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Abstract—For a three-node relay network that employs binary T, Ysa
linear codes and the decode-and-forward strategy, we derdv @— o
analytic upper and lower bounds for the probability of error at

the destination. The bounds are based on union-bound techmiies v Yrd
and the input-output weight enumerator of the encoder. As an IEEI ch r-d

application, we use this bound to optimise the decoder at the ~ ¥
destination. Our approach is verified by simulation results 5 "

I. INTRODUCTION Ysr Ty

In a three-node relay network, a source communicates t@iﬁ‘. 1. Relay network consisting of source s, relay r andid&son d, and
destination over a wireless channel, assisted by a coapgrathe three channels (ch) in between.
relay (see Fig. 1). Such ‘relay channels’ were introduced by
van der Meulen [1], and their capacities were studied inideta
by Cover and El Gamal [2]. Among the various cooperatiogind the lower bound on the dominant term, both under the
schemes proposed and investigated [3, 4], decode-ana@ifdrwmild and reasonable assumption that the SNR of the source-
is one of the most practical. In this scheme, the relay dexode-relay is not too low. As an example application of these
the data transmitted by the source, and forwards the estimbbunds, we optimise the equivalent SNR such that the error
to the destination. rate is minimised.

The error rate of decode-and-forward in uncoded systemsThe outline of the paper is as follows. In Section IlI

has been analized in [5, 6]. For this analysis and also for the define the system model, the relaying strategy, and the
decoding algorithms at the destination, the source-@yr&8- decoding strategy at the destination. Section IV deals with
destination channel may be modelled as an equivalent ofige bound on the probability of error. Section V describes
hop link with an equivalent signal-to-noise ratio (SNR)§Y, the optimization of the relay-to-destination SNR assumgd b
The value of this equivalent SNR has been investigated in fhe destination. Numerical results are presented in Sebtio
9]. The decoding thresholds of coded systems with iteratignclusions and an outlook to future work are provided in
decoding at the destination has been analysed with EX8ection VI
charts [8, 10].

Published results for coded systems have some major
shortcomings. First, decoding errors at the relay intreduc

memory in the virtual source-to-relay-to-destinationram@  Throughout the paper, we write vectors in boldface letters,
(in contrast to the often applied assumption); there are B@Ad thei-th element of a vectom as a;. The Hamming
analytical methods available to analyse how this affects tiyeight of a vectora is denoted byw(a), and the Hamming
probability of error at the destination. Second, error #owith  distance between two vectoissandb is denoted byd(a, b);
respect to the source-to-destination SNR have been oliserig convenience we may simply speak of weight and distance.

[11], but no theoretical explanations are available. Aniddth The support of a vectas is denoted byS(a) = {i : a; # 0},
current methods to determine the equivalent SNR for codggld its complement bys¢(a) = {i : a; = 0}. Notice that

systems do not consider that the source-to-relay-tot#&ih |S(a)| = w(a).
channel has memory. . The BPSK modulated symbol of a hit € {0, 1} is written
In the present paper we develop novel analytical bounds fé’éfci € {—1,+1}, and we use the BPSK mappifig— -+1
the probability of error, takipg into account Qecoding esral  5nd1 . —1. The signal-to-noise ratio of an AWGN channel is
the relay. The upper bound is based on a union bound approggloted by, = E, /Ny, whereE, is the received signal energy
This work has been supported in parts by the Australian Relse2ouncil and N is the Single'Sided_ noise power denSiEg' W% use the
under the ARC Discovery Grant DP0986089 and by NEWCOM-++. complementary error functioerfc(z) = 2//7 - fz e % ds.

II. NOTATION



I1l. SYSTEM MODEL the optimum value ofy/ , for above decoder is a function of

We consider the wireless relay channel depicted in Fig. @ three SNRsy,.., 74, and-y.q. B
source s communicates with destination d with the help of N the remainder of this paper, we analyse the !orobablllty
relay r, which uses the decode-and-forward strategy. TREEMTOr at the decoder and the effect of the valueyof

source-to-destination channel, the source-to-relay roblaamnd IV. A BOUND ON THE ERROR PROBABILITY
the relay-to-destination channel are modelled as bingytin - The error events at the relay and at the destination are
AWGN channels with signal-to-noise ratio (SNR};, vs- and  yefined by
~rd, respectively, and BPSK modulation.

The source employs a binary linear codec {0,1}" of er = {xr # X}, e = {Xs # X5}, 3)
length v and rateR?; and an encode€ mapping user data respectively. The complement of is denoted by,. We also

u € {0,1}* to codewordsc, € C. The user data is assumediefine the bit error event at the destination by
to be uniformly distributed, and thus also the codewords.

A codewordx; € C is transmitted over a wireless channel. ¢ = {&; # x; foranyi}. (4)
Due to the broadcast nature of the wireless channel both thé-or the analysis we assume without loss of generality that
destination and the relay receive a noisy observatiox of the all-zero codeword was transmitted, ixg.= 0. The error
denoted byy.q andys,, respectively. The relay decodgs. evente can then equivalently be written as
and generates the estimaige € C of the transmitted codeword
x,. It then cooperates with the source by forwardiggto the € = { > (Lei+Lyi) <0 foranyxeC,x# 0}7 (5)
destination. We assume that the source and the relay transmi i€S(x)

through orthogonal channels. Note that the relay may not fereS(x) denotes the support of (see above).

able to decodey, correctly, and therefor&, andxs; may  Let A, 4 be the input-output weight enumerator (IOWE)

differ. Based on the two noisy observations; andy.q, the of encoderé, giving the number of codewords of weiglit

destination estimates the codewordthat was transmitted by generated by input weight; let further A; = ZiK:l Aw.q be

the source; this estimate is denotedy the weight enumerator (WE) of encod&rgiving the number
A true maximum-likelihood (ML) estimation would takeof codewords of weightl. Also, denote byl,,;,, the minimum

into account that the relay may make erroneous decisiafistance of code.

and the corresponding statistics. Indeed, the relay iotes .

errors with memory and thus this should be considered @y A bound on_t.he frame error probab|_l|ty. )

the destination. As this is by far too complex for practical The probability of error at the destination can be written as

implementations, we use the following decoder (cf. [8,9).11 p(e) = p(ele,)ple,) + plele)p(er), (6)

The source-to-destination SNR; is assumed to be known h disti ish b h h h |
by the destination (Assumption 1). The observatin is where we distinguish between the two cases where the relay

assumed to be the output of a (virtual) memoryless AWGWakes an error and where it does not. Using the union bound,
channel with input, and SNRy,, (Assumption 2). Assump- the probability of error at the relay can be upper bounded by

tion 1 and 2 are commonly used, though not explicitly stated 1 X
[7-9]. Based on this model, the destination computes the L- pler) < 3 Z Agerfe (\/ d’ysr) : (7)
values d=dmin
, The probability of no error at the relay is upper-bounded
Ls,i = 4¥sdYsd,i» Lori = 4vqYrd,i, (1) by p(¢.) < 1. We will now analyse the two conditional

i=1,2,...,N, wherey; denotes the-th element of vector Probabilities of error in (6). _
y. For the analysis in Section 1V, we will need the conditional Consider first the case that no error occurs at the relay, i.e.
distributions of these L-values. Given ; = +1, wherei, ; € the termp(e|é,.). The rel_ay networ_k of Fig. 1is the_n equivalent
{+1} denotes the BPSK modulated symbol of thehit; ¢ © & system WherelcS is transmitted over two independent
{0,1} (see above)L,; has meantdy,, and variancesy . parallel channe!s with SNR;sq and%d..Letb be a nonzero
Similarly, givenz,.; = %1, L,.; has meant4+/,, and variance codeword of¢ with supportS(b) (as defined above). Splitting

84/2 /7,q. Using above L-values, the decoding rule is up the error event in (5) and taking the union bound, we obtain

N the upper bound

f(s = argmaxZii(Lsyi + Lr,i)a (2) P(€|ér) = p(elxs = O,XT = O) S
xeC i—1
Note that this decoding rule is optimal if Assumption 1 and < Zp Z (Ls;i +Lri) <0|xs =0,%. =0
Assumption 2 hold. While Assumption 1 is reasonable, As- beC  \ieS(b)
. ; b0
sumption 2 cannot be true as decode-and-forward introduces N
. L 2
errors with memory. If the de;tlnatlon hag some knowledge of _ 1 Z Ay erfe d(Vsa +7,g) ®)
the source-to-relay channel, it can exploit this inforroatby 2 5 e + 2

properly weighing the relayed information by,,. In general, Yra



The last line is obtained by the following considerationse® terms in each set, the mean value of the overall sum can be
xs = 0 andx, = 0, L,; and L,; have positive mean written as
values. Thereforezies(b) (Lsi+L,;) is Gaussian with mean . , ,
4w(b)(Ysa + 7.y) and varianceSw(b)(vsq + v2/7ra) (s€€ [S(b)[ - 47sa + [S(b) N S°(A)] - 47,4 — [S(b) N S(Q)] - 47,.q
Section Ill); notice thato(b) = |S(b)|. = |S(b)| - 4(Ysa +7rq) — 2+ [S(b) N S(a)] - 4774

Consider now the case that an error occurs at the relay, i.es 4w(b)(vsq + 7V1.q) — 8w(a*b)y., , (12)

the termp(ele,). This probability can be written as )
where a x b denotes the element-wise product of the two

peler) = pleley, x5 = 0) = vectors; notice thatS(b)NS(a)| = w(axb). The variance of
_ _ _ _ _ the overall sum i8w(b)(vsa +7/4/7rd), @s in the case where
N ;e;p(elxs = 0.x = a)plx, = aler, x, = 0) (9) the relay decodes error free. Using this mean and varianee, t
a0 pairwise error probability can be written as

(Notice thatp(x, = Ole,,xs; = 0) = 0 and thusa = 0 may pa(Xs = blxs = 0,%x, =a) =
as well be included in the summation.)

The computation of (9) is cumbersome. To simplify the 1 w(b)(Ysq +7.,) — 2w(a * b)Yy,
computation, we make the following assumption: whenewer th = 5 erfc o = rd (13)
relay makes an error, it decodes to a codeword that has min- \/w(b) (%d + li)

imum distance to the transmitted codeword (Assumption 3).

Notice that this assumption is justified~f, is high, which is For a = 0, we obtain the terms of the sum in (8).

required for the decode-and-forward scheme to be useful. For w(a x b) = 0, the argument in (13) is maximum, and
DefineCpin = {x € C : w(x) = dmin} the set of minimum thus the error probability is minimum. On the other handhwit

weight codewords. Then, assumirg = 0 as before, we have increasingw(a * b) (increasing ‘overlap’ ofa and b), the

x, = 0 (if the relay decodes correctly) of, € Cni, (if the argument decreases and thus the error probability incgease

relay makes an error). Correspondingly, (9) can be re-awritt The overlap betweea andb is maximum wherb = a. In

as this case we have that(axb) = dni,. If b # a, however, the

maximum value ofw(axb) is given bymin (dmin, w(Qb) :
pleler, x: =0) = we call this valuew,, (b). Correspondingly, the pairwise error
= Z ple|xs = 0,%, = a)p(x, = ale,,x; = 0) probability can be upper bounded by
a€Cmin

— plelx. = 0., = a), (o) P2l =Dl =0 =a)<

for any a € Cpi,. Here we used thap(e|xs = 0,x, = a) 1 w(b)(Vsd + 7iq) — 2w, (b)Vlg
takes the same value for all € C,.,;», as the code is linear; < 9 erfe 2 , (14
andthafy", .. p(x, = ale,,x, = 0) = 1 by Assumption 3. \/w(b) (’st + V:j)
Similar to the case of no error at the relay, we split up the
error event in (5) and take the union bound: where w;,(b) = dwin if b = a, and w,(b) = wy,(b)
otherwise.
plelxs = 0,x, =a) < Finally, using (14), (11) and (10) in (9p(ele,) can be
upper bounded by
< Zp Z (Lsi+Lr;) <0lxs =0,%x, =a |, (11) pleler) < ZPZ(XS —blx, = 0,x, = a) <
beC 1€S(b)
b#£0 tt));%
p2(Xs = b|xs = 0,%x, = a)

for anya € Cunin. o e 1 e w(b)(Vsd +Vpa) = 20 (B)Ypq | _

Each term in the sum denotes a pairwise error probability — =% 2 (b) ( n 7;‘3)
p2(+), namely the probability that the destination decidesfor b£0 v Vsd T S
instead of0 if x, = 0 andx, = a were transmitted. We wiill
now write these probabilities using the complementaryrerro 1 Amin(Ysd — V')
function by determining the mean and the variance of the sum = 5 €H¢ — | T
of the L-values, similar to the (8). \/dmin (’st + kﬁid )

Sincex, = 0, all valuesL;; have positive mean. Since
x, = a, the valuesL,; have positive mean fof € S(b) N N , ,
S¢(a), and they have negative mean fore S(b) N S(a); +1 > Ajerfe s+ 2rg) = 20 (B , (15)
S¢(a) denotes the complement set 8fa). Using the mean 2 d (%d 4 3_51)

rd

values of these L-values (see Section Ill) and the number of



where A, = Ay — 1 for d = dwin, and A}, = A, otherwise; V. OPTIMIZATION OF 7,

This completes the computation of an upper bound on tB@proach in the literature is to model the source-to-relay-
probability of error in (6). The corresponding lower boussd ito-destination channel as a virtual memoryless channéi wit
obtained by considering only the terms with minimum disengNR Yeq» Where ., depends ony,, and~,q [7,9]. At the
(with the corresponding multiplicities) in (7), (8) and {15  destination’,, is then set toy.,. In general, however/,, is

also a function ofy,;. Moreover, due to decoding at the relay,
B. A bound on the bit error probability the noise on this virtual channel is not linear, not Gaussian
and not memoryless. Therefore the decoder is suboptimal, an
the performance depends on the value chosen/far

In this paper, we propose to optimizg, as a function of the

bY _ (b bl \oo( s triplet (vsa, s, vra)- Notice that in the decoding rule (2), the
P(€") = p(elerlpler) +p(elerp(er). 18) lale of~/, is used to trade-off the reliability of the source-
We then use the upper bound gre,) as given in (7), to-destination channel, depending og;, to the reliability of
p(é;) <1, and the virtual source-to-relay-to-destination channel, etefing
on v, and~,.4.
We use the lower bound on the error probability, derived
, (17) above, to perform this optimization. In particular, for kac

The bit error probabilityp(e®) can be bounded in a similar
way to the frame error probability. We first write it as

d(vsa +7.4)?

/ 2

d=dmin Ysd + triplet (vsd, vsr, vra), We determine numerically the value of
~1.. Which minimizes the lower bound on the error probability;
with the bit multiplicity A = S5 w4, 4 we denote this optimum value by

Assuming again that the relay decodes on a codeword at VI. NUMERICAL RESULTS

minimum distance (Assumption 3), we have In this Section, we evaluate the tightness of the bound on

b _ b o) the error probability derived in Section IV by comparing the
p(e’ler) = p(e’ler, x5 = 0) = . ; ompe _
. bounds to simulation results. For the examples in this Becti

= E p(e’|xs = 0,x, = a)p(x, = aler,xs = 0)  we have chosen a rate’2 4-states convolutional encoder with

AECmin generator polynomialél,5/7) in octal form, and we use the
1 i i —
= Z p(e]xs = 0,%, = a). (18) |nformat|on_word IengtbK = 64. _ _
d o We consider two different scenarios. In Scenario 1, the

SNRs~,, and v,4 are fixed, andy,; varies. In Scenario 2,
Note that in contrast to the frame error probability, theljgro ~,,. and~,; vary with v,; as:
bility p(e’|x, = 0,x, = a) depends om and not only on its
weightw(a), as several input weights may lead to a codeword Ysr = TVsdJsr Yrd = TVsddrd; (20)
of minimum weight. However, we can consider the worst casghere the gaing,, = (dsq/ds,)® andg,q = (dsq/dqq)* are
which is given by the maximum weight of information wordsjue to shorter distances [12]. The valugg, d- and d,q
that generate a codeword of minimum weight. We denote thenote the distances between source and destination,esourc
corresponding bit multiplicity byA'?™**. Then, using the and relay, and relay and destination, respectively; ugatt
same approach as for the frame error probability, we obtain< 6; here we assuma = 2.

the upper bound In Fig. 2 we plot the bounds on the frame error rate (dashed
1 curves with empty markers) together with the simulation
p(elle,) = — Z p(e’|xs = 0,x, = a) < results (solid curves with solid markers) for Scenario 1 as a
Aa S function of+2, (in dB), wherey®, = ~,4/R denotes the SNR

per information bit. We assume the SNR%. = +%, = 5 dB.
When two dashed curves with the same markers are plotted,
= 5 dmin — the lower curves correspond to the lower bound, while the
\/dmin ('st + %) upper curves correspond to the upper bound. Several values
for «/, are considered. In all cases the bounds match very
N , , well with the simulation results. For high?’, the simulation
T 1 Z A erfe d(vsa + Vra) — 20m(D)Vrg , (19) results are on the upper bounds. Due to the use of the union
2 dedmin d (7 i+ m) bound, the upper bound diverges for low SNRs. On the other
° hand the lower bound gives also a good approximation of the
) L) (5).max ') ) performance. Note that foy?, = 5 dB, the probability of error
whered;” = A;" -4, for d = dmin, andA;™ = A;”  atthe relay ig(e,) ~ 3.5x 1073, and thus not negligible. Very
otherwise. Note that by usm.g b) 4% this upper bound does good matching is also observed for higher error probadditi
not depend orma. at the relay.

1 max dmin sd — !
< L g®max o (Ysd = V7a)
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Fig. 2. FER bounds (dashed curves with empty markers) andl&iion  Fig. 3. BER bounds (dashed curves with empty markers) andlafion

results (solid curves with solid markers) for the relay ravin Fig. 1. results (solid curves with solid markers) for the relay raiwin Fig. 1.

Scenario 1 withy®, = 5 dB and~?, = 5 dB. Scenario 2, case 1 (relay closer to source) and case 2 (rédagrcto
destination).

The worst performance is obtained if we sgl;, = v,q4,
as no information about the source-to-relay channel is ewith decode-and-forward. The bounds are based on union-
ploited. Slightly better results are achieved if we modea tHoound approaches and the weight enumerators of the code.
source-to-relay-to-destination channel as a virtual mgtess As an application we have considered the optimisation of the
AWGN channel with SNRy.,. However, performance canequivalent SNR of the source-to-relay-to-destinatiok &hthe
significantly be improved if other values foy., are used. destination.

For instance, if we set/, = 3 dB a gain of 1 dB is achieved In future work we will extend our bounding approach
at FER=0~°. The optimization ofy/, using the procedure to schemes with re-encoding at the relay, which leads to
described in Section V vyields the best results. A gain @fistributed turbo-like codes, and to scenarios with mlgtip
2.4 dB is achieved at FER®~° with respect to the curve users and network coding at the relay.

with v/, = ~eq. We remark that the optimal valug,,: of v/,

decreases with increasing valuesqf. W E C der Meulen. “Th | Ad
. . . C. van der Meulen, “Three-terminal communication rugls,” Adv.
In Fig. 3 we plot the lower bounds on the bit error rate Appl. Prob,, vol. 3, pp. 120-154, 1971.

(dashed curves with empty markers) together with the simysz] 1. Cover and A. EI Gamal, “Capacity theorems for the retdannel,”
lation results (solid curves with solid markers) for Scémar IEEE Trans. Inform. Theory, vol. 25, no. 5, pp. 572-584, 1979.

; b ; . [3] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperatiliversity
as a function Of’YSd' Two cases are considered: in case 1, in wireless networks: Efficient protocols and outage betvdviEEE

the relay is closer to the source than to the destination, and Trans. Inform. Theory, vol. 50, pp. 30623080, Dec. 2004.
therefore we us@,q/ds, = 3 anddsq/d,q = 3/2; in case 2, [4] G. Kramer, |. Mari¢, and R. D. Yates, “Cooperative conmiuations,’

; oAt FNT in Networking, vol. 1, no. 3-4, pp. 271-425, 2006.
the relay is closer to the destination than to the source, arEg] A. Ribeiro, X. Ceg’ and G. Giannalfirs” “Symbol error praiies for

therefore we usé,q/d,, = 3/2 anddyq/dyq = 3. general cooperative links/EEE Trans. Wireless Commun., vol. 4, no. 3,

For both cases, the curve fof.; = 7.4 and the one for pp. 1264— 1273, 2005.

;o T . f [6] P. Anghel and M. Kaveh, “Exact symbol error probabilitf acooper-
Vrd = Yrd r€ IndIStmnghable' therefore Only One s pIotted. ative network in a rayleigh-fading environmentEEE Trans. Wireless

Indeed, it turns out that. is very close toy,4. For both cases Commun., vol. 3, no. 5, pp. 1416— 1421, 2004
the bounds are tight. Note that the lower bound is also tigh¥] T. Wang, A. Cano, G. Giannakis, and J. Laneman, “Higifgrenance

g ; ; cooperative demodulation with decode-and-forward relayEEE
when the probability of error at the relgye,.) is high. For Trans, Commun.. Jan. 2007.

instance, for?, = 0 dB and case 2, we hayge,.) ~ 5x10~2, [8] S. Yang and R. Koetter, “Network coding over a noisy relay belief

and the lower bound predicts still well the actual perforoean propagation approach,” iProc. IEEE Int. Symp. Inf. Theory (ISIT),
; ; ; pp. 801-804, 2007.

F_Or case 1.%pt IS aImO.St identical t0req and-,4, thereby no [9] H. Sneessens and L. Vandendorpe, “Soft decode and fdrimgsroves

difference is observed in the plotted curves. On the othedha "~ cooperative communicationsProc. IEEE Int. Workshop on Comput.

for case 2 the optimization of,; according to the procedure  Advances in Multi-Sensor Adaptive Processing, Jan. 2005.
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