
Where Should the Bugs Be Fixed?

More Accurate Information Retrieval-Based Bug Localization Based on Bug Reports

Jian Zhou1, Hongyu Zhang 1,* and David Lo2
1School of Software, Tsinghua University, Beijing 100084, China

Tsinghua National Laboratory for Information Science and Technology (TNList)
zhoujian1286@yahoo.com.cn, hongyu@tsinghua.edu.cn

2School of Information Systems, Singapore Management University, Singapore

davidlo@smu.edu.sg

Abstract—For a large and evolving software system, the

project team could receive a large number of bug reports.

Locating the source code files that need to be changed in order

to fix the bugs is a challenging task. Once a bug report is

received, it is desirable to automatically point out to the files

that developers should change in order to fix the bug. In this

paper, we propose BugLocator, an information retrieval based

method for locating the relevant files for fixing a bug.

BugLocator ranks all files based on the textual similarity

between the initial bug report and the source code using a

revised Vector Space Model (rVSM), taking into consideration

information about similar bugs that have been fixed before.

We perform large-scale experiments on four open source

projects to localize more than 3,000 bugs. The results show that

BugLocator can effectively locate the files where the bugs

should be fixed. For example, relevant buggy files for 62.60%

Eclipse 3.1 bugs are ranked in the top ten among 12,863 files.

Our experiments also show that BugLocator outperforms

existing state-of-the-art bug localization methods.

Keywords-bug localization; information retrieval; feature

location; bug reports

I. INTRODUCTION

Software quality is vital for the success of a software
project. Although many software quality assurance activities
(such as testing, inspection, static checking, etc) have been
proposed to improve software quality, in reality software
systems are often shipped with defects (bugs). For a large
and evolving software system the project team could receive
a large number of bug reports over a long period of time. For
example, around 4414 bugs were reported for the Eclipse
project in 2009.

Once a bug report is received and confirmed, the project
team should locate the source code files that need to be
changed in order to fix the bug. However, it is often costly to
manually locate the files to be changed based on the initial
bug reports, especially when the numbers of files and reports
are large. For a large project consisting of hundreds or even
thousands of files, manual bug localization is a painstaking
and time-consuming activity. As a result, the bug fix time is

* corresponding author

often prolonged, maintenance cost is increased and customer
satisfaction rate is hampered.

In recent years, some researchers have applied
information retrieval techniques to automatically search for
relevant files based on bug reports [16, 25, 31, 32]. They
treat an initial bug report as a query and rank the source code
files by their relevance to the query. The developers can then
examine the returned files and fix the bug. These methods
are information retrieval based bug localization methods.
Unlike spectrum-based fault localization techniques [1, 18,
19, 22, 23], information retrieval (IR) based bug localization
does not require program execution information (such as
passing and failing traces). They locate the bug-relevant files
based on initial bug reports.

Many of the existing IR-based bug localization methods
are proposed in the context of feature/concept location, using
a small number of selected bug reports [16, 24, 31]. For
example, Poshyvanyk et al. proposed a feature location
method called PROMESIR, which utilizes an information-
retrieval technique (Latent Semantic Indexing) and a
probabilistic ranking technique [31]. They applied their
method to locate 3 bugs in Eclipse and 5 bugs in Mozilla.
Gay et al. proposed an approach to augment IR-based
concept location via an explicit relevance feedback (RF)
mechanism [16]. They applied their bug localization
approach on 9 bug reports. Recently, Lukins et al. performed
a study on applying LDA (Latent Dirichlet Allocation) to
search for bug-related methods and files [25]. They used 322
bugs across 25 versions of three projects (Eclipse, Mozilla
and Rhino) for the evaluation. In each version, only a small
number of bugs were selected (less than 20 on average).
Besides the problem of small-scale evaluations, the
performance of the existing bug localization methods can be
further improved too. For example, using Latent Dirichlet
Allocation (LDA), only buggy files for 22% of Eclipse 3.1
bug reports are ranked in the top 10 [25]. More detailed
discussions about the current methods and their limitations
are given in the next section.

In this paper, we propose BugLocator, a new method that
can automatically search for relevant buggy files based on
initial bug reports. We propose a revised Vector Space
Model (rVSM) to rank all source code files based on an
initial bug report. In rVSM, we take the document length into

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE ICSE 2012, Zurich, Switzerland14

consideration, which could optimize the classic VSM model
for bug localization. We also adjust the obtained ranks by
using information of the similar bugs that have been fixed
before. We have evaluated BugLocator on four open source
projects (Eclipse, AspectJ, SWT and ZXing) of different
sizes, with a total of more than 3,000 bugs. The evaluation
results show that BugLocator is effective. For example,
buggy files for 62.6% of Eclipse 3.1 bugs are ranked in top
10. On average, the percentages of bugs whose relevant files
are ranked in top 1, top 5 and top 10 are above 30%, 50%
and 60%, respectively, confirming the effectiveness of the
proposed approach. Our experiments also show that
BugLocator outperforms existing bug localization methods
using Vector Space Model (VSM) [32], Latent Dirichlet
Allocation (LDA) [25], Latent Semantic Indexing (LSI) [30,
31], and Smoothed Unigram Model (SUM) [32].

The contributions of our work are as follows:

! We propose BugLocator, a new bug localization
method that can perform better than the existing
methods. In BugLocator, We design a new VSM
method that can effectively retrieve relevant buggy files
given a query bug report. Our method also utilizes
information about similar bugs that have been fixed
before to improve the ranking performance.

! We perform a large-scale evaluation of the bug
localization techniques. We have run BugLocator on
more than 3,000 bugs in total, which is much larger
than the scale of experiments conducted in prior studies.

We believe our method can help project teams locate
files where the bugs should be fixed. Automating bug
localization work can help reduce maintenance cost and
improve customer satisfaction.

The organization of the paper is as follows. In Section II,
we describe the background of this work. In Section III, we
describe the proposed BugLocator approach. Section IV
describes our experimental design, and Section V shows and
discusses the experimental results. Section VI gives the
threats to validity. We discuss the related work in Section
VII and conclude the paper in Section VIII.

II. BACKGROUND

A. Bug Localization Example

In this section, we present an example to illustrate
information retrieval based bug localization approach.
Figure 1 shows a real bug report1 (ID: 80720) for Eclipse 3.1.
Once this report is received, the developer needs to locate
relevant files among more than ten thousands Eclipse source
files in order to fix this bug. We find that the bug report
(including bug summary and description) contains many
words such as pin(pinned), console, view, display, etc.
Therefore, this bug is related to features about console view.
In Eclipse 3.1, there is a source code file called
ConsoleView.java, which also contains many occurrences of
the similar words. Figure 1 shows a good match between the
bug report and the source code.

1 https://bugs.eclipse.org/bugs/show_bug.cgi?format=multiple&id=

80720

We can treat the bug report and the source code files as
text documents, and compute the textual similarity between
them. For a corpus of files, we can rank the files based on
each file’s textual similarity to the bug report. Developers
can then investigate the files one by one from the beginning
of the ranked list until relevant buggy files are found. In this
way, files relevant to the bug report can be quickly located.
Clearly, the goal of bug localization is to rank the buggy files
as high as possible in the list.

Figure 1. A bug report and its relevant source code file

B. General Bug Localization Process

Before presenting our approach, we describe a common
bug localization process, which consists of four steps: corpus
creation, indexing, query construction, and retrieval &
ranking.

Corpus creation: This step performs lexical analysis for
each source code file and creates a vector of lexical tokens.
Some tokens, such as keywords (e.g., int, double, char, etc),
separators, operators are common to all programs and are
removed. English “stop words” (e.g., ‘a’, ‘the’, etc.) are also
removed. Many variables defined in a program are actually
a concatenation of words. For example, the variable
TypeDeclaration contains two words: “type” and
“declaration”. The variable isCommitable is composed of
two words: “is” and “Commitable”. These composite tokens
are split into individual tokens. Many tokens have the same
root form. For example, “delegating”, “delegate” and
“delegation” share the same root “delegat”. The Porter
Stemming algorithm2 is applied to reduce a word to its root.

Indexing: After the corpus is created, all the files in the
corpus are indexed. By using these indexes, one can locate
files containing the words in a given query and then rank
these files by their relevance.

2 http://tartarus.org/martin/PorterStemmer/

Bug ID: 80720

Summary: Pinned console does not remain on top

Description:

Open two console views, … Pin one console. Launch

another program that produces output. Both consoles display

the last launch. The pinned console should remain pinned.

--

Source code file: ConsoleView.java

public class ConsoleView extends PageBookView

implements IConsoleView, IConsoleListener {...

 public void display(IConsole console) {

 if (fPinned && fActiveConsole != null) { return;}

 } …

 public void pin(IConsole console) {

 if (console == null) { setPinned(false);

 } else {

 if (isPinned()) { setPinned(false); }

 display(console);

 setPinned(true);

 }

 }

}

15

Query Construction: Bug localization considers a bug
report as a query, and uses it to search for relevant files in the
indexed source code corpus. It extracts tokens from the bug
title and description, removes stop words, stems each word,
and forms the query.

Retrieval and Ranking: Retrieval and ranking of
relevant buggy files is based on the textual similarity
between the query and each of the files in the corpus.
Various approaches can be used to compute a relevance
score for each file in the corpus given an input bug report.

C. Information Retrieval Models Used in Exisiting Bug

Localization Methods

Many bug localization approaches have been proposed.
These approaches mainly differ in the retrieval and ranking
of the results. There are many retrieval and ranking models
that have been used in prior studies on IR-based bug
localization. Due to space constraint, we just briefly describe
some important ones here:

SUM: Smoothed Unigram Model (SUM) is a statistical
model that fits a single multinomial distribution to the
frequencies of words in each file in the corpus [27]. The
unigram model (UM) derived directly from the word
frequency counts may have some problems, especially when
confronted with words that have not explicitly been seen
before - the probabilities of that unseen words are zero. SUM
smoothes the probability distributions by assigning non-zero
probabilities to the unseen words [17, 36]. SUM was used for
bug localization by Rao and Kak [32] and was found to be
the best performing model.

LDA: Latent Dirichlet Allocation (LDA) is a generative
probabilistic model for collections of discrete data such as
text corpora [11]. It is a Bayesian model, which extracts
latent topics from a collection of documents. Each topic is a
collection of tokens with attached probabilities. Each
document is represented by a probabilistic mixture of topics.
It was used by Lukins et al. [25] for bug localization.

LSI: Latent Semantic Indexing (LSI) [12], also called
latent semantic analysis (LSA), is an indexing and retrieval
method that can identify the relationship between the terms
and concepts contained in an unstructured collection of text
by using mathematical techniques such as Singular Value
Decomposition (SVD). This method was used by
Poshyvanyk et al. for bug localization [30, 31].

VSM: In Vector Space Model (VSM), each document is
expressed as a vector of token weights typically computed as
a product of token frequency and inverse document
frequency of each token [26]. Cosine similarity is widely
used to determine how close the two vectors are. Rao and
Kak [32] evaluated the performance of VSM model in bug
localization and found that it is worse than SUM but better
than other models (including LDA and LSI).

The existing methods have the following common
limitations:

! Low accuracy: The performance of existing bug
localization methods can be further improved. For
example, using LDA, relevant files of only 22% Eclipse
3.1 bugs are ranked in the top 10 [25].

! Small-scale experiments: Many of the existing static
bug localization methods only used a small number of
selected bug reports in their evaluation.

III. THE PROPOSED APPROACH

A. Analysis of Bug Localization Problem

To improve bug localization performance, we leverage
the following observations:

Source code files: A project’s source code repository
contains source code files. As illustrated in Figure 1, source
code files may contain words that are similar to those
occurring in the bug reports. Therefore, analyzing source
code files can help determine the location where the bug has
impact on, i.e., the buggy files.

Similar bugs: Once a new bug report is received, we
can examine similar bugs that were reported and fixed
before. The information on locations where past similar
bugs were fixed could help us locate the relevant files for
the new bug.

Software size: When two source files have similar
scores, we need to determine which one should be ranked
higher. From our experiences in software defect prediction
[37] and from other people’s work on quantitative analysis
of fault distributions [14, 29], we know that statistically,
larger files are more likely to contain bugs. Therefore for
bug localization we need to assign higher scores to larger
files.

The source code file information has been used by

existing bug localization methods [16, 25, 31, 32]. However,

to our best knowledge, the information about similar bugs

and software sizes has not been well utilized. During the

design of our approach, we take these information into

consideration.

Figure 2. The overall structure of BugLocator

B. The Overall Structure of BugLocator

Figure 2 shows the overall structure of the proposed bug
localization approach, BugLocator. When a new bug report
is received, we treat it as a query and apply a revised Vector
Space Model (rVSM) to search the source code repository. A
rank of relevant files is returned from the query on source
code files. For the new bug report, we also collect the similar

Final Ranked Files

(FinalRank)

Index

File Size

New Bug

Report

Ranked Files

(rVSMRank)

Previously Fixed

Bug Reports
Ranked Files

(SimiRank)

Query

Construction

Indexing

Query

Source Code

Files

Analyzing

Past Similar

Bugs

Retrieval &

Ranking with

rVSM

16

bugs that have been fixed before, and rank the relevant files
by analyzing past similar bugs and their fixes. Finally, we
combine the ranks obtained from the query on source code
files and from the analysis of past similar bugs, and return
the users the combined ranks. The users can then examine
the returned files in descending order to locate the bug. We
describe the detailed procedures in the following subsections.

C. Ranking Based on Source Code Files

We consider source code files as a text corpus, and the
initial bug report as a query. We can then apply information
retrieval techniques to create a model for searching source
code files based on the bug report. The similarity between
each file and the bug report is computed. The files are then
ranked by the similarity values and returned as output.

We propose a revised Vector Space Model (rVSM) to
index and rank the source code files. In a classic VSM, the
relevance score between a document d and a query q is
computed as the cosine similarity between their
corresponding vector representations:

(,) cos(,)
q d

q d

V V
Similarity q d q d

V V

!
" "

!!" !!"

!!" !!" (1)

, where dV
!!"

and qV
!!"

are a vector of term weights for the

document d and query q, respectively. q dV V!
!!" !!"

represents the

inner product of the two vectors. The term weight w is
computed based on the term frequency (tf) and the inverse
document frequency (idf). The basic idea is that the weight of
a term in a document is increasing with its occurrence
frequency in this specific document and decreasing with its
occurrence frequency in other documents. In classic VSM, tf
and idf are defined as follows:

#
(,) , () log()

#

td

t

f docs
tf t d idf t

terms n
" " (2)

, where ftd refers to the number of occurrences of a term t in
document d, nt refers to the number of documents that
contain the term t, #terms represents the total number of
terms in document d, and #docs represents the total number
of documents in the corpus. Over the years, many variants of
tf(t,d) have been proposed to improve the performance of the
VSM model [26]. These include logarithm, augmented, and
Boolean variants of the classic VSM. It is observed that the
logarithm variant can lead to better performance [8, 13]:

(,) log() 1tdtf t d f" # (3)

In rVSM, we use Equation (3) to define tf. Thus in
Equation (1), each term weight w in the document

vector dV
!!"

and its norm
 dV
!!"

are calculated as follows:

2

#
(log 1) log()

#
((log 1) log())

t d td t td

t

d tdt d
t

docs
w tf idf f

n

docs
V f

n

$

$

" % " # %

" # %!
!!"

(4)

In the similar way, we obtain the vector of term weights

for the query qV
!!"

 and its norm qV
!!"

 .

Classical VSM favours small documents during ranking.
Long documents are often poorly represented because they
have poor similarity values [15]. According to previous
studies [14, 29, 37], larger source code files tend to have
higher probability of containing a bug. Therefore we should
rank larger files higher in the case of bug localization. We
thus define a function g (Equation 5) to model the document
length in rVSM:

(#)

1
(#)

1 N terms
g terms

e&
"

(5)

Equation (5) is a logistic function (i.e., an inverse logit
function) that ensures that larger documents are given higher
scores during ranking. We use Equation (5) to compute the
length value for each source file according to the number of
terms the file contains.

In Equation (5), we use the normalized value of #terms as
the input to the exponential function xe& . The normalization

function is defined as follows:
Suppose that X is a set of data, xmax and xmin are the

maximum and minimum data in X, the normalization value
of any x in X is:

min

max min

()
x x

N x
x x

&
"

&

 (6)

Combining the above analysis, we thus propose a new
scoring algorithm for rVSM as follows:

(#)

2

2

2

(,) (#) cos(,)

1 1

1 #
((log 1) log())

1

#
((log 1) log())

#
(log 1) (log 1) log

N terms

tqt q
t

tdt d
t

tq tdt q d
t

rVSMScore q d g term q d

e docs
f

n

docs
f

n

docs
f f

n

&

$

$

$ '

" %

" %
#

%

%

%

" #
% # % # % $ %

& '

!

!

!

 (7)

Given a bug report, we use Equation (7) to determine the
relevance scores (rVSMScore) between each source code file
and the bug report. A ranked list (rVSMRank) can be
obtained according to the scores (the first returned result has
the highest score).

D. Ranking Based on Similar Bugs

For a new bug report, we also examine similar bugs that
have been fixed before in order to adjust the rankings of the
relevant files. The assumption here is that similar bugs tend
to fix similar files. We propose a method for ranking relevant
files based on similar bugs as follows:

We first construct a three-layer heterogeneous graph as
shown in Figure 3. The top layer (layer 1) contains one node
representing a newly reported bug B. The second layer

17

contains nodes representing previously fixed bugs S that are
similar to B. In our approach, we do not enforce a similarity
threshold. A link between B and a bug in layer 2 indicates
that there is a non-zero similarity value between their bug
reports. The third layer contains nodes representing all
source code files F. If a bug in layer 2 is fixed in a file in
layer 3, a link between them is established, indicating that
the bug has impact on the file.

Figure 3. Heterogeneous Bug-File graph

The weight of each node in layer 2 (Si) represents the
degree of similarity between Si and the newly reported bug
B. This similarity is computed by Equation (1). The weight
of each node in layer 3 (Fj) represents the degree of
relevance between a source code file and the bug B, which
is computed as follows:

All that
connect to

((,) /)
i

j

i i

S
F

SimiScore Similarity B S n" ! (8)

, where Si is a node in layer 2 that connects to Fj, ni is the

total number of connections to layer 3 Si has (i.e., the

number of files that are modified to fix the bug Si).
After computing the SimiScore for each file using

Equation (8), we then rank all files based on the SimiScore
values, and obtain a ranking of relevant files SimiRank.

E. Combining Ranks

Having computed the scores obtained from querying
source code files (rVSMScore) and from similar bug analysis
(SimiScore), we then combine these two scores for each file
as follows:

(1) ()

 ()

FinalScore N rVSMScore

N SimiScore

(

(

" & %

%
 (9)

, where (is a weighting factor and 0 (1.The

FinalScore is a weighted sum of rVSMScore and SimiScore.
The source code files ranked by FinalScore in descending
order are returned to users (FinalRank). Files that are ranked
higher are the more relevant ones, i.e., more likely to
contain the newly reported bug B.

Before we combine rVSMScore and SimiScore, we
normalize them to the range of 0 to 1, using the
normalization function defined in Equation (6).

The parameter (adjusts the weights of the two rankings.

The value of (can be set empirically, our experience shows

when (is between 0.2 and 0.3, the proposed method

performs the best.

IV. EXPERIMENTAL SETUP

A. Subject Systems

To evaluate the effectiveness of BugLocator, we use four
open source projects as shown in Table I. All projects have
complete bug database and change history, and have
different numbers of bugs and source code files. We choose
Eclipse3 in our evaluation because it is a well-known large-
scale open source system and it is widely used in empirical
software engineering research. The AspectJ project is a part
of the iBUGs public dataset provided by the University of
Saarland4 [9, 10]. It is also the subject used for evaluating
various IR models for bug localization [32]. Both Eclipse
and AspectJ use the Bugzilla bug tracking system and the
CVS/SVN version control system. We also investigate the
SWT5 component of Eclipse, to evaluate the bug
performance at the subproject level. To further evaluate the
generality of our approach, we choose an Android project
ZXing6, which is maintained by Google’s bug tracking
system and version control system.

B. Data Collection

For each subject system, we collect its initial bug reports
from the bug tracking system (such as BugZilla). To evaluate
the bug localization performance, we only collect the bug
reports of fixed bugs.

To establish the links between bug reports and source
code files, we adopt the traditional heuristics proposed by
Bachmann and Bernstein [5]:

1) Scan through the change logs for bug IDs in a given
format (e.g. “issue 681”, “bug 239” and so on).

2) Exclude all false-positive bug numbers (e.g. “r420”,
“2009-05-07 10:47:39 -0400” and so on).

3) Check if there are other potential bug number formats
or false positive number formats, add the new formats and
scan the change logs iteratively.

4) Check if potential bug numbers exist in the bug-
tracking database with their status marked as fixed.

Based on these heuristics we mine the source code
repository (such as CVS and SVN) for links between source
code files and bug reports.

TABLE I. THE STUDIED PROJECTS

Project Description
Study

Period

#Fixed

Bugs

#Source

Files

Eclipse

(v3.1)

An open development

platform for Java

Oct 2004 -

Mar 2011
3075 12863

SWT

(v3.1)

An open source widget

toolkit for Java

Oct 2004 -

Apr 2010
98 484

AspectJ

An aspect-oriented

extension to the Java

programming language

Jul 2002 -

Oct 2006
286 6485

ZXing

A barcode image

processing library for

Android applications

Mar 2010-

Sep 2010
20 391

3 http://www.eclipse.org
4
 http:// www.st.cs.uni-saarland.de/ibugs/

5
 http://www.eclipse.org/swt/

6
 http://code.google.com/p/zxing/

B (a bug to be located)

A link represents the similarity

between Si and B

S (all similar bugs of B)

A link indicates the impact of

 a bug on a file

F (source code files)

Layer 1

Layer 2

Layer 3

18

C. Research Questions

Our experiments are designed to address the following
research questions:

RQ1: How many bugs can be successfully located by
BugLocator?

To answer this question, we run BugLocator on the four
subject systems as described in Section IV.A. For each bug
report, we first obtain the relevant files that have been
modified to fix the bug using the method described in
Section IV.B. We then check the ranks of these files in the
query results returned by BugLocator. If the files are ranked
in top 1, top 5 or top 10, we consider the report has been
effectively localized. We perform the experiment for all bug
reports and calculate the percentage of bugs that have been
successfully located. We also compute the Mean Average
Precision (MAP) and Mean Reciprocal Rank (MRR)
measures (described in Section IV.D) to further evaluate bug
localization performance.

RQ2: Does the revised Vector Space Model (rVSM) improve
the bug localization performance?

In Section III, we propose rVSM, a revised vector space
model (Equation 7) for retrieving relevant files from source
code repository. rVSM adjusts the ranks of large files and
incorporates a more effective term-frequency variant. To
evaluate the effectiveness of rVSM, we perform bug
localization on the subject systems using classic and revised
VSM, and compare the results.

RQ3: Does the consideration of similar bugs improve the
bug localization performance?

In Section III, we propose to use similar bugs to adjust
the ranks obtained by rVSM. To evaluate the usefulness of
the proposed similar bug analysis, we perform bug
localization on the four subject systems with/without the
rankings learned from past similar bugs. Furthermore,
according to Equation (9), the parameter (adjusts the

weights of the two rankings. When (= 0, the final rank is

only dependent on the queries of source code files. When the
value of (is between 0 and 1, the final rank is a

combination of two ranking results. In our experiments, we
also evaluate the effect of different (values.

RQ4: Can BugLocator outperform other bug localization
methods?

Bug localization has attracted much research interest in
recent years. In our experiments, we compare BugLocator to
the bug localization methods implemented using the
following IR techniques:

! LDA, which was used by Lukins et al. [25] for bug
localization. Following their LDA configuration, in our
experiment, for AspectJ, SWT and ZXing, we set K
(the number of topics) to 100, ((the hyper-parameter

for the per-document topic distribution) to 0.5 (this is
the default value computed by the standard formula:

50/K), and (the hyper-parameter for the per-topic

word distribution) to 0.1, For Eclipse, as it is a large
system consisting of many files, we set K to 500, (to

0.1 and to 0.1, which can lead to a better

performance. We use JGibbLDA7, an open source tool
written in Java, to implement the LDA model.

! SUM, which was used by Rao and Kak [32] for bug
localization. In their study, SUM is shown to be the best
IR model for bug localization, outperforming
sophisticated models like LDA and LSI.

! VSM, which was also used by Rao and Kak [32] for
bug localization. In their study, VSM was the second
best IR approach for bug localization.

! LSI, which was used by Poshyvanyk et al. [30, 31] for
bug localization. Previous experiments [25, 32] show
that the performance of SUM, VSM or LDA is better
than LSI.

Following Rao and Kak [32], we use KL divergence [21]
to compute the similarity measures for LDA and SUM. We
use the cosine similarity measure for VSM and LSI.

D. Evaluation Metrics

To measure the effectiveness of the proposed bug
localization method, we use the following metrics:

! Top N Rank, which is the number of bugs whose
associated files are ranked in the top N (N= 1, 5, 10) of
the returned results. Given a bug report, if the top N
query results contain at least one file at which the bug
should be fixed, we consider the bug located. The
higher the metric value, the better the bug localization
performance.

! MRR (Mean Reciprocal Rank), which is a statistic for
evaluating a process that produces a list of possible
responses to a query [34]. The reciprocal rank of a
query is the multiplicative inverse of the rank of the
first correct answer. The mean reciprocal rank is the
average of the reciprocal ranks of results of a set of
queries Q:

1

1 1
Q

i i

MRR
Q rank"

" ! (10)

The higher the MRR value, the better the bug
localization performance.

! MAP (Mean Average Precision), which provides a
single-figure measure of quality of information
retrieval [26], when a query may have multiple
relevant documents. The Average Precision of a single
query (AvgP) is the average of the precision values
obtained for the query, which is computed as follows:

() ()

number of positive instances1

M P j pos j
AvgP

i
i

%
" !

"

 (11)

, where j is the rank, M is the number of instances
retrieved, pos(j) indicates whether the instance in the
rank j is relevant or not. P(j) is the precision at the
given cut-off rank j and is defined as follows:

7 http://jgibblda.sourceforge.net

19

number of positive instances in top j positions

()P j
j

" (12)

Then the MAP for a set of queries is the mean of the
average precision values for all queries. In bug
localization, a bug may be relevant to multiple files.
We use MAP to measure the average performance of
BugLocator for locating all relevant files. The higher
the MAP value, the better the bug localization
performance.

V. EXPERIMENTAL RESULTS

A. Experimental Results for Research Questions

RQ1: How many bugs can be successfully located by

BugLocator?
Table II shows the best bug localization results achieved

by BugLocator for all subject systems. For 896 Eclipse bugs
(29.14%), BugLocator successfully locates the relevant
buggy source code files and ranks them as the top 1 among
the returned results. For 1653 Eclipse bugs (53.76%),
BugLocator ranks their relevant files within the top 5 of the
returned results. For 1925 Eclipse bugs (62.60%), the
relevant files can be found within the top 10 results.

TABLE II. THE PERFORMANCE OF BUGLOCATOR

System (Top 1 Top 5 Top 10 MRR MAP

ZXing 0.2
8

(40%)

12

(60%)

14

(70%)
0.50 0.44

SWT 0.2
39

(39.80%)

66

(67.35%)

80

(81.63%)
0.53 0.45

AspectJ 0.3
88

(30.77%)

146

(51.05%)

170

(59.44%)
0.41 0.22

Eclipse 0.3
896

(29.14%)

1653

(53.76%)

1925

(62.60%)
0.41 0.30

For AspectJ, there are total 6,485 Java source code files
and 286 bugs. For 59.44% of the bugs (i.e., 170 bugs) the
first relevant file is returned in the top 10, and for 51.05% of
the bugs (i.e., 146 bugs) the first relevant file is returned in
the top 5. The results indicate that our approach is effective
in localizing bugs in AspectJ.

AspectJ was also the subject program investigated in [32].
In [32], the authors compared various information retrieval
methods for bug localization and found that SUM performs
the best (in terms of the percentage of bugs being
successfully located and MAP). We compare the results of
BugLocator with the SUM results given in [32], and find that
BugLocator outperforms SUM (Figure 4). For example,
using SUM, the relevant files of 19.59% bugs are returned as
the top 1, while using BugLocator we can locate 30.77%
bugs in the top 1 returned file. The MAP values for SUM
and BugLocator are 0.14 and 0.22, respectively. In general,
BugLocator improves the performance of SUM by 10%.

For SWT, Table II shows that for 39.80% of the bugs,
BugLocator ranks their relevant Java source file as top 1; for
67.35% of the bugs, BugLocator ranks their relevant files
within top 5; for 81.63% of the bugs, BugLocator ranks their
relevant files within top 10. These ratios are higher than
those of AspectJ and Eclipse.

For ZXing, BugLocator achieves similar good
performance. The percentages of bugs whose relevant files
are ranked top 1, top 5, and top 10 are 40%, 60%, and 70%,
respectively.

In summary, the experimental results show that
BugLocator can help locate a large percentage of bugs by
examining a small number of source files.

Figure 4. The comparison between the results of BugLocator and the

SUM results given in [32] on AspectJ dataset

RQ2: Does the revised Vector Space Model (rVSM) improve
the bug localization performance?

Table III shows the results of bug localization using the
classic VSM and the proposed revised VSM methods. For
fair comparisons, for the revised VSM we do not consider
similar bugs (i.e, the weight (is set to 0). The experimental

results show that the proposed VSM method outperforms the
standard VSM. For example, for Eclipse 3.1, 749 bugs
(24.36%) whose relevant source file are returned as top 1
using the proposed VSM method. In classic VSM, this
number is only 211 (6.86%). When measuring the
performance in terms of MAP and MRR, the proposed VSM
method can lead to MRR value 0.35 and MAP value 0.26,
which are better than the values achieved by the standard
VSM (MRR=0.13 and MAP=0.09). Similar results are
observed for other projects as well.

TABLE III. THE PERFORMANCE OF BUG LOCALIZATION WITH CLASSIC

AND REVISED VSM MODELS

System
VSM

Method
Top 1 Top 5 Top 10 MRR MAP

ZXing

Classic
4

(20%)

7

(35%)

10

(50%)
0.28 0.27

Revised
8

(40%)

11

(55%)

14

(70%)
0.48 0.41

SWT

Classic
11

(11.22%)

32

(32.65%)

45

(45.92%)
0.23 0.20

Revised
31

(31.63%)

64

(65.31%)

76

(77.55%)
0.47 0.40

AspectJ

Classic
36

(12.59%)

68

(23.78%)

82

(28.67%)
0.18 0.08

Revised
65

(22.73%)

117

(40.91%)

159

(55.59%)
0.33 0.17

Eclipse

Classic
211

(6.86%)

520

(16.91%)

736

(23.93%)
0.13 0.09

Revised
749

(24.36%)

1419

(46.15%)

1719

(55.90%)
0.35 0.26

0

10

20

30

40

50

60

70

Top 1 Top 5 Top 10 MAP

P
e
r
c
e
n

ta
g

e

BugLocator SUM

20

RQ3: Does the consideration of similar bugs improve the
bug localization performance?

Table IV below shows the experimental results of bug
localization without using information from similar bugs (i.e.,
the weighting factor (is 0). Comparing Table II and Table

IV, we can see that the information of similar bugs can
indeed improve the bug localization performance. For
example, for the Eclipse project, utilizing similar bugs we
can locate relevant source files at top 1 for 896 bugs
(29.14%), within top 10 for 1925 bugs (62.60%). The MRR
and MAP values are 0.41 and 0.30, respectively. Without
considering similar bugs, only 749 bugs (24.36%) have their
relevant files ranked as the top 1, and 1719 bugs (55.90%)
have their relevant files ranked within top 10. The MRR and
MAP values are only 0.35 and 0.26, respectively. Similar
results are observed for other projects as well.

TABLE IV. THE PERFORMANCE OF BUG LOCALIZATION WITHOUT USING

SIMILAR BUGS

System Top 1 Top 5 Top 10 MRR MAP

ZXing
8

(40%)

11

(55%)

14

(70%)
0.48 0.41

SWT
31

(31.63%)

64

(65.31%)

76

(77.55%)
0.47 0.40

AspectJ
65

(22.73%)

117

(40.91%)

159

(55.59%)
0.33 0.17

Eclipse
749

(24.36%)

1419

(46.15%)

1719

(55.90%)
0.35 0.26

We also evaluate the impact of similar bug information
on bug localization performance, with different (values.

We find that at beginning, the bug localization performance
increases when the (value increases. However, after a

certain point, further increase of the (value will decrease

the performance. As an example, Figure 5 below shows the
bug localization performance (measured in terms of MAP
and MRR) for the Eclipse project. When the (value

increases from 0 to 0.3, both MAP and MRR values
increases. Increasing (value further from 0.4 to 0.9

however leads to lower performance. When (is between 0.2

and 0.3, we obtain the best bug localization performance.

RQ4: Can BugLocator outperform other bug localization
methods?

We implement bug localization methods using VSM,
LDA, SUM and LSI models and perform experiments on all
subject systems. We then compare the performance of
BugLocator with the related methods. Figure 6 shows the
percentage of bugs that can be located in top 1 and top 10
returned files. Clearly, BugLocator outperforms all other
methods. For example, using BugLocator we can locate
29.14% Eclipse bugs in the first returned (top 1) files, while
using VSM, LDA, SUM and LSI models, we can only locate
6.86%, 0.32%,1.72% and 4.23% Eclipse bugs in the first
returned files, respectively. BugLocator also outperforms
other models when the performance is measured in terms of
MAP and MRR. For example, for ZXing, the MAP and
MRR values are 0.44 and 0.50 respectively, which are much
higher than the second best model (i.e., SUM), whose MAP
and MRR values are 0.30 and 0.37, respectively. Detailed
results are omitted due to space constraints. The t-tests at
95% confidence level confirm that our method statistical
significantly outperforms the others.

B. Discussions of the Results

1) Why does the proposed rVSM method work?
Our experimental results described in the previous

section show that the proposed rVSM performs better than
the classical VSM when used for bug localization. In this
section, we discuss why the proposed rVSM can achieve
better performance.

The differences between rVSM and VSM are in the
Equations (4) and (5). Equation (4) uses the logarithm of the
original tf value. This is because terms with high frequency
may have negative impact on information retrieval
performance. It is often not the case that the term importance
is proportional to its occurrence frequency. The logarithm
variant of tf can help smooth the impact of the high frequent
terms [8, 13].

Equation (5) adjusts the ranking results based on file
sizes. This is based on the findings of our earlier study [37]
that the larger files tend to be more defect-prone than the
smaller files.

Figure 5. The impact of on bug localization performance (MAP and MRR)

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MRR

eclipse
aspectj

swt
zxing

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MAP

eclipse
aspectj

swt
zxing

21

Figure 6. The comparisons between different bug localization methods

TABLE V. THE COMPARISONS OF DIFFERENT LENGTH FUNCTIONS

Length

function g
Expression MAP MRR

Logistic
1

()
1 x

f x
e&

"
#

 0.26 0.35

Exponential () 0.5xf x e" & 0.25 0.33

Square root
1

() 1f x
x

" & 0.19 0.26

Linear () 0.5
2

x
f x " # 0.25 0.34

In [37], we found that a small number of largest files
account for a large proportion of the defects. For example, in
Eclipse 3.0, 20% of the largest files are responsible for
62.29% pre-release defects and 60.62% post-release defects.
Similar phenomenon is also observed by many others
include Ostrand et al. [29]. They studied the “ranking ability”
of LOC for two industrial systems and found that 20% of
largest files contain 73% and 74% of the bugs for the two
systems. In summary, the empirical studies confirm that by
ranking larger files higher we can locate more bugs.

Equation (5) uses a logistic function g to adjust the
ranking results. We also experiment with other length
functions including linear, square root and exponential
functions (Table V). These functions weight files of different
sizes differently. Our experiment results (Table V) show that
the logistic function achieves the best overall MAP and
MRR values, outperforming other length functions.

2) Why can similar bugs help improve bug localization
performance?

We also explore why similar bugs can improve the bug
localization. We find out that for many bugs, the associated
files have overlaps with the associated files of their similar
bugs. For example, in Eclipse, 1207 (39.3%) bugs have at
least one relevant file that is common to the files of their top
10 most similar bugs. For 602 (19.6%) bugs, all their
relevant files are covered by their top 10 most similar bugs.

These results suggest that similar bugs can improve the bug
localization performance.

The analysis of similar bugs becomes more important
when the textual similarity between bug reports and source
code is low. As an example, for the Eclipse bug 89014 that
is reported on March 24, 2005, it was fixed in the file
BindingComparator.java. Using rVSM, the relevant file
BindingComparator.java is only ranked 2527, because the
textual similarity between source code and the bug report is
low. However, the analysis on similar bugs found that this
bug is actually similar to previous fixed bugs 83817, 79609
and 79544, which all introduced bug-fixing changes to the
file BindingComparator.java. Therefore, BugLocator
combines the scores obtained from rSVM and similar bug
analysis based on Equation (9), and the final rank of the file
BindingComparator.java becomes 7.

3) The percentage of code to be examined for bug
localization

Our experimental results reported in the previous sections
only evaluate the performance of bug localization in terms of
the number of relevant files retrieved. In practices,
developers are also interested in the actual lines of code need
to be examined in order to locate a bug. This is of particular
concern as the proposed rVSM model ranks larger source
files higher via the length function defined in Equation (5).

We perform further experiments to evaluate how many
lines of code are required to be examined in order to locate
the bugs. For each bug, we count the number of files to be
examined before locating the bug, and compute the lines of
code for each file. The results show that BugLocator is still
effective when its performance is measured in terms of lines
of code to be examined. For example, by examining 1% lines
of code, BugLocator can locate nearly 80% bugs in Eclipse
and 60% bugs in AspectJ.

BugLocator can also locate more bugs than SUM when
the same number of lines of code is examined. For Eclipse,
using BugLocator we can locate more than 95% bugs by
examining 10% of code, while using SUM (the best
performing method described in [32]) we can only locate

0

5

10

15

20

25

30

35

40

45

50

Eclipse AspectJ SWT Zxing

P
e
r
c
e
n

ta
g

e

Top 1

BugLocator VSM LDA SUM LSI

0

10

20

30

40

50

60

70

80

90

100

Eclipse AspectJ SWT Zxing

P
e
r
c
e
n

ta
g

e

Top 10

BugLocator VSM LDA SUM LSI

22

about 81% bugs by examining the same amount of code. For
the other systems, we obtain similar results.

VI. THREATS TO VALIDITY

There are potential threats to the validity of our work:

! All datasets used in our experiments are collected from

open source projects. The nature of the data in open

source projects may be different from those in projects

developed by well-managed software organizations.

We need to evaluate if our solution can be directly

applied to commercial projects. We leave this as a

future work.

! A limitation of our approach is that we rely on good
programming practices in naming variables, methods
and classes. If a developer uses non-meaningful names
the performance of bug localization would be affected.
However, in our experiments we notice that in most
well-managed projects, developers generally follow
good naming conventions.

! Bug reports provide crucial information for developers
to fix the bugs. A “bad” bug report could cause a delay
in bug fixing. Our approach also relies on the quality of
bug reports. If a bug report does not provide enough
information, or provides misleading information, the
performance of BugLocator is adversely affected.

VII. RELATED WORK

Bug fixing is an important but still costly activity in
software development. Spectrum-based fault localization
techniques [1, 18, 19, 22, 23] can help developers locate
faults by examining a small portion of code. These
techniques usually contrast the program spectra information
(such as execution statistics) between passed and failed
executions to compute the fault suspiciousness of individual
program elements (such as statements, branches, and
predicates), and rank these program elements by their fault
suspiciousness. Developers may then locate faults by
examining a list of program elements sorted by their
suspiciousness. Examples of spectrum-based fault
localization techniques include Tarantula [18, 19], Jaccard
and Ochiai [1]. The spectrum-based fault localization
techniques require program runtime execution traces. Our
approach is based on the query of bug reports against the
source code repository, which does not require the collection
of the passing and failing execution traces. There are also
other techniques that help developers automatically locate
bugs, such as delta debugging [39] and dynamic slicing [38].
Unlike these techniques, our approach is a static approach,
which does not require the execution of the programs.

In recent years, many information retrieval based bug
localization methods have been proposed [25, 28, 32]. As
described in the previous sections, BugLocator performs
better than the related methods because of the utilization of
rVSM and similar bug information. This area of work is also
closely related to feature/concept location [2, 3, 24, 28],
which is about identifying the parts of the source code that
correspond to a specific functionality. The results can be
used as starting points in change impact analysis. The

problem of locating bug-related code could be also treated as
a feature/concept location problem. Poshyvanyk et al. [31]
presented a feature location method called PROMESIR,
which combines results from both dynamic analysis and
information retrieval. They applied PROMESIR to locate 8
bugs in Mozilla and Eclipse systems. Gay et al. [16] also
proposed a concept location approach that augments
information retrieval based concept location via an explicit
relevance feedback mechanism. They evaluated their
approach using 7 Eclipse bug reports. Our approach is
dedicated to bug localization. We perform large-scale
evaluations using more than 3000 bug reports from four
different systems. Unlike the work described in [31] and
[16], we do not require program execution or user interaction.

Our work is also related to research on mining software
repository. The existence of large amount of data stored in
bug tracking systems provides many opportunities for
automated software quality analysis and improvement. Many
researchers mine bug report information to solve software
engineering problems such as duplicate bug detection [33,
35], automatic bug triage [4, 7], bug report quality analysis
[6, 7], and defect prediction [20, 37]. Because of the large
number of bugs, such problems cannot be effectively solved
by manual efforts. In our approach, we utilize bug report
information to automatically locate buggy files.

VIII. CONCLUSIONS

Once a new bug report comes, developers need to know
which files should be modified to fix the bug. For a large
software project, they may need to examine a large number
of source code files in order to locate the bug, which could
be a tedious and costly work. In this paper, we have
proposed an IR-based method named BugLocator for
locating relevant source code files based on initial bug
reports. BugLocator utilizes a revised Vector Space Model
(rVSM) as well as similar bug information. The evaluation
results on four real-world open source projects show that
BugLocator can perform bug localization effectively. The
results also show that BugLocator outperforms existing
methods such as those based on VSM, LDA, LSI, and SUM.

In future, we will explore if program execution
information can be integrated into our approach to help
further improve bug localization performance. We will also
apply BugLocator to industrial projects to evaluate its
effectiveness in practice.

Our tool and the experimental data are available at:
http://code.google.com/p/bugcenter

ACKNOWLEDGMENT

This work is supported by NSFC grant 61073006 and
Tsinghua University project 2010THZ0. We thank Rongxin
Wu and Aihui Zhou for helping with data collection.

REFERENCES

[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. van Gemund, A
practical evaluation of spectrum-based fault localization. Journal of
Systems and Software, 82(11), p. 1780-1792, 2009.

[2] G. Antoniol, G. Canfora, G. Casazza, and A. Lucia, Identifying the
Starting Impact Set of a Maintenance Request: A Case Study, Proc.

23

Fourth European Conf. Software Maintenance and Reeng.
(CSMR ’00), Zurich, Switzerland, p. 227-231, March 2000.

[3] G. Antoniol and Y. Gue´he´neuc, Feature Identification: A Novel
Approach and a Case Study, Proc. 21st IEEE Int’l Conf. Software
Maintenance (ICSM ’05), Budapest, Hungary, p.357-366, Sept 2005.

[4] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In
ICSE ’06: Proceedings of the 28th international conference on
Software engineering, p. 361–370, Shanghai, China, May 2006.

[5] A. Bachmann and A. Bernstein. Software process data quality and
characteristics: a historical view on open and closed source projects.
IWPSE-Evol '09 Proceedings of the joint international and annual
ERCIM workshops on Principles of software evolution (IWPSE) and
software evolution (Evol) workshops, ACM, 2009.

[6] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T.
Zimmermann. What makes a good bug report? In Proceedings of the
16th International Symposium on Foundations of Software
Engineering, Atlanta, GA , November 2008.

[7] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim., Duplicate
bug reports considered harmful... really? In Proceedings of the 24th
IEEE International Conference on Software Maintenance, Beijing,
China, September 2008.

[8] W. B. Croft, D. Metzler, T. Strohman, Search Engines: Information
Retrieval in Practice , Addison-Wesley, 2010.

[9] V. Dallmeier, T. Zimmermann. Extraction of Bug Localization
Benchmarks from History. In Proceedings of the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE
2007), Atlanta, Georgia, USA, November 2007.

[10] V. Dallmeier, T. Zimmermann. Automatic Extraction of Bug
Localization Benchmarks from History. Technical Report, Saarland
University, June 2007.

[11] M. B. David, Y. Ng. Andrew, M. I. Jordan. Latent Dirichlet
Allocation, Journal of Machine Learning Research, vol. 3, p. 993-
1022, 2003.

[12] S. Deerwester,et al, Improving Information Retrieval with Latent
Semantic Indexing, Proceedings of the 51st Annual Meeting of the
American Society for Information Science 25, p.36–40, 1988.

[13] S. T. Dumais,Improving the retrieval of information from external
sources, Behavior Research Methods, Instruments, and Computers,
Psychonomic Society, p.229 - 236, 1991.

[14] N. Fenton and N. Ohlsson, Quantitative Analysis of Faults and
Failures in a Complex Software System, IEEE Trans. Software Eng.,
26 (8), pp. 797-814, 2000.

[15] E. Garcia, Description, Advantages and Limitations of the Classic
Vector Space Model, Oct 2006, available at:
http://www.miislita.com/term-vector/term-vector-3.html

[16] G. Gay, S. Haiduc, A. Marcus and T. Menzies, On the use of
relevance feedback in IR-based concept location, Proc. the 25th
IEEE International Conference on Software Maintenance, Edmonton,
Alberta, Canada, p.351-360, September 2009.

[17] I. J. Good, The population frequencies of species and the estimation
of population parameters. Biometrika,40(3 and 4) , p.237-264, 1953

[18] J. A. Jones and M. J. Harrold. Empirical evaluation of the Tarantula
automatic fault-localization technique. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2005), Long Beach, California, p. 273-282, 2005.

[19] J. A. Jones, M. J. Harrold, J. Stasko. Visualization of test
information to assist fault localization. In Proceedings of the 24th
International Conference on Software Engineering (ICSE 2002),
Orlando, Florida, USA, ACM Press, p. 467-477, May 2002.

[20] S. Kim, T. Zimmermann, E. Whitehead Jr., A. Zeller, Predicting
Faults from Cached History, Proc. ICSE’07, Minneapolis, USA,
May 2007.

[21] S. Kullback, K. P. Burnham, N. F. Laubscher, G. E. Dallal, L.
Wilkinson, D. F. Morrison, M. W. Loyer, B. Eisenberg, et al.
Letter to the Editor: The Kullback–Leibler distance. The American
Statistician 41 (4), p. 340–341, 1987.

[22] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, M. Jordan. Scalable
statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI 2005), Chicago, IL, USA, p.15-26, June 2005.

[23] C. Liu, L. Fei, X. Yan, S. P. Midkiff, J. Han. Statistical debugging: a
hypothesis testing-based approach. IEEE Transactions on Software
Engineering, 32 (10), 831-848.

[24] D. Liu, A. Marcus, D. Poshyvanyk, V. Rajlich, Feature Location via
Information Retrieval based Filtering of a Single Scenario Execution
Trace, in Proceedings of 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007), Atlanta, Georgia,
November 5-9, p. 234-243.

[25] S. Lukins, N. Kraft and L. Etzkorn. Bug localization using latent
Dirichlet allocation. Information and Software Technology ,Volume
52, Issue 9, p. 972-990, September 2010.

[26] C. D. Manning, P. Raghavan and H. Schütze. Introduction to
Information Retrieval, Cambridge University Press, 2008.

[27] C. D. Manning, H Schütze, Foundations of Statistical Natural
Language Processing, MIT Press, 1999.

[28] A.Marcus, A. Sergeyev, V.Rajlich, J. Maletic, An Information
Retrieval Approach to Concept Location in Source Code. In
Proceedings of the 11th IEEE Working Conference on Reverse
Engineering (WCRE 2004), Delft, The Netherlands, p. 214-223,
November 9-12, 2004.

[29] T. Ostrand, E. Weyuker and R. Bell, Predicting the Location and
Number of Faults in Large Software Systems, IEEE Trans. Software
Eng., 31 (4), pp. 340-355, 2005.

[30] D. Poshyvanyk, Y.-G. Gueheneuc, A. .Marcus, G. Antoniol,
V.Rajlich, Combining Probabilistic Ranking and Latent Semantic
Indexing for Feature Identification, Proceedings of the 14th IEEE
International Conference on Program Comprehension (ICPC 2006),
Athens, Greece, p.137-146, June 2006.

[31] D. Poshyvanyk, Y. Guéhéneuc, A. Marcus, G. Antoniol and V.
Rajlich, Feature Location using Probabilistic Ranking of Methods
based on Execution Scenarios and Information Retrieval, IEEE
Transactions on Software Engineering, p. 420-432, 33(6), 2007.

[32] S. Rao and A. Kak. Retrieval from software libraries for bug
localization: a comparative study of generic and composite text
models. In Proceeding of the 8th working conference on Mining
software repositories (MSR'11), ACM, Waikiki, Honolulu, Hawaii,
p.43-52, May 2011.

[33] C. Sun, D. Lo, X. Wang, J. Jiang, and S.C. Khoo. A discriminative
model approach for accurate duplicate bug report retrieval, Proc. of
the 32nd ACM/IEEE International Conference on Software
Engineering (ICSE’10). Cape Town, South Africa, May 2010.

[34] E. M. Voorhees, TREC-8 Question Answering Track Report,
Proceedings of the 8th Text Retrieval Conference, p. 77–82, 1999.

[35] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to
detecting duplicate bug reports using natural language and execution
information. In Proceedings of the 30th International Conference on
Software Engineering (ICSE’08), Leipzig, Germany, May 2008.

[36] I. H. Witten and T. C. Bell, The Zero-frequency Problem: Estimating
the Probabilities of Novel Events in Adaptive Text Compression,
IEEE Transcations on information Theory, 37(4), p.1085-1094,1991.

[37] H. Zhang, An Investigation of the Relationships between Lines of
Code and Defects, Proc. the 25th IEEE International Conference on
Software Maintenanc (ICSM’09), Edmonton, Canada, p. 274-283,
September 2009.

[38] X. Zhang, H. He, N. Gupta, and R. Gupta. Experimental evaluation
of using dynamic slices for fault location. In Automated and
Algorithmic Debugging (AADEBUG), Monterey, California, USA , p.
33–42, 2005.

[39] A. Zeller, R. Hildebrandt, Simplifying and isolating failure-inducing
input, IEEE Transactions on Software Engineering 28 (2), p. 183–
200, 2002.

24

