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Animals select habitat resources at multiple spatial scales. Thus, explicit attention to
scale dependency in species—habitat relationships is critical to understand the habitat
suitability patterns as perceived by organisms in complex landscapes. Identification of
the scales at which particular environmental variables influence habitat selection may
be as important as the selection of variables themselves. In this study, we combined
bivariate scaling and Maximum entropy (Maxent) modeling to investigate multiscale
habitat selection of endangered brown bear (Ursus arctos) populations in northwest
Spain. Bivariate scaling showed that the strength of apparent habitat relationships was
highly sensitive to the scale at which predictor variables are evaluated. Maxent models
on the optimal scale for each variable suggested that landscape composition together
with human disturbances was dominant drivers of bear habitat selection, while habi-
tat configuration and edge effects were substantially less influential. We found that
explicitly optimizing the scale of habitat suitability models considerably improved sin-
gle-scale modeling in terms of model performance and spatial prediction. We found that
patterns of brown bear habitat suitability represent the cumulative influence of habitat
selection across a broad range of scales, from local resources within habitat patches to
the landscape composition at broader spatial scales.
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1. Introduction

Understanding the relationships between environmental factors and species distributions
is an important objective in ecology (Guisan and Zimmerman 2000) and conservation
planning (Pearce and Boyce 2006). The dependence of ecological processes on drivers
acting across a range of scales is a central tenet of landscape ecology (Urban 1987, Levin
1992). There are several studies that have evaluated the effect of spatial scale on the accu-
racy of habitat models, but very few of them have used multiple scales within the same
analysis (among others, see Swindle et al. 1999, Dunk et al. 2004). When characteriz-
ing the environmental factors that influence species—habitat relationships, it is crucial to
identify not only the correct drivers (Williams et al. 2012), but also the scale at which
they match the biological interactions between organisms and the environment. Failure
to address this issue can lead to a misinterpretation of the nature or strength of the
pattern—process relationship (Thompson and McGarigal 2002). Thus, scaling analysis is
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particularly important for unraveling species—habitat relationships (Moudry and Simova
2012, Shirk et al. 2012,Wasserman et al. 2012). Species respond to habitats for partic-
ular life-history functions across a hierarchy of spatial scales (Johnson 1980, Schaefer
and Messier 1995, Retie and Messier 2000). This emphasizes the importance of evaluat-
ing species habitat selection at a range of spatial scales in order to reveal the true grain
at which the animals respond to the landscape (Kotliar and Wiens 1990). Recent studies
focusing on different species (Thompson and McGarigal 2002, Grand et al. 2004, Shirk
et al. 2010, Wasserman et al. 2012) have shown that species often select different habitat
variables at widely divergent scales and demonstrated that multiscale approaches to habitat
modeling yielded much improved predictions of species occurrence. These studies revealed
the power of the bivariate scaling method of systematically varying the scale of analysis for
the habitat variables to identify the dominant scales for each ecological process. Previous
studies typically rely on scales suggested by expert judgment or on biological assumptions
on the most meaningful single scale. There is, however, no a priori way to estimate the focal
spatial scale at which a species perceives a particular variable (Shirk et al. 2012). However,
ignoring the cumulative effect across multiple scales affecting the species of study may lead
to reduced predictive power and to misinterpretation of relationships between environmen-
tal factors and species occurrence (e.g. Thompson and McGarigal 2002, Wasserman ef al.
2012).

We investigated brown bear (Ursus arctos) habitat relationships in the Cantabrian
Range (NW Spain) in an attempt to integrate the concepts of scale dependency and
hierarchy of environmental factors in habitat suitability. Brown bear in northwest Spain
occurs in two small, largely isolated and endangered subpopulations, with a total esti-
mated number of individuals below 200 (Palomero et al. 2007). This isolation is usually
attributed to increasing human pressure and to the loss of suitable habitat (Naves and
Palomero 1993, Wiegand et al. 1998, Garcia et al. 2007). The brown bear has been pro-
tected in Spain for over three decades and much of the known range of the species falls
within different protected areas such as European Nature 2000 Network, Natural Parks,
and the Recovery Plans of each of the Regional Institutions involved in its management.
Decline of genetic diversity and the small size of the populations hamper the recovery
and viability of this species (Garcia-Garitagoitia et al. 2006), which is one of the most
endangered mammals in Spain. Several factors make brown bear a good model for mul-
tiscale ecological analysis: (1) Brown bear home ranges are extensive; (2) The species
uses a variety of resources throughout their home range; and (3) Resources for differ-
ent life-history requirements (for example, foraging and mating) may require multiscale
evaluations.

Brown bear ecology and habitat requirements have been broadly studied (e.g.
Clevenger et al. 1992, 1997, Naves and Palomero 1993, Naves et al. 2003, Palomero ef al.
2006) providing valuable insights into species—habitat relationships. However, few pub-
lished studies consider scales issues or they do so only for factors thought to be driven at
broad scales; such as population connectivity or impacts of the human footprint (Naves
et al. 2003). We hypothesize that, as in previous studies of other species (e.g. Thompson
and McGarigal 2002, Grand 2004, Wasserman et al. 2012), a predictive model for brown
bear occurrence based on the influence of habitat variables acting at multiple optimal scales
(1) would generally offer greater specificity, sensitivity, classification accuracy, and pre-
dictive power than a model constructed at a single scale and (2) may provide new and
important insights into the species—habitat association that would not be apparent if scale
is not explicitly optimized in habitat modeling.
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Therefore, in this study we used a multiscale approach for the analysis of brown bear
habitat relationships in northwest Spain. Our goals were (1) to identify the environmental
drivers with a largest influence for determining brown bear habitat suitability, (2) to assess
the influence of scale across a set of environmental predictors with previously demonstrated
importance in habitat selection and identify the scale at which each of these variables is
most important, and (3) to compare the multiscale approach to a single-scale approach and
evaluate the differences relating to predictive performance and interpretation of resultant
suitability maps. These results will also help to provide spatially explicit landscape-scale
management recommendations for brown bear conservation planning that may benefit the
persistence and potential expansion of the last remnants of this species’ populations in
Spain.

2. Materials and methods
2.1. Study area

The study was carried out in the Cantabrian Range (northwestern Spain), comprising the
provinces of Lugo, Ledn, Asturias, Cantabria, and Palencia (Figure 1). The study area
has an extent of 49,500 km? and contains the whole known range of the brown bear in
Spain, its peripheral areas, and the belt area between the two subpopulations. As shown
in Figure 1, both subpopulations occupy a similar area of approximately 2500 km? each,
and are separated by approximately 30 km of unoccupied range (Palomero 2007). The
study region has a complex topography with altitudes ranging from sea level to 2647 m
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Figure 1. Study area covering the distribution range of the native brown bear populations in the
Cantabrian range.
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(mean elevation of 800 m), and a humid Atlantic climate with mild temperatures and short
summers. According to the Third Spanish National Forest Inventory, the landscape is a
mosaic of forest, shrubland, natural grasslands, and agricultural lands. Forests occupy 39%
of the landscape (3.4% conifers, 11% deciduous, 17% mixed forest, and 4% plantations).
The dominant native tree species are beech (Fagus silvatica) and oaks (Quercus robur,
Quercus petraea,and Quercus pyrenaica), with lesser abundance of chestnuts (Castanea
sativa), Pinus pinaster, and Pinus sylvestris. Portions of the area have low human densities,
while other portions have extensive urban and agricultural areas connected by a network
of local and national roads, highways, and railways. This history of development, together
with the dominant rural economic activity in the region, has led to extensive modification
of the region’s forest landscapes. In recent decades, tourism linked to the natural areas and
mountain landscapes has gained economic importance in the Cantabrian Range.

2.2. Data
2.2.1. Species presence data

The different Regional Administrations involved in brown bear management in Spain use
different types and formats of brown bear presence records collected by a number of
sources, including trained observers, rangers, previous systematic studies, and local peo-
ple. The data represent over 30 years of public investment and are an important source
of information on brown bear occurrence patterns (direct observation, feces, and foot-
prints). We reformatted all available location data and integrated them to create a complete
presence-only database. For this study we used 8648 bear locations corresponding to the
most recent records collected from 2000 to 2011.

2.2.2.  Environmental data

Brown bear is a flagship species that has been extensively studied and substantial infor-
mation exists on its habitat relationships. We chose to focus on variable groups previously
demonstrated to have a high predictive power for brown bear occurrence (e.g. Clevenger
et al. 1997, Naves et al. 2003, Apps et al. 2004, Posilisco et al. 2004, Nielsen et al. 2006,
Koften et al. 2011), including elevation, land cover—land use, and human pressure. Our can-
didate variable set comprised a total of 36 variables (Tablel). All variables were resampled
to a UTM projection (ETRS89) with 1 ha cell size.

Elevation was obtained from the 25 m resolution digital elevation model produced
in 2008 by the Spanish Geographical National Institute (CNIG). For every 1 ha cell,
we calculated the mean of surrounding elevation values at six different scales using cir-
cular windows with radii 1, 2, 4, 8, 16, and 32 km. This range of radii covers the
species’ ecological responses to environmental gradients across all the scales relevant
for meeting its daily requirements, from resources within habitat patches to the extent
of reported home ranges of the species (58—1600 km?) (Huber and Roth 1993, Dahle and
Swenson 2003).

We derived 11 land-cover types from information provided by the Spanish Forest Map
at a scale of 1:50,000, developed within the Third Spanish National Forest Inventory
(NFI3). We used FRAGSTATS 3.4 (McGarigal et al. 2002) to calculate a number of
metrics quantifying different aspects of the landscape pattern at two different levels:
landscape level and class level.At the landscape level, we calculated five metrics char-
acterizing landscape composition, configuration, and edge contrast (Table 1). At the class
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Table 1. Independent variables considered for analysing brown bear habitat suitability.

Type Metric Description
Anthropic HWD Highways density
Anthropic RD Conventional roads density
Anthropic RWD Railway density
Anthropic BD Building density
Topographic FM ELEV Focal mean of elevation
Landcover FMCC Focal mean of canopy cover
Landcover (landscape-level metricy CONTAG Contagion

CWED Contrast-weighted edge effect

ED Edge density

PD Patch density

SHDI Shannon Diversity Index
Landcover (Class-level metric) Al (1,2,3,7,10,11) Aggregation Index

AM_AREA (1,2,3,7,10,11) Area-weighted mean

COH (1,2,3,7,10,11) Cohesion

PLAND (1,2,3,7,10,11) Percentage of landscape

Note: LC: landcover, (L) landscape-level metric, (CL) class-level metric. Class-level metrics were calculated for
each of the following land covers: one native conifer forest, two native deciduous forest, three mixed forest, seven
shrubland, 10 agricultural land, 11 non-habitat.

level, we calculated four composition and configuration metrics (Table 1) for six of the
11 cover classes that were considered to be of particular importance for the species’ habitat
relationships: three classes of native forest types (conifer, deciduous, and mixed); shrub-
land; agricultural lands (crops, cultivars, and artificial pastures); and non-habitat class
(which consisted of urban and other intensive anthropic land uses). Each of these 24 met-
rics was calculated at the six scales mentioned above. NFI3 (Third Spanish National Forest
Inventory) also provided data on canopy closure, which we used to calculate its focal mean
at the six analysed scales. Indicators of human pressure, including highways, conventional
roads, railways, and building vector layers, were derived at a 1:25,000 scale spatial product
developed by CNIG (Spanish Geographical National Institute). We calculated the density
of each of these features within focal landscapes with radii corresponding to the six anal-
ysed scales. Highways, conventional roads, and railways were assessed separately due to
likely different effects depending on traffic volume and the physical restrictions of animals’
movements (Kofen et al. 2011).

2.3. Bivariate scaling and variable pre-selection

We analysed brown bear habitat selection associated with each of the above habitat vari-
ables over the range of the six scales to identify the scale at which each independent variable
was most strongly related to bear habitat suitability (e.g. Thompson and McGarigal 2002,
Grand et al. 2004, Wasserman et al. 2012). We predicted relative habitat suitability based
on each environmental variable at each scale using the maximum entropy algorithm Maxent
(Phillips ef al. 2006). Maxent is a general-purpose method for characterizing species habi-
tat associations from presence-only data, and has proven to be robust and precise compared
to other methods (Elith e al. 2006). Maxent estimates a target distribution using the known
locations and a random selection of background points that maximizes entropy, subject
to constraints imposed by the known occurrences. Maxent models were developed using
linear and quadratic functional relations, 20,000 background data points, a maximum of
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5000 iterations, and a convergence threshold of 0.00001. The regularization default set-
tings were used (Phillips and Dudik 2008) and a random subset of 25% of the data was
held out as a testing data set. To compare the performance of the models of each variable
at the different scales, we used the area under the receiver operating characteristic curve
(AUC, Fielding and Bell 1997), based in this case on presence versus pseudoabsence data
(Phillips et al. 2006). In this case of very simple models, such as these single variable
models, the values of AUC provided a reasonable measure of the relative importance of
each environmental variable (see Golicher e al. 2012). For each variable we selected the
scale producing the single variable model with the best performance (highest AUC value)
and excluded all other scales for further analysis (e.g. Grand et al. 2004, Wasserman ef al.
2012).

Once the scale selection process was completed for each independent variable, we
selected a reduced number of independent variables based on a Spearman correlation coef-
ficient clustering,correlations based on Pearson correlation coefficients, and the ecological
relevance they showed in the bivariate scaling analysis. Even though, as Elith ef al. (2011)
noted, Maxent is more stable in the face of correlated variables than other algorithms,
it is advisable to not include highly inter-correlated explanatory variables in any predic-
tive modeling exercise. Accordingly, we excluded one of each variable pair that had a
Pearson correlation of 0.65 or greater. This resulted in inclusion of 21 out of the 32 initial
variables.

2.4. Multivariate models

To gain insights into the types of environmental factors that are more influential in deter-
mining brown bear occurrence, we developed 14 different organizational models based
on habitat attributes that may be key features to bear habitat selection (e.g. Clevenger
et al. 1997, Naves et al. 2003, Posilisco et al. 2004). These 14 organizational mod-
els correspond to the cases where brown bear habitat suitability is primarily a function
of: (A) landscape composition, which informs about the amount and quality of habi-
tat; (B) landscape configuration, depicting spatial distribution and physical connectedness
of the habitat; (C) landscape edge contrast, describing the edge effects between differ-
ent land-cover types; and (D) human disturbance (see Table 2 for further details). The
apparent success of a model in predicting occurrence is positively related to the num-
ber of predictor variables included. Thus, within each of the 14 organizational models,

Table 2. Ecological factors used to formulate the hypotheses assessed and final variables depicting
each factor.

Ecological factors Variables

A Landscape composition PLANDI1, PLAND2, PLAND3, PLANDI10,
PLANDI11, AM_AREA1, AM_AREA2,
AM_AREA10, AM_AREAL1l, FMCC

B Landscape configuration COHI1, COH2, COH3, COH7, AI3, Alll, FMCC
C Edge effect CWED
D Human pressure BD, HWD, RD, RWD, PLAND10, PLANDI11, FMCC

Note: 14 organizational models were formulated by each of the three ecological factors alone (A, B, D) and by all
the combinations among them (AB, AC, AD,ABC, ABD, ABCD, BC, BD, BCD, DC). See Table 1 for descriptions
of variables.
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we developed a suite of candidate hypotheses each combining subsets of five indepen-
dent variables. Across the 14 organizational models, we evaluated a total of 135 alternative
Maxent models, with performance assessed via the AUC statistic (see supplementary mate-
rial). We formally evaluated the performance of the subset of models that had the highest
AUC value using hold-out validation. For this we made 15 random partitions of the occur-
rence localities (75% building, 25% testing) in order to assess the average behavior of the
algorithm and to allow for statistical testing of the observed differences in performance.
This enabled us to evaluate the performance of the models while taking advantage of all
the data.

Finally, to evaluate how scale optimization affected the predictive performance of
the resultant models, we compared the best performing multiscale model (determined
as described above) with the equivalent unscaled models, i.e. those built with the same
independent variables but all of them measured at a single scale. We built seven unscaled
models, each for one of the individual scales considered in the study (1, 2, 4, 6, 8, 16, and
32 km).

3. Results
3.1. Bivariate scaling

The bivariate scaling analysis showed substantial sensitivity of the relationship between
brown bear habitat suitability and scale of analysis for all variables (see supplementary
material Table s1).

The comparison among the different model scales revealed that elevation, human pres-
sure, and landscape metrics describing diversity of land-cover classes (SHIDI) and spatial
aggregation (CONTAG) were strongly related to bear habitat suitability at broad scales.A
similar pattern was followed by composition metrics measuring the percentage of land-
scape (PLAND) in the different cover types. However, composition metrics based on
the area-weighted mean patch size, in general, presented the highest AUC values at fine
to medium scales. Fine-scale relationships were also seen for the canopy closure and
patch cohesion of forested classes (conifers, deciduous, and mix forest) as well as for
contrast-weighted edge between classes (CWED), while other metrics describing landscape
fragmentation (ED and PD) showed best performance models at medium scales.Following
this trend, brown bear occurrence was strongly affected by class-level configuration met-
rics: aggregation (Al) and patch cohesion (COH) of shrubland and anthropic land-cover
classes peaked at medium to broad scales, except for aggregation of conifer forest, which
expressed the strongest relationship with the species occurrence at finest scales.Further
details of bivariate scaling process and particular operative scales for each predictor
variable can be found in the supplementary material.

3.2.  Performance of organizational models

We proposed 14 alternative organizational models, each with a number of candidate
models, which represented different potential importance of landscape composition,
configuration, edge, and human pressure (Table 2).

All hypotheses showed good model performance with AUC for the best models rang-
ing from 0.836 to 0.862 (Table 3). However,differences in the performance of the various
organizational models were pronounced. The best predictions of relative habitat suitabil-
ity were produced using variables measuring landscape composition in combination with
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Table 3. Model with best performance under each different organization models.

Organizational model AUC MAX VARIABLES

A 0.851 PLAND10>PLAND1>FMCC>PLAND3>PLAND?2
B 0.843 COH7>AI3>COH3>COH2>COH1

D 0.842 PLAND10>HWD>BD>RD>RWD

AB 0.851 PLANDI10>AI3>FMCC>PLANDI1>PLAND2

AC 0.844 PLAND10>PLANDI>CWED>PLAND2>PLAND3
AD 0.862 BD>FMCC>PLAND3>PLAND2>PLANDI1

ABC 0.837 FMCC>PLAND3>CWED>COH3>AI3

ACD 0.861 BD>PLAND3>FMCC>CWED>AM2

ABD 0.862 BD>COH7>FMCC>PLAND3>AM2

ABCD 0.858 BD>COH7>FMCC>PLAND3>CWED

BC 0.836 COH7>AI3>COH2>CWED>AI10

BD 0.846 COH7>BD>HWD=>FMCC>AI3

BCD 0.843 COH7>BD>AI3>RD>CWED

DC 0.836 BD>HWD>FCC>RD>CWED

Note: Maximum area under the ROC curve (AUC) given by Maxent and the used variables. Variables are ordered
according to their contribution to the model. See table 1 for descriptions of variables and table 2 for description
of organizational models.

human pressure (AD). Organizational models combining landscape composition, configu-
ration, and human pressure (ABD) also had a good performance. Adding human pressure
to the model substantially increased model performance compared to the case when only
landscape composition and configuration were considered (AB). Models combining human
pressure and contrast (edge effect) (DC) showed the weakest ability to predict occurrence,
together with models combining landscape configuration and contrast (BC). Adding land-
scape composition to the latter combination (ABC) did not increase the predictive ability,
in spite of the fact that models based solely on landscape composition (A) performed rel-
atively well. The contrast among land-cover types did not increase the performance of
any combination, though its combination with landscape composition and human pressure
(ACD) provides good predictive ability.

Landscape configuration (B) was a consistently weaker predictor of brown bear occur-
rence than landscape composition (A). In general, human disturbance presented a better
performance when combined with other factors than in models comprised only by human
pressure variables. Landscape composition (A) and human pressure (D) factors were
included in all the hypotheses showing the best predictive ability. Also, the analysis
suggested that canopy closure notably increased the performance of models containing
landscape composition metrics (A) but its importance decreased in models based solely
on human disturbance (D), configuration (B),contrast (C), and their combinations.Canopy
closure was a covariate in all the best performing models.

Among landscape composition metrics, PLAND variables performed notably better
than AREA_AM. The non-habitat cover type was not included in any high-performing
model; however, agriculture showed important effects in many models. The forest cover
types were very influential when used together but not so when used separately. Mixed
forest generally had a higher contribution to predictive success than conifers or deciduous
forests. The configuration metrics with the strongest predictive ability were patch cohesion
of shrubland and aggregation of mixed forest. Finally, the most important variable measur-
ing human disturbance was building density, followed by highway density. Conventional
roads had weaker influence and railway density was the weakest human pressure predictor.
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Table 4. Best performing final models.

Hypothesis

1D AUC 1y  AUC i54p  Std. Dev Variables

AD_1 0.862 0.862 0.0025 BD>FMCC>PLAND3>PLAND2>PLANDI
AD_2 0.860 0.861 0.0023 BD>FMCC>PLAND3>PLAND2>AM2
AD_3 0.860 0.859 0.0041 BD>HWD=>PLAND3>FMCC>PLAND2
AD_4 0.860 0.860 0.0033 BD>FMCC>PLAND3>RD>PLANDI
ABD_1 0.861 0.859 0.002 BD>COH7>FMCC>PLAND3>AM?2
ABD_2 0.861 0.861 0.0021 BD>COH7>FMCC>PLAND3>AI3
ABD_3 0.860 0.859 0.0032 BD>HWD>FMCC=>PLAND3>PLANDI
ACD_1 0.860 0.858 0.0021 BD>PLAND3>HWD>FMCC>CWED
ACD_2 0.861 0.860 0.0020 BD=>PLAND3>FMCC>CWED>AM2

Note: The area under the ROC curve (AUC) given by Maxent when only one replication was conducted and
when the average performance of the model was tested with 15 partition of the data. The variables included in
each model are ordered according to their contribution. See Table 1 for description of variables and Table 2 for
description of organizational models

Multiscale
0.69 0.71 0.73 0.75 0.77 0.79 0.81 0.83 0.85
AUC

Figure 2. Performance of the scaled and unscaled models. The plot shows the Area Under the Roc
Curve (AUC) for multiscale model AD1 (see Figure 3) and for the single-scale models with all the
variables computed at a given scale (1, 2, 4, 8, 16, and 32 km).

The nine top-performing models all had AUC values between 0.860 and 0.862. Four of
them were formulated under organizational model AD, whereas the others were distributed
on hypotheses ABD (three models) and ADC (two models). Executing multiple runs of
these models with 15 random partitions enabled us to test model performance and variabil-
ity, and allowed us to select those with best predictive success (Table 4). Four of the nine
models that showed the highest average AUC were selected for further evaluation:AD (two
models), ABD (one model) and ACD (one model). The final models showed very slight
differences in their performance under cross-validation (Figure 2) and their predicted eco-
logical suitability maps were similar (Table 5). They all included the variables building
density and focal mean of canopy closure and composition metrics for several forest types,
except the one under the ABD organizational model, which contained information about
composition and configuration of mixed forest and shrubland.

There were substantial differences in predictive performance between the scaled and
unscaled models (Figure 3). The scaled model showed remarkably higher discrimination
ability (as measured by AUC) than the unscaled models. Models developed with all vari-
ables measured at the finest scale (1 km) showed the weakest performance (AUC = 0.758),
while the highest AUC for the single-scale models was obtained at 8 km (AUC = 0.833).
There were also considerable differences in the patterns of habitat suitability across the
study area between the best scaled and unscaled models (Figure 4).The correlation in the
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spatial predictions of scaled and unscaled models was 0.41 and 0.73 when comparing the
multiscale model with the single-scale model measured at 1 km and 8 km, respectively.

4. Discussion
4.1. Determinants of brown bear habitat suitability

Our results indicated that landscape composition together with human disturbance were
dominant drivers of bear relative habitat suitability, highlighting the importance of
landscapes with large extents of undisturbed forest and low human footprint. Human
disturbance improved the discriminatory power of all models in which it was included.
Agricultural lands showed a strong relationship with bear habitat suitability, suggesting a
marked avoidance of anthropic cover types at broad spatial scales. The density of build-
ings was the most influential variable in the group, indicating that brown bears avoid areas
in the landscape up to a considerable distance (16 km) away from human settlements.

Table 5. Correlation between final models.

AD_1 AD_2 ABD_2 ACD_2
AD_1 1 0.992 0.954 0.959
AD_2 1 0.945 0.96
ABD_2 1 0.969
ACD_2 1

Habitat suitability

. High : 0.786

“Low:0

!

< =

Figure 3. Habitat suitability map provided by optimized multiscale model AD1. The variables in
this model are building density (BD, scale 16 km); Canopy closure (FMCC, scale 1 km); percentage
of the landscape covered by mixed forest (PLAND3, scale 32 km); percentage of the landscape
covered by deciduous forest (PLAND?2, scale 8 km); and percentage of the landscape covered by
conifer forest (PLANDI, scale 32 km). Darker colors identify the areas with highest probability of
brown bear occurrence. Only one of the four top predictive models is represented (AD1) due to high
similarities in the output suitability maps.
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Figure 4. Suitability map provided by the unscaled models, i.e. those built with all the independent
variables calculated at the same scale of 1 km (a) and 8 km (b). B is the single-scale model with the
highest AUC while A corresponds to a local scale at which habitat relationships for the brown bear
have been frequently assessed in previous studies.

Interestingly, highways provided a less predictive ability, while roads and railways had a
much lower effect on model performance. This suggests that bear relative habitat suitability
is highly related to human population density and activities in the landscape, but less related
to proximity to transportation infrastructure (particularly those with relatively low traffic
volume).

The results also clearly showed that landscape configuration, including patch size,
aggregation, and edge density, had relatively weak relationships with brown bear relative
habitat suitability in Spain, and was much less important than landscape composition. This
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is in agreement with the general pattern of habitat extent being more important than habi-
tat configuration in most instances (Cushman and McGarigal 2002, Fahrig 2003). Many
studies have found that habitat availability is more important than habitat configuration
in predicting the occurrence or relative abundance of species in fragmented landscapes
(Martensen et al. 2008, Boscolo and Meztger 2011, Awade et al. 2012). This is also
consistent with ecological knowledge of the species: brown bear has high dependence on
forest cover, suggesting that landscape composition should dominate its habitat relation-
ships (Clevenger et al. 1992). The comparatively weak role of landscape configuration may
also be related to the high mobility of the species, which allows it to integrate across land-
scapes of differing configurations such that a fragmented patch mosaic may not function as
poorly connected habitat for this species, so long as the fragmentation is not by landscape
elements avoided at broad scales, such as human settlements, or by impermeable barriers
to movement.

Within the configuration variables, patch cohesion of shrubland was more influential
than patch cohesion of forest types. This may suggest that shrubland may provide com-
plementary (or even supplementary) foraging resources as well as linkage areas through
which bears can move between other habitat patches. Thus the spatial connectedness
of shrublands may be important in terms of shelter, matrix permeability, and habitat
continuity.

The amount of available habitat had a stronger relationship with bear occurrence when
measured as percentage of landscape area of all three forest types combined. This suggests
that the three forest types are similarly important for brown bears in the Cantabrian range,
either because the bears do not specialize or discriminate between forest types when select-
ing suitable habitat, or because the combination of the resources available in different forest
types is particularly beneficial for the species. Previous research has suggested that conifer
forests in Spain are of lower quality as habitat for brown bear than are deciduous forests
(Clevenger et al. 1997). Though positive influence may be found in the selection of decid-
uous and mixed forests that contain abundant food (Clevenger ef al. 1997), conifers may
provide other important life requisites such as thermal regulation and security (Blanchard
1983; McLean and Pelton 1990; Apps et al. 2004).

Canopy cover added predictive power to all models that included landscape composi-
tion variables. This further supports our contention that the extent of forest cover is a major
component of habitat quality for this species. This is supported by the fact that this variable
was included in all of the nine best performing models.

4.2. Scale dependence of habitat selection

Brown bear habitat selection appeared to be driven by habitat factors at multiple scales.
The predictive ability of the variables changed notably depending on the scale at which
they were measured. Across independent variables, all six scales were selected as the most
predictive. Bears appeared to respond more strongly to indicators of human disturbance,
such as building density, transportation infrastructure, and agriculture at medium to broad
scales. This suggests that bears perceive human disturbance at large scales and thus these
features have large- and broad-scale cumulative effects on habitat suitability. Elevation also
showed a broad-scale dominant pattern, which may be related to the same large distance
avoidance of human activities by brown bear, due to the association between less human
footprint and higher elevation areas.

Our results when related to landscape configuration present an interesting contrast to
those reported by Naves et al. (2003), who found that forest connectivity was a better
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predictor at a broader scale than shrubland connectivity. In contrast, we found that forest
configuration metrics had better performance when measured at finer scales than shrubland.
This difference is most likely due to the higher resolution of our scaling analysis. That
previous study used a broader grain of 25 km? and considered multiple spatial scales by
introducing connectivity of forest and shrubland to describe large-scale properties of these
variables. At a coarser grain the scale considered to measure forest connectivity (two-cell
focal area) was broader than the one used to measure shrubland connectivity (one cell focal
area).

The influence of the edge effect among cover types and of canopy closure was highest
at the finest scales. This fine-scale sensitivity to edge contrast and canopy closure probably
reflects a tendency of brown bear to associate with edges and ecotones for supplemen-
tary and complementary resource use. Clevenger et al. (1997) showed that browns bears
selected shrubby grasslands and ecotones between woodland and grassland or cultivated
areas where they could obtain a juxtaposition of foraging and cover.

4.3. Performance and spatial patterns of scaled and unscaled
habitat suitability models

The high variability among the predictor variables as to the scale at which they most
strongly predicted bear relative habitat suitability was notable, which may have large impli-
cations for interpreting brown bear habitat relationships. In addition to large differences in
model performance, the relative habitat suitability of the species across the study area was
substantially different between the scaled and unscaled models.

In particular, the model relying on local scales (1 km) resulted in dramatically different
ecological interpretation and mapping of habitat compared to the best performing multi-
scale model (see Figures 2 and 4a). It is important to note that most previous research on
the habitat use of this species employed single-scale analysis, often using 1 km extents
(e.g. Nielsen ef al. 2006, Garcia et al. 2007, Koten et al. 2011).While the multiscale model
output map markedly showed the two population core habitat areas to be associated with
the current species range, the local single-scale model (1 km) (Figure 4a) failed to clearly
discriminate these cores. The 1 km unscaled model overpredicted the probability of brown
bear on less optimal habitat, whereas it underpredicted the probability of occurrence in
areas currently occupied by brown bear. The correlation of spatial predictions of both mod-
els showed that the predicted relative habitat suitability values are markedly different. The
same pattern of weaker relationships and overprediction of quality in suboptimal habitat
and underprediction of quality habitat has been reported in other scale optimization habitat
modeling studies (e.g. Shirk ef al. 2012, Wasserman et al. 2012). The possible solution
of broadening the scale of the single-scale model was not fully satisfactory, and a number
of drawbacks were also found. Focusing on the best single-scale model (8 km) showed
that, though an improvement in predictive performance was achieved, fine-scale factors
that are also significant in the species’ use of habitat were disregarded (Figure 4b). This
resulted in a habitat model whose pattern was an oversimplification of the more detailed
mapping provided by the multiscale model. This model’s ecological spatial predictions
gained similarity with the multiscale one but still relative habitat suitability values were
different and may lead to distinct interpretations of the species habitat suitability. The omis-
sion of such fine-scale factors in the unscaled model at 8 km can have a large impact on
the actual ability of the model to guide multiple-scale forest management and conservation
plans (from the stand to the landscape level) to promote species persistence and potential
population expansion. The suitable habitat identification was achieved in the multiscale
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model without excessive aggregation, retaining and making possible to appreciate local
details and variations that may be blurred or completely lost at broader single-scale models
(Figure 4b). In this way, both large-scale and fine-scale factors that together determine
brown bear perception and use of habitat could be accounted for in the final models,
providing clear evidence for the multiscale nature of brown bear habitat selection in Spain.

5. Conclusions

The scaled model suggests that relative habitat suitability for the brown bear is highly asso-
ciated with landscapes with large extents of forests intermixed with shrublands, and with a
low density of human settlements. Although these optimal areas are of limited extent and
are concentrated around the area currently occupied by the two subpopulations, the habitat
suitability map also shows other sectors where additional high relative habitat suitability
exists that could be the focus of conservation and restoration efforts. This will be valuable
to support the identification and prioritization of areas where bears can meet their ecologi-
cal needs and that are more likely to accommodate or promote the species range expansion.
The models presented in this article provide the basis for further analysis about linkages
among habitat patches to guide management to enhance connectivity between the two main
isolated subpopulations of brown bear in the northwest of Spain, and therefore to ensure
the long-term viability and conservation of this endangered species.

Our findings strengthen the perspective that identifying an optimal or adequate scale of
each predictor is a key issue when inferring brown bear habitat relationships. Even when
the appropriate predictors are selected, an incorrect specification of the scale at which they
operate could lead to incorrect conclusions about the species habitat suitability and there-
fore lead to improper management recommendations. The unscaled models were much
weaker, less discriminant, and provided substantially different predictions, which would
lead to drastically different interpretation of which factors (and related management mea-
sures) are important for brown bear habitat relationships as well as the spatial scales at
which these factors influence brown bear.

Very few habitat studies have formally assessed the scale relationships between each
predictor variable and habitat suitability. Scale dependency in habitat modeling has only
recently been a focus of research, and most studies that have considered scale have evalu-
ated a series of models in which all variables were at the same scale, which differed between
models. Our analyses and similar work on other species (e.g. Thompson and McGarigal
2002, Shirk et al. 2012, Wasserman et al. 2012) suggests that independently optimizing the
scale of analysis of each predictor variable may be crucial to obtain reliable predictions of
species distribution and habitat. This supports the knowledge that an organism’s location is
not necessarily influenced by the effects of habitat at any one single scale (Wasserman et al.
2012). Different species scale the environment differently, and within a given species dif-
ferent habitat factors are selected at different scales simultaneously (e.g. Shrik et al. 2012).
Since no evident patterns for dominant scales across the different groups of variables were
identified in this study, we recommend an optimization process to select an optimal scale
of each predictor coupled with different organizational models of the importance of differ-
ent kinds of ecological drivers (such as landscape composition, configuration, edge effects,
and human disturbance).
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