
E�cient Frequency-Domain Modeling and CircuitSimulation of Transmission LinesL. Miguel Silveira Ibrahim M. Elfadel Jacob K. WhiteResearch Laboratory of Electronics and theDepartment of Electrical Engineering and Computer Science,Massachusetts Institute of TechnologyCambridge, MA 02139.Moni Chilukuri Kenneth S. KundertCadence Design Systems, Inc.555 River Oaks Parkway, MS 3B1San Jose, CA 95134AbstractIn this paper we describe an algorithm for e�cient SPICE-level simulation of trans-mission lines with arbitrary scattering parameter descriptions. That is, the line can berepresented in the form of a frequency-domain model or a table of measured frequency-domain data. Our approach initially uses a forced stable decade-by-decade `2 mini-mization approach to construct a sum of rational functions approximation, but theapproximation has dozens of poles and zeros. This unnecessarily high-order modelis then reduced using a guaranteed stable model order reduction scheme based onbalanced realizations. Once the reduced-order model is derived, it can be combinedwith the transmission line's inherent delay to generate an impulse response. Finally,following what is now a standard approach, the impulse response can be e�cientlyincorporated in a circuit simulator using recursive convolution. An example of a trans-mission line with skin-e�ect is examined to both demonstrate the e�ectiveness of theapproach and to show its generality.



IEEE Trans. on Comp., Pack. and Manuf. Tech. { Part B, Vol. 17, No. 11, pp. 505{513, Nov. 19941 IntroductionIn the design of communication, high-speed digital, and microwave electronic systems,the behavior of transmission lines formed from packaging and interconnect can have animportant impact on system performance. Stripline and microstrip printed circuit boardtraces, interchip connections on multi-chip modules, and coaxial cable connections all havenonidealities in their frequency response, many of which cannot be represented using afrequency-independent rlcg model. Since these nonidealities may or may not negativelyimpact signal integrity, depending on the driving and receiving circuitry, veri�cation ofsystem performance must involve circuit-level simulation that includes a transmission linemodel which faithfully represents the frequency-domain behavior.The most straight-forward approach to including general frequency-domain transmissionline models in a circuit simulator is to calculate the associated impulse response using aninverse fast Fourier transform [1]. Then, the response of the line at any given time canbe determined by convolving the impulse response with an excitation waveform. Such anapproach is too computationally ine�cient for use in general circuit simulation, as it requiresthat at every simulator timestep, the impulse response be convolved with the entire computedexcitation waveform.An alternative approach is to approximate the frequency-domain representation witha rational function, in which case the associated convolution can be accelerated using arecursive algorithm [2, 3]. Very e�cient circuit simulation programs which handle rlcgtransmission lines have been developed using such an approach, where the rational functionapproximation was derived using Pad�e or moment-matching methods [2, 4, 5, 6]. In thispaper we describe an algorithm for e�cient spice-level simulation of transmission lines witharbitrary frequency-domain scattering parameter descriptions. The method is not as e�cientas those intended speci�cally for rlcg transmission lines, but it is general enough to allowthe use of any frequency-domain scattering parameter model or a table of measured dataand it can be shown to have some important stability properties.Our approach is a combination of several reasonably well-known techniques. First, adecade-by-decade `2 minimization approach is used to construct a collection of forced stablerational functions whose sum, after a �nal global `2 minimization, approximates the originalfrequency-domain data. This algorithm is described in Section 3, and it is shown that theresulting approximation, though extremely accurate, can have dozens of poles and zeros.Therefore, as described in Section 4, a second step is performed. The unnecessarily high-order model is reduced using a guaranteed stable model order reduction scheme based onbalanced realizations [7, 8]. Once the reduced-order model is derived, it can be combined2



IEEE Trans. on Comp., Pack. and Manuf. Tech. { Part B, Vol. 17, No. 11, pp. 505{513, Nov. 1994with the transmission line's inherent delay to generate an impulse response. Then, followingwhat is now a standard approach, the impulse response is e�ciently incorporated into thecircuit simulator spice using recursive convolution. In Section 5, we present results ofthe time-domain simulation of circuits containing a transmission line with skin-e�ect. Theexamples demonstrates both the e�ciency of the approach and its generality, as there is nofrequency-independent rlcg representation for transmission lines with skin e�ects.2 BackgroundIn general, a transmission line can be described in the frequency domain using scatteringparameters, in which case24 Yo(j!)Va(j!) + Ia(j!)Yo(j!)Vb(j!) + I b(j!) 35 = 24 0 S12(j!)S12(j!) 0 3524 Yo(j!)Va(j!)� Ia(j!)Yo(j!)Vb(j!)� Ib(j!) 35 (1)where Va(j!); Ia(j!) and Vb(j!); Ib(j!) are the voltages and currents at terminals a and bof the transmission line, Yo(j!) is its characteristic admittance, and S12(j!) is the relationbetween the incident and re
ected waves on opposite ends of the transmission line. Note, thenonstandard choice of Yo(j!) instead of Zo(j!) = 1=Yo(j!) is that for a line with no shuntloss, Zo(0) =1, which may cause numerical di�culties in many situations. Any ideal delayresulting from propagation along the transmission line and which re
ects itself on S12(j!) or(YoS12)(j!) is usually handled separately and cancelled from the above frequency dependentmeasurements or model before they are incorporated into the simulator. This is in generaleasily accomplished by multiplying by the associated exponentials [2, 5].To incorporate such a general transmission line representation in a circuit simulator, it isnecessary to compute the inverse Fourier transforms of S12(j!), Yo(j!), and (YoS12)(j!)so as to determine the impulse responses s12(t); yo(t), and (yos12)(t). Then (1) becomes(yo ? va) (t) + ia(t) = ((yos12) ? vb) (t� td)� (s12 ? ib) (t� td)(yo ? vb) (t) + ib(t) = ((yos12) ? va) (t� td)� (s12 ? ia) (t� td) (2)where \?" is used to denote convolution and td is the propagation delay which was extractedfrom the frequency dependent model and is now explicitly introduced into the time-domainequations.As mentioned in the introduction, if s12(t); yo(t) and (yos12)(t) are derived by applying theinverse FFT to S12(j!), Yo(j!), and (YoS12)(j!) respectively, then the convolutions willbe expensive to compute. If, however, S12(j!), Yo(j!), and (YoS12)(j!) can be represented3



IEEE Trans. on Comp., Pack. and Manuf. Tech. { Part B, Vol. 17, No. 11, pp. 505{513, Nov. 1994using rational function approximations, then the convolution can be performed much faster,and deriving this rational functions is the subject of the subsequent sections.3 Section-by-Section ApproximationsThe most commonly used approaches to �tting rational functions to frequency domaindata are the Pad�e or moment-matching methods. These methods compute the coe�cientsof a rational function by matching that approximation to the value of the system functionand its derivatives around s = 0.In this section we describe a sectioned approach to the problem of approximating thetransfer function of a system by a forced stable rational function. With this approach, wereplace the problem of directly computing a low order rational function that is an accu-rate approximation over a wide frequency range with that of repeatedly computing localapproximations over narrower ranges. These local approximations can then be summed tocreate an accurate approximation over the wide frequency range. This approach avoids, orat least minimizes, the ill-conditioning of the global approximation problem. This approachis similar in spirit to a generalization of the moment methods which is based upon multipleexpansions around other values of s to gather more global information [9].We will start in Section 3.1 by describing a standard constrained `2 minimization ap-proach. The shortcomings of such an approach will be made clear, and in order to avoidthese di�culties we describe, in Section 3.2, a section-by-section algorithm which is based ona local constrained `2 minimization procedure. Finally, in Section 3.3 we will present someresults that show that this section-by-section algorithm can generate rational functions whichmatch data very accurately.3.1 Computing Global Approximants by Weighted `2 Minimiza-tionOne approach to generating a rational function which best matches a frequency responseF (s) speci�ed at a set of frequencies fs1; s2; � � � ; smg, is to set up and solve, as accurately aspossible, the following set of equations:H(sj) = F (sj) j = 1; 2; � � � ;m (3)where H(s) = U (s)V (s) = upsp + � � � + u1s+ u0sq + � � � + v1s+ v0 (4)4



IEEE Trans. on Comp., Pack. and Manuf. Tech. { Part B, Vol. 17, No. 11, pp. 505{513, Nov. 1994is the low-order approximation.Typically, the system in (3) will be over-determined as the number of frequency pointswill exceed the number of unknown coe�cients in the approximation (4), that ism > p+q+1.In this case there will generally be no exact solution, but the approximation error can beminimized in some appropriate norm. If the 2-norm of the error is minimized, then thecoe�cients of the polynomials U(s) and V (s) are chosen such thatqjH(s1)� F (s1)j2 + � � �+ jH(sm)� F (sm)j2 = kH(s)� F (s)k2 = 




U (s)V (s) � F (s)




2 (5)is minimized. However, this is a nonlinear optimization problem whose solution is di�cultto compute. Instead, the problem can be made linear by weighting the 2-norm by V (s).Then, the minimization problem becomesminU ;V kU (s)� V (s)F (s)k2 (6)Note that the solution to (6) is not in general the same as the solution of (5), but is insteada weighted `2 minimization.The above `2 minimizing solution of the over-determined system minimizes the globalerror in a weighted `2 sense instead of being very accurate at s = 0 or at any particularexpansion point. However, to guarantee that the steady-state will be accurately computedwhen the rational function is used as a model in a circuit simulator, it is essential to constrainthe minimization so that U (0) = V (0)F (0). Similar constraints can be imposed at highfrequencies if necessary. The resulting constrained minimization can then be summarized as8>>>>>>><>>>>>>>: U (0)V (0) = F (0)minU ;V kU(s)� V (s)F (s)k2lims!1U (s)V (s) = lims!1F (s): (7)The global minimization in (7) has two major drawbacks, namely the large dynamicrange of the numbers involved and the over-emphasizing of high-frequency errors. Thedynamic range of the number in the equation presents a di�culty especially in the case whenthe natural frequencies of the problem span a wide range, as is usual in transmission lineproblems. In that situation, (7) can easily lead to extremely ill-conditioned matrix problems.To see this, consider the structure of the matrix one obtains from the minimization portion5



IEEE Trans. on Comp., Pack. and Manuf. Tech. { Part B, Vol. 17, No. 11, pp. 505{513, Nov. 1994of (7), which can be written as:26666666664 sp1 � � � s1 1 �F1sq�11 � � � �F1s1 �F1� � � � � � � � � � � � � � � � � � � � �spj � � � sj 1 �Fjsq�1j � � � �Fjsj �Fj� � � � � � � � � � � � � � � � � � � � �spm � � � sm 1 �Fmsq�1m � � � �Fmsm �Fm 37777777775266666666666666666664 up...u1u0vq�1...v1v0
377777777777777777775 = 266666666664 F1sq1...Fjsqj...Fmsqm 377777777775 (8)Each row of this matrix corresponds to computingU (sj)�V (sj)F (sj) at some frequencyvalue sj . The matrix is therefore a transposed Vandermonde-like matrix in the sense thatthe entries along each row are simple powers of the corresponding frequency value. If thespan of frequencies being considered is large, then the magnitude of the entries on some ofthose rows will be much larger than those in rows corresponding to low frequency values.Even if the conditioning of the matrix in (8) is tolerable, the resulting solution will beskewed to minimizing high-frequency errors. To understand this problem, consider the casep = q � 1, and recall that an `2 minimization attempts to minimize the sums of the squaresof the error at each point, that is:e = mXi=1qe21 + e22 + � � � + e2m; (9)where ej = kU (s)� V (s)F (s)k2 = (10)= ���uq�1sq�1j + � � �+ u1sj + u0 � sqjFj � � � � + v1sjFj � v0Fj��� == ����sqjFj + (uq�1 � vq�1Fj) sq�1j + � � �+ (u1 � v1Fj) sj + (u0 � v0Fj)���is the error for the jth equation, corresponding to the frequency value sj.From Eqn. (11) one can immediately see that the sensitivity of the error for the jthequation, ej, with respect to any coe�cient is a polynomial in sj. Hence, the contribution ofan error at sj to the global cost function is a polynomial in sj. This implies that for a highfrequency value sj, small changes in the values of the coe�cients translate into large errorsand ej will be large. Therefore, minimizing the total error requires that the error componentsej corresponding to higher frequencies be carefully minimized, while those corresponding tolower frequencies, which have less impact on the global error, will not deserve so muchattention. Though it is possible to introduce a weighting function that minimizes the high-frequency predominance e�ect, the precise weighting is di�cult to determine a-priori.6



IEEE Trans. on Comp., Pack. and Manuf. Tech. { Part B, Vol. 17, No. 11, pp. 505{513, Nov. 19943.2 Computing Section-by-Section ApproximantsIn order to avoid the numerical ill-conditioning and the uneven frequency weighting men-tioned above, it is desirable to limit the frequency range for the `2 minimization. Computinga low-order local approximation has the added advantage that the orders of the polynomi-als in the rational function approximation may be chosen small without compromising theaccuracy of the approximation for a small frequency range. Moreover, if unstable poles areobtained from the local minimization procedure it is likely that using some simple heuristic,such as simply discarding the unstable poles and associated residues, will not have a pro-found e�ect on the accuracy over the small range of frequencies involved. In other words,it is possible that a very low-order approximation is accurate enough to capture the localbehavior of F (s) without instability, numerical or otherwise, playing a signi�cant role.The idea of computing local approximations leads to a sectioning algorithm in whichonly accurate local approximations are computed. The remaining problem is how to in-corporate all the local information resulting from the various approximations into a globalapproximant.Our proposed solution is to perform the local approximations in a repeated fashion usinga constrained weighted local `2 minimization procedure. Initially, the frequency range ofinterest, 
 = [!min; !max], is partitioned into small sections, 
1;
2; � � � ;
M , such that
 = SMi=1
i, where each 
i = [!i1; !imi ] is a decade or two long. Then, starting withthe lowest frequency range 
1, with frequency values F (!11);F (!12); � � � ;F (!1m1), a con-strained `2 minimization is performed and a local approximant is computed. Once the �rstlocal approximation, L1(s), is obtained in the form of a collection of poles and their cor-responding residues, it is examined and the stable poles are retained while the unstableones are discarded, leaving us with a forced stable approximation, H1(s). Since the �tat the lower frequencies has captured the low frequency dynamics, F (s) �H1(s) will con-tain primarily the higher-frequency error information and is then approximated. To thisend, frequency values in the second section 
2 are approximated. The value of H1(s)at every point !21; !22; � � � ; !2m2 is computed, subtracted from the corresponding valuesF (!21);F (!22); � � � ;F (!2m2) and the resulting data is again �t using a constrained weighted`2 minimization. This results in a new local approximant L2(s), from which a stable ap-proximation,H2(s) can be obtained. H2(s) is then a new approximant to F (s)�H1(s) on
1 [
2, and therefore F (s) � H1(s) +H2(s) on that frequency interval. The procedureis repeated until data in the last frequency section, 
M , is approximated. A simpli�ed formof this sectioning algorithm is shown in pseudo-code form in Algorithm 3.1, and diagram-matically in Figure 1. 7
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Algorithm 3.1 (Section-by-Section Approximations)sectioned(!min; !max;F )f partition the frequency range into sections 
1; � � � ;
M withassociated frequencies f!i1; � � � ; !imig, i = 1; � � � ;M, and functionvalues fF (!i1); � � � ;F (!imi)gfor (k = 1; k <= M; k ++) fif (k > 1) fsubtract previous approximants from exact data:F k(skj) = F (skj)� k�1Xl=1H l(skj) = F (skj)�H(skj),j = 1; � � � ;mk; skj = j!kjg else fF 1(s1;j) = F (s1;j)gcompute local approximant at the k-th section, Lk(s) usingthe corrected data F k(si;j)examine the approximation and keep the stable poles andresidues of Lk(s) in Hk(s)add the new stable approximation to the current globalapproximant H(s) =H(s) +Hk(s)gwhile keeping the locally computed dynamics, perform a finalglobal constrained `2 minimization over the whole frequencyrange to recompute the residuesg 8
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Figure 1: Applying the sectioning algorithm to measured or tabulated frequency data. Theexample illustrates the sequence of operations that are performed to compute a local ap-proximation, add it to the current global approximation and recompute the current errorfunction. 9



IEEE Trans. on Comp., Pack. and Manuf. Tech. { Part B, Vol. 17, No. 11, pp. 505{513, Nov. 1994When the procedure terminates, the result is a forced stable global approximation whichconsists of all the stable poles and their corresponding residues obtained from the sequenceof local minimizations. We should point out that the sectioning algorithm is aimed atcomputing approximations which match successively higher frequency ranges. However,while subtracting the already computed approximations from the exact data, some erroneousdynamics may be introduced at low frequency. To eliminate the associated errors, a �nalconstrained global `2 minimization is performed in which the computed poles are used torecalculate their residues in order to match the exact data points. This �nal step doesnot su�er from the numerical problems mentioned in Section 3.1 regarding the global `2minimization. In fact, the matrix one obtains in this case is better behaved because its (i; j)entries are of the form (si � pj)�1.The algorithm just described reliably obtains a stable collection of pole-residue pairswhich form an accurate approximation to F (s). Unfortunately, sinceH(s) is represented asa sum of local approximations, the approach introduces redundancies resulting in many morepoles than necessary. With such a large number of terms, even fast recursive convolution mayprove to be ine�cient. However it is possible to further reduce the order of the approximationusing robust model order reduction techniques, which are described in section 4.3.3 Section-by-Section Approximant: numerical exampleIn order to test the accuracy of the approximant obtained with our section by sectionalgorithm, consider the example of a transmission line where skin e�ects are signi�cant, asshown in Figures 2 and 3. The approximations to S12(j!) and Yo(j!), after removing theideal delay, have respectively 21 and 24 poles. In Figures 2 and 3, we compare the magnitudeplots of the transfer functions of, respectively, S12(j!) and Yo(j!) with the transmissionline data points.As one can see, the match is almost perfect, and the error is smaller than 0.5%. Moreoverthe low-frequency error is nearly zero.4 Model-Order Reduction by Truncated Balanced Re-alizationThe frequency-domain data �tting method described in the previous section resulted ina stable transfer function H(s) with a large number of poles. Incorporating such a model(or equivalently its impulse response) directly in a circuit simulator will be computationallyexpensive. Instead, the model is reduced using an algorithm with three main steps. First,10
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Figure 2: Accuracy of the section-by-section �t for the magnitude of the S12 transfer functionwith respect to the transmission line data points. The two curves are almost indistinguish-able.
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Figure 3: Accuracy of the section-by-section �t for the magnitude of the Yo transfer functionwith respect to the transmission line data points. The two curves are almost indistinguish-able.
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IEEE Trans. on Comp., Pack. and Manuf. Tech. { Part B, Vol. 17, No. 11, pp. 505{513, Nov. 1994the model is converted to a well-conditioned and robust state-space realization. Second, astate-space transformation is used to balance the state-space realization. Third, the bal-anced realization is truncated. Using this type of balanced realization approach has a keyadvantage: the resulting reduced Hk(s) is guaranteed stable if H(s) is stable.4.1 State-Space RealizationTo reduce the order of the transmission line model derived in the previous section, �rstwe consider its state-space representation_x = Ax+Bu; x 2 Rn; u 2 R; A 2 Rn�n; B 2 Rny = Cx; y 2 R;C 2 Rn (11)such that H(s) = C(sI �A)�1B.ConvertingH(s) in pole-residue form to state-space form is a standard problem [10], andit is tempting to use one of the common techniques (canonical controllability realization,canonical observability realization, etc.) to �nd the matrices A;B, and C: However, theseapproaches can result in a system matrix A which is poorly scaled and therefore unsuitablefor computations.Instead, when all the poles are simple and real, the matrix A can be chosen equalto a diagonal matrix having the real poles as diagonal coe�cients [10]. The control andobservation matrices B and C can then be chosen based on the residues of the poles. Moreexplicitly, given H(s) = nXk=1 rks� pk (12)where all the poles are negative reals and all the residues are real,A = diag(p1; : : : ; pn)B = (qjr1j; : : : ;qjrnj)TC = (sign(r1)qjr1j; : : : ; sign(rn)qjrnj)When H(s) has pairs of complex conjugate poles, a block diagonal matrix A can beconstructed where the blocks are all 2� 2 and correspond to pairing the complex conjugatepoles in state-space realizations of order 2. It is also possible to �nd suitable state-spacerealizations when some of the poles are repeated. For transmission line examples there areonly real, simple poles, and therefore the purely diagonal realization can be used.13



IEEE Trans. on Comp., Pack. and Manuf. Tech. { Part B, Vol. 17, No. 11, pp. 505{513, Nov. 19944.2 Balanced RealizationsOnce the state-space representation is adopted, it has to be internally balanced [7, 11].That is, givenH(s) = C(sI �A)�1B, the choice of the triplet [A;B;C] is not unique. In-deed, a linear coordinate transformation ~x = Tx modi�es the triplet [A;B;C] to [ ~A; ~B; ~C]without modifying H(s).For the speci�c purpose of extracting stable reduced-order models from the state-spacerepresentation, it is desirable that the new triplet [ ~A; ~B; ~C] be in a form that allows such anextraction using some simple operation on the new state ~x = Tx. The easiest conceivablesuch operation would be simple state truncation. Moore has shown [7] that such a transfor-mation exists and he called the corresponding triplet [ ~A; ~B; ~C] a balanced realization of thetransfer function H(s). The word \balanced" refers to the fact that the controllability andobservability gramians of the triplet [ ~A; ~B; ~C] are both equal to the same diagonal matrix.The balancing transformation T can be computed explicitly for any triplet [A;B;C], and inparticular for the diagonal realization that we have proposed in the previous paragraph. Thenumerical cost of such a computation is that of solving two matrix Lyapunov equations toobtain the controllability and observability gramians and one symmetric eigenvalue problemto diagonalize their product.4.3 Truncated RealizationThe triplet [ ~A; ~B; ~C] obtained by applying the balancing transformation T to the triplet[A;B;C] has the property that simple reordering and truncation of the state vector ~x withthe corresponding reordering of the systemmatrices necessarily produce stable reduced-ordermodels at any desirable order. Let k be this order, and let [ ~Ak; ~Bk; ~Ck] be the reduced-ordermodel with a transfer function Hk(s). It can then be shown [7, 8] that the error transferfunction Ek(s) =H(s)�Hk(s) has an L1 norm that consistently decreases to zero as k isincreased to n, the order of the original model. This L1 norm corresponds to the peak of themagnitude Bode plot of Ek(j!). Note that Pad�e approximation methods [4] do not enjoysuch an error reduction property, and there is in fact ample experimental evidence that thePad�e methods produce unstable reduced-order models.Truncating the balanced-realization has the same 
avor but is radically di�erent froma spectral truncation, i.e., one that is based on neglecting the \fast" modes. Indeed, thelatter method looks only at the state matrixA without taking into account how controllableor observable the neglected modes are. This is exactly what is achieved by truncating thebalanced realization where the controllability and observability properties of the modes aretaken into account through the gramian matrices.14



IEEE Trans. on Comp., Pack. and Manuf. Tech. { Part B, Vol. 17, No. 11, pp. 505{513, Nov. 19944.4 Time-Domain ConstraintsJudging the validity of the reduced-order model depends not only on meeting the L1error criterion mentioned above but also on meeting the goals of the circuit simulation taskfor which this reduced model is used. Typically, in circuit simulations, it is essential that thereduced model match the original transfer function at s = 0 so that the steady-state behaviorof both the reduced and full models are identical. Moreover, when the objective is to have agood match between the time-domain responses of the two models, it is essential that theirtransfer functions match at s =1 so that their initial behavior is the same [12]. To ensurethe recovery of the steady-state behavior a �nal least-squares/collocation technique is usedto match the reduced-order model with the full model at zero frequency [13].4.5 Truncated Balanced Realization: numerical exampleIn order to test the accuracy of the order reduction algorithm, the method was appliedto the transfer function obtained using the section-by-section procedure (see Section 3.3). Itwas found that reduced models with seven poles each were su�cient to approximate the fulltransfer functions of both S12(j!) and Yo(j!). In Figures 4 and 5, the magnitude plots ofthe reduced transfer functions of S12(j!) and Yo(j!) are compared with the transmissionline data points. As is clear from the �gures, the match is very accurate and the error iswithin 1%.However in contrast to the section-by-section approximation the low-frequency error ismore noticeable. In Figures 6 and 7, the magnitude plots of the frequency dependent �ttingerrors from the section-by-section approximation and the reduced-order model are shown forS12(j!) and Yo(j!), respectively.5 Experimental ResultsIn this Section, we present results from an implementation of our algorithm for e�cienttime-domain simulation of transmission lines with arbitrary scattering parameter descrip-tions. The implementation is based on a modi�ed version of spice3 [14], and uses a combi-nation of sectioning, reduced-order modeling, and fast recursive convolution. We �rst showthat the reduced-order model produces nearly the same time-domain waveforms as the morecomplete sectioning based model, but with many fewer poles. For completeness we will alsoapply a more traditional FFT-based method to this problem and compare the results interms of accuracy and computational cost. Second, we show an example with realistic tran-sistor drivers and receivers, to demonstrate the ability of the method to simulate complete15
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Figure 4: Accuracy of the reduced-order model �t for the magnitude of the S12 transferfunction with respect to the transmission line data points.
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Figure 5: Accuracy of the reduced-order model �t for the magnitude of the Yo transferfunction with respect to the transmission line data points.
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Figure 6: Magnitude plots of the errors with respect to the transmission line data pointsof the section-by-section approximant and the reduced-order transfer function for the S12parameter.
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Figure 7: Magnitude plots of the errors with respect to the transmission line data points ofthe section-by-section approximant and the reduced-order transfer function for Yo.
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IEEE Trans. on Comp., Pack. and Manuf. Tech. { Part B, Vol. 17, No. 11, pp. 505{513, Nov. 1994circuit descriptions.In Figure 8 we present the time-domain results of applying a 5 volt step to a 50
 termi-nated transmission line with signi�cant skin-e�ect. The pulse has a 1ns rise time, is appliedat t = 50ns and the delay of the line is 250ns. In the �gure, we compare the time response ofthe 7-th order reduced-order model with the time response obtained using the full sectioningbased approximant, which has more than twenty poles. The fact that the two responsesare indistinguishable in the �gure shows that an excellent match has been obtained. In thesame �gure we show the time response obtained using a full convolution method applied toan impulse response obtained via inverse fast Fourier transform (iFFT) on 2048 frequencydata points. As can be seen from the �gure, the iFFT-derived response is equally accurateas expected since a fairly large number of frequency points were used. In Table 1 we showthe CPU times required for obtaining the three time responses shown. The total numberof timesteps required for obtaining the solution in the interval shown was 1004. From theresults in the table, we can see that simulation of the reduced-order model is most e�cient,as expected. Since the cost of recursive convolution is roughly proportional to the numberof poles in the reduced-order model, the 7-th order model is over one and a half times moree�cient than the sectioning approach. Both of these methods are over an order of mag-nitude faster than the full convolution method which shows that the recursive convolutionprocedure is extremely e�cient. For a simulation on a longer interval, the di�erence in CPUtimes would tend to increase since, as we saw, the cost of a recursive convolution method islinear in the number of timesteps while the cost of a full convolution method is quadratic onthe number of timesteps. Algorithm CPU time (s)Full convolution 133Section-by-section 13Reduced-order model 8Table 1: CPU time comparisons for full convolution versus recursive convolution methods.Times are in seconds on a SUN IPX.In Figure 10 we present the time-domain results obtained from the circuit in Figure 9,using the transmission line from the previous example. The driver and the load are bothCMOS inverters, where the transistors are described using spice3's default level 2 model withW=L = 750 for the p-type pullup devices and W=L = 400 for the n-type pull-down devices.The simulation results show clearly that the improper line termination causes re
ections totransmit back and forth on the line. 20
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Figure 8: Time response obtained from applying a 5V pulse with a 1ns rise time at t = 50nsto a resistively terminated transmission line. The �gure shows the response of a line modeledwith a 7 pole reduced-order model and that of a line modeled with the approximationresulting from our sectioning algorithm, which has more than 20 poles. The �gure alsoshows the response of the line computed using full convolution with an impulse responseobtained via inverse fast Fourier transform. For this example 2048 frequency points wereused for the iFFT algorithm. The three waveforms are indistinguishable. The delay of thetransmission line is 250ns.
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Figure 9: CMOS driver and load connected by a transmission line with skin-e�ect.21
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Figure 10: Time response obtained from a nonlinear circuit with a transmission line connect-ing driver and load. The transmission line is modeled with a 7 pole reduced-order model.
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IEEE Trans. on Comp., Pack. and Manuf. Tech. { Part B, Vol. 17, No. 11, pp. 505{513, Nov. 19946 ConclusionsIn this paper, we have proposed a robust algorithm for deriving stable, low-order, andaccurate models for transmission lines based on realistic scattering data.The main highlights of our algorithm are as follows: First, a stable, high-order transferfunction is �tted to the scattering data using a two-step algorithm:i) The frequency range is sectioned, and a section-by-section constrained `2, forced stablerational function approximation is �tted to the data in each frequency section.ii) The section transfer functions are combined using a global `2 criterion to obtain astable, accurate, high order model valid for the whole frequency range.Second, a guaranteed stable, low-order model is obtained from the high-order model usingthe method of truncated balanced realizations.Third, the DC gain of the low-order model is matched to that of the full model using aconstrained `2 minimization scheme.We have shown that our section by section approximation is very accurate and that the�nal stable low-order approximation derived using the truncated balanced realization hasexcellent match with the frequency response of the full model.The resulting rational transfer function was incorporated in a circuit simulator, and thenumerical experiments using a transmission line with skin-e�ects indicates that the time-domain responses match those obtained using the more computationally expensive convolu-tion procedures currently in use for transmission line simulations. Moreover a reduction byover an order of magnitude in the computation time was observed.AcknowledgmentsThis work was supported by the Advanced Research Projects Agency contract N00014-91-J-1698, the National Science Foundation contract MIP-8858764 A02, the NSF and ARPAcontract 9117724-MIP, the Portuguese \Junta Nacional de Investiga�c~ao Cient���ca e Tec-nol�ogica" under project \Ciência" and grants from I.B.M. and Digital Equipment Corpora-tion.References[1] J. E. Schutt-Aine and R. Mittra. Scattering Parameter Transient Analysis of Trans-missions Lines loaded with Nonlinear Terminations. IEEE Transactions on MicrowaveTheory and Techniques, MTT-36:529{536, 1988.23
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