:X; clearly, [[True]]e = S for any environmente. Using lemma 2.4 the proposition �X:� can be shown to be semantically equivalent toV1i=0�i, where �0 = True and �i+1 = �[�i=X], while �X:� is equivalent to W1i=0 �̂i, where�̂0 = :True and �̂i+1 = �[�̂i=X].The expressiveness of this logic has been thoroughly analyzed, and interested readers arereferred to [10, 11, 13, 18]. Examples of temporal logic operators expressed in the mu-calculusinclude the following (where Act = fag).Always � = �X:(� ^ [a]X)Eventually � = �X:(� _ (haiTrue ^ [a]X))5



R1 H ` s 2 ::�H ` s 2 � R2 H ` s 2 �1 _ �2H ` s 2 �1R3 H ` s 2 �1 _ �2H ` s 2 �2 R4 H ` s 2 :(�1 _ �2)H ` s 2 :�1;H ` s 2 :�2R5 H ` s 2 hai�H ` s0 2 � (s0 2 f s0 j s a! s0 g)R6 H ` s 2 :hai�H ` s1 2 :�;H ` s2 2 :�; ::: (fs1; s2; :::g = f s0 j s a! s0 g)R7 H ` s 2 �X:�H 0 [ fs : �X:�g ` s 2 �[�X:�=X] (s : �X:� 62 H)R8 H ` s 2 :�X:�H 0 [ fs : �X:�g ` s 2 :�[�X:�=X] (s : �X:� 62 H)where H 0 = H � f s0 : � j �X:� � � g:Figure 3: Tableau rules for the propositional mu-calculus.3 The Tableau-Based Proof SystemWe now describe a proof system for establishing when states in a model M satisfy formulasin the mu-calculus. The proof rules operate on sequents of the formH `M s 2 �, whereM isthe model, s is a state from M , � is a formula and H is a set of hypotheses, or assumptions,of the form s0 : �, for s0 a state and � a closed recursive formula. In the remainder of thispaper sequents will be ranged over by �; : : :, and references to the modelM will be omitted.The intended meaning of a sequent H ` s 2 � is that under assumptions H, s satis�es �.This notion is made precise in section 4.Figure 3 lists the proof rules that we consider. The proof system is tableau-based, meaningthat proofs are conducted in a top-down fashion; accordingly, the proof rules are written withconclusions appearing above premisses, as opposed to the more traditional style. It shouldbe noted that we have written the rules this way to emphasize the fact that the proof systemmay serve as the basis of a decision procedure for determining whether states have properties;in fact, it is a simple matter to generate a more traditional, Post-style axiomatization. Weshall say more about this later. The rules are also distinguished by their treatment of negatedformulas and recursive formulas. Rules R4, R6 and R8 stipulate that negations be \driveninside" formulas, while R1 allows double negations to be eliminated. R7 and R8 requirethat in order to prove establish that a state enjoys a (negated) recursive property, it issu�cient to establish that it enjoys the (negated) unrolling of the property, provided thatassumptions involving formulas having the recursive formula as a subformula are removed,6



or discharged, from the hypothesis list. The intuitive reason why this is necessary is thefollowing. In the sequent H ` s 2 �X:�, assumptions involving �X:� as a subformulashould play no role in determining whether, under H, s has property �X:�, since theseassumptions involve formulas which are not contained in �X:�. However, when �X:� isunwound to �[�X:�=X], some of these assumptions may involve subformulas of �[�X:�=X]and may therefore improperly play a role in the proof of H 0 [ fs : �X:�g ` s 2 �[�X:�=X],and hence of H ` s 2 �X:�. To prevent this anomaly, then, such assumptions must beremoved as �X:� is unwound.Following [25], we shall say that a tableau for � is a maximal proof tree having � as itsroot and constructed using R1-R8. If �0 is a sequent resulting from the application of a ruleto �, then we say that �0 is a child of � in the tableau, and that � is the parent of �0. Asequent in a tableau is a leaf if it has no children. The height of a tableau is de�ned as thelength of the longest sequence h�0; �1; : : :i, where �i is the parent of �i+1.A leaf H ` s 2 � in a tableau is successful exactly when it meets one of the followingconditions.1. � 2 A and s 2 V (�).2. � is :A for some A 2 A and s 62 V (A).3. � is :hai�0 for some a and �0.4. � is �X:�0 for some X and �0.Notice that H ` s 2 :hai� is a leaf only when s has no a-derivatives, while H ` s 2 �X:�is a leaf only when s : �X:� 2 H. A tableau is successful exactly when all its leaves aresuccessful; the intention is that a sequent � has a proof if it has a successful tableau.A more traditional proof system may be obtained as follows. Let the axioms be successfulleaves and the rules of inference be the inverted forms of R1-R8. Then a successful (�nite)tableau for � in the tableau system corresponds to a proof of � in this system.It is also possible to develop inference rules based on R1-R8 for the derived operatorspresented in the previous section. Figure 4 contains a sample of such rules. They mayeasily be seen to follow from rules R1-R8; DR3 follows from R8, provided the assumptions : :�X:� in DR3 is translated as s : �X::�[:X=X]. It is also possible to derive rulesfor other constructs de�ned in the mu-calculus, such as the temporal operators Always andEventually.There are also the following derived success criteria for sequents involving True and [a].1. Sequents of the form H ` s 2 True are successful.2. Leaves of the form H ` s 2 [a]� are successful.These follow from the fact that any sequent H ` s 2 True must have a successful tableauand from the de�nition of [a].In the remainder of this section we present an example of a tableau generated usingrules R1-R8 and DR1-DR3. The property being tested asserts that, for transition systemshS;Act ;!i with Act = fa; bg, and such that no state is terminated (i.e. has no transitions),it is always the case that an a action is in�nitely often possible. The tableau is contained in7



DR1 H ` s 2 �1 ^ �2H ` s 2 �1;H ` s 2 �2DR2 H ` s 2 [a]�H ` s1 2 �;H ` s2 2 �; ::: (fs1; s2; :::g = f s0 j s a! s0 g)DR3 H ` s 2 �X:�H 0 [ fs : :�X:�g ` s 2 �[�X:�=X] (s : :�X:� 62 H)H 0 = H � f s0 : � j �X:� � � gFigure 4: Derived rules.�gure 5; it is successful, since each leaf is successful. An important thing to notice is that,if it were not for the discharging of assumptions involving :B every time a new assumptionfor A is introduced, no successful tableau for for ; ` s 2 A would exist, and the proof systemwould be unsound.4 Soundness and CompletenessThis section establishes the soundness and completeness for �nite-state models of the proofsystem presented in the previous section. We �rst semantically characterize sequents byrelativizing the semantics of propositions to hypothesis sets; we do so by de�ning a newsemantic function, [[�]]He, for formulas �, environments e and hypothesis sets H. It will turnout that if H is empty, then [[�]]He = [[�]]e. We shall then prove theorems that establishthe following, for closed �. (In the remainder of the paper, the parameter e to the semanticfunction will occasionally be omitted when we refer to the semantics of closed �, since inthis case [[�]]e = [[�]]e0 for any environments e and e0.)H ` s 2 � has a successful tableau if and only if s 2 [[�]]H.We start by de�ning some notation and stating a simple lemma about monotonic functions.De�nition 4.1 Let S 0 and X be sets, with S 0 � X , and let � be a monotonic function overthe complete lattice h2X ;�;[;\i. Then �S0 is the function de�ned by�S0(S) = �(S 0 [ S):Lemma 4.2 Let X be a set, with x 2 X and S � X , and let � be a monotonic functionover the complete lattice h2X ;�;[;\i. Then the following hold.1. �S is monotonic.2. x 2 �� if and only if x 2 ��fxg. 8



Transition system: t t-'$� abs1 s2For syntactic simplicity, the following abbreviations will be used. Note that B is the unrollingof A. A � �X:(�Y:([a]X ^ [b]Y ))B � �Y:([a]A^ [b]Y )The tableau below establishes that under no assumptions, s1 has property A. In order to �tthe tableau on the page, it is broken into two pieces.; ` s1 2 As1 : A ` s1 2 Bs1 : A; s1 : :B ` s1 2 [a]A ^ [b]Bs1 : A; s1 : :B ` s1 2 [a]As1 : A; s1 : :B ` s2 2 As1 : A; s2 : A ` s2 2 Bs1 : A; s2 : A; s2 : :B ` s2 2 [a]A^ [b]Bs1 : A; s2 : A; s2 : :B ` s2 2 [a]A See subtableau. s1 : A; s1 : :B ` s1 2 [b]BSubtableau: s1 : A; s2 : A; s2 : :B ` s2 2 [b]Bs1 : A; s2 : A; s2 : :B ` s1 2 Bs1 : A; s2 : A; s1 : :B; s2 : :B ` s1 2 [a]A^ [b]Bs1 : A; s2 : A; s1 : :B; s2 : :B ` s1 2 [a]A s1 : A; s2 : A; s1 : :B; s2 : :B ` s1 2 [b]Bs1 : A; s2 : A; s1 : :B; s2 : :B ` s2 2 AFigure 5: A sample tableau.
9



3. Suppose that x 2 ��. Then �� = ��fxg.Proof. The �rst of these follows directly from the de�nitions of monotonicity and �S0 . Theproof of (2) breaks into two pieces.() ) Suppose that x 2 ��. From the de�nition of ��, we have the following.x 2 �� () x 2 [fX � X j X � �(X) g() 9X 0 � X : x 2 X 0 ^X 0 � �(X 0)Since x 2 X 0 it follows that X 0 = fxg [X 0, whence �(X 0) = �fxg(X 0) and X 0 � �fxg(X 0).By de�nition, then, x 2 ��fxg(X 0).(() Suppose x 2 ��fxg(X 0). This means that there is an X � X with x 2 X and X ��fxg(X). Since �fxg(X) = �(X [ fxg) it follows that �fxg(X) = �(X), and hence x 2 ��.To prove (3), suppose that x 2 ��. Since �� = �(��) and �� = �� [ fxg, it follows that�� = �(�� [ fxg) = �fxg(��);and as ��fxg is the greatest �xed point of �fxg it follows that �� � ��fxg. To see that��fxg � ��, observe the following.��fxg = �fxg(��fxg)= �(��fxg [ fxg)= �(��fxg) since x 2 �� implies x 2 ��fxg by (2)Since �� is the greatest �xed point of �, the result follows. 2The next de�nition will be useful in the remainder of the paper.De�nition 4.3 Let H be a hypothesis set and � a formula. ThenHd� = f s j s : � 2 H g:From the de�nition of hypothesis sets, it follows that Hd� is nonempty only if � is a closedformula of the form �X:�0.The relativized semantics are given in �gure 6. The only essential di�erence between thisaccount and the one in �gure 2 involves the �xed point operator. Here hypotheses s : � areinterpreted as assertions that s \satis�es" �; accordingly, the set of states for such a formulaincludes all states assumed to satisfy the formula. These assumptions are also used to alterthe function whose maximum �xed point forms the other component in the meaning of theformula, re
ecting the fact that assumptions not only a�ect the meaning of the formula inquestion but also the meaning of the unrolling of the formula.4.1 The Finiteness of TableauxIn the remainder of the paper we shall restrict our attention to �nite models, i.e. modelshS;Act ;!;V i where jSj < 1. Our goal in this subsection is to establish that for suchmodels, every sequent � has a maximum height tableau. This result enables us to prove10



[[A]]He = V (A)[[X]]He = e(X)[[:�]]He = S � [[�]]He[[�1 _ �2]]He = [[�1]]He [ [[�2]]He[[hai�]]He = �a([[�]]He)[[�X:�]]He = (��S0) [ S 0where �a(S) = f s0 j 9s 2 S: s0 a! s g�(S) = [[�]]He[X 7! S]S0 = Hd�X:�Figure 6: The relativized semantics of propositions.results about tableaux for sequent � by induction on the maximum height such tableauxmay have; this proof technique is used in the proofs of soundness and completeness.We start by de�ning an ordering < on sequents that has no in�nite ascending chains;the proof of the main result then proceeds by well-founded induction on the inverse of thisrelation. Intuitively, this relation is to hold between �1 and �2 if it is possible that �1 is anancestor of �2 in some tableau; accordingly, it should be the case that if �1 is the parent of�2 in a tableau, then �1 < �2. This implies that the ordering should consist of two parts{onere
ecting the fact that the application of certain rules (R1-R6) results in \shorter formulas",and one re
ecting the fact that applications of other rules (R7 and R8) result in \larger"hypothesis sets.To make all this precise, we �rst need to de�ne an appropriate ordering on hypothesissets. This requires several auxiliary notions, the �rst of which is the closure of a formulade�ned below.De�nition 4.4 Let � be a formula. Then CL(�) is the smallest set satisfying the following.1. � 2 CL(�).2. ::�0 2 CL(�)) �0 2 CL(�).3. �1 _ �2 2 CL(�)) �1 2 CL(�);�2 2 CL(�).4. :(�1 _ �2) 2 CL(�)) :�1 2 CL(�);:�2 2 CL(�).5. hai�0 2 CL(�)) �0 2 CL(�).6. :hai�0 2 CL(�)) :�0 2 CL(�).7. �X:�0 2 CL(�)) �0[�X:�0=X] 2 CL(�).8. :�X:�0 2 CL(�)) :�0[�X:�0=X] 2 CL(�).11



The signi�cance of CL(�) is that for any sequent H 0 ` s0 2 �0 appearing in a tableauconstructed for H ` s 2 �, �0 2 CL(�). A similar notion of closure appears in [16], andas is pointed out there, CL(�) is �nite, and indeed bounded in size by j�j. Moreover, thefollowing holds; we state it without proof.Lemma 4.5 Let � be a formula, and suppose that �0 2 CL(�). Then CL(�0) � CL(�).We now de�ne a formula-indexed family of relations on hypothesis sets that will serveas the basis of the �nal relation on hypothesis sets. For formula �, v� is designed to relatehypothesis sets on the basis of the assumptions made about the closed recursive subformulasof �. Let H represent the set of all hypothesis sets.De�nition 4.6 Let � be a formula. Then v� is de�ned by induction on the structure of �as follows.1. � 2 A ) v�= H�H:2. � 2 V ) v�= H�H:3. � = :�0 ) v�=v�0 :4. � = �1 _ �2 ) v�=v�1 \ v�2 .5. � = hai�0 ) v�=v�0 :6. � = �X:�0 ) v�= f hH1;H2i 2v�0 j hH2;H1i 2v�0 ) H1d� � H2d� g:We shall write H1 v� H2 in lieu of hH1;H2i 2v�. These relations are best understood viaan example. Let S = fs1; s2g, and consider� = �X:(�Y:((�Z:Z) _ Y ) _X):Letting the variables X, Y and Z stand for their associated �xed point formulas, we havethe following. fs1 : Y; s1 : Xg v� fs1 : Zgfs1 : Z; s1 : Y; s1 : Xg v� fs1 : Z; s1 : Y; s2 : Y gThe next lemmas characterize some properties of v� that will be used in what follows.Lemma 4.7 Let � be a formula. Then v� is a preorder.Proof. We must show that v� is re
exive and transitive. Re
exivity is straightforward,and the proof is omitted. We establish the transitivity of v� by induction on the structureof �. The induction hypothesis states that for all �0 � �, v�0 is transitive. Most cases areroutine; we consider here the case when � is �X:�0. Suppose, then, that H1 v� H2 v� H3;we must show thatH1 v� H3, i.e. thatH1 v�0 H3 and that ifH3 v�0 H1 thenH1d� � H3d�.The former follows from the induction hypothesis and the fact that v� � v�0. To prove thelatter, assume that H3 v�0 H1; we must show that H1d� � H3d�. It is su�cient to show12



that H3 v�0 H2 and H2 v�0 H1, since these facts, coupled with the facts that H2 v� H3 andH1 v� H2, allow us to conclude that H1d� � H2d� � H3d�, and hence that H1d� � H3d�.Since H1 v� H2 v� H3, the de�nition of v� ensures that H1 v�0 H2 v�0 H3, and asH3 v�0 H1 by assumption, we have that H1 v�0 H2 v�0 H3 v�0 H1. But the inductionhypothesis guarantees that v�0 is transitive, and therefore we have that H3 v�0 H2 andH2 v�0 H1. 2On the basis of this lemma, we can de�ne the equivalence relation, =�, and the strict orderingrelation, <�, associated with �.De�nition 4.8 Let H1 and H2 be hypothesis sets.1. H1 =� H2 exactly when H1 v� H2 and H2 v� H1.2. H1 <� H2 exactly when H1 v� H2 and H2 6v� H1.It also turns out that the hypothesis sets generated by R7 (and R8) are \larger" (accordingto the recursive formula in the sequent the rule is applied to) than the hypothesis set in thesequent the rule is applied to.Lemma 4.9 Let �X:� be a formula and H and H 0 hypothesis sets withH 0 = H � f s0 : � j �X:� � � g:Then H <�X:� H 0 [ fs : �X:�g if s : �X:� 62 H.Proof. Since for any � � �X:�, Hd� = H 0d�, it follows that H 0 =� H, and as Hd�X:� �(H 0d�X:�) [ fsg, it is the case that H <�X:� H 0. 2Moreover, in a certain sense substitution \preserves" <�.Lemma 4.10 Suppose that H1 <� H2, H1 v� H2, and Y is free in �. Then H1 <�[�=Y ] H2.Proof. The proof proceeds by induction on �. Most cases are straightforward; we con-sider here the case when � � �X:�0. The induction hypothesis states that if H1 v�0 H2then H1 <�0[�=Y ] H2. From the de�nition of v� it follows that H1 v�0 H2, and the induc-tion hypothesis guarantees that H1 <�0[�=Y ] H2. Since it cannot be the case, then, thatH1 =�0[�=Y ] H2, it is by de�nition the case that H1 <�[�=Y ] H2. 2We now prove that <� has no in�nite ascending chains.Lemma 4.11 Let � be a formula. Then <� has no in�nite ascending chains.Proof. By induction on the structure of �. Most cases are routine; we consider here thecase when � is �X:�0. The induction hypothesis states that <�0 has no ascending chains.From the de�nitions of v� and <� we can deduce the following.<� = <�0 [R; whereR = f hH1;H2i j H1 =�0 H2 ^H1d� � H2d� g13



The relation R clearly has no in�nite ascending chains, since jSj < 1 and Hd� � S forall H. It is also transitive, since =�0 is an equivalence relation and � is transitive. Toestablish that the <� has no in�nite ascending chains, assume by way of contradiction thatC = hH0;H1; : : :i is an in�nite ascending <�-chain of hypothesis sets. Without loss ofgenerality we may further assume that H0 <�0 H1. We can now form the following collectionof contiguous segments of C, C0 = hH0;H1; : : : ;Hi0iC1 = hHi0 ;Hi0+1; : : : ;Hi1i...Cj = hHij�1 ;Hij�1+1; : : : ;Hiji...where the Cj satisfy the following \maximality" conditions: each C2j is a <�0-chain, Hi2j 6<�0Hi2j+1, each C2j+1 is an R-chain, and Hi2j+1 =R Hi2j+1+1. Notice that these imply that each Cjhas at least two elements and that each Cj is �nite. Now consider the sequence H0;Hi2; : : :,comprising the �rst elements of each C2j. This sequence is in�nite; moreover, given thede�nition of R, the fact that v�0 is transitive, and the fact that each Ci contains at leasttwo elements, it follows that H0 <�0 Hi2 <�0 : : :, which contradicts the induction hypothesis,namely, that <�0 contains no in�nite ascending chains. Therefore, <� contains no in�niteascending chains. 2Recall that our goal is to de�ne an ordering relation on hypothesis sets such that thehypothesis sets generated by applying a rule to a sequent are \at least" as large as thehypothesis set in the sequent. We de�ne such a relation on the basis of v� and CL(�).De�nition 4.12 Let H1;H2 2 H. Then H1��H2 holds exactly when for every �0 2 CL(�),H1 v�0 H2.Thus, if H1��H2 then H1 v�0 H2 for any �0 that may appear in a tableau generated for �.It is clear that �� is a preorder; let �� and <� be the corresponding equivalence relationand strict ordering relation, respectively. Notice that lemma 4.11 and the fact that CL(�)is �nite also guarantee that <� has no in�nite ascending chains. We are now able to de�nethe desired ordering on sequents and prove that it has no in�nite ascending chains.De�nition 4.13 Let �1 and �2 be sequents H1 ` s1 2 �1 and H2 ` s2 2 �2, respectively.De�ne �1 < �2 to hold when �2 2 CL(�1) and one of the following is true.1. H1 <�2 H2, or2. H1 ��2 H2 and j�1j > j�2j.Lemma 4.14 < has no in�nite ascending chains.Proof. Suppose there exists an in�nite chain �0 < �1 < :::, where each �i has formHi ` si 2 �i. From the de�nition of < it follows that �i+1 2 CL(�i), whence, by lemma 4.5,CL(�i+1) � CL(�i) � CL(�0). Since jCL(�0)j < 1, there must be a j with CL(�k) =14



CL(�j) for all k � j. This, however, leads to a contradiction, for in the in�nite chain�j < �j+1 < :::, �k < �k+1 exactly when Hk<�j Hk+1, or when Hk ��j Hk+1 and j�1j > j�2j,and these facts imply the existence of an in�nite ascending <�j -chain. Therefore, < has noin�nite ascending chains. 2So the inverse of < is well-founded, and we are now able to prove the next result bywell-founded induction on this relation.Theorem 4.15 For any sequent � � H ` s 2 �, there is a maximum height tableau withroot �.Proof. Let � be the sequent H ` s 2 �. The proof proceeds by well-founded inductionon the inverse of <; the induction hypothesis states that for all �0 with � < �0, there isa maximum height tableau with �0 at its root. We now perform a case analysis on �; ineach case we show that the result of applying any tableau rule results in a �nite number ofsequents �0 with � < �0 and then obtain the desired result on the basis of this fact and theinduction hypothesis. Most cases are straightforward; we consider here the case when � is�X:�0 and s : � 62 H. The only applicable rule is R7, and the sequent resulting from theapplication of this rule is �0 � H 0[fs : �g ` s 2 �0[�=X], where H 0 = H�f s : � j � � � g.It remains for us to show that � < �0; then the induction hypothesis allows us to concludethe desired result. There are two cases to consider.1. X is not free in �0. Then �0[�=X] is �0; thus, if we prove that H ��0 H 0 [ fs : �g,then � < �0 follows from the fact that j�j > j�0j. Since � 6� �0, there cannot be a� 2 CL(�0) with � � �; this implies that for all � 2 CL(�0), Hd� = (H 0[fs : �g)d�.From this fact, it follows that for any � 2 CL(�0), H =� (H 0 [ fs : �g), and henceH ��0 (H 0 [ fs : �g).2. X is free in �0. In this case it is easy to establish that CL(�) = CL(�0[�=X]). Itis therefore su�cient to show that H <� H 00 = H 0 [ fs : �g. By lemma 4.9 we havethat H <� H 00; therefore, to establish that H <� H 00 we only need show that for all� 2 CL(�), H v� H 00. Let � 2 CL(�). If � 6� � then the result follows from the factthat for all �0 � �, Hd�0 = H 00d�0. If � � �, then let �0 be the formula in CL(�0)such that � is �0[�=X]; this is guaranteed to exist from the de�nition of CL(�). It isstraightforward to verify that H v�0 H 00, whence by lemma 4.10, H <� H 00.2We can also prove the following, which implies that it is possible to enumerate all tableauxrooted by �.Theorem 4.16 For any �, there are a �nite number of distinct tableaux with root �.Proof. By induction on the height of the maximum height tableau for �. 215



4.2 Soundness and CompletenessIn the remainder of the paper, we shall useM(�) to refer to the maximumheight of tableauxfor � and Ms(�) to represent the maximum height of successful tableaux for � (provided asuccessful tableau exists). In this section, we prove the soundness and completeness of thetableau proof system. The next lemma establishes a link needed in the proof of soundnessbetween substitution (on the syntactic side) and function application (on the semantic side).Lemma 4.17 Suppose � is a formula, X a variable, and � a closed formula. Let H be ahypothesis set containing no hypotheses involving � as a strict subformula. Then[[�[�=X]]]He = �([[�]]He);where �(S) = [[�]]He[X 7! S].Proof. If X is not free in � then the result follows trivially. So assume that X is free in �;the proof proceeds by structural induction on �. Most cases are routine; we consider herethe case when � is �Y:�0. Given the de�nition of substitution we may assume that X andY are distinct. Since � is closed we have that:�[�=X] = �Y:(�0[�=X]) whence[[�[�=X]]]He = [[�Y:(�0[�=X])]]He= ���S0 [ S 0where ��(S) = [[�0[�=X]]]He[Y 7! S] andS0 = Hd(�[�=X]):Since X is free in �, � � �[�=X], so by assumption this implies that S 0 = ;. Therefore,[[�[�=X]]]He = ���:Using the induction hypothesis and the fact that � is closed and X and Y are distinct, wehave that for any S, ��(S) = [[�0[�=X]]]He[Y 7! S]= [[�0]]He[Y 7! S][X 7! [[�]]He[Y 7! S]]= [[�0]]He[X 7! [[�]]He][Y 7! S]:Now consider the de�nition of [[�]]He[X 7! [[�]]He].[[�]]He[X 7! [[�]]He] = ��S00 [ S 00; where�(S) = [[�0]]He[X 7! [[�]]He][Y 7! S]S00 = Hd�Since � has X free and H consists of assumptions involving only closed formulas, S 00 = ;;therefore, since �(S) = ��(S) for all S, it follows that �� = ���, and we are done. 2We now have the necessary machinery to prove the soundness theorem for �nite models.16



Theorem 4.18 If H ` s 2 � has a successful tableau then s 2 [[�]]H.Proof. In light of the fact that every sequent has a maximum height tableau, it su�ces toestablish that every successful leaf is semantically valid and that each inference rule preservessoundness. The interesting cases involve the inference rules for �xed point formulas. Weconsider the proof of the validity of R7 in detail; the proof for R8 follows much the samelines.Assume that H and H 0 are such thatH 0 = H � f s0 : � j �X:� � � gand s 2 [[�[�X:�=X]]](H 0[fs:�X:�g); we show that this implies that s 2 �X:�. By lemma 4.17,it follows that [[�[�X:�=X]]](H 0[fs:�X:�g)e = �([[�X:�]](H 0[fs:�X:�g));where �(S) = [[�]](H 0[fs:�X:�g)e[X 7! S] for some environment e. Now let S 0 = H 0d�X:�.From the de�nition of the relativized semantics, it follows that[[�X:�]](H 0[fs:�X:�g) = ��S0[fsg [ S 0 [ fsg;and therefore we have that[[�[�X:�=X]]](H 0[fs:�X:�g)e = �(��S0[fsg [ S 0 [ fsg) = �S0[fsg(��S0[fsg) = ��S0[fsgBy lemma 4.2(2), since s 2 ��S0[fsg we have that s 2 ��S0 , and the desired result followsfrom the fact that [[�X:�]]H can be shown to be equal to ��S0 [ S0. 2Completeness turns out to be a corollary of the soundness theorem and the next theorem.Theorem 4.19 H ` s 2 � has a successful tableau if and only if H ` s 2 :� has nosuccessful tableau.Proof. ()) Suppose that H ` s 2 � has a successful tableau. We prove that H ` s 2 :�has no successful tableau by induction on m =Ms(H ` s 2 �).BASE. In this case m = 1, and H ` s 2 � is a successful leaf. The proof now proceeds bycase analysis on the de�nition of a successful leaf. Most of the cases are straightforward; weshow here the case when � is :hai�0. For the sequent to be a leaf, it must be the case thatf s0 j s a! s0 g = ;, and this implies that H ` s 2 hai�0 is an unsuccessful leaf. Therefore,H ` s 2 ::hai�0 can have no successful tableaux.INDUCTION. Assume that m > 1. The induction hypothesis states that for all sequents�0 � H 0 ` s0 2 �0 having a successful tableau with Ms(�0) < m, H 0 ` s0 2 :�0 has nosuccessful tableau. We proceed by a case analysis on �. Most cases are routine; we considerhere two of them.� � is �X:�0. H ` s 2 � has a successful tableau exactly when�0 � H 0 [ fs : �g ` s 2 �0[�=X]does, where H 0 = H � f s0 : � j � � � g; moreover, it must be the case that Ms(�0) =m � 1, whence by the induction hypothesis, H 0 [ fs : �g ` s 2 :�0[�=X] has nosuccessful tableau. It therefore follows that H ` s 2 :� has no successful tableau.17



� � is :�X:�0. In this case H ` s 2 � has a successful tableau exactly when�0 � H 0 [ fs : �g ` s 2 :�0[�=X]does, where H 0 is as de�ned above. Moreover, since it must be the case thatMs(�0) =m � 1, it follows from the induction hypothesis that H 0 [ fs : �g ` s 2 ::�0[�=X]has no successful tableau, and therefore H 0 [ fs : �g ` s 2 �0[�=X], H ` s 2 �X:�0,and H ` s 2 :� do not, either.(() We shall actually prove that if � � H ` s 2 � has no successful tableau thenH ` s 2 :� must. We do so by induction on m =M(�).BASE.m = 1, meaning that � is an unsuccessful leaf. The proof proceeds by a case analysis.The cases are routine; here we consider the case when � is hai�0. For this to be a leaf (andtherefore unsuccessful), it must be that f s0 j s a! s0 g = ;, and therefore H ` s 2 :� is byde�nition a successful leaf.INDUCTION. Assume that m > 1. The induction hypothesis states that for all sequents�0 � H 0 ` s0 2 �0 such that M(�0) < m, if �0 has no successful tableau then H 0 ` s0 2 :�0must. The proof proceeds by a case analysis on �. Most cases are routine; we show heretwo of them.� � is �X:�0. Since � has no successful tableau, H 0 [ fs : �g ` s 2 �0[�=X] musthave no successful tableau, and we can apply the induction hypothesis to concludethat H 0 [ fs : �g ` s 2 :�0[�=X] has a successful tableau. But this implies thatH ` s 2 :� has a successful tableau as well.� � is :�X:�0. Since � has no successful tableau, H 0 [ fs : �g ` s 2 :�0[�=X] musthave no successful tableau, and we can apply the induction hypothesis to conclude thatH 0 [ fs : �g ` s 2 ::�0[�=X] must have a successful tableau. But this implies thatH 0 [ fs : �g ` s 2 �0[�=X], and hence H ` s 2 �X:�0 and H ` s 2 :�, must alsohave successful tableaux.2Corollary 4.20 If s 2 [[�]]H then H ` s 2 � has a successful tableau.Proof. Suppose to the contrary that s 2 [[�]]H but that H ` s 2 � has no successfultableau. By the previous theorem, it follows that H ` s 2 :� has a successful tableau, andby the soundness theorem it follows that s 2 [[:�]]H, meaning that s 62 [[�]]H, which is acontradiction. 25 Towards an E�cient AlgorithmIt is beyond the scope of this paper to pursue fully the question of an e�cient tableau-based model checking algorithm for the mu-calculus. In this section, however, we present astraightforward procedure based on the results of the preceding sections and prove lemmasthat enable information computed in one phase of the tableau construction process to be18



fun check1' (H ` s 2 �) =case � isA 2 A �! return(s 2 V (A))X 2 V �! error:�0 �! return not (check1'(H ` s 2 �0))�1 _ �2 �! return (check1'(H ` s 2 �1) or check1'(H ` s 2 �2))hai�0 �! for each s0 2 f s0 j s a! s0 g doif check1'(H ` s0 2 �) then return true;return false�X:�0 �! let H 0 = f s0 : � j � 6� � g inreturn (check1 0(H 0 [ fs : �g ` s 2 �0[�=X]))endfun check1 (s 2 �) = check1'(; ` s 2 �)Figure 7: A simple model checking algorithm.reused in others. The results presented in this section underlie an ongoing implementationof a model checker in the Concurrency Workbench [8, 9].Figure 7 contains a basic algorithm for determining whether or not a state (in a �nitemodel) satis�es a mu-calculus proposition. It is based on tableau rules R2, R3, R5 andR7, together with theorem 4.19; termination and correctness follow from the the resultsestablished in section 4. However, this algorithm is very ine�cient. Although we shall notformally analyze its complexity here, it is worth noting that it exhibits exponential behavioreven for formulas having no recursive subformulas, owing to the possibility of nested modaloperators. The algorithm in [13] is also exponential in the worst case; however, it is lineartime for formulas having no �xed points, and it runs in polynomial time for formulas resultingfrom the encodings of a wide variety logics in the mu-calculus.The ine�ciency of check1 stems partially from the fact that no provision is made forthe storing of results of sequents whose truth has already been determined. Accordingly, itsperformance can be improved somewhat by saving the results of previous computations andperforming a lookup before recursively examining a sequent. Additionally, there are resultsthat can be proved that allow the truth of sequents to be deduced solely on the basis of thetruth of other sequents, and we devote the rest of this section to presenting some of them.The next lemma establishes that if an assumption turns out to be \true" with respect to agiven hypothesis list, then it may be removed as an assumption without a�ecting the truthor falsity of the sequent.Lemma 5.1 Suppose that H ` s 2 �X:� has a successful tableau. Then H [ fs : �X:�g `s0 2 � has a successful tableau if and only if H ` s0 2 � does.Proof. In light of the soundness and completeness of the tableau system, it su�ces toshow that [[�]]He = [[�]]H[fs:�X:�ge19



under the assumption that s 2 [[�X:�]]He. From the de�nition of the relativized semanticswe have that [[�X:�]]He = ��S0 [ S 0;where �(S) = [[�]]He[X 7! S] and S 0 = Hd�X:�. If s : �X:� 2 H then H [fs : �X:�g = Hand the result follows. So assume that s : �X:� 62 H. Then s 2 ��S0 , and by lemma 4.2(3)it follows that ��S0 = ��S0[fsg;whence [[�X:�]]He = [[�X:�]]H[fs:�X:�ge. The result now follows by a straightforward induc-tion on �. 2This result can be used to \speed up" model checking as follows. If H [ fs : �X:�g `s0 2 � has been shown to be true (false), and H ` s 2 �X:� is subsequently shown to betrue, then it is possible to deduce that H ` s0 2 � is true (false) without having to constructa tableau for it.The next result establishes certain \monotonicity conditions" on hypothesis sets. Weneed the following de�nitions.De�nition 5.2 The relations �� and �+ are de�ned inductively as follows.1. � �+ � for any �.2. � �+ �0 ) � �� :�0.3. � �� �0 ) � �+ :�0.4. � �+ �1 ) � �+ �1 _ �2; � �+ �2 _ �1; � �+ hai�1; � �+ �X:�1.5. � �� �1 ) � �� �1 _ �2; � �� �2 _ �1; � �� hai�1; � �� �X:�1.Intuitively, � �+ � holds if there is an instance of � in � that occurs inside an even numberof negations, while � �� � holds if there is an instance of � in � that occurs inside an oddnumber of negations. From the de�nition, it is apparent that �+ [ ��=�; it is also thecase that both � �+ � and � �� � hold for certain � and �.De�nition 5.3 Let � be a formula, and let H1 and H2 be hypothesis sets. Then de�neH1 �� H2 to hold exactly when the following are true.1. For each � �+ �, H1d� � H2d�.2. For each � �� �, H2d� � H1d�.Notice that the de�nition implies that ifH1 �� H2, � �+ � and � �� �, thenH1d� = H2d�.The relation �� de�nes a sort of \syntactic monotonicity" condition for hypothesis setsrelative to �. Therefore, it should be the case that H1 �� H2 implies that [[�]]H1e � [[�]]H2e.This is in fact the case.Lemma 5.4 Let � be a formula, e an environment and H1 and H2 hypothesis sets withH1 �� H2. Then [[�]]H1e � [[�]]H2e. 20



Proof. The proof proceeds by induction on �. There are several cases to consider, mostof which are routine. We consider two of them here.� � � :�0. The induction hypothesis states that for all e andH1 andH2 withH1 ��0 H2,[[�0]]H1e � [[�0]]H2e. Now suppose that H1 �� H2. From the de�nitions of ��, �+ and��, it follows that H2 ��0 H1, and from the induction hypothesis we may concludethat [[�0]]H2e � [[�0]]H1e. Accordingly, [[�]]H1e � [[�]]H2e.� � � �X:�0. The induction hypothesis states that for all e, H1 and H2 with H1 ��0 H2,[[�0]]H1e � [[�0]]H2e. Now suppose that H1 �� H2. It clearly follows that H1 ��0 H2,and thus for any e, [[�0]]H1e � [[�0]]H2e. By de�nition, we have the following:[[�]]H1 = ��1S1 [ S1[[�]]H2 = ��2S2 [ S2 where�1(S) = [[�0]]H1e[X 7! S]�2(S) = [[�0]]H2e[X 7! S]S1 = H1d�S2 = H2d�:Since � �+ �, S1 � S2; also, for each S, �1(S) � �2(S) by the induction hypothesis.Therefore, ��1S1 [ S1 � ��2S2 [ S2.2 If H ` s 2 � has a successful tableau, and H �� H 0, then this result allows us toconclude that H 0 ` s 2 � also has a successful tableau without having to construct one.Likewise, if H ` s 2 � does not have a successful tableau, and H 0 �� H, then it is also thecase that H 0 ` s 2 � does not have a successful tableau.To conclude this section, we remark on a �nal property of tableaux. Given a sequent�, de�ne H�; s� and �� to be such that � � H� ` s� 2 ��. Suppose that s : �X:� 2 Hand that H ` s0 2 �X:� has a successful tableau T involving a leaf H 0 ` s 2 �X:� thatis successful by virtue of the fact that s : �X:� 2 H (in other words, s : �X:� 2 H�0 forall �0 between H ` s0 2 �X:� and H 0 ` s 2 �X:�). In this case we say that T depends ons : �X:�. Suppose further that H � fs : �X:�g ` s 2 �X:� is subsequently determinednot to have a successful tableau. Then it is impossible to construct a successful tableau T 0with root H � fs : �X:�g ` s0 2 �X:� that is built in the same way as T except thatthe sequents H 0 ` s 2 �X:� that were leaves in T but are not in T 0 now have tableauxbuilt for them. The import of this property is that information regarding the existence ofsuccessful tableaux for a sequent of the form H ` s0 2 �X:� can be saved, even if some ofthe hypotheses of the form s : �X:� turn out to be false. In order to do so, every successfultableau for H ` s0 2 �X:� must be computed, and the information regarding the hypothesess : �X:� 2 H that each depends on saved. If one of these hypotheses involving turns out notto be true, then the formerly successful tableau cannot be extended to a successful tableaufor H � fs : �X:�g ` s0 2 �X:�. If every successful tableau for H ` s0 2 �X:� depends ons : �X:�, then there can be no successful tableau for H � fs : �X:�g ` s0 2 �X:�.21



6 ConclusionsThis paper has presented a tableau-based proof system for determining whether �nite-stateprocesses have properties expressible in the propositional mu-calculus and has laid some ofthe groundwork for an e�cient model checking algorithm. Some of the strategies implied bythe results in the previous section have been incorporated in an implementation of a modelchecker for the Concurrency Workbench [8, 9], a tool for the automated analysis of concurrentsystems. Experience with the implementation has so far indicated that a reasonable degreeof e�ciency is possible. A variety of small examples involving processes having up to 300states and formulas involving several nested �xed points have been tried, and on a Sun 4workstation the response time has been in the range of 30 seconds.The issue of e�ciency needs a more thorough and systematic treatment. There is evi-dence to suggest that an O((jSj � j�j)id(�)+1) algorithm can be derived on the basis of theresults presented in the previous section, where id(�), the interconnection depth of �, is ameasure of the degree of mutual recursion in �. Such a complexity result would be signif-icant because a wide variety of logics may be encoded in the mu-calculus using formulashaving interconnection depth � 2; indeed, all the logics mentioned in [13] have this property.Thus, an algorithm of the stated complexity would yield cubic-time model checkers for theselogics. It is also potentially the case that an O((jSj � j�j)ad(�)+1) algorithm is possible, wheread(�) is the alternation depth of �, as de�ned in [13]. The signi�cance of this result stemsfrom the fact that this is the same worst-case complexity exhibited by the algorithm in [13].Establishing such a result in our setting would require, among other things, a proof thatthe tableau system is sound and complete for sequents of the form ; ` s 2 � even whenthe relation � in rules R7 and R8 is replaced by ��. There appears to be a proof-theoreticargument to support this claim, although a complete proof has not yet been developed.Another interesting question to pursue is the issue of compositionality alluded to in theintroduction. Using techniques developed by Stirling [23, 24], it is likely that the proof systemin this paper can be modi�ed so that properties of concurrent systems can be deduced onthe basis of the properties of their component processes. It could then be possible to developa compositional model checker for the propositional mu-calculus which could then be usedto check systems of parallel components e�ciently.Other researchers have considered the problem of model-checking in the propositionalmu-calculus. Emerson and Lei develop an e�cient semantics-based approach in [13]; usingessentially the same semantic account as in �gure 2 their algorithm computes the set ofstates corresponding to a formula in the logic. In order to determine if a state satis�es aproposition, then, one tests whether it is contained in the corresponding set. This approachcan result in unnecessary information being computed, since it is often the case that it is notnecessary to compute whether every state satis�es the formula in order to determine whethera particular one does; however, the asymptotic complexity of their algorithm is the bestknown. Arnold and Crubille [1] present a linear-time algorithm for solving recursive equationsin a logic similar in spirit to the propositional mu-calculus; using their results, it is possibleto develop a linear-time model checker for the fragment of our logic that does not containany alternating �xed points. Independently of us, Stirling and Walker [25] and Winskel[28] have also pursued tableau-based approaches. The former essentially rename recursivepropositions each time they are unwound to bound the number of unrollings, and their rules22
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