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Abstract

Concept drift occurs when a target concept changes over tinpeesent a new method for learning
shifting target concepts during concept drift. The metteadled Concept Drift Committee (CDC), uses a
weighted committee of hypotheses that votes on the curfassiication. When a committee member’s
voting record drops below a minimal threshold, the membéorised to retire. A new committee member
then takes the open place on the committee. The algorithinigpared to a leading algorithm on a number
of concept drift problems. The results show that using a citeeto track drift has several advantages over
more customary window-based approaches.
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1 Introduction

When a classifier for a static concept is learned, it can bd tselassify future instances indefinitely.
However, if the concept can change, the problem of clasBiditdbecomes more difficult. Learning must
continue as long as instances arrive so that the changingepbnan be tracked. The presence of a changing
target concept is known a&®ncept drift

Concept drift frequently occurs in the real world. Peopfa'sferences for products change. The factors
that determine a successful stock change with the econonmgn\factory conditions change, the process
for validating a product changes as well. Many times the eafishange is hidden, leaving the change to
be inferred from the classifications themselves. Algorihimat track concept drift must be able to identify
a change in the target concept without direct knowledge @tiifderlying shift in distribution.

Presently, the majority of research into concept drift hasrbtheoretical in nature. Theoretical treat-
ments of the problem generally make simplifying assumjtiabout the kinds of drift that can occur in
order to establish bounds. For example, Helmbold and LoB§4)Lestablish bounds on tleetentof drift
that can be tolerated assuming a permanent and very slifhitvelnere extentis defined as the probability
that two successive concepts will disagree on a random dearBpartlett et al. (1996) establish necessary
bounds on drift rate and sample complexity for an algoritiorbe able to learn thstructureof a repeating
sequence of concept changes. In other words, they show w/hatessary in order to learn a sequence of
functions determining changing distributions. Other tietioal results establish bounds given assumptions
such as known linearity (Freund and Mansour 1997) or sloft (Barve and Long 1996).

Research into specific algorithms has proceeded to a lesssteHowever, several effective methods
exist. For example, Klinkenberg and Thorsten (2000) deerdoa method for detecting concept drift us-
ing support vector machines. Widmer and Kubat (1996) use ¢fedisjunctive normal form formulae to
characterize the current hypothesis. Both of these methselswindowto track drift. The idea is to have
a window of recent examples that ideally reflect the distithuof the current examples. The algorithms
adjust window size as the target concept changes.

In this paper, | present an alternative to using window sizieetck concept drift. The method presented
is calledConcept Drift CommitteéCDC). While changing window size requires heuristics toide when
the window size should change, CDC requires no such hagistnstead, a committee of decision trees
is maintained, each with a vote weighted according to thexent record. When a committee member’s
performance drops too low, it is replaced by a completely nember. Each committee member maintains
a hypothesis based on every example seen in its lifetimes, Thare is no explicit window. However, there
is animplicit window because when the concept changes, many committedene@re forced to retire,
and new members begin learning from only the latest examples

The windowless committee is like a very exclusive cliquetmalling an advertising agency. The com-
mittee tries to stay on top of current trends. The youngesnbess tend to be valuable during changing
times, but the older members are most reliable during tinfetatility. However, the clique is exclusive
because it does not tolerate older members who become mirdir ways. When older members start
showing signs of age, they are quickly ejected and repladddmore trend-aware youngsters.

This paper will demonstrate that CDC performs as well as Widamd Kubat's window-based method
on some problems and better on others. We will examine battlesuand gradual concept drift. Although
more work is necessary in realistic domains, these earlylteesstablish the promise of using a committee
to track concept drift. The main conclusion is that it is netessary to explicitly detect concept changes
and adjust a window in order to successfully predict thegimpncept. In fact, heuristically adjusting a
window can be a disadvantage.



2 Concept Drift and the CDC Algorithm

This section will formally define concept drift and then didtse the committee-based algorithm for handling
the problem.

2.1 Definition of Concept Drift

A concept is a DNF formula defined over a finite set of binantdess. Thus a concept can be something
like “big and smart” or “short or smart.” The instance spasealéfined as all the possible conjuncts of
feature values. An instance is either representative dfatget concept or not. Thus, the classification of an
instance is a boolean value.

Concept drift involves a changing target concept. Condidertarget concepts4d and B. A sequence
of instanceg, to 7,, are presented in order to the concept drift algorithm. Bemme instancg,, the target
conceptA is stable and does not change. After some number of instaked®yond:,,, the concept is once
again stable, this time at concet Between instancg, andi, A, the concept iglrifting between targets
A and B according to some distribution.

If Az = 1 then the concept shifts instantaneously betwdesnd B. We will see how CDC handles
instantaneous shifts in the experimental work (Section\®phen Az > 1, the concept is changing over
a number of instances. We can model the changing conceq tlnfunctiona, which represents the
dominance of concept A over concept B at a specific instantels,Tbefore,, « = 1, and afteri, A,

a = 0. While the concept is driftingy is betweerd and1. The probability that a given instance is in concept
Ais given byp(A) = a. The probability that the same instance is in cond@ig thusp(B) = 1 — «.

If the current instance. appears during a period of drift, we can model gradual condefh betweeni,
andiz a, by settinga = “7. Thus the probability of an instance being in concépdeclines linearly as
the probability of an instance being in concépincreases until is completely replaced bi. The shorter
the period of drift,Az, the faster the drift rate. We will see CDC'’s performancefon = 100, a moderate
drift, and Az = 200, a slow drift (Section 3).

The instantaneous and gradual drift problems are bothdstigig in their own right. A concept drift
algorithm may handle sudden changes quite well but haveblgowith gradual change. Therefore, it is
informative to examine both types of change. In the real dyanhderlying shifts in concepts can occur
in both sudden and gradual ways. For example, someone girrgideom college might suddenly have
completely different monetary concerns, whereas a slovdginimg piece of factory equipment might cause
a gradual change in the quality of output parts. Widmer anda{1996) examine both types of drift in
their research, and | will compare my results directly whiits.

We now turn to the implementation details of the CDC alganitkvhich will be used to handle the kinds
of drift discussed.

2.2 The CDC Algorithm

The Concept Drift Committee algorithm is motivated by the 0$ voting committees in methods such as
bagging and boosting (Bauer and Kohavi 1999). If a committesseful for deciding on a classification in
a fixed unknown distribution, it should be useful for a dniffidistribution as well.

The algorithm works as follows. A committe@ is composed of a maximum af hypothesesh,
throughh,,. Each hypothesis is a decision tree. On an arbitrary instgneach committee member is the
decision tree that is derived from training on every instaidas ever seen. Let the sequence of instances
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Committee Member hj

Voting Weight : 0.9
Performance Record : Correct Correct Correct Incorrect Correct Correct ...

Instances seen since joining: (+ juicy apple) (- rotten banana) ...

Decision Tree Learned from all instances seen:

Figure 1: Sample Committee Member. The figure depicts a sample committee member and its inteorat
ponenets. The committee member makes its classificatiang its decision tree, which is derived from all the
instances it has seen since it joined the committee. The mewdbes with a voting weight derived from its recent
record.

seen by committee membeay be denoted;. Since committee members are introduced at different times
they are all trained on a different number of preceding imsés, depending on when they first appeared
(figure 1).

For example, let us say that the current instandgsignd that committee membes first appeared on
i19. Then the decision tree representihgis trained onsy, which contains every instandey . . . io5. Of
course there is a computational cost to retraining everyraittee member each time a new instance arrives.
However, because incremental algorithms exist for indydecision trees, the algorithm can operate incre-
mentally, training each decision tree in the committee oingls new instance each time a new instance
arrives. ID5R is an example of an incremental decision imeedtion algorithm (Utgoff 1989).

The committee is initially empty. As the first few instancesve, the committe must form. Whenever
a new instance arrives and the committee has less than itsnmanx: hypotheses, a single new committee
member is added. The new memlgis started out with its training instancescontaining only the current
instance. Thus, at the first instance, a single committeeliaem joins the committee and is trained only
oni;. Oniy, a new committee membés, joins the committee and is trained only 6n whereash; is now
trained on both; andi;. When the committee reaches its maximum sizeaew members are no longer
added unless another member is forced to retire.

To test committee members, each member is allowed to votestimg instances that are derived from
the distribution (the target concept) of the current instarrhe weight of each vote is the same as the record
of the voter on the past training instances. Thus, committee members that have daieg well recently
have more say. When a committee member’s record falls bedoweghreshold, the committee member is
retired and replaced by a brand new committee member. Tdvetehe committee is forced to be up to date
by retiring members that are out of step with the current ephc

1The code used in the experiments in this paper used ID3jniztgeeach committee member in batch each time a new instance
arrived. However, because ID5R is guaranteed to producssttne decision trees as ID3, the results hold for an increahesitsion
of CDC, which could easily be implemented simply by integpgta version of ID5R.



Because committee members are not reliable before theydssrea certain number of instances, they
are assigned a voting weight of zero before they reachatpsof maturity The age of maturity is set to
equal the sizex of the committee, so that in the worst situation (where thgeenommittee has a bad record)
there is always at least one mature member because only amaittee member can be forced to retire at
any one time. In addition, immature committee members dabe@urged, so they have a chance to see
enough instances to learn a reliable concept.

In practice, the committee as a whole becomes mature andremdatively stable when the target
concept is not drifting. However, when the concept drifteréhis a great deal of upheaval, with many
members retiring. Instantaneous concept changes genkyadl to the entire committee eventually retiring
and being replaced, whereas gradual drifts allow a groupatfire committee members to survive for a time
in proportion toa, which determines which target concept is most likely at gingn time. The idea is that
the composition of the committee should reflect the distitiouof «.. In addition, because the committee is
made up of decision trees, individual members can adapnte gxtent to new concepts, although of course
they cannot represent contradictory concepts. Howevey, thay be able to change enough to represent
some kind of middle ground concept for a duration of the dhfit can still be useful. Of course, new
members do not have to deal with the problem of reconcilimjaalncepts with new ones, which is why
they become increasingly dominant during drift. Both vgtimeights and retirement affect the balance of
power in the vote.

Given a committe€ processing instances. . . i;,5¢, the CDC algorithm can be summarized in pseudo-
code:

C+«+ NIL

Train h; 0Ny

Add h; to C

For all remaining instances . . . ij44¢,

— Let . be the current instance
— Test allh € C individually on ., and update the record of eaktio to reflect the result

Update allh € C by incrementally training o,
Test currentC on a test distribution from the same distributionigsecord performance

PurgeC: Removeh,,;, € C only if
* hogin IS Mature, and
* hmin has a performance record below a minimum threshpéhd
* hmin has the worst performance record@h

If size(C') < n then train a new committee membgf.,, oni. and addhy,e,, to C

¢ Return the committee’s testing performance on all instance

This section concludes with an intuitive example. Let usgima we are tracking the preferences of a
young automobile customer. The customer likes the colagrgrand he also likes big cars. However, before
he graduates from college, he can only afford small carssThel is interested in small green cars.

The CDC committee sees instances of cars that the custoraéndiieated he might purchase over his
college career. Let us say our customer made the followiogmeselections:
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¢ i, Small blue Toyota: not interested
e i, Small green Toyota: interested

e i3 Large blue Honda: not interested
e i5 Large green Honda: not interested

¢ i, Small green Honda: interested

Now let us say there are 4 committee members,..cs. The oldest committee members, and cs,
have the hypothesis “any small green car.” Howewggndc, have not seen all the instances, so they have
different hypotheses based on partial datahypothesizes that the customer likes “green Hondas,” velsere
cq believes the customer likes everything. The mature coramithembers clearly rule with their correct
hypothesis.

However, suddenly our fortunate young customer graduates tollege into a lucrative career as a
CS391L teaching assistant. His dreams becoming realitsedizes he can now afford those big green cars
that he’s always loved. He now responds to recent questi@sna

e i5 Small blue Toyota: not interested
e i Small green Toyota: not interested
e i; Large blue Honda: not interested
e ig Large green Honda: interested

e ig Small green Honda: not interested

e 4,0 Large green Toyota: interested

Suddenly the esteemed committee is in turmoil. Its mosteespl members;; and ¢z, getig, is,
i9g and iy incorrect. Their records tarnished, they are forced intirament, quickly replaced by new
members. The remaining members from before the graduagdomm better.c,, who previously believed
the customer liked everything, comes to correctly hypateethat the customer likes “large green carsg.’
who thought the customer liked “green Hondas” performs wetil i9, lowering its voting weight somewhat,
but not quite eliminating it. Thus, the committee is now inexipd of transition, withc, emerging as the
experienced sage ang with a slightly incorrect hypothesis and a lower voting weig Two brand new
members have just joined the committee and are sure to guikin the new concept assuming it does not
change again. We can see that this committee is already gwiaje correctly for large green cars.

Of course the preceding example is oversimplified and doesalude gradual drift. We will see how
a larger committee performs on more difficult and varied peois in the next section, where | detail the
experiments | performed with CDC.

3 Experimental Evaluation

This section addresses the hypothesis that CDC is a povedgottithm for tracking varied rates of concept
drift. The constantly changing committee allows CDC to elgsnirror a changing distribution.

Three experiments were performed with CDC:
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1. Instantaneous concept change
2. Moderate concept drift

3. Slow concept drift

In order to allow for comparison, | strictly duplicated tleeexperiments as they were performed by
Widmer and Kubat (1996) for testing their system, FLORAsltihfortunate that the experimental paradigm
introduced in their paper is not a real-world domain. Howgetee experimentslo clearly demonstrate
performance in well-defined cases of drift, and therefove gisight into how well concept drift algorithms
might perform in the real world. Most importantly, the exipeents serve as one of the few standardized
benchmarks for comparison in the area of concept drift.

This section begins with descriptions of the experimeniisvieed by results.

3.1 Experimental Methodology

The same CDC settings were used in all experiments. The nuaxicommittee size was 10, the age of
maturity for a committee member was 10, and the performaacerd for a particular hypothesis was taken
over the last 10 instances it processed (i.e. the record iseaegof 10 correct or incorrect classifications).
The minimum performance level to avoid retirement was 80%.

3.1.1 Instantaneous Concept Change

The instantaneous concept change experiment uses the sageptdrift problem as Widmer and Kubat
(1996), which originally appeared in Schlimmer and Grand@®86). The problem occurs in a block world
with three attributes:

e size € {small, medium, large} ,

e color € {red, green,blue} ,

e shape € {square, circular, triangular}
Three hidden concepts are used in the experiment:

1. size = small A color = red,
2. color = green V shapre = circular,

3. size = (medium V large)

120 training instances are chosen uniformly from the instespace. The first 40 are labeled according
to concept 1, the second 40 according to concept 2, and thdQaaccording to concept 3. Thus, 2 in-
stantaneous concept changes occur at instance 40 anccm&an100 testing instances are also randomly
generated for each experiment. For each training instahed,00 testing instances are labeled according to
the underlying concept of the training instance. The cornaits then tested on those 100 testing instances,
to give a score out of 100 for the accuracy of the committebaptrticular training instance. The testing
performance was completely independent from training aasl mot used to facilitate training in any way.
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This experiment shows how CDC compares to the FLORA4 alyorty Widmer and Kubat. FLORA4

is the best performing algorithm of the FLORA family on thiblem. The FLORA algorithms are de-
scribed in detail in Related Work (Section 4). Roughly, FLA&gorithms operate by keeping 3 groups of
descriptors, each represented as a DNF formula, reprageaticepted descriptors that are believed to be
currently correct, negative descriptors that are beligedake always incorrect, and potential descriptors that
match some recent negative and positive examples. Thathlgsruse a variable sized instance window to
adjust the sets of descriptors in an attempt to best cagtareurrent underlying concept. The later versions
of FLORA use more sophisticated statistical methods to neltability of predictors than earlier versions
of FLORA. A third algorithm, IB3, is also depicted for comsn (Aha et al. 1991). . FLORA4 borrows
the idea of using statistics to check the reliability of adiceor from IB3. Thus, IB3 is a predecessor of
FLORAA4.

The instantaneous drift experiment shows how quickly tigerthms can react to a sudden change. It
is essentially an experiment abaetoveryafter a new concept has stabilized, since there is no uestabl
period.

3.1.2 Moderate and Slow Concept Drift

Other than having different drift rates, the experimentthwmoderate and slow concept drift both use the
same setup. The scenario is taken once again from Widmer abdtKor the sake of comparison. Two
concepts are defined over 6 boolean attrib{tes. . . ag }:

1. Conceptd: a; A as,

2. ConceptB: (as A aq) V (as A ag)

Conceptd gradually changes into conceptover some period\z as described in Section 2.1. The rate
of the drift is controlled by the duration of the change. Ia thoderate drift problemAz = 100, and in the
slow drift problem,Az = 200.

In both problems, an experiment takes place over the codrs@0uniformly selected instances from
the instances space. Before the 100th instance, 1, meaning that concep is stable as the underlying
concept. After the 100th instance begins to shift downward such that concept A is more and mikeéyl
to be replaced by concept B on any given instance until icstaf0 + Az, at which point concept B is
stable. Concept B remains stable until the 500th instanberewthe experiment ends.

A test set of 200 instances is also uniformly chosen at the sfaan experiment. On each training
instance, the 200 test instance are labeled according tuthent value ot. In other words, the distribution
of the underlying concepts in the test instances reflectsliftgbution from which the underlying concept
of the current training instance was chosen. Thus, the cdee’s score reflects how well it capturte
current distributiona.

It is interesting both to see how an algorithm performs dythre period of drift, and how well it recovers
after the drift ceases. While a concept is drifting, the nmaxin possible accuracy drops because the closer
a is 10 0.5, the less predictable the underlying concept for a padicabncept is. Thus, algorithms must
take a hit during this drift period. However, once drift stophe algorithms have a chance to stabilize on
conceptB. A good algorithm should be able to recover quickly.

The gradual drift experiments also include comparisonh trie FLORA family of algorithms.
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Figure 2:Instantaneous Change Performance Comparison.Performance of CDC (Drift Committee), FLORA4,
and IB3.

3.2 Results

For each experiment, there are 2 graphs depicting the seslifte first graph shows CDC's testing perfor-
mance compared to other algorithms. CDC is always plottegiéen. The second graph is the same as
the first, except an additional dotted blue line is plottedhisTine is the lower confidence bound for the
results of CDC. The reason | include two graphs for each déxyat is that the confidence bound can make
it difficult to see the other lines (representing average<gitain cases.

The lower confidence bound is computed using a 1-sampleue\@sed on the standard deviation and
degrees of freedom of the particular experiment and instaror the first experiment, since differences
were pretty dramatic, | show a 99% confidence bound, wheleasdcond 2 experiments depict 95% con-
fidence bounds. The reason for using confidence bounds isvehdb not know the standard deviation or
distribution of the data collected on other systems, so vima@acompute a t-test directly. However, if the
lower confidence bound on CDC'’s performanceaimovethe mean performance of a competing method,
we can be reasonably sure that CDC'’s performance is sugd®gyiarstatistically significant margin. Thus,
the graphs that include lower confidence bounds are usedsily sae statistical significance. The graphs
without the bounds are included to make it easier to see tlalamean results.

3.2.1 Instantaneous Concept Change

The instantaneous change experimental results are ademg@e 20 experiments for CDC, but over 10
experiments for FLORA and IB3. The plots are divided intaethregions, each corresponding to the first,
second, or third target concept.

The results indicate that both CDC and FLORA4 perform sigaiftly better than the earlier algorithm
IB3. Under the first concept, the problem is not yet a driftigdeon since nothing is changing. However, we
can see FLORA4 performs slightly better than CDC here. Afieffirst sudden change, FLORA4 and CDC
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Figure 3: Instantaneous Change Performance Significance. Blue line shows 99% confidence lower bound on
CDC performance on this task.

both recover in a similar manner. However, FLORA4 reache# aigher before the final concept shift.
After this second shift, CDC recovers very significantlytéeghan FLORA4.

The main conclusion is that the results are mixed. FLORA4nsdgiased to recovering from different
kinds of concepts than CDC. | believe this is due to the formepresentation used by the learning algo-
rithms rather than the quality of their drift tracking pratges. CDC has an advantage on the last concept
because it is a disjunction of two values for a single attdbwhich is easy to represent in a decision tree.
However, CDC, using actual DNF expressions, captures tbenskeconcept, a disjunction of values for 2
attributes, slightly more easily. It appears that for insameous drift, the form of representation may be
more of an issue than the drift tracking method, assumirgjaf suitable quality (IB3’s tracking method is
bad enough that its performance is degraded for all 3 coakept

It is perhaps more informative in evaluating concept driétking methods to compare their performance
on actual drift, as in the following 2 experiments.

3.2.2 Moderate Concept Drift Az = 100)

Figures 4 and 5 compare the FLORA family of algorithms to CB({Cplots are averaged over 10 runs. The

concept begins to drift at instance 100 and stops driftingsaance 200. The upper line in each plot shows
what a method could achieve with perfect information (i.ethlax and what the concepts are). The lower
line show the accuracy that would result from the “dumb” noeltlof simply guessing the majority class.

The results show that CDC is on average slightly higher tHaBRA4 (the best FLORA) throughout the
run. However, the performance of FLORA4 is above the lowé&bhmnfidence bound of CDC, indicating
that the results are not statistically significant. The maisult is that both CDC and FLORA4 perform
similarly on moderate drift, with CDC perhaps a bit more aeate.

It is also informative to observe the performance of CDC $noitvn right, in order to understand what
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Figure 4: Moderate Drift Performance Comparison. Performance of CDC (Drift Committee) and FLORA
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Figure 5: Moderate Drift Performance Significance.

Blue line shows 95% confidence lower bound on CDC
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Figure 6:Slow Drift Performance Comparison. Performance of CDC (Drift Committee) and FLORA algorithms.

is going on. As the concept gradually shifts towands- 0.5, the committee is continuously purged until it
hits bottom at around, . At that point the concept is stabilizing again at a new tagyel the committee
becomes more and more entrenched in support of the new dopriséqy in accuracy as the concept becomes

more certain, all the way until it begins to oscillate betw&®% and 100%. (CDC oscillates between 80%
and 90%)

Why does the committee not completely stabilize on the stcmmcept? | believe the reason is that
the second concept is a disjunct of two conjuncts, and simedraining examples are chosen randomly a
lot of the time it might look like only one of the conjuncts tstactual target concept. In other words, the
random chance of which conjunct has recently appeared nughtdeceptively like a concept change, and
some new committee members might join for a brief time wittypdihesis containing only one of the two

conjuncts. The initial concept is only a single conjunct dretefore both FLORA and CDC have any easier
time stabilizing on it beforé, .

The next experiment, slow drift, is interesting becausdidings us to see both algorithms attempting to

grasp a moving target for an extended period of time. We caarlgl see how they temporarily learn to fit
the current distribution.

3.2.3 Slow Concept Drift Az = 200)

Figures 6 and 7 show how CDC performs compared to the FLORAamn a drift that occurs between
1100 andiggo.

The advantage of CDC over the FLORA methods is clear throuighgure 6. Figure 7 shows that the
difference is significant throughout both the fall and sujosmt rise in accuracy from the changing
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Figure 7: Slow Drift Performance Significance. Blue line shows 95% confidence lower bound on CDC perfor-
mance on this task.

3.3 Discussion

Why is CDC relatively so much better than FLORA on slow driRRORA clearly has trouble recovering
after such a long drift, barely climbing to the 90% level nter end. FLORA may be handicapped by its
use of a window adjustment heuristic (WAH). The algorithrtemipts todetectconcept changes based on
the theory that sudden drops in accuracy or a sudden explos&ccepted descriptors indicates a changing
concept. The window size is then dropped by 20%. Clearly ithia rough estimate of the change in
duration of the current concept. Why should it necessamdy2b6%? Particularly during slow drift, 20%
drops in window size may be too radical. CDC, on the other hdnds not use a WAH and is not relying
on an ability to detect changes. Instead, CDC has many hgpeshooking at different groups of instances,
all competing to best capture the current target conceptis There is no need to detect a concept change
explicitly, and there is no need for a heuristic to adjustdaw size.

One way to conceptualize the advantage of CDC is to considgrthe more samples one has of an
actual distribution, the less variance will occur in the gédistribution. A hypothesis can be compared to
a single sample window, with a relatively roughly approxiethsize. However, because we have multiple
hypotheses, thaverageof their respective window sizes is less rough than that gfiagividual hypothesis.
Thus the average size of past instances observed by hypsetireshe committee is amplicit window
averaged over many sample window sizes and thus less likehetaffected by variance. In addition,
because each hypothesis is voting with a weight correspgridi its recent record, the average is weighted
according to accuracy, making it even more resistant tawas.

The conclusion is that CDC is making very fine and accuratesaaijents to its implicit window, while
the FLORA methods make crude 20% adjustments to its explinlow. The result is that 20% adjustments
are too severe for a slowly drifting distribution. CDC, ortbther hand, can adapt to any drift rate. FLORA
is probably by chance biased towards faster df¥t:(= 100) simply because of it's 20% window cutting
rate when it discovers drift. CDC is less biased. When dsifhstantaneous, the ability of the algorithms to
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adjust to drift becomes a moot point and the underlying liegralgorithms become more important.

The question remains why FLORA methods fail to fully recoaéier slow drift ends. FLORA keeps
a store of former concepts so that it can reuse expired ctmdefhey ever recur. | hypothesize that the
protracted drift contains periods of instances that lookegtively like a concept change. FLORA tries to
remember these deceptive “concepts” and recall them le@rever, the supposed concepts being learned
are actually just changing distributions of concegtandB. Thus it may mistakenly be identifying recurring
concepts after the drift is already over, because it leamaderous erroneous intermediate concepts.

In conclusion, FLORA's WAH is rough compared to the weightearaging of many hypotheses in
CDC. The conclusion confirms the hypothesis that CDC is dudeany rate of drift.

4 Related Work

We have seen how the FLORA methods (Widmer and Kubat 1996jpamsrto CDC. The intuition behind
FLORA is that an algorithm needs to be able to decide when aemtris changing. Once the change is
detected, it can then change the window of instances it isrelvgy to more accurately encompass the current
target concept. FLORA is based on keeping groupdesicriptorscorresponding to accepted descriptors,
negative descriptors, and possibly acceptable descsiptbhe descriptors are conjunctions, and a set of
descriptors can be considered a DNF formula. The currentlovinis adjusted when accuracy suddenly
drops, or when accepted descriptors balloons. When thigemes) window size is dropped by 20%. If on
the other hand the hypothesis is performing very well, thedew size is unchanged. If the hypothesis is
stable but not performing very well, window size is incrahbg 1 to incorporate more information.

The basic framework of FLORA as described above is actubyalgorithm for FLORA2. FLORAS
elaborates on this idea by keeping old stable concepts difoutater use. FLORA3 checks during concept
changes whether an old hypothesis matches the current wintlous, FLORA3 can avoid relearning the
same concept over again. FLORAA4 elaborates on FLORAS3 in tampt to be more resistant to noise.
In FLORAA4, accepted descriptors don’t necessarily have atcimevery positive instance in the window.
Instead, FLORA4 attempts to rate the reliability of desonip statistically.

As we have seen, FLORA's main weakness is its rigid windowstdjent heuristic. CDC instead has
an implicit window size based on the average of many hypetheallowing it to make more appropriate
fine adjustments.

| have claimed that CDC does not really have a window. It manmséhat CDC actually has many
windows, one for each hypothesis. However, | do not belidwse are windows in the usual sense of
concept drift algorithms because they are never indivigiadjusted. Each hypothesis simply learns from
every instance it has ever seen, never analyzing or adjutaninstances it observes. It is really through the
averaging of all these hypotheses that a kind of weightediovinimplicitly arises. The weighting comes
from the decay of voting weights for hypotheses that are iméwg out of date. Thus, CDC entirely avoids
both answering the question “is the concept changing?” awitat should | do about it if it is?” The
difference between CDC and window-based algorithms carmbeacterized as implicit versus explicit drift
tracking. Another characterization is variance reductiersus precise change detection.

There are additional windowing algorithms to FLORA. Klimkeerg and Thorsten (2000) introduced
a window-based drift tracker based on support vector mash{8VMs). The algorithm is able to have a
more precise WAH than FLORA because of statistical properif SVMs that can be theoretically shown
to indicate appropriate window adjustments. However,nkhhe specific reliance on SVMs is a weakness
for a concept drift algorithm, because it restricts the kiondlearning methods available for tracking drift. |
believe that a drift-tracking strategy should be indepand®m the concept-learner because what happens
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when a vastly superior concept learning algorithm appeatsvee can’'t use it because we have to use
SVMs? There is nothing in CDC that necessitates the use @idedrees. Thus, CDC can be used with

the latest and greatest concept learning algorithm fronfuhee, or domain-specific learning algorithms

biased towards particular kinds of concepts that SVMs nmigiibe suited for.

There are some concept drift methods that don't use windovesmmittees. Salganicoff (1993) used
weight decay on experiences based on how close the expelgtzsubsequenéxperiences. The idea of
using weigh decay is orthogonal to CDC, and could be incatearinto the CDC algorithm as a supplement
2. Lanquillon (1999) explored the problem of tracking dmfithout knowing the true labels of instances,
which were texts to be classified. Instead, Lanquillon usedlt and precision to produce a confidence mea-
sure that could be used to track drift. The question of unsugeed concept drift tracking is not addressed
by CDC.

In summary, varied methods exist. Among them, CDC has tharddge of being able to precisely align
to shifting distributions without being tied to a particulaarning algorithm.

5 Future Work

Several areas still need to be addressed. First, it wouldfbenative to test CDC (and perhaps competing
algorithms as well) in a real-world domain like product gnefnce tracking or the stock market. Because the
stock market involves slow drift, CDC might be particulavisll suited for classifying stocks as promising
or not.

More experiments need to be performed to understand thelwatihn of committee size, age of matu-
rity, and voting weights to performance. It is possible thating weights could be exponentially weighted
instead of linearly weighted. Also, does the algorithm lmeeomore and more powerful the larger the
committee? Where is the point of diminishing returns?

Currently, examples are not weighted in the system, whialidcbe a weakness. Perhaps examples
should be weighted for each committee member accordingdmties it has gotten wrong in the past,
somewhat like in boosting. Or an example-weighting scheaseth on similarity could be implemented as
by Salganicoff (1993).

CDC should be tested with different learning methods. Baldrly in the case of instantaneous concept
shifts, decision trees might not be the best method. We wwealt a learning method that can learn approx-
imations from the least number of examples possible. Howéde think decision trees are useful because
of their potential for incremental learning.

Finally, | have not checked to see how robust CDC is with ressfmenoise. | expect CDC would do very
well with noise because of its reliance on averaging, whectds to smooth out uneven distributions. Noisy
experiments should be performed and compared with FLORALwwas designed to be resistant to noise.

6 Conclusion

CDC is a powerful algorithm for tracking concept drift andfoems significantly better than a leading algo-
rithm on problems of protracted drift. The use of a commitibews CDC to make fine implicit adjustments
to the group of instances from which the committee basegégigtions. The results show that an explicit

2] used myboosted-ID3 code in this project so that weighted exammetdceasily be added to the algorithm in the future
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window may not be the best way to track concepts drift desgatmtuitive appeal. In a larger context, the
research confirms once again the utility of committees imieg, now in the domain of concept drift.
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