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Abstract—For a large and evolving software system, the 

project team could receive a large number of bug reports. 

Locating the source code files that need to be changed in order 

to fix the bugs is a challenging task. Once a bug report is 

received, it is desirable to automatically point out to the files 

that developers should change in order to fix the bug. In this 

paper, we propose BugLocator, an information retrieval based 

method for locating the relevant files for fixing a bug. 

BugLocator ranks all files based on the textual similarity 

between the initial bug report and the source code using a 

revised Vector Space Model (rVSM), taking into consideration 

information about similar bugs that have been fixed before. 

We perform large-scale experiments on four open source 

projects to localize more than 3,000 bugs. The results show that 

BugLocator can effectively locate the files where the bugs 

should be fixed. For example, relevant buggy files for 62.60% 

Eclipse 3.1 bugs are ranked in the top ten among 12,863 files. 

Our experiments also show that BugLocator outperforms 

existing state-of-the-art bug localization methods.  

Keywords-bug localization; information retrieval; feature 

location; bug reports 

I. INTRODUCTION 

Software quality is vital for the success of a software 
project. Although many software quality assurance activities 
(such as testing, inspection, static checking, etc) have been 
proposed to improve software quality, in reality software 
systems are often shipped with defects (bugs). For a large 
and evolving software system the project team could receive 
a large number of bug reports over a long period of time. For 
example, around 4414 bugs were reported for the Eclipse 
project in 2009.  

Once a bug report is received and confirmed, the project 
team should locate the source code files that need to be 
changed in order to fix the bug. However, it is often costly to 
manually locate the files to be changed based on the initial 
bug reports, especially when the numbers of files and reports 
are large. For a large project consisting of hundreds or even 
thousands of files, manual bug localization is a painstaking 
and time-consuming activity. As a result, the bug fix time is 
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often prolonged, maintenance cost is increased and customer 
satisfaction rate is hampered.   

In recent years, some researchers have applied 
information retrieval techniques to automatically search for 
relevant files based on bug reports [16, 25, 31, 32]. They 
treat an initial bug report as a query and rank the source code 
files by their relevance to the query. The developers can then 
examine the returned files and fix the bug. These methods 
are information retrieval based bug localization methods. 
Unlike spectrum-based fault localization techniques [1, 18, 
19, 22, 23], information retrieval (IR) based bug localization 
does not require program execution information (such as 
passing and failing traces). They locate the bug-relevant files 
based on initial bug reports. 

Many of the existing IR-based bug localization methods 
are proposed in the context of feature/concept location, using 
a small number of selected bug reports [16, 24, 31]. For 
example, Poshyvanyk et al. proposed a feature location 
method called PROMESIR, which utilizes an information-
retrieval technique (Latent Semantic Indexing) and a 
probabilistic ranking technique [31]. They applied their 
method to locate 3 bugs in Eclipse and 5 bugs in Mozilla. 
Gay et al. proposed an approach to augment IR-based 
concept location via an explicit relevance feedback (RF) 
mechanism [16]. They applied their bug localization 
approach on 9 bug reports. Recently, Lukins et al. performed 
a study on applying LDA (Latent Dirichlet Allocation) to 
search for bug-related methods and files [25]. They used 322 
bugs across 25 versions of three projects (Eclipse, Mozilla 
and Rhino) for the evaluation. In each version, only a small 
number of bugs were selected (less than 20 on average). 
Besides the problem of small-scale evaluations, the 
performance of the existing bug localization methods can be 
further improved too. For example, using Latent Dirichlet 
Allocation (LDA), only buggy files for 22% of Eclipse 3.1 
bug reports are ranked in the top 10 [25]. More detailed 
discussions about the current methods and their limitations 
are given in the next section. 

In this paper, we propose BugLocator, a new method that 
can automatically search for relevant buggy files based on 
initial bug reports. We propose a revised Vector Space 
Model (rVSM) to rank all source code files based on an 
initial bug report. In rVSM, we take the document length into 
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consideration, which could optimize the classic VSM model 
for bug localization. We also adjust the obtained ranks by 
using information of the similar bugs that have been fixed 
before. We have evaluated BugLocator on four open source 
projects (Eclipse, AspectJ, SWT and ZXing) of different 
sizes, with a total of more than 3,000 bugs. The evaluation 
results show that BugLocator is effective. For example, 
buggy files for 62.6% of Eclipse 3.1 bugs are ranked in top 
10. On average, the percentages of bugs whose relevant files 
are ranked in top 1, top 5 and top 10 are above 30%, 50% 
and 60%, respectively, confirming the effectiveness of the 
proposed approach. Our experiments also show that 
BugLocator outperforms existing bug localization methods 
using Vector Space Model (VSM) [32], Latent Dirichlet 
Allocation (LDA) [25], Latent Semantic Indexing (LSI) [30, 
31], and Smoothed Unigram Model (SUM) [32]. 

The contributions of our work are as follows: 

! We propose BugLocator, a new bug localization 
method that can perform better than the existing 
methods. In BugLocator, We design a new VSM 
method that can effectively retrieve relevant buggy files 
given a query bug report. Our method also utilizes 
information about similar bugs that have been fixed 
before to improve the ranking performance. 

! We perform a large-scale evaluation of the bug 
localization techniques. We have run BugLocator on 
more than 3,000 bugs in total, which is much larger 
than the scale of experiments conducted in prior studies. 

We believe our method can help project teams locate 
files where the bugs should be fixed. Automating bug 
localization work can help reduce maintenance cost and 
improve customer satisfaction. 

The organization of the paper is as follows. In Section II, 
we describe the background of this work. In Section III, we 
describe the proposed BugLocator approach. Section IV 
describes our experimental design, and Section V shows and 
discusses the experimental results. Section VI gives the 
threats to validity. We discuss the related work in Section 
VII and conclude the paper in Section VIII. 

II. BACKGROUND  

A. Bug Localization Example 

In this section, we present an example to illustrate 
information retrieval based bug localization approach.  
Figure 1 shows a real bug report1 (ID: 80720) for Eclipse 3.1. 
Once this report is received, the developer needs to locate 
relevant files among more than ten thousands Eclipse source 
files in order to fix this bug. We find that the bug report 
(including bug summary and description) contains many 
words such as pin(pinned), console, view, display, etc. 
Therefore, this bug is related to features about console view. 
In Eclipse 3.1, there is a source code file called 
ConsoleView.java, which also contains many occurrences of 
the similar words.  Figure 1 shows a good match between the 
bug report and the source code. 

 
1 https://bugs.eclipse.org/bugs/show_bug.cgi?format=multiple&id=

80720 

We can treat the bug report and the source code files as 
text documents, and compute the textual similarity between 
them. For a corpus of files, we can rank the files based on 
each file’s textual similarity to the bug report. Developers 
can then investigate the files one by one from the beginning 
of the ranked list until relevant buggy files are found. In this 
way, files relevant to the bug report can be quickly located. 
Clearly, the goal of bug localization is to rank the buggy files 
as high as possible in the list. 

 
Figure 1.  A bug report and its relevant source code file 

B. General Bug Localization Process 

Before presenting our approach, we describe a common 
bug localization process, which consists of four steps: corpus 
creation, indexing, query construction, and retrieval & 
ranking. 

Corpus creation: This step performs lexical analysis for 
each source code file and creates a vector of lexical tokens. 
Some tokens, such as keywords (e.g., int, double, char, etc), 
separators, operators are common to all programs and are 
removed. English “stop words” (e.g., ‘a’, ‘the’, etc.) are also 
removed.  Many variables defined in a program are actually 
a concatenation of words. For example, the variable 
TypeDeclaration contains two words: “type” and 
“declaration”. The variable isCommitable is composed of 
two words: “is” and “Commitable”. These composite tokens 
are split into individual tokens. Many tokens have the same 
root form. For example, “delegating”, “delegate” and 
“delegation” share the same root “delegat”. The Porter 
Stemming algorithm2 is applied to reduce a word to its root.  

Indexing: After the corpus is created, all the files in the 
corpus are indexed. By using these indexes, one can locate 
files containing the words in a given query and then rank 
these files by their relevance. 

 
2 http://tartarus.org/martin/PorterStemmer/ 

Bug ID: 80720 

Summary: Pinned console does not remain on top 

Description:  

Open two console views, … Pin one console. Launch  

another program that produces output. Both consoles display  

the last launch. The pinned console should remain pinned. 

---------------------------------------------------------------------------- 

Source code file: ConsoleView.java 

public class ConsoleView extends PageBookView               

implements IConsoleView, IConsoleListener {... 

          public void display(IConsole console) { 

 if (fPinned && fActiveConsole != null) { return;} 

          } … 

          public void pin(IConsole console) { 

          if (console == null) {  setPinned(false); 

           } else { 

                   if (isPinned()) { setPinned(false); } 

                   display(console); 

                   setPinned(true); 

           } 

          }  

} 
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Query Construction: Bug localization considers a bug 
report as a query, and uses it to search for relevant files in the 
indexed source code corpus. It extracts tokens from the bug 
title and description, removes stop words, stems each word, 
and forms the query. 

Retrieval and Ranking: Retrieval and ranking of 
relevant buggy files is based on the textual similarity 
between the query and each of the files in the corpus. 
Various approaches can be used to compute a relevance 
score for each file in the corpus given an input bug report. 

C. Information Retrieval Models Used in Exisiting Bug 

Localization Methods 

Many bug localization approaches have been proposed. 
These approaches mainly differ in the retrieval and ranking 
of the results. There are many retrieval and ranking models 
that have been used in prior studies on IR-based bug 
localization. Due to space constraint, we just briefly describe 
some important ones here: 

SUM: Smoothed Unigram Model (SUM) is a statistical 
model that fits a single multinomial distribution to the 
frequencies of words in each file in the corpus [27]. The 
unigram model (UM) derived directly from the word 
frequency counts may have some problems, especially when 
confronted with words that have not explicitly been seen 
before - the probabilities of that unseen words are zero. SUM 
smoothes the probability distributions by assigning non-zero 
probabilities to the unseen words [17, 36]. SUM was used for 
bug localization by Rao and Kak [32] and was found to be 
the best performing model.  

LDA: Latent Dirichlet Allocation (LDA) is a generative 
probabilistic model for collections of discrete data such as 
text corpora [11]. It is a Bayesian model, which extracts 
latent topics from a collection of documents. Each topic is a 
collection of tokens with attached probabilities. Each 
document is represented by a probabilistic mixture of topics. 
It was used by Lukins et al. [25] for bug localization.  

LSI: Latent Semantic Indexing (LSI) [12], also called 
latent semantic analysis (LSA), is an indexing and retrieval 
method that can identify the relationship between the terms 
and concepts contained in an unstructured collection of text 
by using mathematical techniques such as Singular Value 
Decomposition (SVD). This method was used by 
Poshyvanyk et al. for bug localization [30, 31].   

VSM: In Vector Space Model (VSM), each document is 
expressed as a vector of token weights typically computed as 
a product of token frequency and inverse document 
frequency of each token [26]. Cosine similarity is widely 
used to determine how close the two vectors are. Rao and 
Kak [32] evaluated the performance of VSM model in bug 
localization and found that it is worse than SUM but better 
than other models (including LDA and LSI). 

The existing methods have the following common 
limitations: 

! Low accuracy: The performance of existing bug 
localization methods can be further improved. For 
example, using LDA, relevant files of only 22% Eclipse 
3.1 bugs are ranked in the top 10 [25].  

! Small-scale experiments: Many of the existing static 
bug localization methods only used a small number of 
selected bug reports in their evaluation.  

III. THE PROPOSED APPROACH 

A. Analysis of Bug Localization Problem 

To improve bug localization performance, we leverage 
the following observations:  

Source code files: A project’s source code repository 
contains source code files. As illustrated in Figure 1, source 
code files may contain words that are similar to those 
occurring in the bug reports. Therefore, analyzing source 
code files can help determine the location where the bug has 
impact on, i.e., the buggy files.  

Similar bugs: Once a new bug report is received, we 
can examine similar bugs that were reported and fixed 
before. The information on locations where past similar 
bugs were fixed could help us locate the relevant files for 
the new bug.  

Software size: When two source files have similar 
scores, we need to determine which one should be ranked 
higher. From our experiences in software defect prediction 
[37] and from other people’s work on quantitative analysis 
of fault distributions [14, 29], we know that statistically, 
larger files are more likely to contain bugs. Therefore for 
bug localization we need to assign higher scores to larger 
files. 

The source code file information has been used by 

existing bug localization methods [16, 25, 31, 32]. However, 

to our best knowledge, the information about similar bugs 

and software sizes has not been well utilized. During the 

design of our approach, we take these information into 

consideration. 

 

Figure 2.  The overall structure of BugLocator 

B. The Overall Structure of BugLocator 

Figure 2 shows the overall structure of the proposed bug 
localization approach, BugLocator. When a new bug report 
is received, we treat it as a query and apply a revised Vector 
Space Model (rVSM) to search the source code repository. A 
rank of relevant files is returned from the query on source 
code files. For the new bug report, we also collect the similar 
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bugs that have been fixed before, and rank the relevant files 
by analyzing past similar bugs and their fixes. Finally, we 
combine the ranks obtained from the query on source code 
files and from the analysis of past similar bugs, and return 
the users the combined ranks. The users can then examine 
the returned files in descending order to locate the bug. We 
describe the detailed procedures in the following subsections. 

C. Ranking Based on Source Code Files 

We consider source code files as a text corpus, and the 
initial bug report as a query. We can then apply information 
retrieval techniques to create a model for searching source 
code files based on the bug report. The similarity between 
each file and the bug report is computed. The files are then 
ranked by the similarity values and returned as output.  

We propose a revised Vector Space Model (rVSM) to 
index and rank the source code files. In a classic VSM, the 
relevance score between a document d and a query q is 
computed as the cosine similarity between their 
corresponding vector representations: 

( , ) cos( , )
q d

q d

V V
Similarity q d q d

V V

!
" "

!!" !!"

!!" !!"                        (1) 

, where dV
!!"

and qV
!!"

are a vector of term weights for the 

document d and query q, respectively. q dV V!
!!" !!"

 
represents the 

inner product of the two vectors. The term weight w is 
computed based on the term frequency (tf) and the inverse 
document frequency (idf). The basic idea is that the weight of 
a term in a document is increasing with its occurrence 
frequency in this specific document and decreasing with its 
occurrence frequency in other documents. In classic VSM, tf 
and idf are defined as follows: 

#
( , ) , ( ) log( )

#
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t

f docs
tf t d idf t

terms n
" "                      (2) 

, where ftd refers to the number of occurrences of a term t in 
document d, nt refers to the number of documents that 
contain the term t, #terms represents the total number of 
terms in document d, and #docs represents the total number 
of documents in the corpus. Over the years, many variants of 
tf(t,d) have been proposed to improve the performance of the 
VSM model [26]. These include logarithm, augmented, and 
Boolean variants of the classic VSM. It is observed that the 
logarithm variant can lead to better performance [8, 13]: 
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In rVSM, we use Equation (3) to define tf. Thus in 
Equation (1), each term weight w in the document 
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In the similar way, we obtain the vector of term weights 

for the query qV
!!"

 and its norm qV
!!"

 . 

Classical VSM favours small documents during ranking. 
Long documents are often poorly represented because they 
have poor similarity values [15]. According to previous 
studies [14, 29, 37], larger source code files tend to have 
higher probability of containing a bug. Therefore we should 
rank larger files higher in the case of bug localization. We 
thus define a function g (Equation 5) to model the document 
length in rVSM:  

             
(# )

1
(# )

1 N terms
g terms

e&
"

#                       
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Equation (5) is a logistic function (i.e., an inverse logit 
function) that ensures that larger documents are given higher 
scores during ranking. We use Equation (5) to compute the 
length value for each source file according to the number of 
terms the file contains.  

In Equation (5), we use the normalized value of #terms as 
the input to the exponential function xe& . The normalization 

function is defined as follows: 
Suppose that X is a set of data, xmax and xmin are the 

maximum and minimum data in X, the normalization value 
of any x in X  is: 
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max min
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Combining the above analysis, we thus propose a new 
scoring algorithm for rVSM as follows: 
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Given a bug report, we use Equation (7) to determine the 
relevance scores (rVSMScore) between each source code file 
and the bug report. A ranked list (rVSMRank) can be 
obtained according to the scores (the first returned result has 
the highest score). 

D. Ranking Based on Similar Bugs 

For a new bug report, we also examine similar bugs that 
have been fixed before in order to adjust the rankings of the 
relevant files. The assumption here is that similar bugs tend 
to fix similar files. We propose a method for ranking relevant 
files based on similar bugs as follows: 

We first construct a three-layer heterogeneous graph as 
shown in Figure 3. The top layer (layer 1) contains one node 
representing a newly reported bug B. The second layer 
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contains nodes representing previously fixed bugs S that are 
similar to B. In our approach, we do not enforce a similarity 
threshold. A link between B and a bug in layer 2 indicates 
that there is a non-zero similarity value between their bug 
reports. The third layer contains nodes representing all 
source code files F. If a bug in layer 2 is fixed in a file in 
layer 3, a link between them is established, indicating that 
the bug has impact on the file.  

 

Figure 3.  Heterogeneous Bug-File graph 

The weight of each node in layer 2 (Si) represents the 
degree of similarity between Si and the newly reported bug 
B. This similarity is computed by Equation (1). The weight 
of each node in layer 3 (Fj) represents the degree of 
relevance between a source code file and the bug B, which 
is computed as follows: 

       
All  that 
connect to 

( ( , ) / )
i

j

i i

S
F

SimiScore Similarity B S n" !           (8) 

, where Si is a node in layer 2 that connects to Fj, ni is the 

total number of connections to layer 3 Si has (i.e., the 

number of files that are modified to fix the bug Si).  
After computing the SimiScore for each file using 

Equation (8), we then rank all files based on the SimiScore 
values, and obtain a ranking of relevant files SimiRank. 

E. Combining Ranks 

Having computed the scores obtained from querying 
source code files (rVSMScore) and from similar bug analysis 
(SimiScore), we then combine these two scores for each file 
as follows: 

         
(1 ) ( )

                ( )

FinalScore N rVSMScore

N SimiScore

(

(

" & %

# %
               (9) 

, where ( is a weighting factor and 0 ( 1.The 

FinalScore is a weighted sum of rVSMScore and SimiScore. 
The source code files ranked by FinalScore in descending 
order are returned to users (FinalRank). Files that are ranked 
higher are the more relevant ones, i.e., more likely to 
contain the newly reported bug B.  

Before we combine rVSMScore and SimiScore, we 
normalize them to the range of 0 to 1, using the 
normalization function defined in Equation (6).  

The parameter ( adjusts the weights of the two rankings. 

The value of ( can be set empirically, our experience shows 

when (  is between 0.2 and 0.3, the proposed method 

performs the best.   

IV. EXPERIMENTAL SETUP 

A. Subject Systems  

To evaluate the effectiveness of BugLocator, we use four 
open source projects as shown in Table I. All projects have 
complete bug database and change history, and have 
different numbers of bugs and source code files. We choose 
Eclipse3 in our evaluation because it is a well-known large-
scale open source system and it is widely used in empirical 
software engineering research. The AspectJ project is a part 
of the iBUGs public dataset provided by the University of 
Saarland4 [9, 10]. It is also the subject used for evaluating 
various IR models for bug localization [32]. Both Eclipse 
and AspectJ use the Bugzilla bug tracking system and the 
CVS/SVN version control system. We also investigate the 
SWT5 component of Eclipse, to evaluate the bug 
performance at the subproject level. To further evaluate the 
generality of our approach, we choose an Android project 
ZXing6, which is maintained by Google’s bug tracking 
system and version control system.  

B. Data Collection 

For each subject system, we collect its initial bug reports 
from the bug tracking system (such as BugZilla). To evaluate 
the bug localization performance, we only collect the bug 
reports of fixed bugs.  

To establish the links between bug reports and source 
code files, we adopt the traditional heuristics proposed by 
Bachmann and Bernstein [5]: 

1) Scan through the change logs for bug IDs in a given 
format (e.g. “issue 681”, “bug 239” and so on). 

2) Exclude all false-positive bug numbers (e.g. “r420”, 
“2009-05-07 10:47:39 -0400” and so on). 

3) Check if there are other potential bug number formats 
or false positive number formats, add the new formats and 
scan the change logs iteratively. 

4) Check if potential bug numbers exist in the bug-
tracking database with their status marked as fixed. 

Based on these heuristics we mine the source code 
repository (such as CVS and SVN) for links between source 
code files and bug reports. 

TABLE  I.  THE STUDIED PROJECTS 

Project Description 
Study 

Period 

#Fixed 

Bugs 

#Source 

Files 

Eclipse

(v3.1) 

An open development 

platform for Java 

Oct 2004 - 

Mar 2011 
3075 12863 

SWT 

(v3.1) 

An open source widget 

toolkit for Java 

Oct 2004 - 

Apr 2010 
98 484 

AspectJ

An aspect-oriented 

extension to the Java 

programming language 

Jul 2002 - 

Oct 2006 
286 6485 

ZXing 

A barcode image 

processing library for 

Android  applications 

Mar 2010- 

Sep 2010 
20 391 

 
3 http://www.eclipse.org 
4
 http:// www.st.cs.uni-saarland.de/ibugs/ 

5
 http://www.eclipse.org/swt/ 

6
 http://code.google.com/p/zxing/ 

B (a bug to be located)

A link represents the similarity

between Si and B 

S (all similar bugs of B)

A link indicates the impact of

 a bug on a file 

F (source code files)

Layer 1

Layer 2

Layer 3
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C. Research Questions  

Our experiments are designed to address the following 
research questions: 

RQ1: How many bugs can be successfully located by 
BugLocator? 

To answer this question, we run BugLocator on the four 
subject systems as described in Section IV.A. For each bug 
report, we first obtain the relevant files that have been 
modified to fix the bug using the method described in 
Section IV.B. We then check the ranks of these files in the 
query results returned by BugLocator. If the files are ranked 
in top 1, top 5 or top 10, we consider the report has been 
effectively localized. We perform the experiment for all bug 
reports and calculate the percentage of bugs that have been 
successfully located. We also compute the Mean Average 
Precision (MAP) and Mean Reciprocal Rank (MRR) 
measures (described in Section IV.D) to further evaluate bug 
localization performance. 

RQ2: Does the revised Vector Space Model (rVSM) improve 
the bug localization performance? 

In Section III, we propose rVSM, a revised vector space 
model (Equation 7) for retrieving relevant files from source 
code repository. rVSM adjusts the ranks of large files and 
incorporates a more effective term-frequency variant. To 
evaluate the effectiveness of rVSM, we perform bug 
localization on the subject systems using classic and revised 
VSM, and compare the results.  

RQ3: Does the consideration of similar bugs improve the 
bug localization performance? 

In Section III, we propose to use similar bugs to adjust 
the ranks obtained by rVSM. To evaluate the usefulness of 
the proposed similar bug analysis, we perform bug 
localization on the four subject systems with/without the 
rankings learned from past similar bugs. Furthermore, 
according to Equation (9), the parameter ( adjusts the 

weights of the two rankings. When ( = 0, the final rank is 

only dependent on the queries of source code files. When the 
value of ( is between 0 and 1, the final rank is a 

combination of two ranking results. In our experiments, we 
also evaluate the effect of different ( values.  

RQ4: Can BugLocator outperform other bug localization 
methods? 

Bug localization has attracted much research interest in 
recent years. In our experiments, we compare BugLocator to 
the bug localization methods implemented using the 
following IR techniques: 

! LDA, which was used by Lukins et al. [25] for bug 
localization. Following their LDA configuration, in our 
experiment, for AspectJ, SWT and ZXing, we set K 
(the number of topics) to 100, (  (the hyper-parameter 

for the per-document topic distribution)  to 0.5 (this is 
the default value computed by the standard formula: 

50/K), and  (the hyper-parameter for the per-topic 

word distribution) to 0.1, For Eclipse, as it is a large 
system consisting of  many files, we set K to 500, (  to 

0.1 and to 0.1, which can lead to a better 

performance. We use JGibbLDA7, an open source tool 
written in Java, to implement the LDA model.  

! SUM, which was used by Rao and Kak [32] for bug 
localization. In their study, SUM is shown to be the best 
IR model for bug localization, outperforming 
sophisticated models like LDA and LSI.  

! VSM, which was also used by Rao and Kak [32] for 
bug localization. In their study, VSM was the second 
best IR approach for bug localization.  

! LSI, which was used by Poshyvanyk et al. [30, 31] for 
bug localization. Previous experiments [25, 32] show 
that the performance of SUM, VSM or LDA is better 
than LSI. 

Following Rao and Kak [32], we use KL divergence [21] 
to compute the similarity measures for LDA and SUM. We 
use the cosine similarity measure for VSM and LSI. 

D. Evaluation Metrics 

To measure the effectiveness of the proposed bug 
localization method, we use the following metrics: 

! Top N Rank, which is the number of bugs whose 
associated files are ranked in the top N (N= 1, 5, 10) of 
the returned results. Given a bug report, if the top N 
query results contain at least one file at which the bug 
should be fixed, we consider the bug located. The 
higher the metric value, the better the bug localization 
performance.  

! MRR (Mean Reciprocal Rank), which is a statistic for 
evaluating a process that produces a list of possible 
responses to a query [34]. The reciprocal rank of a 
query is the multiplicative inverse of the rank of the 
first correct answer. The mean reciprocal rank is the 
average of the reciprocal ranks of results of a set of 
queries Q: 

1

1 1
Q

i i

MRR
Q rank"

" !                     (10) 

The higher the MRR value, the better the bug 
localization performance.  

! MAP (Mean Average Precision), which provides a 
single-figure measure of quality of information 
retrieval [26], when a query may have multiple 
relevant documents. The Average Precision of a single 
query (AvgP) is the average of the precision values 
obtained for the query, which is computed  as follows:

 
( ) ( )

number of positive instances1

M P j pos j
AvgP

i
i

%
" !

"

        (11) 

, where j is the rank, M is the number of instances 
retrieved, pos(j) indicates whether the instance in the 
rank j is relevant or not. P(j) is the precision at the 
given cut-off rank j and is defined as follows: 

 
7 http://jgibblda.sourceforge.net 
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number of positive instances in top j positions
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j
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Then the MAP for a set of queries is the mean of the 
average precision values for all queries. In bug 
localization, a bug may be relevant to multiple files. 
We use MAP to measure the average performance of 
BugLocator for locating all relevant files. The higher 
the MAP value, the better the bug localization 
performance.   

V. EXPERIMENTAL RESULTS 

A. Experimental Results for Research Questions 

RQ1: How many bugs can be successfully located by 

BugLocator? 
Table II shows the best bug localization results achieved 

by BugLocator for all subject systems. For 896 Eclipse bugs 
(29.14%), BugLocator successfully locates the relevant 
buggy source code files and ranks them as the top 1 among 
the returned results. For 1653 Eclipse bugs (53.76%), 
BugLocator ranks their relevant files within the top 5 of the 
returned results. For 1925 Eclipse bugs (62.60%), the 
relevant files can be found within the top 10 results.  

TABLE  II.  THE PERFORMANCE OF BUGLOCATOR 

System (  Top 1 Top 5 Top 10 MRR MAP

ZXing 0.2 
8 

(40%) 

12 

(60%) 

14 

(70%) 
0.50 0.44

SWT 0.2 
39 

(39.80%) 

66 

(67.35%) 

80 

(81.63%) 
0.53 0.45

AspectJ  0.3 
88 

(30.77%) 

146 

(51.05%) 

170 

(59.44%) 
0.41 0.22

Eclipse  0.3 
896 

(29.14%) 

1653 

(53.76%) 

1925 

(62.60%) 
0.41 0.30

For AspectJ, there are total 6,485 Java source code files 
and 286 bugs. For 59.44% of the bugs (i.e., 170 bugs) the 
first relevant file is returned in the top 10, and for 51.05% of 
the bugs (i.e., 146 bugs) the first relevant file is returned in 
the top 5. The results indicate that our approach is effective 
in localizing bugs in AspectJ. 

AspectJ was also the subject program investigated in [32]. 
In [32], the authors compared various information retrieval 
methods for bug localization and found that SUM performs 
the best (in terms of the percentage of bugs being 
successfully located and MAP). We compare the results of 
BugLocator with the SUM results given in [32], and find that 
BugLocator outperforms SUM (Figure 4). For example, 
using SUM, the relevant files of 19.59% bugs are returned as 
the top 1, while using BugLocator we can locate 30.77% 
bugs in the top 1 returned file. The MAP values for SUM 
and BugLocator are 0.14 and 0.22, respectively. In general, 
BugLocator improves the performance of SUM by 10%. 

For SWT, Table II shows that for 39.80% of the bugs, 
BugLocator ranks their relevant Java source file as top 1; for 
67.35% of the bugs, BugLocator ranks their relevant files 
within top 5; for 81.63% of the bugs, BugLocator ranks their 
relevant files within top 10. These ratios are higher than 
those of AspectJ and Eclipse. 

For ZXing, BugLocator achieves similar good 
performance. The percentages of bugs whose relevant files 
are ranked top 1, top 5, and top 10 are 40%, 60%, and 70%, 
respectively.  

In summary, the experimental results show that 
BugLocator can help locate a large percentage of bugs by 
examining a small number of source files. 

 

Figure 4.  The comparison between the results of BugLocator and the 

SUM results given in [32] on AspectJ dataset 

RQ2: Does the revised Vector Space Model (rVSM) improve 
the bug localization performance? 

Table III shows the results of bug localization using the 
classic VSM and the proposed revised VSM methods. For 
fair comparisons, for the revised VSM we do not consider 
similar bugs (i.e, the weight (  is set to 0). The experimental 

results show that the proposed VSM method outperforms the 
standard VSM. For example, for Eclipse 3.1, 749 bugs 
(24.36%) whose relevant source file are returned as top 1 
using the proposed VSM method. In classic VSM, this 
number is only 211 (6.86%). When measuring the 
performance in terms of MAP and MRR, the proposed VSM 
method can lead to MRR value 0.35 and MAP value 0.26, 
which are better than the values achieved by the standard 
VSM (MRR=0.13 and MAP=0.09). Similar results are 
observed for other projects as well.  

TABLE  III.  THE PERFORMANCE OF BUG LOCALIZATION WITH CLASSIC 

AND REVISED VSM MODELS 

System
VSM 

Method
Top 1 Top 5 Top 10 MRR MAP

ZXing

Classic
4 

(20%) 

7 

(35%) 

10 

(50%) 
0.28 0.27

Revised
8 

(40%) 

11 

(55%) 

14 

(70%) 
0.48 0.41

SWT 

Classic
11 

(11.22%)

32 

(32.65%) 

45 

(45.92%)
0.23 0.20

Revised
31 

(31.63%)

64 

(65.31%) 

76 

(77.55%)
0.47 0.40

AspectJ

Classic
36 

(12.59%)

68 

(23.78%) 

82 

(28.67%)
0.18 0.08

Revised
65 

(22.73%)

117 

(40.91%) 

159 

(55.59%)
0.33 0.17

Eclipse

Classic
211 

(6.86%)

520 

(16.91%) 

736 

(23.93%)
0.13 0.09

Revised
749 

(24.36%)

1419 

(46.15%) 

1719 

(55.90%)
0.35 0.26
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RQ3: Does the consideration of similar bugs improve the 
bug localization performance? 

Table IV below shows the experimental results of bug 
localization without using information from similar bugs (i.e., 
the weighting factor (  is 0). Comparing Table II and Table 

IV, we can see that the information of similar bugs can 
indeed improve the bug localization performance. For 
example, for the Eclipse project, utilizing similar bugs we 
can locate relevant source files at top 1 for 896 bugs 
(29.14%), within top 10 for 1925 bugs (62.60%). The MRR 
and MAP values are 0.41 and 0.30, respectively. Without 
considering similar bugs, only 749 bugs (24.36%) have their 
relevant files ranked as the top 1, and 1719 bugs (55.90%) 
have their relevant files ranked within top 10. The MRR and 
MAP values are only 0.35 and 0.26, respectively. Similar 
results are observed for other projects as well.  

TABLE  IV.  THE PERFORMANCE OF BUG LOCALIZATION WITHOUT USING 

SIMILAR BUGS 

System Top 1 Top 5 Top 10 MRR MAP 

ZXing 
8 

(40%) 

11 

(55%) 

14 

(70%) 
0.48 0.41 

SWT 
31 

(31.63%) 

64 

(65.31%) 

76 

(77.55%) 
0.47 0.40 

AspectJ  
65 

(22.73%) 

117 

(40.91%) 

159 

(55.59%) 
0.33 0.17 

Eclipse  
749 

(24.36%) 

1419 

(46.15%) 

1719 

(55.90%) 
0.35 0.26 

We also evaluate the impact of similar bug information 
on bug localization performance, with different ( values.  

We find that at beginning, the bug localization performance 
increases when the ( value increases. However, after a 

certain point, further increase of the (  value will decrease 

the performance. As an example, Figure 5 below shows the 
bug localization performance (measured in terms of MAP 
and MRR) for the Eclipse project. When the (  value 

increases from 0 to 0.3, both MAP and MRR values 
increases. Increasing (  value further from 0.4 to 0.9 

however leads to lower performance. When ( is between 0.2 

and 0.3, we obtain the best bug localization performance. 

RQ4: Can BugLocator outperform other bug localization 
methods? 

We implement bug localization methods using VSM, 
LDA, SUM and LSI models and perform experiments on all 
subject systems. We then compare the performance of 
BugLocator with the related methods. Figure 6 shows the 
percentage of bugs that can be located in top 1 and top 10 
returned files. Clearly, BugLocator outperforms all other 
methods. For example, using BugLocator we can locate 
29.14% Eclipse bugs in the first returned (top 1) files, while 
using VSM, LDA, SUM and LSI models, we can only locate 
6.86%, 0.32%,1.72% and 4.23% Eclipse bugs in the first 
returned files, respectively. BugLocator also outperforms 
other models when the performance is measured in terms of 
MAP and MRR. For example, for ZXing, the MAP and 
MRR values are 0.44 and 0.50 respectively, which are much 
higher than the second best model (i.e., SUM), whose MAP 
and MRR values are 0.30 and 0.37, respectively. Detailed 
results are omitted due to space constraints.  The t-tests at   
95% confidence level confirm that our method statistical 
significantly outperforms the others. 

B. Discussions of the Results 

1) Why does  the proposed  rVSM method work? 
Our experimental results described in the previous 

section show that the proposed rVSM performs better than 
the classical VSM when used for bug localization. In this 
section, we discuss why the proposed rVSM can achieve 
better performance.  

The differences between rVSM and VSM are in the 
Equations (4) and (5). Equation (4) uses the logarithm of the 
original tf value. This is because terms with high frequency 
may have negative impact on information retrieval 
performance. It is often not the case that the term importance 
is proportional to its occurrence frequency. The logarithm 
variant of tf can help smooth the impact of the high frequent 
terms [8, 13]. 

Equation (5) adjusts the ranking results based on file 
sizes. This is based on the findings of our earlier study [37] 
that the larger files tend to be more defect-prone than the 
smaller files. 

 

Figure 5.  The impact of  on bug localization performance (MAP and MRR)
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Figure 6.  The comparisons between different bug localization methods 

TABLE  V.  THE COMPARISONS OF DIFFERENT LENGTH FUNCTIONS 

Length  

function g 
Expression MAP MRR 

Logistic 
1

( )
1 x

f x
e&

"
#

 0.26 0.35 

Exponential ( ) 0.5xf x e" &  0.25 0.33 

Square root 
1

( ) 1f x
x

" &  0.19 0.26 

Linear ( ) 0.5
2

x
f x " #  0.25 0.34 

In [37], we found that a small number of largest files 
account for a large proportion of the defects.  For example, in 
Eclipse 3.0, 20% of the largest files are responsible for  
62.29% pre-release defects and 60.62% post-release defects. 
Similar phenomenon is also observed by many others 
include Ostrand et al. [29]. They studied the “ranking ability” 
of LOC for two industrial systems and found that 20% of 
largest files contain 73% and 74% of the bugs for the two 
systems. In summary, the empirical studies confirm that by 
ranking larger files higher we can locate more bugs. 

Equation (5) uses a logistic function g to adjust the 
ranking results. We also experiment with other length 
functions including linear, square root and exponential 
functions (Table V). These functions weight files of different 
sizes differently. Our experiment results (Table V) show that 
the logistic function achieves the best overall MAP and 
MRR values, outperforming other length functions.  

2) Why can similar bugs help improve bug localization 
performance? 

We also explore why similar bugs can improve the bug 
localization. We find out that for many bugs, the associated 
files have overlaps with the associated files of their similar 
bugs. For example, in Eclipse, 1207 (39.3%) bugs have at 
least one relevant file that is common to the files of their top 
10 most similar bugs. For 602 (19.6%) bugs, all their 
relevant files are covered by their top 10 most similar bugs. 

These results suggest that similar bugs can improve the bug 
localization performance. 

The analysis of similar bugs becomes more important 
when the textual similarity between bug reports and source 
code is low. As an example, for the Eclipse bug 89014 that 
is reported on March 24, 2005, it was fixed in the file 
BindingComparator.java. Using rVSM, the relevant file 
BindingComparator.java is only ranked 2527, because the 
textual similarity between source code and the bug report is 
low. However, the analysis on similar bugs found that this 
bug is actually similar to previous fixed bugs 83817, 79609 
and 79544, which all introduced bug-fixing changes to the 
file BindingComparator.java. Therefore, BugLocator 
combines the scores obtained from rSVM and similar bug 
analysis based on Equation (9), and the final rank of the file 
BindingComparator.java becomes 7. 

3) The percentage of code to be examined for bug 
localization 

Our experimental results reported in the previous sections 
only evaluate the performance of bug localization in terms of 
the number of relevant files retrieved. In practices, 
developers are also interested in the actual lines of code need 
to be examined in order to locate a bug. This is of particular 
concern as the proposed rVSM model ranks larger source 
files higher via the length function defined in Equation (5). 

We perform further experiments to evaluate how many 
lines of code are required to be examined in order to locate 
the bugs. For each bug, we count the number of files to be 
examined before locating the bug, and compute the lines of 
code for each file. The results show that BugLocator is still 
effective when its performance is measured in terms of lines 
of code to be examined. For example, by examining 1% lines 
of code, BugLocator can locate nearly 80% bugs in Eclipse 
and 60% bugs in AspectJ. 

BugLocator can also locate more bugs than SUM when 
the same number of lines of code is examined.  For Eclipse, 
using BugLocator we can locate more than 95% bugs by 
examining 10% of code, while using SUM (the best 
performing method described in [32]) we can only locate 
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about 81% bugs by examining the same amount of code. For 
the other systems, we obtain similar results. 

VI. THREATS TO VALIDITY 

There are potential threats to the validity of our work: 

! All datasets used in our experiments are collected from 

open source projects. The nature of the data in open 

source projects may be different from those in projects 

developed by well-managed software organizations. 

We need to evaluate if our solution can be directly 

applied to commercial projects. We leave this as a 

future work. 

! A limitation of our approach is that we rely on good 
programming practices in naming variables, methods 
and classes. If a developer uses non-meaningful names 
the performance of bug localization would be affected. 
However, in our experiments we notice that in most 
well-managed projects, developers generally follow 
good naming conventions. 

! Bug reports provide crucial information for developers 
to fix the bugs. A “bad” bug report could cause a delay 
in bug fixing. Our approach also relies on the quality of 
bug reports. If a bug report does not provide enough 
information, or provides misleading information, the 
performance of BugLocator is adversely affected.  

VII. RELATED WORK 

Bug fixing is an important but still costly activity in 
software development. Spectrum-based fault localization 
techniques [1, 18, 19, 22, 23] can help developers locate 
faults by examining a small portion of code. These 
techniques usually contrast the program spectra information 
(such as execution statistics) between passed and failed 
executions to compute the fault suspiciousness of individual 
program elements (such as statements, branches, and 
predicates), and rank these program elements by their fault 
suspiciousness. Developers may then locate faults by 
examining a list of program elements sorted by their 
suspiciousness. Examples of spectrum-based fault 
localization techniques include Tarantula [18, 19], Jaccard 
and Ochiai [1]. The spectrum-based fault localization 
techniques require program runtime execution traces. Our 
approach is based on the query of bug reports against the 
source code repository, which does not require the collection 
of the passing and failing execution traces. There are also 
other techniques that help developers automatically locate 
bugs, such as delta debugging [39] and dynamic slicing [38]. 
Unlike these techniques, our approach is a static approach, 
which does not require the execution of the programs. 

In recent years, many information retrieval based bug 
localization methods have been proposed [25, 28, 32]. As 
described in the previous sections, BugLocator performs 
better than the related methods because of the utilization of 
rVSM and similar bug information. This area of work is also 
closely related to feature/concept location [2, 3, 24, 28], 
which is about identifying the parts of the source code that 
correspond to a specific functionality. The results can be 
used as starting points in change impact analysis. The 

problem of locating bug-related code could be also treated as 
a feature/concept location problem. Poshyvanyk et al. [31] 
presented a feature location method called PROMESIR, 
which combines results from both dynamic analysis and 
information retrieval. They applied PROMESIR to locate 8 
bugs in Mozilla and Eclipse systems. Gay et al. [16] also 
proposed a concept location approach that augments 
information retrieval based concept location via an explicit 
relevance feedback mechanism. They evaluated their 
approach using 7 Eclipse bug reports. Our approach is 
dedicated to bug localization. We perform large-scale 
evaluations using more than 3000 bug reports from four 
different systems. Unlike the work described in [31] and  
[16], we do not require program execution or user interaction. 

Our work is also related to research on mining software 
repository. The existence of large amount of data stored in 
bug tracking systems provides many opportunities for 
automated software quality analysis and improvement. Many 
researchers mine bug report information to solve software 
engineering problems such as duplicate bug detection [33, 
35], automatic bug triage [4, 7], bug report quality analysis 
[6, 7], and defect prediction [20, 37]. Because of the large 
number of bugs, such problems cannot be effectively solved 
by manual efforts. In our approach, we utilize bug report 
information to automatically locate buggy files. 

VIII. CONCLUSIONS 

Once a new bug report comes, developers need to know 
which files should be modified to fix the bug. For a large 
software project, they may need to examine a large number 
of source code files in order to locate the bug, which could 
be a tedious and costly work. In this paper, we have 
proposed an IR-based method named BugLocator for 
locating relevant source code files based on initial bug 
reports. BugLocator utilizes a revised Vector Space Model 
(rVSM) as well as similar bug information. The evaluation 
results on four real-world open source projects show that 
BugLocator can perform bug localization effectively. The 
results also show that BugLocator outperforms existing 
methods such as those based on VSM, LDA, LSI, and SUM. 

In future, we will explore if program execution 
information can be integrated into our approach to help 
further improve bug localization performance. We will also 
apply BugLocator to industrial projects to evaluate its 
effectiveness in practice.   

Our tool and the experimental data are available at: 
http://code.google.com/p/bugcenter 
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