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Abstract—For a three-node relay network that employs binary
linear codes and the decode-and-forward strategy, we derive
analytic upper and lower bounds for the probability of error at
the destination. The bounds are based on union-bound techniques
and the input-output weight enumerator of the encoder. As an
application, we use this bound to optimise the decoder at the
destination. Our approach is verified by simulation results.

I. I NTRODUCTION

In a three-node relay network, a source communicates to a
destination over a wireless channel, assisted by a cooperating
relay (see Fig. 1). Such ‘relay channels’ were introduced by
van der Meulen [1], and their capacities were studied in detail
by Cover and El Gamal [2]. Among the various cooperation
schemes proposed and investigated [3, 4], decode-and-forward
is one of the most practical. In this scheme, the relay decodes
the data transmitted by the source, and forwards the estimate
to the destination.

The error rate of decode-and-forward in uncoded systems
has been analized in [5, 6]. For this analysis and also for the
decoding algorithms at the destination, the source-to-relay-to-
destination channel may be modelled as an equivalent one-
hop link with an equivalent signal-to-noise ratio (SNR) [7,8].
The value of this equivalent SNR has been investigated in [7,
9]. The decoding thresholds of coded systems with iterative
decoding at the destination has been analysed with EXIT
charts [8, 10].

Published results for coded systems have some major
shortcomings. First, decoding errors at the relay introduce
memory in the virtual source-to-relay-to-destination channel
(in contrast to the often applied assumption); there are no
analytical methods available to analyse how this affects the
probability of error at the destination. Second, error floors with
respect to the source-to-destination SNR have been observed
[11], but no theoretical explanations are available. And third,
current methods to determine the equivalent SNR for coded
systems do not consider that the source-to-relay-to-destination
channel has memory.

In the present paper we develop novel analytical bounds for
the probability of error, taking into account decoding errors at
the relay. The upper bound is based on a union bound approach
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Fig. 1. Relay network consisting of source s, relay r and destination d, and
the three channels (ch) in between.

and the lower bound on the dominant term, both under the
mild and reasonable assumption that the SNR of the source-
to-relay is not too low. As an example application of these
bounds, we optimise the equivalent SNR such that the error
rate is minimised.

The outline of the paper is as follows. In Section III
we define the system model, the relaying strategy, and the
decoding strategy at the destination. Section IV deals with
the bound on the probability of error. Section V describes
the optimization of the relay-to-destination SNR assumed by
the destination. Numerical results are presented in Section VI.
Conclusions and an outlook to future work are provided in
Section VII

II. N OTATION

Throughout the paper, we write vectors in boldface letters,
and the i-th element of a vectora as ai. The Hamming
weight of a vectora is denoted byw(a), and the Hamming
distance between two vectorsa andb is denoted byd(a, b);
for convenience we may simply speak of weight and distance.
The support of a vectora is denoted byS(a) = {i : ai 6= 0},
and its complement bySc(a) = {i : ai = 0}. Notice that
|S(a)| = w(a).

The BPSK modulated symbol of a bitxi ∈ {0, 1} is written
as x̃i ∈ {−1, +1}, and we use the BPSK mapping0 7→ +1
and1 7→ −1. The signal-to-noise ratio of an AWGN channel is
denoted byγ = Es/N0, whereEs is the received signal energy
and N0 is the single-sided noise power density. We use the
complementary error functionerfc(z) = 2/

√
π ·

∫ ∞

z
e−s2

ds.



III. SYSTEM MODEL

We consider the wireless relay channel depicted in Fig. 1:
source s communicates with destination d with the help of
relay r, which uses the decode-and-forward strategy. The
source-to-destination channel, the source-to-relay channel and
the relay-to-destination channel are modelled as binary input
AWGN channels with signal-to-noise ratio (SNR)γsd, γsr and
γrd, respectively, and BPSK modulation.

The source employs a binary linear codeC ⊂ {0, 1}N of
length N and rateR; and an encoderE mapping user data
u ∈ {0, 1}K to codewordsxs ∈ C. The user data is assumed
to be uniformly distributed, and thus also the codewords.

A codewordxs ∈ C is transmitted over a wireless channel.
Due to the broadcast nature of the wireless channel both the
destination and the relay receive a noisy observation ofxs,
denoted byysd andysr , respectively. The relay decodesysr

and generates the estimatexr ∈ C of the transmitted codeword
xs. It then cooperates with the source by forwardingxr to the
destination. We assume that the source and the relay transmit
through orthogonal channels. Note that the relay may not be
able to decodeysr correctly, and thereforexr and xs may
differ. Based on the two noisy observationsysd andyrd, the
destination estimates the codewordxs that was transmitted by
the source; this estimate is denoted byx̂s.

A true maximum-likelihood (ML) estimation would take
into account that the relay may make erroneous decisions
and the corresponding statistics. Indeed, the relay introduces
errors with memory and thus this should be considered by
the destination. As this is by far too complex for practical
implementations, we use the following decoder (cf. [8, 9, 11]).

The source-to-destination SNRγsd is assumed to be known
by the destination (Assumption 1). The observationyrd is
assumed to be the output of a (virtual) memoryless AWGN
channel with inputxs and SNRγ′

rd (Assumption 2). Assump-
tion 1 and 2 are commonly used, though not explicitly stated
[7–9]. Based on this model, the destination computes the L-
values

Ls,i = 4γsdysd,i, Lr,i = 4γ′
rdyrd,i, (1)

i = 1, 2, . . . , N , whereyi denotes thei-th element of vector
y. For the analysis in Section IV, we will need the conditional
distributions of these L-values. Giveñxs,i = ±1, wherex̃s,i ∈
{±1} denotes the BPSK modulated symbol of the bitxs,i ∈
{0, 1} (see above),Ls,i has mean±4γsd and variance8γsd.
Similarly, givenxr,i = ±1, Lr,i has mean±4γ′

rd and variance
8γ′2

rd/γrd. Using above L-values, the decoding rule is

x̂s = argmax
x∈C

N∑

i=1

x̃i(Ls,i + Lr,i), (2)

Note that this decoding rule is optimal if Assumption 1 and
Assumption 2 hold. While Assumption 1 is reasonable, As-
sumption 2 cannot be true as decode-and-forward introduces
errors with memory. If the destination has some knowledge of
the source-to-relay channel, it can exploit this information by
properly weighing the relayed information byγ′

rd. In general,

the optimum value ofγ′
rd for above decoder is a function of

all three SNRsγsr, γrd, andγsd.
In the remainder of this paper, we analyse the probability

of error at the decoder and the effect of the value ofγ′
rd.

IV. A BOUND ON THE ERROR PROBABILITY

The error events at the relay and at the destination are
defined by

er := {xr 6= xs}, e := {x̂s 6= xs}, (3)

respectively. The complement ofer is denoted bȳer. We also
define the bit error event at the destination by

eb := {x̂s,i 6= xs,i for any i}. (4)

For the analysis we assume without loss of generality that
the all-zero codeword was transmitted, i.e.xs = 0. The error
evente can then equivalently be written as

e ≡
{

∑

i∈S(x)

(Ls,i+Lr,i) < 0 for any x ∈ C , x 6= 0

}

, (5)

whereS(x) denotes the support ofx (see above).
Let Aw,d be the input-output weight enumerator (IOWE)

of encoderE , giving the number of codewords of weightd
generated by input weightw; let furtherAd =

∑K

i=1 Aw,d be
the weight enumerator (WE) of encoderE , giving the number
of codewords of weightd. Also, denote bydmin the minimum
distance of codeC.

A. A bound on the frame error probability

The probability of error at the destination can be written as

p(e) = p(e|er)p(er) + p(e|ēr)p(ēr), (6)

where we distinguish between the two cases where the relay
makes an error and where it does not. Using the union bound,
the probability of error at the relay can be upper bounded by

p(er) ≤
1

2

N∑

d=dmin

Ad erfc
(√

dγsr

)

. (7)

The probability of no error at the relay is upper-bounded
by p(ēr) ≤ 1. We will now analyse the two conditional
probabilities of error in (6).

Consider first the case that no error occurs at the relay, i.e.
the termp(e|ēr). The relay network of Fig. 1 is then equivalent
to a system wherexs is transmitted over two independent
parallel channels with SNRγsd andγrd. Let b be a nonzero
codeword ofC with supportS(b) (as defined above). Splitting
up the error event in (5) and taking the union bound, we obtain
the upper bound

p(e|ēr) = p(e|xs = 0,xr = 0) ≤

≤
∑

b∈C
b 6=0

p




∑

i∈S(b)

(Ls,i + Lr,i) < 0

∣
∣
∣
∣
xs = 0,xr = 0





=
1

2

N∑

d=dmin

Ad erfc





√
√
√
√

d(γsd + γ′
rd)

2

γsd +
γ′2

rd

γrd



 . (8)



The last line is obtained by the following considerations: Given
xs = 0 and xr = 0, Ls,i and Lr,i have positive mean
values. Therefore,

∑

i∈S(b)(Ls,i+Lr,i) is Gaussian with mean
4w(b)(γsd + γ′

rd) and variance8w(b)(γsd + γ′2
rd/γrd) (see

Section III); notice thatw(b) = |S(b)|.
Consider now the case that an error occurs at the relay, i.e.

the termp(e|er). This probability can be written as

p(e|er) = p(e|er,xs = 0) =

=
∑

a∈C
a 6=0

p(e|xs = 0,xr = a)p(xr = a|er,xs = 0) (9)

(Notice thatp(xr = 0|er,xs = 0) = 0 and thusa = 0 may
as well be included in the summation.)

The computation of (9) is cumbersome. To simplify the
computation, we make the following assumption: whenever the
relay makes an error, it decodes to a codeword that has min-
imum distance to the transmitted codeword (Assumption 3).
Notice that this assumption is justified ifγsr is high, which is
required for the decode-and-forward scheme to be useful.

DefineCmin = {x ∈ C : w(x) = dmin} the set of minimum
weight codewords. Then, assumingxs = 0 as before, we have
xr = 0 (if the relay decodes correctly) orxr ∈ Cmin (if the
relay makes an error). Correspondingly, (9) can be re-written
as

p(e|er,xs = 0) =

=
∑

a∈Cmin

p(e|xs = 0,xr = a)p(xr = a|er,xs = 0)

= p(e|xs = 0,xr = a), (10)

for any a ∈ Cmin. Here we used thatp(e|xs = 0,xr = a)
takes the same value for alla ∈ Cmin, as the code is linear;
and that

∑

a∈Cmin
p(xr = a|er,xs = 0) = 1 by Assumption 3.

Similar to the case of no error at the relay, we split up the
error event in (5) and take the union bound:

p(e|xs = 0,xr = a) ≤

≤
∑

b∈C
b 6=0

p




∑

i∈S(b)

(Ls,i + Lr,i) < 0

∣
∣
∣
∣
xs = 0,xr = a





︸ ︷︷ ︸

p2(x̂s = b|xs = 0,xr = a)

, (11)

for any a ∈ Cmin.
Each term in the sum denotes a pairwise error probability

p2(·), namely the probability that the destination decides forb

instead of0 if xs = 0 andxr = a were transmitted. We will
now write these probabilities using the complementary error
function by determining the mean and the variance of the sum
of the L-values, similar to the (8).

Since xs = 0, all valuesLs,i have positive mean. Since
xr = a, the valuesLr,i have positive mean fori ∈ S(b) ∩
Sc(a), and they have negative mean fori ∈ S(b) ∩ S(a);
Sc(a) denotes the complement set ofS(a). Using the mean
values of these L-values (see Section III) and the number of

terms in each set, the mean value of the overall sum can be
written as

|S(b)| · 4γsd + |S(b) ∩ Sc(a)| · 4γ′
rd − |S(b) ∩ S(a)| · 4γ′

rd

= |S(b)| · 4(γsd + γ′
rd) − 2 · |S(b) ∩ S(a)| · 4γ′

rd

= 4w(b)(γsd + γ′
rd) − 8w(a ∗ b)γ′

rd , (12)

where a ∗ b denotes the element-wise product of the two
vectors; notice that|S(b)∩S(a)| = w(a∗b). The variance of
the overall sum is8w(b)(γsd +γ′2

rd/γrd), as in the case where
the relay decodes error free. Using this mean and variance, the
pairwise error probability can be written as

p2(x̂s = b|xs = 0,xr = a) =

=
1

2
erfc







w(b)(γsd + γ′
rd) − 2w(a ∗ b)γ′

rd
√

w(b)
(

γsd +
γ′2

rd

γrd

)







. (13)

For a = 0, we obtain the terms of the sum in (8).
For w(a ∗ b) = 0, the argument in (13) is maximum, and

thus the error probability is minimum. On the other hand, with
increasingw(a ∗ b) (increasing ‘overlap’ ofa and b), the
argument decreases and thus the error probability increases.
The overlap betweena and b is maximum whenb = a. In
this case we have thatw(a∗b) = dmin. If b 6= a, however, the

maximum value ofw(a∗b) is given bymin
(

dmin,
⌊

w(b)
2

⌋)

;

we call this valuewm(b). Correspondingly, the pairwise error
probability can be upper bounded by

p2(x̂s = b|xs = 0,xr = a) ≤

≤ 1

2
erfc







w(b)(γsd + γ′
rd) − 2w′

m(b)γ′
rd

√

w(b)
(

γsd +
γ′2

rd

γrd

)







, (14)

where w′
m(b) = dmin if b = a, and w′

m(b) = wm(b)
otherwise.

Finally, using (14), (11) and (10) in (9),p(e|er) can be
upper bounded by

p(e|er) ≤
∑

b∈C
b 6=0

p2(x̂s = b|xs = 0,xr = a) ≤

≤
∑

b∈C
b 6=0

1

2
erfc







w(b)(γsd + γ′
rd) − 2w′

m(b)γ′
rd

√

w(b)
(

γsd +
γ′2

rd

γrd

)







=

=
1

2
erfc







dmin(γsd − γ′
rd)

√

dmin

(

γsd +
γ′

rd

2

γrd

)







+

+
1

2

N∑

d=dmin

A′
d erfc







d(γsd + γ′
rd) − 2wm(b)γ′

rd
√

d
(

γsd +
γ′2

rd

γrd

)







, (15)



whereA′
d = Ad − 1 for d = dmin, andA′

d = Ad otherwise;
notice that the first term corresponds to the case whereb = a.

This completes the computation of an upper bound on the
probability of error in (6). The corresponding lower bound is
obtained by considering only the terms with minimum distance
(with the corresponding multiplicities) in (7), (8) and (15).

B. A bound on the bit error probability

The bit error probabilityp(eb) can be bounded in a similar
way to the frame error probability. We first write it as

p(eb) = p(eb|er)p(er) + p(eb|ēr)p(ēr). (16)

We then use the upper bound onp(er) as given in (7),
p(ēr) ≤ 1, and

p(eb|ēr) ≤
1

2

N∑

d=dmin

A
(b)
d erfc





√
√
√
√

d(γsd + γ′
rd)

2

γsd +
γ′

rd

2

γrd



 , (17)

with the bit multiplicity A
(b)
d =

∑K

w=1
w
K

Aw,d.
Assuming again that the relay decodes on a codeword at

minimum distance (Assumption 3), we have

p(eb|er) = p(eb|er,xs = 0) =

=
∑

a∈Cmin

p(eb|xs = 0,xr = a)p(xr = a|er,xs = 0)

=
1

Ad

∑

a∈Cmin

p(eb|xs = 0,xr = a). (18)

Note that in contrast to the frame error probability, the proba-
bility p(eb|xs = 0,xr = a) depends ona and not only on its
weightw(a), as several input weights may lead to a codeword
of minimum weight. However, we can consider the worst case,
which is given by the maximum weight of information words
that generate a codeword of minimum weight. We denote the
corresponding bit multiplicity byA(b),max

dmin
. Then, using the

same approach as for the frame error probability, we obtain
the upper bound

p(eb|er) =
1

Ad

∑

a∈Cmin

p(eb|xs = 0,xr = a) ≤

≤ 1

2
A

(b),max
dmin

erfc







dmin(γsd − γ′
rd)

√

dmin

(

γsd +
γ′

rd

2

γrd

)







+

+
1

2

N∑

d=dmin

A
′(b)
d erfc







d(γsd + γ′
rd) − 2wm(b)γ′

rd
√

d
(

γsd +
γ′2

rd

γrd

)







, (19)

whereA
′(b)
d = A

(b)
d −A

(b),max
dmin

for d = dmin, andA
′(b)
d = A

(b)
d

otherwise. Note that by usingA(b),max
dmin

, this upper bound does
not depend ona.

V. OPTIMIZATION OF γ′
rd

Since a true ML decoder is far too complex, a common
approach in the literature is to model the source-to-relay-
to-destination channel as a virtual memoryless channel with
SNR γeq, whereγeq depends onγsr and γrd [7, 9]. At the
destinationγ′

rd is then set toγeq. In general, however,γ′
rd is

also a function ofγsd. Moreover, due to decoding at the relay,
the noise on this virtual channel is not linear, not Gaussian,
and not memoryless. Therefore the decoder is suboptimal, and
the performance depends on the value chosen forγ′

rd.
In this paper, we propose to optimizeγ′

rd as a function of the
triplet (γsd, γsr, γrd). Notice that in the decoding rule (2), the
value ofγ′

rd is used to trade-off the reliability of the source-
to-destination channel, depending onγsd, to the reliability of
the virtual source-to-relay-to-destination channel, depending
on γsr andγrd.

We use the lower bound on the error probability, derived
above, to perform this optimization. In particular, for each
triplet (γsd, γsr, γrd), we determine numerically the value of
γ′

rd which minimizes the lower bound on the error probability;
we denote this optimum value byγopt.

VI. N UMERICAL RESULTS

In this Section, we evaluate the tightness of the bound on
the error probability derived in Section IV by comparing the
bounds to simulation results. For the examples in this Section,
we have chosen a rate-1/2 4-states convolutional encoder with
generator polynomials(1, 5/7) in octal form, and we use the
information word lengthK = 64.

We consider two different scenarios. In Scenario 1, the
SNRs γsr and γrd are fixed, andγsd varies. In Scenario 2,
γsr andγrd vary with γsd as:

γsr = γsdgsr, γrd = γsdgrd, (20)

where the gainsgsr = (dsd/dsr)
α andgrd = (dsd/drd)

α are
due to shorter distances [12]. The valuesdsd, dsr and drd

denote the distances between source and destination, source
and relay, and relay and destination, respectively; usually 2 ≤
α ≤ 6; here we assumeα = 2.

In Fig. 2 we plot the bounds on the frame error rate (dashed
curves with empty markers) together with the simulation
results (solid curves with solid markers) for Scenario 1 as a
function ofγb

sd (in dB), whereγb
sd = γsd/R denotes the SNR

per information bit. We assume the SNRsγb
sr = γb

rd = 5 dB.
When two dashed curves with the same markers are plotted,
the lower curves correspond to the lower bound, while the
upper curves correspond to the upper bound. Several values
for γ′

rd are considered. In all cases the bounds match very
well with the simulation results. For highγb

sd the simulation
results are on the upper bounds. Due to the use of the union
bound, the upper bound diverges for low SNRs. On the other
hand the lower bound gives also a good approximation of the
performance. Note that forγb

sr = 5 dB, the probability of error
at the relay isp(er) ≈ 3.5×10−3, and thus not negligible. Very
good matching is also observed for higher error probabilities
at the relay.
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Fig. 2. FER bounds (dashed curves with empty markers) and simulation
results (solid curves with solid markers) for the relay network in Fig. 1.
Scenario 1 withγb

sr = 5 dB andγ
b

rd
= 5 dB.

The worst performance is obtained if we setγ′
rd = γrd,

as no information about the source-to-relay channel is ex-
ploited. Slightly better results are achieved if we model the
source-to-relay-to-destination channel as a virtual memoryless
AWGN channel with SNRγeq. However, performance can
significantly be improved if other values forγ′

rd are used.
For instance, if we setγ′

rd = 3 dB a gain of 1 dB is achieved
at FER=10−5. The optimization ofγ′

rd using the procedure
described in Section V yields the best results. A gain of
2.4 dB is achieved at FER=10−5 with respect to the curve
with γ′

rd = γeq. We remark that the optimal valueγopt of γ′
rd

decreases with increasing values ofγsd.
In Fig. 3 we plot the lower bounds on the bit error rate

(dashed curves with empty markers) together with the simu-
lation results (solid curves with solid markers) for Scenario 2
as a function ofγb

sd. Two cases are considered: in case 1,
the relay is closer to the source than to the destination, and
therefore we usedsd/dsr = 3 anddsd/drd = 3/2; in case 2,
the relay is closer to the destination than to the source, and
therefore we usedsd/dsr = 3/2 anddsd/drd = 3.

For both cases, the curve forγ′
rd = γeq and the one for

γ′
rd = γrd are indistinguishable, therefore only one is plotted.

Indeed, it turns out thatγeq is very close toγrd. For both cases
the bounds are tight. Note that the lower bound is also tight
when the probability of error at the relayp(er) is high. For
instance, forγb

sd = 0 dB and case 2, we havep(er) ≈ 5×10−2,
and the lower bound predicts still well the actual performance.
For case 1,γopt is almost identical toγeq andγrd, thereby no
difference is observed in the plotted curves. On the other hand
for case 2 the optimization ofγ′

rd according to the procedure
described in the previous Section yields a gain of around 0.5
dB. For other values ofdsd/dsr anddsd/drd, we observed a
similar behaviour.

VII. C ONCLUSIONS ANDFUTURE WORK

In the present paper we have developed a new analytical
method to upper and lower bound the error rate of relaying
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Fig. 3. BER bounds (dashed curves with empty markers) and simulation
results (solid curves with solid markers) for the relay network in Fig. 1.
Scenario 2, case 1 (relay closer to source) and case 2 (relay closer to
destination).

with decode-and-forward. The bounds are based on union-
bound approaches and the weight enumerators of the code.
As an application we have considered the optimisation of the
equivalent SNR of the source-to-relay-to-destination link at the
destination.

In future work we will extend our bounding approach
to schemes with re-encoding at the relay, which leads to
distributed turbo-like codes, and to scenarios with multiple
users and network coding at the relay.
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