Tableau-Based Model Checking in the Propositional
Mu-Calculus®

Rance Cleaveland
Department of Computer Science
Box 8206
North Carolina State University
Raleigh, North Carolina 27695-8206, USA

Abstract

This paper describes a procedure, based around the construction of tableau proofs,
for determining whether finite-state systems enjoy properties formulated in the propo-
sitional mu-calculus. It presents a tableau-based proof system for the logic and proves
it sound and complete, and it discusses techniques for the efficient construction of
proofs that states enjoy properties expressed in the logic. The approach is the basis
of an ongoing implementation of a model checker in the Concurrency Workbench, an
automated tool for the analysis of concurrent systems.

1 Introduction

One area of program verification that has proven amenable to automation involves the anal-
ysis of finite-state processes. While computer systems in general are not finite-state, many
interesting ones, including a variety of communication protocols and hardware systems, are,
and their finitary nature enables the development and implementation of decision procedures
that test for various properties.

Model checking has proven a useful means for automatically ascertaining the correctness
of such systems [2, 7, 11, 13, 27]. In this approach, one uses a logic to specify the desired
properties of a system and a decision procedure to determine automatically if the “start
state” of the system in question satisfies these formulas. Various temporal and modal logics
have been investigated, and several case studies have pointed to the practical benefits of this
form of verification [3, 4, 5].

One particularly expressive logic is the propositional mu-calculus [16]. A wide variety
of “branching time” logics [12, 17, 21], including dynamic logic [14] and many temporal
logics, have uniform encodings in this logic, and it also may be used to characterize fully
the behavior of finite-state processes [22]; these facts make it a natural candidate for use in
model checking. In this paper we develop a sound and complete proof system, and from it

*Research supported by British Science and Engineering Research Council grant GC/D69464. The results
in this paper were obtained while the author was a research associate at the University of Sussex in Brighton,
England.

A

X

-
oV o
(a)®
vX.®

X may not appear negatively in ® in the proposition v X.®.

Figure 1: The syntax of the propositional mu-calculus.

a model checker, for determining whether states in a finite-state system satisfy propositions
in the propositional mu-calculus, and we discuss techniques for the efficient construction of
tableau, or top-down, proofs in this logic. Such a proof-based approach has several useful
properties. In contrast to semantics-based strategies [13], our technique does not require
that every state in the system be examined in order to determine if a particular state has
a property, unless the property renders such an analysis necessary. Another is that features
of proof systems that have been developed for similar logics may be carried over into our
proof system, and therefore to the the model checker. Of particular interest in this regard
are the compositional proof systems for sublogics of the mu-calculus developed by Stirling
[23, 24], which allow properties of systems consisting of parallel components to be deduced
on the basis of the properties enjoyed by each component. Typically, model checkers verify
systems of parallel processes by modeling parallelism as interleaving; this can result in a
combinatorial explosion in the size of the state space of the system as a function of the sizes
of its components. Compositional model checking represents one approach to overcoming this
problem [6]; however, developing such model checkers is very difficult. By applying Stirling’s
techniques to the proof system contained in this paper, it is likely that a compositional proof
system for the full mu-calculus, and hence a compositional model checker, can be developed.

The remainder of the paper is organized as follows. In section 2 the syntax and semantics
of the propositional mu-calculus are presented. Section 3 contains a presentation of the
tableau system and a sample tableau proof, while section 4 establishes its soundness and
completeness. Section 5 briefly considers techniques for an efficient implementation, and the
last section contains our conclusions and directions for future work.

2 Syntax and Semantics

Syntactically, the propositional mu-calculus is parameterized with respect to a set A of
atomic formulas, a set V (disjoint from A) of propositional variables, and a set Act of actions.
In what follows A will be ranged over by A, ..., Act will be ranged over by a,..., V by X, ...,
and formulas by ®,.... Figure 1 describes the syntax of propositions. The symbols — and
V represent negation and disjunction, respectively, while (a) is a modal operator indexed by
action a. The formula v X.® is a recursive formula; the recursion operator v binds all free

occurrences of X in ®, in the usual sense.! The syntactic restriction on the body of v.X.®
stipulates that any occurrences of X in ® must occur inside the scope of an even number of
negations.

We shall use the standard conventions for representing A and =- . The proposition [a]®
is derived notation for =(a)=®, and pX.® for -vX.—®[-X/X], where ®[I'/X] represents
the simultaneous replacement of free occurrences of X in ® by I', with bound variables in ®
renamed as necessary to prevent capture of free variables in I'.

The following standard definitions are useful.

Definition 2.1 Let ¢ be a formula. The length of ®, |®|, is defined inductively as follows.
1. P AUY = |9 =1.
2. ¢ is =9 (a)P, pX. ' = |O| = |P'| 4+ 1.
3.0 is®; VI = |0 = D] + |y + 1.

Definition 2.2 Let ® and I' be formulas. The immediate subterm relation is defined by:
I' <7 & exactly when one of the following hold.

1. @ sl

2.9 isI'VO ord VI for some ¢,
3. @ is (a)l.

4. ® s v X.I.

The strict subterm relation, <, is defined as <J, the transitive closure of <;, while < is
defined as <7, the transitive and reflexive closure of <;.

Formulas are given meaning relative to a transition system and a function interpreting
atomic propositions. Transition systems may be thought of as representations of the oper-
ational behavior of processes; formally, they are triples of the form (S, Act,—), where &
is a set of states, Act a set of actions, and — a relation, called the transition relation, on
S x Act x S representing the state transitions resulting from the “execution” of actions.
We shall write s = s’ in lieu of (s, a,s’) €—, and we shall sometimes say that s has an
a-transition if s = s’ for some s'. Models for the mu-calculus are quadruples of the form
(S, Act,—, V), where (S, Act,—) is a transition system and V is a function, called the val-
uation, mapping A to sets of states. We shall also use environments, which map variables to
sets of states, as a means of interpreting free propositional variables. If e is an environment,
then e¢[X +— S] represents the environment e with X “updated” to S.

Semantically, propositions correspond to the sets of states for which they are “true”. The
meaning function [—]as, where M is a model, is described in figure 2; in the figure, and in
the remainder of the paper, we omit explicit reference to M when the model is clear from
the context. Atomic formulas, variables, negation and disjunction are interpreted in the

Tt should be noted that this account of the logic differs slightly from the standard account in that v X.®
corresponds to a greatest fized point operator, whereas the usual version of the logic has a least fixed point
operator that is usually written pX.®. These logics are, however, expressively equivalent.

[Ale = V(A)
[X]e = e(X)
[-®]e = S—[P]e
[@1V P2le = [Pi]eU[Po]e
[{(a)®]e = m.([®]e), where 7 (S)={s"|Ts€ S. 5" s}
[vX.®le = (J{SCS|SC[P]e[X — 5]}

Figure 2: The semantics of propositions.

obvious fashion, while the modal proposition (a)® represents the set of states having an
a-transition into a state contained in the meaning of ®.

The interpretation of v X.® is somewhat more complicated. For any set X', (2%, C U, N)
forms a complete lattice. A function ¢ over this lattice is monotonic if, whenever X; C
X2, 0(X1) € ¢(Xz2). By the Tarski-Knaster theorem [26], any monotonic function ¢ over this
lattice has a greatest fixed point, v¢, and a least fixed point, u¢, given by

vo = ULSCX[SCa(S)), and
o = (USCa|o(s)C st

As the next result shows, the syntactic restrictions on ® guarantee that, given an environment
e, the function ¢ defined by
¢(5) = [®]e[X — 5]

is monotonic over the lattice defined by 2° and hence has a greatest fixed point; this greatest
fixed point is taken as the meaning of v X.®.

Lemma 2.3 Suppose X does not appear negatively in ®. Then the function ¢(S) defined
by [®]e[X — S] is monotonic.

Proof. Define a function ¢(S) over 25 to be anti-monotonic if S; C S5 implies that
#(52) C ¢(51). The lemma is a consequence of the following slightly stronger result.

Let ¢(5) = [@]e[X — S]. If X does not appear negatively in ® then ¢ is

monotonic, and if X does not appear positively in ® then ¢ is anti-monotonic.

The proof follows from the monotonicity of V and (a) and the anti-monotonicity of = by a
straightforward induction on the structure of ®. 0O

The next lemma establishes a connection between the (syntactic) notion of substitution
and the (semantic) notion of function application. This leads to a corollary about the
semantics of unrolling recursive propositions; from these results, it is possible to establish

that [uX.®]e corresponds to ¢, where ¢(5) = [@]e[X — S].

Lemma 2.4 Let & and I' be formulas, X be a variable, ¢ and environment, and ¢ the

function ¢(5) = [@]e[X — S]. Then [®[I'/X]]e = ¢([T]e).

Proof. The proof is by induction on the structure of ®. The induction hypothesis states
that if @ < &, then for all ¢, [®'[I'/ X]]e = [®']e[X — [[]e]. Most cases are routine; here
we consider the case when ® is vY.®’. From the definition of substitution we may assume
that Y is not free in I'. Given the definition of [—] it follows that

[T/ X][e = [J{5]SC[@[/X]Je[Y — S]}
= U{S | S C [P]e[Y — S][X — [T]e]Y — S]]}
by the induction hypothesis
= {515 C[@elY = S][X + [Ie] }
since Y is not free in I’
= [®]e[X — [[e].
O

Corollary 2.5 [vX.®]e = [®[v X.®/X]]e.

The proposition ¥ X.® may also be interpreted as an infinite conjunction when § is finite.
In this case the complete lattice (2°, C, U, N) is finite, and every monotonic function over this
lattice is therefore continuous. The greatest and least fixed points of a continuous function
¢ over a complete lattice may be characterized as

vo = O@'
pe = |J o

where

o = S
Pip1 = o(¢i)
o = 0
Sip1 = 6(o0).

Now let True represent the proposition v X.X; clearly, [True]Je = S for any environment
e. Using lemma 2.4 the proposition v X.® can be shown to be semantically equivalent to
AZ, s, where ®g = True and @4, = ®[®;/X], while pX.® is equivalent to V2, ®;, where
®y = = True and Ci)H_l = CI)[Ci)Z/X]

The expressiveness of this logic has been thoroughly analyzed, and interested readers are
referred to [10, 11, 13, 18]. Examples of temporal logic operators expressed in the mu-calculus
include the following (where Act = {a}).

Always ® = vX.(PA[a]X)
Fventually @ = puX.(®V ({a)TrueA [a] X))

HEF se -9 HFsecd v o,
R1 HEFscd R2 HE sed
R3 HFSE@l\/@Q R4 HFSE_'(Ql\/@Q)
HEFsec d, HFse-0 HF s € -9,
H|_S€<a>q) / / a
R5 HEScd (s"e{sd|s—=s})
HEs€=(a)® e .
RO e 0 AT sy e, (Bused=1{s]s =8}
HFsevX.®
R o xarrscopxayay ¢ vAeEH)
HEFse-vX.®
RS U v X 0T F s € 20 X.0/X] (s:vX.0 ¢ H)

where H' = H — {s': T | v X.® < T}.

Figure 3: Tableau rules for the propositional mu-calculus.

3 The Tableau-Based Proof System

We now describe a proof system for establishing when states in a model M satisfy formulas
in the mu-calculus. The proof rules operate on sequents of the form H Fp; s € ®, where M is
the model, s is a state from M, ® is a formula and H is a set of hypotheses, or assumptions,
of the form s’ : I', for s’ a state and I' a closed recursive formula. In the remainder of this
paper sequents will be ranged over by o, ..., and references to the model M will be omitted.
The intended meaning of a sequent H = s € ® is that under assumptions H, s satisfies ®.
This notion is made precise in section 4.

Figure 3 lists the proof rules that we consider. The proof system is tableau-based, meaning
that proofs are conducted in a top-down fashion; accordingly, the proof rules are written with
conclusions appearing above premisses, as opposed to the more traditional style. It should
be noted that we have written the rules this way to emphasize the fact that the proof system
may serve as the basis of a decision procedure for determining whether states have properties;
in fact, it is a simple matter to generate a more traditional, Post-style axiomatization. We
shall say more about this later. The rules are also distinguished by their treatment of negated
formulas and recursive formulas. Rules R4, R6 and RS8 stipulate that negations be “driven
inside” formulas, while R1 allows double negations to be eliminated. R7 and R8 require
that in order to prove establish that a state enjoys a (negated) recursive property, it is
sufficient to establish that it enjoys the (negated) unrolling of the property, provided that
assumptions involving formulas having the recursive formula as a subformula are removed,

or discharged, from the hypothesis list. The intuitive reason why this is necessary is the
following. In the sequent H F s € vX.®, assumptions involving v X.® as a subformula
should play no role in determining whether, under H, s has property v X.®, since these
assumptions involve formulas which are not contained in v.X.®. However, when v X.® is
unwound to ®[r X.®/X], some of these assumptions may involve subformulas of [X. ¢/ X]
and may therefore improperly play a role in the proof of H'U{s: v X.®} F s € d[vX.®/X],
and hence of H - s € v X.®. To prevent this anomaly, then, such assumptions must be
removed as ¥ X.® is unwound.

Following [25], we shall say that a tableau for o is a maximal proof tree having o as its
root and constructed using R1-R8. If ¢’ is a sequent resulting from the application of a rule
to o, then we say that ¢’ is a child of o in the tableau, and that o is the parent of ¢’. A
sequent in a tableau is a leaf if it has no children. The height of a tableau is defined as the
length of the longest sequence (09,01, ...), where o; is the parent of o,44.

Aleaf H F s € ® in a tableau is successful exactly when it meets one of the following
conditions.

. € Aand s € V(®).

2. ¢ is = A for some A € A and s ¢ V(A).
3. @ is =(a)®’ for some a and P’

4. @ is v X.®' for some X and 9’

Notice that H F s € =(a)® is a leaf only when s has no a-derivatives, while H F s € v X.®
is a leaf only when s : v X.® € H. A tableau is successful exactly when all its leaves are
successful; the intention is that a sequent o has a proof if it has a successful tableau.

A more traditional proof system may be obtained as follows. Let the axioms be successful
leaves and the rules of inference be the inverted forms of R1-R8. Then a successful (finite)
tableau for ¢ in the tableau system corresponds to a proof of o in this system.

It is also possible to develop inference rules based on R1-R8 for the derived operators
presented in the previous section. Figure 4 contains a sample of such rules. They may
easily be seen to follow from rules R1-R8; DR3 follows from RS8, provided the assumption
s+ pX.® in DR3 is translated as s : v X.~®[-~X/X]. It is also possible to derive rules
for other constructs defined in the mu-calculus, such as the temporal operators Always and
Eventually.

There are also the following derived success criteria for sequents involving True and [a].

1. Sequents of the form H F s € True are successful.
2. Leaves of the form H F s € [a]® are successful.

These follow from the fact that any sequent H F s € True must have a successful tableau
and from the definition of [a].

In the remainder of this section we present an example of a tableau generated using
rules R1-R8 and DR1-DR3. The property being tested asserts that, for transition systems
(S, Act,—) with Act = {a, b}, and such that no state is terminated (i.e. has no transitions),

it is always the case that an a action is infinitely often possible. The tableau is contained in

H|—3€<I>1/\<I)2
DRI HFsed , HFse d,
HFs€ad o .
DR e e o s, 0, (v =182)
HEFsepuX.® _
PR3 | e =X ®) F s e opuxayx) o0 r X2 7)

H = H-{s:T|puXd<T}

Figure 4: Derived rules.

figure 5; it is successful, since each leaf is successful. An important thing to notice is that,
if it were not for the discharging of assumptions involving =B every time a new assumption
for A is introduced, no successful tableau for for §) - s € A would exist, and the proof system
would be unsound.

4 Soundness and Completeness

This section establishes the soundness and completeness for finite-state models of the proof
system presented in the previous section. We first semantically characterize sequents by
relativizing the semantics of propositions to hypothesis sets; we do so by defining a new
semantic function, [®]e, for formulas ®, environments ¢ and hypothesis sets H. It will turn
out that if I is empty, then [®]"e = [®]c. We shall then prove theorems that establish
the following, for closed ®. (In the remainder of the paper, the parameter e to the semantic
function will occasionally be omitted when we refer to the semantics of closed ®, since in
this case [®]e = [®]¢’ for any environments e and ¢€’.)

H 't s € ® has a successful tableau if and only if s € [®]H.
We start by defining some notation and stating a simple lemma about monotonic functions.

Definition 4.1 Let 5" and X be sets, with 5" C X, and let ¢ be a monotonic function over
the complete lattice (2Y,C,U,N). Then ¢g is the function defined by

$5/(S) = (5" U S).

Lemma 4.2 Let X' be a set, with x € X and S C X, and let ¢ be a monotonic function
over the complete lattice (2%, C,U,N). Then the following hold.

1. ¢s is monotonic.

2.z €voifand only if v € voy,y.

b

Transition system: @

S1 52

For syntactic simplicity, the following abbreviations will be used. Note that B is the unrolling
of A.

A = vX.(uY.([dX A[D]Y))
B = pY.(laAA[)Y)

The tableau below establishes that under no assumptions, s; has property A. In order to fit
the tableau on the page, it is broken into two pieces.

PEs e A
sit:AFs € B
s1:Ays1: 0B sy € la]AN[DB
s1:A,s1:BF s €[alA s1: A sy B sy €[b]B

s1:A,81: " BFs; e A
s1:A,80: A sy, € B
s1:A,82: Aysy: B E sy € [a]AN BB
$1: A 890 Ajsy B F sy € [a]A ‘ See subtableau.

Subtableau:

$1: A 890 Aysy B sy € [0]B
s1: A, 89: A s9: " BFs €B
$1: A, 890 Aysy B sy B sy € [a]AN[B]B
s1:A,83: Aysy B sy Bl sy Efa]A sy Ayse i Aysy B sy B sy € [b]B
s1: A, 89: A 8B, sy BEs; e A

Figure 5: A sample tableau.

3. Suppose that x € vp. Then v = v .

Proof. The first of these follows directly from the definitions of monotonicity and ¢gs/. The
proof of (2) breaks into two pieces.
(=) Suppose that @ € v¢. From the definition of v¢, we have the following.

revy = ze|J{XCX|XCgX)}
— X' CX. ze X' ANX Co(X)

Since x € X' it follows that X' = {z} U X', whence ¢(X') = ¢ (X') and X' C ¢y (X).
By definition, then, x € vo(X’).

(<) Suppose & € vo1(X'). This means that there is an X C X with + € X and X C
br3(X). Since ¢,3(X) = ¢(X U {z}) it follows that ¢(1(X) = ¢(X), and hence = € v¢.

To prove (3), suppose that @ € vé. Since v = ¢(v¢) and vé = vo U {x}, it follows that

vp = (v U{e}) = biy(v9),

and as v¢y,y is the greatest fixed point of ¢, it follows that v¢ C v¢y,). To see that
vz C v¢, observe the following.

vouy = bmvée)
= vy Uiz}
= ¢(vo(s)) since x € v¢ implies x € vo,y by (2)

Since v¢ is the greatest fixed point of ¢, the result follows. O
The next definition will be useful in the remainder of the paper.

Definition 4.3 Let H be a hypothesis set and ® a formula. Then
H[®={s|s: P H}.

From the definition of hypothesis sets, it follows that H[® is nonempty only if ® is a closed
formula of the form v X.9'.

The relativized semantics are given in figure 6. The only essential difference between this
account and the one in figure 2 involves the fixed point operator. Here hypotheses s : ® are
interpreted as assertions that s “satisfies” ®; accordingly, the set of states for such a formula
includes all states assumed to satisfy the formula. These assumptions are also used to alter
the function whose maximum fixed point forms the other component in the meaning of the
formula, reflecting the fact that assumptions not only affect the meaning of the formula in
question but also the meaning of the unrolling of the formula.

4.1 The Finiteness of Tableaux

In the remainder of the paper we shall restrict our attention to finite models, i.e. models
(S, Act,—, V) where |S| < co. Our goal in this subsection is to establish that for such
models, every sequent o has a maximum height tableau. This result enables us to prove

10

[A]"e = V(A)
[X]7e = e(X)
[-®]7e = S —[®]"e
[®1V &) e = [&]7eU[®,] e
[(a)@]"e = mi([@]"¢)
[[Z/X.(I)]]He = (l/qbsl)US/
where 7, (S) = {s]3s€ 8. s 5 s}

[®]He[X — 5]
S = H[vX.®

IS
=z
|

Figure 6: The relativized semantics of propositions.

results about tableaux for sequent o by induction on the maximum height such tableaux
may have; this proof technique is used in the proofs of soundness and completeness.

We start by defining an ordering < on sequents that has no infinite ascending chains;
the proof of the main result then proceeds by well-founded induction on the inverse of this
relation. Intuitively, this relation is to hold between oy and o3 if it is possible that o; is an
ancestor of oy in some tableau; accordingly, it should be the case that if oy is the parent of
oy in a tableau, then o7 < g9. This implies that the ordering should consist of two parts—one
reflecting the fact that the application of certain rules (R1-R6) results in “shorter formulas”,
and one reflecting the fact that applications of other rules (R7 and R8) result in “larger”
hypothesis sets.

To make all this precise, we first need to define an appropriate ordering on hypothesis
sets. This requires several auxiliary notions, the first of which is the closure of a formula

defined below.

Definition 4.4 Let ® be a formula. Then CL(®) is the smallest set satisfying the following.
1. & e CL(®).
2. 20 e CL(®) = &' € CL(®).

O VP, e CL(®) = &, € CL(D), P, € CL(D).

(@ VEy) € CL(®) = =0y € CL(®),~®, € CL(D).

()@ € CL(®) = & € CL(®).

6. —(a)d' € CL(®) = &' € CL(D).

7. vX.0' € CL(®) = &' [vX.&'/X] € CL(®).

8. —vX.®' € CL(®) = ~®'[vX.0'/X] € CL(P).

11

The significance of C'L(®) is that for any sequent H' F s’ € @' appearing in a tableau
constructed for H F s € &, & € CL(®). A similar notion of closure appears in [16], and
as is pointed out there, C'L(®) is finite, and indeed bounded in size by |®|. Moreover, the
following holds; we state it without proof.

Lemma 4.5 Let ® be a formula, and suppose that &' € CL(®). Then CL(®") C CL(P).

We now define a formula-indexed family of relations on hypothesis sets that will serve
as the basis of the final relation on hypothesis sets. For formula ¢, Cg is designed to relate
hypothesis sets on the basis of the assumptions made about the closed recursive subformulas
of ®. Let H represent the set of all hypothesis sets.

Definition 4.6 Let ® be a formula. Then Cg is defined by induction on the structure of @
as follows.

1. e A= Co="H x H.
2.0V = LCeg=H xH.
b =-0" = Co=Lq .

O=9, VI, = Co=Lg NLCq,.

¢ = <a><I)’ = Le=Lg .
6. ® = vX.O = Co={ (I, Hy) €Co| (Hy,) ECor = H,[® C Hy[}.

We shall write H; Cg H» in lieu of (Hy, Hy) €Cg. These relations are best understood via
an example. Let § = {s1, 52}, and consider

¢ =vX.(vY.(vZ.Z)VY)V X).

Letting the variables X, Y and Z stand for their associated fixed point formulas, we have
the following.

{81:Y,81: X} Co {s1:7}
{s1:Z,81:Y,81: X} Co {s1:7,81:Y,52:Y}

The next lemmas characterize some properties of Cg that will be used in what follows.
Lemma 4.7 Let ® be a formula. Then Cg is a preorder.

Proof. We must show that Cg is reflexive and transitive. Reflexivity is straightforward,
and the proof is omitted. We establish the transitivity of Cg by induction on the structure
of ®. The induction hypothesis states that for all & < &, Cg/ is transitive. Most cases are
routine; we consider here the case when ® is v X.®’. Suppose, then, that H; Co Hy T Ha;
we must show that Hy Cg Hs, i.e. that Hy Cg Hs and that if Hs T Hy then Hy[® C H;[®.
The former follows from the induction hypothesis and the fact that Cg C Cg:. To prove the
latter, assume that Hs Cg Hp; we must show that Hy[® C Hs[®. It is sufficient to show

12

that Hs C¢ Hy and Hy Cg Hy, since these facts, coupled with the facts that Hy; C¢ Hsz and
Hi Co H, allow us to conclude that Hy[® C Hy[® C Hs[®, and hence that Hy[® C H5[®.
Since Hy Cg Hy Cg Hj, the definition of Cg ensures that Hy Cg Hy T Hs, and as
Hs Cg: Hy by assumption, we have that Hy C¢ Hy Co Hz T Hy. But the induction
hypothesis guarantees that Cg/ is transitive, and therefore we have that H; Cg Hy and
Hy Ego Hy. O

On the basis of this lemma, we can define the equivalence relation, =g, and the strict ordering
relation, Cg, associated with ®.

Definition 4.8 Let Hy and H, be hypothesis sels.
1. Hy =¢ H;y exactly when Hy Co Hy and Hy Co Hyp.
2. Hy Co Hy exactly when Hy Cg Hy and Hy Ly Hy.

It also turns out that the hypothesis sets generated by R7 (and R8) are “larger” (according
to the recursive formula in the sequent the rule is applied to) than the hypothesis set in the
sequent the rule is applied to.

Lemma 4.9 Let vX.® be a formula and H and H' hypothesis sets with
H=H-{s:T|vX.d<T}
Then H Cyxo HU{s: v X.®} ifs: v X. & & H.

Proof. Since for any I' < v X.®, H[I' = H'[T', it follows that H' =¢ H, and as H[rX.® C
(H'[vX.®) U {s}, it is the case that H C,x¢ H'. O

Moreover, in a certain sense substitution “preserves” Cg.
Lemma 4.10 Suppose that Hy Ce Hy, Hy Er Hy, and Y s free in I'. Then Hy Crio/y) Hs.

Proof. The proof proceeds by induction on I'. Most cases are straightforward; we con-
sider here the case when I' = v X.I”. The induction hypothesis states that if H; CTr Hy
then) Crie/y) Ha. From the definition of Cr it follows that [, T/ Hsy, and the induc-
tion hypothesis guarantees that H; Crie/y] Ha. Since it cannot be the case, then, that
H, =r1e/y] Hy, it is by definition the case that H; Crie/y] Hy. O

We now prove that Cg has no infinite ascending chains.

Lemma 4.11 Let ® be a formula. Then Cg has no infinite ascending chains.

Proof. By induction on the structure of ®. Most cases are routine; we consider here the
case when ® is vX.®’. The induction hypothesis states that Ce has no ascending chains.
From the definitions of Cg and Cg we can deduce the following.

Coe = Co UR, where
R = {<H17H2>|H1:<I>/H2/\H1((I)CH2((I)}

13

The relation R clearly has no infinite ascending chains, since |S| < oo and H[® C S for
all H. It is also transitive, since =¢ is an equivalence relation and C is transitive. To
establish that the Cg has no infinite ascending chains, assume by way of contradiction that
C = (Ho, Hy,...) is an infinite ascending Cg-chain of hypothesis sets. Without loss of
generality we may further assume that Hy T Hy. We can now form the following collection
of contiguous segments of C',

Co — <H07H17---,Hi0>

Ci = (Hi,,Hiy41,..., Hi))

7Hi]>

C; = (H

i]—17

Hi 11,

where the C; satisfy the following “maximality” conditions: each Cy; is a Ce/-chain, H;,, o
H;, 11, each Cyjyq is an R-chain, and H;, R H;,, . +1. Notice that these imply that each C;
has at least two elements and that each C is finite. Now consider the sequence Hy, H;,, . . .,
comprising the first elements of each C'3;. This sequence is infinite; moreover, given the
definition of R, the fact that Cg/ is transitive, and the fact that each C; contains at least
two elements, it follows that Hy Cer H;, Cgr ..., which contradicts the induction hypothesis,
namely, that Cg contains no infinite ascending chains. Therefore, Cg contains no infinite
ascending chains. O

Recall that our goal is to define an ordering relation on hypothesis sets such that the
hypothesis sets generated by applying a rule to a sequent are “at least” as large as the
hypothesis set in the sequent. We define such a relation on the basis of Cg and C'L(®).

Definition 4.12 Let Hy, Hy € H. Then Hy dg Hy holds exactly when for every ® € C L(®),
H1 Eq)/ HQ.

Thus, if Hy d¢ Hy then Hy Cgr Hy for any @' that may appear in a tableau generated for ®.
It is clear that g is a preorder; let =g and <1g be the corresponding equivalence relation
and strict ordering relation, respectively. Notice that lemma 4.11 and the fact that C'L(®)
is finite also guarantee that <1g has no infinite ascending chains. We are now able to define
the desired ordering on sequents and prove that it has no infinite ascending chains.

Definition 4.13 Let oy and oy be sequents Hy - s € ® and Hy - sy € ®q, respectively.
Define o1 < o4 to hold when ®5 € CL(®1) and one of the following is true.

1. Hy g, H, or

2. H1 =, H2 and |(I)1| > |(I)2|
Lemma 4.14 < has no infinite ascending chains.

Proof. Suppose there exists an infinite chain o0y < oy < ..., where each o; has form
H; F s; € ®;. From the definition of < it follows that ®;1; € C'L(®;), whence, by lemma 4.5,
CL(®i11) C CL(®;) C CL(®g). Since |CL(Pg)| < oo, there must be a j with CL(®y) =

14

CL(®;) for all k > j. This, however, leads to a contradiction, for in the infinite chain
0; < Ojy1 < ..., Op < Opy1 exactly when Hy g, Hypy1, or when Hy =¢, Hypq and |@1] > [®],
and these facts imply the existence of an infinite ascending <1¢,-chain. Therefore, < has no
infinite ascending chains. O

So the inverse of < is well-founded, and we are now able to prove the next result by
well-founded induction on this relation.

Theorem 4.15 For any sequent 0 = H = s € @, there is a mazimum height tableau with
root o.

Proof. Let o be the sequent H F s € ®. The proot proceeds by well-founded induction
on the inverse of <; the induction hypothesis states that for all ¢/ with ¢ < o', there is
a maximum height tableau with o’ at its root. We now perform a case analysis on ®; in
each case we show that the result of applying any tableau rule results in a finite number of
sequents o’ with o < ¢’ and then obtain the desired result on the basis of this fact and the
induction hypothesis. Most cases are straightforward; we consider here the case when ® is
vX.® and s : ® € H. The only applicable rule is R7, and the sequent resulting from the
application of thisruleis o' = H'U{s: ®} F s € ®'[®/X], where H' = H—{s: T |® < T'}.
It remains for us to show that o < ¢’; then the induction hypothesis allows us to conclude
the desired result. There are two cases to consider.

1. X is not free in ®'. Then ®'[®/X] is ®'; thus, if we prove that H =¢ H' U {s: ¢},
then o < o follows from the fact that |®| > |®’|. Since & £ &', there cannot be a
I' e CL(®") with ® < T'; this implies that for all I' € CL(®"), H[I' = (H'U{s: ®})[I".
From this fact, it follows that for any I' € CL(®’), H =p (H' U {s : ®}), and hence
H =’ (H/ U {S : (I)})

2. X is free in ®’. In this case it is easy to establish that CL(®) = CL(®'[®/X]). It
is therefore sufficient to show that H ¢ H” = H' U {s : ®}. By lemma 4.9 we have
that H CTg H"; therefore, to establish that H <d¢ H"” we only need show that for all
'eCL(®), HCr H'. Let I' € CL(®). If ® AT then the result follows from the fact
that for all IV < T', H[I" = H"[T". If & < T, then let I be the formula in C'L(9’)
such that I' is I"[®/X]; this is guaranteed to exist from the definition of C'L(®). It is
straightforward to verify that H Cp H”, whence by lemma 4.10, H Cr H".

O
We can also prove the following, which implies that it is possible to enumerate all tableaux
rooted by o.

Theorem 4.16 For any o, there are a finite number of distinct tableaux with root o.

Proof. By induction on the height of the maximum height tableau for ¢. O

15

4.2 Soundness and Completeness

In the remainder of the paper, we shall use M(o) to refer to the maximum height of tableaux
for o and M,(0) to represent the maximum height of successful tableaux for o (provided a
successful tableau exists). In this section, we prove the soundness and completeness of the
tableau proof system. The next lemma establishes a link needed in the proof of soundness
between substitution (on the syntactic side) and function application (on the semantic side).

Lemma 4.17 Suppose ® is a formula, X a variable, and I' a closed formula. Let H be a
hypothesis set containing no hypotheses involving I' as a strict subformula. Then

[T/ X]]"e = o([T]"e),
where ¢(S) = [®]7e[X — 9].

Proof. If X is not free in ® then the result follows trivially. So assume that X is free in ®;
the proof proceeds by structural induction on ®. Most cases are routine; we consider here
the case when @ is vY.®’. Given the definition of substitution we may assume that X and
Y are distinct. Since I' is closed we have that:

OI'/X] = vY.(P[I'/X]) whence
o1/ X)]e = [w¥ @[T/ X))
= vol,US

where

" (S) = [®'[/X]]"e[Y — S] and
S = H[(®[I'/X]).

Since X is free in ®, I' < ®['/ X], so by assumption this implies that S’ = (). Therefore,
[o[r/X]]e = v

Using the induction hypothesis and the fact that I" is closed and X and Y are distinct, we
have that for any .5,
¢ (S) = [®[T/X]]" e[y = 5]
[[(I)/]]HG[Y — S|[X — [[F]]HG[Y — S]]
= [@]He[X - [T])He][Y — S].

Now consider the definition of [®]"e[X — [I']"¢].

[®]7e[X — [I]"e] = vésn US”, where
0(5) = [@]"e[X = [I]7e][Y = 5]
S" = H[®

Since ® has X free and H consists of assumptions involving only closed formulas, 5" = §;
therefore, since ¢(S) = ¢'(S) for all S, it follows that v¢ = vé', and we are done. O
We now have the necessary machinery to prove the soundness theorem for finite models.

16

Theorem 4.18 [f H s € ® has a successful tableau then s € [®]7.

Proof. In light of the fact that every sequent has a maximum height tableau, it suffices to
establish that every successful leaf is semantically valid and that each inference rule preserves
soundness. The interesting cases involve the inference rules for fixed point formulas. We
consider the proof of the validity of R7 in detail; the proof for R8 follows much the same
lines.

Assume that H and H' are such that

H=H—-{s:T|vX.®d=<T}

and s € [®[rX.®/X|JH Y s#X2h). we show that this implies that s € ¥ X.®. By lemma 4.17,
it follows that
[[(I)[Z/X.(I)/X]]](H/U{S:VX~©})6 — ¢([[1/X.(I)]](H/U{S:UX'<D}))7

where ¢(5) = [@]HV I X2Ne[X s S] for some environment e. Now let S" = H'[vX.®.

From the definition of the relativized semantics, it follows that
[X BT — U S (o),
and therefore we have that

[[(I)[VX'(I)/X]]](H/U{S:UXQ})G = ¢(V¢S’U{5} us'u {5}) = ¢S’U{5}(V¢S’U{S}) = V¢S’U{s}

By lemma 4.2(2), since s € vosugsy we have that s € v¢g, and the desired result follows
from the fact that [vX.®]¥ can be shown to be equal to v¢s U S’. O
Completeness turns out to be a corollary of the soundness theorem and the next theorem.

Theorem 4.19 H + s € ® has a successful tableau if and only if H - s € =® has no
successful tableau.

Proof. (=) Suppose that H F s € ® has a successful tableau. We prove that H - s € =
has no successful tableau by induction on m = M (H - s € @).

BASE. In this case m = 1, and H - s € ® is a successtul leaf. The proof now proceeds by
case analysis on the definition of a successtul leaf. Most of the cases are straightforward; we
show here the case when ® is =(a)®’. For the sequent to be a leaf, it must be the case that
{s'"| 55 s} =0, and this implies that H t s € (a)®’ is an unsuccessful leaf. Therefore,
HF s € ==(a)®" can have no successful tableaux.

INDUCTION. Assume that m > 1. The induction hypothesis states that for all sequents
o' = H' F ¢ € @ having a successful tableau with M;(o’) < m, H' F s € =9’ has no
successful tableau. We proceed by a case analysis on ®. Most cases are routine; we consider
here two of them.

e OisvX.®'. HF s & ® has a successful tableau exactly when
o =H U{s:®}F sed[0/X]

does, where H' = H — {s': ' | ® < I' }; moreover, it must be the case that M(o’) =
m — 1, whence by the induction hypothesis, H' U {s : &} F s € =®’[®/X] has no
successful tableau. It therefore follows that H F s € =® has no successful tableau.

17

e ®is —vX.®'. In this case H F s € ® has a successful tableau exactly when
o'=H U{s:d}Fse -9 [0/X]

does, where H' is as defined above. Moreover, since it must be the case that M(o’) =
m — 1, it follows from the induction hypothesis that H' U {s : &} F s € ==®'[®/X]
has no successful tableau, and therefore H' U {s: ®} F s € ®'[®/X], HF s € vX. 9/,
and H F s € =® do not, either.

(<) We shall actually prove that if o = H F s € ® has no successful tableau then
HF s € =% must. We do so by induction on m = M(o).
BASE. m = 1, meaning that o is an unsuccesstul leaf. The proof proceeds by a case analysis.
The cases are routine; here we consider the case when @ is (a)®’. For this to be a leaf (and
therefore unsuccessful), it must be that {s' | s = s’} =), and therefore I/ - s € =® is by
definition a successful leaf.
INDUCTION. Assume that m > 1. The induction hypothesis states that for all sequents
o' = H't & € & such that M(o’) < m, if o/ has no successful tableau then H' F s’ € =@’
must. The proof proceeds by a case analysis on ®. Most cases are routine; we show here
two of them.

e ¢ is vX.9'. Since o has no successful tableau, H' U {s : &} F s € ¢'[®/X] must
have no successful tableau, and we can apply the induction hypothesis to conclude
that H' U {s : &} F s € =®'[®/X] has a successful tableau. But this implies that
H F s € =® has a successful tableau as well.

e ¢ is v X.9'. Since o has no successful tableau, H' U {s : &} F s € =®'[®/X] must
have no successful tableau, and we can apply the induction hypothesis to conclude that
H U{s:d}F s € =9 [P/X] must have a successful tableau. But this implies that
HU{s:®}F s e ®[P/X], and hence H - s € vX.9" and H F s € =®, must also

have successful tableaux.

a

Corollary 4.20 Ifs € [®]" then HF s € ® has a successful tableau.

Proof. Suppose to the contrary that s € [®]¥ but that H + s € ® has no successful
tableau. By the previous theorem, it follows that H - s € =® has a successful tableau, and
by the soundness theorem it follows that s € [=®], meaning that s ¢ [®], which is a
contradiction. O

5 Towards an Efficient Algorithm

It is beyond the scope of this paper to pursue fully the question of an efficient tableau-
based model checking algorithm for the mu-calculus. In this section, however, we present a
straightforward procedure based on the results of the preceding sections and prove lemmas
that enable information computed in one phase of the tableau construction process to be

18

fun checkl’ (HF s € ®) =

case ¢ is
AeA — return(s € V(A))
X eV — error
-’ — return not (check! (H F s € ¢'))
¢,V &y — return (checkl (H & s € ®1) or checkl (H - s € ®3))
(a)®'" — foreachs’ € {s'|s 5 s} do
if check! (H F s’ € ®) then return true;
return false
vX.® —let H'={s:T|® A} in

return (check!’(H' U {s: ®} F s € '[9/ X]))

end

fun checkl (s € ®) = checkl (D s € D)

Figure 7: A simple model checking algorithm.

reused in others. The results presented in this section underlie an ongoing implementation
of a model checker in the Concurrency Workbench [8, 9].

Figure 7 contains a basic algorithm for determining whether or not a state (in a finite
model) satisfies a mu-calculus proposition. It is based on tableau rules R2, R3, R5 and
R7, together with theorem 4.19; termination and correctness follow from the the results
established in section 4. However, this algorithm is very inefficient. Although we shall not
formally analyze its complexity here, it is worth noting that it exhibits exponential behavior
even for formulas having no recursive subformulas, owing to the possibility of nested modal
operators. The algorithm in [13] is also exponential in the worst case; however, it is linear
time for formulas having no fixed points, and it runs in polynomial time for formulas resulting
from the encodings of a wide variety logics in the mu-calculus.

The inefficiency of checkl stems partially from the fact that no provision is made for
the storing of results of sequents whose truth has already been determined. Accordingly, its
performance can be improved somewhat by saving the results of previous computations and
performing a lookup before recursively examining a sequent. Additionally, there are results
that can be proved that allow the truth of sequents to be deduced solely on the basis of the
truth of other sequents, and we devote the rest of this section to presenting some of them.
The next lemma establishes that if an assumption turns out to be “true” with respect to a
given hypothesis list, then it may be removed as an assumption without affecting the truth
or falsity of the sequent.

Lemma 5.1 Suppose that H &+ s € vX.® has a successful tableau. Then H U {s: v X.®}
s € I' has a successful tableau if and only if HF s’ € I' does.

Proof. In light of the soundness and completeness of the tableau system, it suffices to
show that
[[F]]He — [[F]]HU{S:VX.CD}e

19

under the assumption that s € [vX.®]”¢c. From the definition of the relativized semantics
we have that

[vX.0]"e = vos U S,

where ¢(S) = [®]7e[X — S]and §' = H[vX.®. If s: vX.® € H then HU{s: vX.®} = H
and the result follows. So assume that s : vX.® & H. Then s € v¢g, and by lemma 4.2(3)
it follows that

Vos = Vsiufs),

whence [vX.®]"e = [vX. @] 1 X®ke The result now follows by a straightforward induc-
tionon I'. O

This result can be used to “speed up” model checking as follows. If H U {s: vX.®} F
s" € T' has been shown to be true (false), and H F s € v X.® is subsequently shown to be
true, then it is possible to deduce that H F s’ € I' is true (false) without having to construct
a tableau for it.

The next result establishes certain “monotonicity conditions” on hypothesis sets. We
need the following definitions.

Definition 5.2 The relations <_ and =<y are defined inductively as follows.
1. ® <4 ® for any .
2.0 =<, =0 <_ 9.
3.0 <9 =<, -9
J. 0=, D= 0=, B VD, O <, DV Dy, &<y ()0, <y v X.Dy.
5 P <_ P =20 <P VDy & <_ DV, < (a)Py, P <_ v X.P;.

Intuitively, ® <, T' holds if there is an instance of ® in I' that occurs inside an even number
of negations, while ® <_ I' holds if there is an instance of ® in I' that occurs inside an odd
number of negations. From the definition, it is apparent that <, U <_==; it is also the
case that both ® <, I" and ® <_ I" hold for certain ® and I'.

Definition 5.3 Let ® be a formula, and let Hy and H, be hypothesis sets. Then define
Hy Co Hy to hold exactly when the following are true.

1. For each I' <y &, H{[I' C Hy[T'.
2. For each I' <_ &, Hy[I' C Hy[T.

Notice that the definition implies that if H; Ce He, I' <4y ® and I' <_ @, then H; [I' = H,y [T

The relation Cg defines a sort of “syntactic monotonicity” condition for hypothesis sets
relative to ®. Therefore, it should be the case that H, Cg¢ H, implies that [®]H1e C [®]72e.
This is in fact the case.

Lemma 5.4 Let ® be a formula, e an environment and Hy, and H, hypothesis sets with
Hy, Co Hy. Then [®]Hre C [®]2e.

20

Proof. The proof proceeds by induction on ®. There are several cases to consider, most
of which are routine. We consider two of them here.

o & = —®'. The induction hypothesis states that for all e and H; and Hy with Hy Cgr H,,
[®]Hre C [®']"2e. Now suppose that H; Cg Hy. From the definitions of Cg, <, and

<_, it follows that Hy Cg Hy, and from the induction hypothesis we may conclude
that [®']72e¢ C [®]"re. Accordingly, [®]H1e C [®]2e.

o & = v X.®'. The induction hypothesis states that for all e, H, and Hy with Hy Cg H,,
[®]re C [®]#2e. Now suppose that H; Cg H,. It clearly follows that My Cgr Hy,
and thus for any e, [®']"1e C [®']72¢. By definition, we have the following:

[= voy U S
[[CI)]]H2 = 1/45252 U Sy where
¢'(9) = [@]"e[X = 9]
¢*(S) = [9"e[X = 5]
S o= Hi[®
Sy = Hy[9®.

Since ® <, &, 5; C Sy; also, for each S, ¢'(S) C ¢*(S) by the induction hypothesis.
Therefore, vog U Sy C vgg U S,.

O

If HF s € ® has a successful tableau, and H Cg H’, then this result allows us to
conclude that H' F s € ® also has a successful tableau without having to construct one.
Likewise, if H F s € ® does not have a successful tableau, and H' Cg H, then it is also the
case that H' F s € ® does not have a successful tableau.

To conclude this section, we remark on a final property of tableaux. Given a sequent
o, define H,,s, and ®, to be such that ¢ = H, F s, € ®,. Suppose that s : v.X.& € H
and that H F s’ € vX.® has a successful tableau 7" involving a leaf H' - s € vX.® that
is successful by virtue of the fact that s : v X.® € H (in other words, s : vX.® € H, for
all o’ between H F s’ € vX.® and H' I s € vX.®). In this case we say that T depends on
s : vX.®. Suppose further that H — {s : vX.®} F s € v X.® is subsequently determined
not to have a successful tableau. Then it is impossible to construct a successful tableau T’
with root H — {s : vX.®} F & € vX.® that is built in the same way as T except that
the sequents H' F s € v X.® that were leaves in T but are not in 7’ now have tableaux
built for them. The import of this property is that information regarding the existence of
successful tableaux for a sequent of the form H F s’ € v X.® can be saved, even if some of
the hypotheses of the form s : v X.® turn out to be false. In order to do so, every successful
tableau for H F s’ € v X.® must be computed, and the information regarding the hypotheses
s:vX.® € H that each depends on saved. If one of these hypotheses involving turns out not
to be true, then the formerly successful tableau cannot be extended to a successtul tableau
for H —{s: vX.0} I s € vX.®. If every successful tableau for H F s’ € v X.® depends on
s:vX.®, then there can be no successful tableau for H — {s: v X.®} F ' € v X. .

21

6 Conclusions

This paper has presented a tableau-based proof system for determining whether finite-state
processes have properties expressible in the propositional mu-calculus and has laid some of
the groundwork for an efficient model checking algorithm. Some of the strategies implied by
the results in the previous section have been incorporated in an implementation of a model
checker for the Concurrency Workbench [8, 9], a tool for the automated analysis of concurrent
systems. Experience with the implementation has so far indicated that a reasonable degree
of efficiency is possible. A variety of small examples involving processes having up to 300
states and formulas involving several nested fixed points have been tried, and on a Sun 4
workstation the response time has been in the range of 30 seconds.

The issue of efficiency needs a more thorough and systematic treatment. There is evi-
dence to suggest that an O((|S| * |®])"“®)+1) algorithm can be derived on the basis of the
results presented in the previous section, where td(®), the interconnection depth of @, is a
measure of the degree of mutual recursion in ®. Such a complexity result would be signif-
icant because a wide variety of logics may be encoded in the mu-calculus using formulas
having interconnection depth < 2; indeed, all the logics mentioned in [13] have this property.
Thus, an algorithm of the stated complexity would yield cubic-time model checkers for these
logics. It is also potentially the case that an O((|S]* |®])**®)*!) algorithm is possible, where
ad(®) is the alternation depth of ®, as defined in [13]. The significance of this result stems
from the fact that this is the same worst-case complexity exhibited by the algorithm in [13].
Establishing such a result in our setting would require, among other things, a proof that
the tableau system is sound and complete for sequents of the form § F s € ® even when
the relation < in rules R7 and RS is replaced by <_. There appears to be a proof-theoretic
argument to support this claim, although a complete proof has not yet been developed.

Another interesting question to pursue is the issue of compositionality alluded to in the
introduction. Using techniques developed by Stirling [23, 24], it is likely that the proof system
in this paper can be modified so that properties of concurrent systems can be deduced on
the basis of the properties of their component processes. It could then be possible to develop
a compositional model checker for the propositional mu-calculus which could then be used
to check systems of parallel components efficiently.

Other researchers have considered the problem of model-checking in the propositional
mu-calculus. Emerson and Lei develop an efficient semantics-based approach in [13]; using
essentially the same semantic account as in figure 2 their algorithm computes the set of
states corresponding to a formula in the logic. In order to determine if a state satisfies a
proposition, then, one tests whether it is contained in the corresponding set. This approach
can result in unnecessary information being computed, since it is often the case that it is not
necessary to compute whether every state satisfies the formula in order to determine whether
a particular one does; however, the asymptotic complexity of their algorithm is the best
known. Arnold and Crubille [1] present a linear-time algorithm for solving recursive equations
in a logic similar in spirit to the propositional mu-calculus; using their results, it is possible
to develop a linear-time model checker for the fragment of our logic that does not contain
any alternating fixed points. Independently of us, Stirling and Walker [25] and Winskel
[28] have also pursued tableau-based approaches. The former essentially rename recursive
propositions each time they are unwound to bound the number of unrollings, and their rules

22

for recursive propositions contain, as a side-condition, a reference to the remainder of the
tableau that has been constructed. These properties complicate their procedure somewhat,
and it is unclear how they will be able to prove theorems that enable information to be
reused; however, their proofs of soundness and completeness use very interesting proof-
theoretic techniques. Winskel uses assumptions to bound the number of times recursive
propositions are unrolled in a way similar to ours; however, he introduces these assumptions
into the syntax of propositions, thereby adding notational complexity. Although he does
not prove the kinds of results that we establish in section 5, his approach yields very clean
proofs of soundness and completeness. In both cases, the decision procedures are of roughly
the same complexity as checkl. Larsen has also developed proof systems for fragments of
the propositional mu-calculus, and they been implemented in a Prolog-based system [18].
His axiomatizations operate on sequents that are similar ours; however, his logics do not
allow for propositions having both maximal and minimal fixed points and hence are not as
expressive as the full mu-calculus, although they do allow a wide range of properties to be
expressed.

Acknowledgements

I would like to thank Colin Stirling and David Walker for many interesting and stimulating
discussions about the propositional mu-calculus, and to Colin especially for his technical
advice and encouragement. Luca Aceto and Matthew Hennessy gave me patient support
during the preparation of this paper, and Bernhard Steffen and Anna Ingélfsdéttir provided
valuable comments on early versions of this paper.

References

[1] Arnold, A. and P. Crubille. “A Linear Algorithm To Solve Fixed-Point Equations on
Transition Systems.” Information Processing Letters, v. 29, 30 September 1988, pp.
57-66.

[2] Browne, M.C. “An Improved Algorithm for the Automatic Verification of Finite State
Systems Using Temporal Logic.” In Proceedings of First Annual Symposium on Logic
in Computer Science, 1986, pp. 260-266.

[3] Browne, M.C., E.M. Clarke and D. Dill. “Checking the Correctness of Sequential Cir-
cuits.” In Proceedings of the 1985 IEEE International Conference on Computer Design,
pp. H45-548.

[4] Browne, M.C., E.M. Clarke and D. Dill. “Automatic Circuit Verification Using Temporal
Logic: Two New Examples.” In Formal Aspects of VLSI Design, G.J. Milne and P.A.
Subrahmanyam eds., pp. 113-124. Elsevier-North Holland, New York, 1986.

[5] Browne, M.C., E.M. Clarke, D. Dill and B. Mishra. “Automatic Verification of Sequen-
tial Circuits Using Temporal Logic.” IEEE Transactions on Computing, C-35(12), pp.
1035-1044.

23

[6]

[10]

[11]

[12]

[13]

[14]

[15]

Clarke, E.M, D.E. Long and K.L. McMillan. “Compositional Model Checking.” In Pro-
ceedings of the Fourth Annual Symposium on Logic in Computer Science, 1989. Com-
puter Society Press, Washington DC.

Clarke, E.M., E.A. Emerson and A.P. Sistla. “Automatic Verification of Finite State
Concurrent Systems Using Temporal Logic Specifications.” ACM Transactions on Pro-
gramming Languages and Systems, v. 8, n. 2, 1986, pp. 244-263.

Cleaveland, W.R.., J. Parrow and B.U. Steffen. “A Semantics-Based Tool for the Verifica-
tion of Finite-State Systems.” In Proceedings of the Ninth IFIP Symposium on Protocol
Specification, Testing and Verification, June 1989. To be published by North-Holland.

Cleaveland, W.R., J. Parrow and B.U. Steffen. “The Concurrency Workbench.” In Pro-
ceedings of the Workshop on Automatic Verification Methods for Finite-State Systems.
To be published in the Lecture Notes in Computer Science series, Springer-Verlag,
Berlin.

Emerson, E.A. “Branching Time Temporal Logic: A Tutorial.” In Proceedings of the
REX Summer School/Workshop, Noordwijkerhout, the Netherlands, 1988.

Emerson, E.A. and E.M. Clarke. “Characterizing Correctness Properties of Parallel
Programs as Fixpoints.” In Proceedings of the Seventh International Colloguium on Au-
tomata, Languages and Programming, Lecture Notes in Computer Science 85. Springer-

Verlag, Berlin, 1981.

Emerson, E.A. and J.Y. Halpern. “*Sometimes’ and ‘Not Never’ Revisited: On Branch-
ing versus Linear Time.” In Proceedings the the Twelfth Annual ACM Symposium on
Principles of Programming Languages, 1983.

Emerson, E.A. and C.-L. Lei. “Efficient Model Checking in Fragments of the Proposi-
tional Mu-Calculus.” In Proceedings of the First Annual Symposium on Logic in Com-
puter Science, 1986, pp. 267-278.

Fischer, M.J. and R.E. Ladner. “Propositional Dynamic Logic of Regular Programs.”
Journal of Computing and System Sciences, v. 18, 1979, pp. 194-211.

Hennessy, M. and R. Milner. “Algebraic Laws for Nondeterminism and Concurrency.”
Journal of the Association for Computing Machinery, v. 32, n. 1, January 1985, pp.
137-161.

Kozen, D. “Results on the Propositional p-Calculus.” Theoretical Computer Science, v.

27, 1983, pp. 333-354.

Lamport, L. “Sometimes’ is Sometimes ‘Not Never'-On the Temporal Logic of Pro-
grams.” In Proceedings of the Seventh Annual ACM Symposium on Principles of Pro-
gramming Languages, 1980, pp. 174-185.

Larsen, K.G. “Proof Systems for Hennessy-Milner Logic with Recursion.” In Proceedings

of CAAP, 1988.

24

[19]

[20]

[21]

[22]

23]

[24]

[25]

Milner, R. A Calculus of Communicating Systems. Lecture Notes in Computer Science

92. Springer-Verlag, Berlin, 1980.

Parrow, J. “Submodule Construction as Equation Solving in CCS.” In Proceedings of the
Foundations of Software Technology and Theoretical Computer Science, Lecture Notes
in Computer Science 287, pp. 103-123. Springer-Verlag, Berlin, 1987.

Pnueli, A. “Linear and Branching Structures in the Semantics and Logics of Reactive
Systems.” In Proceeding of the Twelfth International Conference on Automata, Lan-
guages and Programming, Lecture Notes in Computer Science 194, pp. 14-32. Springer-
Verlag, Berlin, 1985.

Steffen, B.U. “Characteristic Formulae for CCS with Divergence.” In Proceedings of
Eleventh International Colloquium on Automata, Languages and Programming, 1989.

Stirling, C. “A Complete Modal Proof System for a Subset of SCCS.” In Proceedings of
TAPSOFT 85, Lecture Notes in Computer Science 185, pp. 253-266. Springer-Verlag,
Berlin, 1985.

Stirling, C. “Modal Logics for Communicating Systems.” Theoretical Computer Science,

v. 49, 1987, pp. 311-347.

Stirling, C. and D. Walker. “Local Model Checking in the Modal Mu-Calculus.” In
Proceedings of TAPSOFT '89, Lecture Notes in Computer Science 351. Springer-Verlag,
Berlin, 1989.

Tarski, A. “A Lattice-Theoretical Fixpoint Theorem and its Applications.” Pacific Jour-
nal of Mathematics, v. 5, 1955.

Vardi, M.Y. and P. Wolper. “An Automata-Theoretic Approach to Automatic Program
Verification.” In Proceedings of the First Annual Symposium on Logic in Computer

Science, 1986, pp. 332-344.

Winskel, G. “Model Checking in the Modal v-Calculus.” In Proceedings of Eleventh

International Colloguium on Automata, Languages and Programming, 1989.

25

