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Abstract

In this paper we describe an algorithm for efficient SPICE-level simulation of trans-
mission lines with arbitrary scattering parameter descriptions. That is, the line can be
represented in the form of a frequency-domain model or a table of measured frequency-
domain data. Qur approach initially uses a forced stable decade-by-decade £, mini-
mization approach to construct a sum of rational functions approximation, but the
approximation has dozens of poles and zeros. This unnecessarily high-order model
is then reduced using a guaranteed stable model order reduction scheme based on
balanced realizations. Once the reduced-order model is derived, it can be combined
with the transmission line’s inherent delay to generate an impulse response. Finally,
following what is now a standard approach, the impulse response can be efficiently
incorporated in a circuit simulator using recursive convolution. An example of a trans-
mission line with skin-effect is examined to both demonstrate the effectiveness of the

approach and to show its generality.
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1 Introduction

In the design of communication, high-speed digital, and microwave electronic systems,
the behavior of transmission lines formed from packaging and interconnect can have an
important impact on system performance. Stripline and microstrip printed circuit board
traces, interchip connections on multi-chip modules, and coaxial cable connections all have
nonidealities in their frequency response, many of which cannot be represented using a
frequency-independent RLCG model. Since these nonidealities may or may not negatively
impact signal integrity, depending on the driving and receiving circuitry, verification of
system performance must involve circuit-level simulation that includes a transmission line
model which faithfully represents the frequency-domain behavior.

The most straight-forward approach to including general frequency-domain transmission
line models in a circuit simulator is to calculate the associated impulse response using an
inverse fast Fourier transform [1]. Then, the response of the line at any given time can
be determined by convolving the impulse response with an excitation waveform. Such an
approach is too computationally inefficient for use in general circuit simulation, as it requires
that at every simulator timestep, the impulse response be convolved with the entire computed
excitation waveform.

An alternative approach is to approximate the frequency-domain representation with
a rational function, in which case the associated convolution can be accelerated using a
recursive algorithm [2, 3]. Very efficient circuit simulation programs which handle RLCG
transmission lines have been developed using such an approach, where the rational function
approximation was derived using Padé or moment-matching methods [2, 4, 5, 6]. In this
paper we describe an algorithm for efficient SPICE-level simulation of transmission lines with
arbitrary frequency-domain scattering parameter descriptions. The method is not as efficient
as those intended specifically for RLCG transmission lines, but it is general enough to allow
the use of any frequency-domain scattering parameter model or a table of measured data
and it can be shown to have some important stability properties.

Our approach is a combination of several reasonably well-known techniques. First, a
decade-by-decade £, minimization approach is used to construct a collection of forced stable
rational functions whose sum, after a final global £, minimization, approximates the original
frequency-domain data. This algorithm is described in Section 3, and it is shown that the
resulting approximation, though extremely accurate, can have dozens of poles and zeros.
Therefore, as described in Section 4, a second step is performed. The unnecessarily high-
order model is reduced using a guaranteed stable model order reduction scheme based on

balanced realizations [7, 8]. Once the reduced-order model is derived, it can be combined
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with the transmission line’s inherent delay to generate an impulse response. Then, following
what is now a standard approach, the impulse response is efficiently incorporated into the
circuit simulator SPICE using recursive convolution. In Section 5, we present results of
the time-domain simulation of circuits containing a transmission line with skin-effect. The
examples demonstrates both the efficiency of the approach and its generality, as there is no

frequency-independent RLCG representation for transmission lines with skin effects.

2 Background

In general, a transmission line can be described in the frequency domain using scattering

parameters, in which case

- (1)

Y, (jw)Va(jw) + La(jw) ]
Y, (jw)Vi(jw) + To(jw)

0 S12(jw) ] [ Y, (jw)Va(jw) — L(jw)
S12(jw) 0 Yo(jw)Vi,(jw) - Ib(jw)

where V,(jw), I,(jw) and Vi(jw), Is(jw) are the voltages and currents at terminals a and b
of the transmission line, Y,(jw) is its characteristic admittance, and S12(jw) is the relation
between the incident and reflected waves on opposite ends of the transmission line. Note, the
nonstandard choice of Y,(jw) instead of Z,(jw) = 1/Y,(jw) is that for a line with no shunt
loss, Z,(0) = oo, which may cause numerical difficulties in many situations. Any ideal delay
resulting from propagation along the transmission line and which reflects itself on S13(jw) or
(Y,S12)(Jw) is usually handled separately and cancelled from the above frequency dependent
measurements or model before they are incorporated into the simulator. This is in general
easily accomplished by multiplying by the associated exponentials [2, 5].

To incorporate such a general transmission line representation in a circuit simulator, it is
necessary to compute the inverse Fourier transforms of S12(jw), Yo(jw), and (Y,S12)(jw)

so as to determine the impulse responses s12(%),yo(t), and (y,512)(¢). Then (1) becomes

(o % 0a)(8) Falt) = ((Wos13) %) (£ — ta) — (12 %8) (¢ — £a) "
ok 03) (1) + (1) = ((Uos12) % ) (t — L) — (510 % 50) (¢ — 1)
where “x” is used to denote convolution and %4 is the propagation delay which was extracted
from the frequency dependent model and is now explicitly introduced into the time-domain
equations.

As mentioned in the introduction, if s12(¢), ¥o(¢) and (y,s12)(¢) are derived by applying the
inverse FFT to S13(jw), Y,(jw), and (Y,S12)(jw) respectively, then the convolutions will

be expensive to compute. If, however, S15(jw), Y,(Jw), and (¥,512)(Jw) can be represented

3
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using rational function approximations, then the convolution can be performed much faster,

and deriving this rational functions is the subject of the subsequent sections.

3 Section-by-Section Approximations

The most commonly used approaches to fitting rational functions to frequency domain
data are the Padé or moment-matching methods. These methods compute the coefficients
of a rational function by matching that approximation to the value of the system function
and its derivatives around s = 0.

In this section we describe a sectioned approach to the problem of approximating the
transfer function of a system by a forced stable rational function. With this approach, we
replace the problem of directly computing a low order rational function that is an accu-
rate approximation over a wide frequency range with that of repeatedly computing local
approximations over narrower ranges. These local approximations can then be summed to
create an accurate approximation over the wide frequency range. This approach avoids, or
at least minimizes, the ill-conditioning of the global approximation problem. This approach
is similar in spirit to a generalization of the moment methods which is based upon multiple
expansions around other values of s to gather more global information [9].

We will start in Section 3.1 by describing a standard constrained £, minimization ap-
proach. The shortcomings of such an approach will be made clear, and in order to avoid
these difficulties we describe, in Section 3.2, a section-by-section algorithm which is based on
a local constrained £, minimization procedure. Finally, in Section 3.3 we will present some
results that show that this section-by-section algorithm can generate rational functions which

match data very accurately.

3.1 Computing Global Approximants by Weighted ¢, Minimiza-
tion
One approach to generating a rational function which best matches a frequency response

F(s) specified at a set of frequencies {s1, s2,- -, Sm}, is to set up and solve, as accurately as

possible, the following set of equations:
H(sj):F(sj) j:1727"'7m (3)
where

U(s) C upsP A urs + uo
V(s) s+ Fvs+vg
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is the low-order approximation.

Typically, the system in (3) will be over-determined as the number of frequency points
will exceed the number of unknown coefficients in the approximation (4), that is m > p+¢+1.
In this case there will generally be no exact solution, but the approximation error can be
minimized in some appropriate norm. If the 2-norm of the error is minimized, then the

coeflicients of the polynomials U(s) and V(s) are chosen such that

U(s)
i~ Fe)

JTH () = Fs) + & [H{sm) — F(sm)? = | H(s) — F(s)], = H (5)

2

is minimized. However, this is a nonlinear optimization problem whose solution is difficult
to compute. Instead, the problem can be made linear by weighting the 2-norm by V(s).

Then, the minimization problem becomes
min |U(s)— V{(s)F(s 6

Note that the solution to (6) is not in general the same as the solution of (5), but is instead
a weighted £, minimization.

The above £, minimizing solution of the over-determined system minimizes the global
error in a weighted £, sense instead of being very accurate at s = 0 or at any particular
expansion point. However, to guarantee that the steady-state will be accurately computed
when the rational function is used as a model in a circuit simulator, it is essential to constrain
the minimization so that U(0) = V(0)F(0). Similar constraints can be imposed at high

frequencies if necessary. The resulting constrained minimization can then be summarized as

min, [U(s) ~ V()F(s)l, @

The global minimization in (7) has two major drawbacks, namely the large dynamic
range of the numbers involved and the over-emphasizing of high-frequency errors. The
dynamic range of the number in the equation presents a difficulty especially in the case when
the natural frequencies of the problem span a wide range, as is usual in transmission line
problems. In that situation, (7) can easily lead to extremely ill-conditioned matrix problems.

To see this, consider the structure of the matrix one obtains from the minimization portion
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of (7), which can be written as:

Up
- _1 - : B q T
311) e 8 1 —Fls'{ —F131 —Fl F131
Uy
Uo
P . e A = g2
s; o 85 1 —Fjs; Fys,; F; = | Fjs; (8)
Vg—1
-1 .
s Sm 1 —FpslT o —Fpsy —Fn | Fsd
U1 - -
Vo

Each row of this matrix corresponds to computing U(s,;)—V (s;)F(s;) at some frequency
value s;. The matrix is therefore a transposed Vandermonde-like matrix in the sense that
the entries along each row are simple powers of the corresponding frequency value. If the
span of frequencies being considered is large, then the magnitude of the entries on some of
those rows will be much larger than those in rows corresponding to low frequency values.

Even if the conditioning of the matrix in (8) is tolerable, the resulting solution will be
skewed to minimizing high-frequency errors. To understand this problem, consider the case
p = q — 1, and recall that an £, minimization attempts to minimize the sums of the squares

of the error at each point, that is:

e=) el tes+ - +ei, (9)
=1
where
e; = |U(s)=V(s)F(s), = (10)
= ‘uq_ls?_l + o tursj+uo — siF — - s Fy — von‘ =

= | —STF + (g1 — g1 Fy) s34 (wn — i FS) 55+ (o — voF})|

is the error for the j** equation, corresponding to the frequency value s;.

From Eqn. (11) one can immediately see that the sensitivity of the error for the ;%
equation, e;, with respect to any coefficient is a polynomial in s;. Hence, the contribution of
an error at s; to the global cost function is a polynomial in s;. This implies that for a high
frequency value s;, small changes in the values of the coeflicients translate into large errors
and e; will be large. Therefore, minimizing the total error requires that the error components
e; corresponding to higher frequencies be carefully minimized, while those corresponding to
lower frequencies, which have less impact on the global error, will not deserve so much
attention. Though it is possible to introduce a weighting function that minimizes the high-

frequency predominance effect, the precise weighting is difficult to determine a-priori.

6
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3.2 Computing Section-by-Section Approximants

In order to avoid the numerical ill-conditioning and the uneven frequency weighting men-
tioned above, it is desirable to limit the frequency range for the £, minimization. Computing
a low-order local approximation has the added advantage that the orders of the polynomi-
als in the rational function approximation may be chosen small without compromising the
accuracy of the approximation for a small frequency range. Moreover, if unstable poles are
obtained from the local minimization procedure it is likely that using some simple heuristic,
such as simply discarding the unstable poles and associated residues, will not have a pro-
found effect on the accuracy over the small range of frequencies involved. In other words,
it is possible that a very low-order approximation is accurate enough to capture the local
behavior of F(s) without instability, numerical or otherwise, playing a significant role.

The idea of computing local approximations leads to a sectioning algorithm in which
only accurate local approximations are computed. The remaining problem is how to in-
corporate all the local information resulting from the various approximations into a global
approximant.

Our proposed solution is to perform the local approximations in a repeated fashion using

a constrained weighted local £, minimization procedure. Initially, the frequency range of

interest, 2 = [Wpmin,Wmaz], 18 partitioned into small sections, 21, 82, -, §237, such that
N = Uf\il 2, where each £2;, = |w;1,W;im,;| is a decade or two long. Then, starting with
the lowest frequency range §2;, with frequency values F(wi1), F(w12),- -, F(wim, ), a con-

strained £, minimization is performed and a local approximant is computed. Once the first
local approximation, Li(s), is obtained in the form of a collection of poles and their cor-
responding residues, it is examined and the stable poles are retained while the unstable
ones are discarded, leaving us with a forced stable approximation, H;(s). Since the fit
at the lower frequencies has captured the low frequency dynamics, F(s) — H1(s) will con-
tain primarily the higher-frequency error information and is then approximated. To this
end, frequency values in the second section 2, are approximated. The value of H(s)
at every point way,was, -, Wam, 18 computed, subtracted from the corresponding values
F(wy), F(way),- -+, F(w2m, ) and the resulting data is again fit using a constrained weighted
£, minimization. This results in a new local approximant L(s), from which a stable ap-
proximation, H»(s) can be obtained. H(s) is then a new approximant to F(s) — H1(s) on
12, U §2,, and therefore F(s) ~ H1(s) + H(s) on that frequency interval. The procedure
is repeated until data in the last frequency section, §2js, is approximated. A simplified form
of this sectioning algorithm is shown in pseudo-code form in Algorithm 3.1, and diagram-

matically in Figure 1.
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( )

Algorithm 3.1 (Section-by-Section Approximations)

sectioned (Wmin, Wmaz, F)

{

partition the frequency range into sections 24, -, §2p with
associated frequencies {w;,  *,Wim;}, ¢ = 1,--+, M, and function

values {F(wi), -, F(wim;)}
for (k=1; k<=M; k++) {
if (k> 1) {
subtract previous approximants from exact data:
Fi(skj) = F(sk;) — ]:2_:1 H(sk;) = F(sk;) — H(sk;),
=1

J=1, ,mp, Skg; = Jwi;

} else {
Fi(s1,5) = F(s1;)

}

compute local approximant at the k-th section, Lk(s) using
the corrected data F(s; ;)

examine the approximation and keep the stable poles and
residues of Lg(s) in Hy(s)

add the new stable approximation to the current global

approximant H(s) = H(s)+ Hy(s)

}

while keeping the locally computed dynamics, perform a final
global constrained £, minimization over the whole frequency
range to recompute the residues
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Figure 1: Applying the sectioning algorithm to measured or tabulated frequency data. The
example illustrates the sequence of operations that are performed to compute a local ap-
proximation, add it to the current global approximation and recompute the current error

function.
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When the procedure terminates, the result is a forced stable global approximation which
consists of all the stable poles and their corresponding residues obtained from the sequence
of local minimizations. We should point out that the sectioning algorithm is aimed at
computing approximations which match successively higher frequency ranges. However,
while subtracting the already computed approximations from the exact data, some erroneous
dynamics may be introduced at low frequency. To eliminate the associated errors, a final
constrained global £, minimization is performed in which the computed poles are used to
recalculate their residues in order to match the exact data points. This final step does
not suffer from the numerical problems mentioned in Section 3.1 regarding the global £,
minimization. In fact, the matrix one obtains in this case is better behaved because its (z,7)
entries are of the form (s; — p;)~ .

The algorithm just described reliably obtains a stable collection of pole-residue pairs
which form an accurate approximation to F(s). Unfortunately, since H(s) is represented as
a sum of local approximations, the approach introduces redundancies resulting in many more
poles than necessary. With such a large number of terms, even fast recursive convolution may
prove to be inefficient. However it is possible to further reduce the order of the approximation

using robust model order reduction techniques, which are described in section 4.

3.3 Section-by-Section Approximant: numerical example

In order to test the accuracy of the approximant obtained with our section by section
algorithm, consider the example of a transmission line where skin effects are significant, as
shown in Figures 2 and 3. The approximations to S12(jw) and Y,(jw), after removing the
ideal delay, have respectively 21 and 24 poles. In Figures 2 and 3, we compare the magnitude
plots of the transfer functions of, respectively, Sis(jw) and Y,(jw) with the transmission
line data points.

As one can see, the match is almost perfect, and the error is smaller than 0.5%. Moreover

the low-frequency error is nearly zero.

4 Model-Order Reduction by Truncated Balanced Re-

alization

The frequency-domain data fitting method described in the previous section resulted in
a stable transfer function H(s) with a large number of poles. Incorporating such a model
(or equivalently its impulse response) directly in a circuit simulator will be computationally

expensive. Instead, the model is reduced using an algorithm with three main steps. First,

10
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Magnitude Plots for S12 Parameter
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Figure 2: Accuracy of the section-by-section fit for the magnitude of the S, transfer function
with respect to the transmission line data points. The two curves are almost indistinguish-

able.
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Magnitude Plots for Yo=1/Zo
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Figure 3: Accuracy of the section-by-section fit for the magnitude of the Y, transfer function
with respect to the transmission line data points. The two curves are almost indistinguish-

able.
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the model is converted to a well-conditioned and robust state-space realization. Second, a
state-space transformation is used to balance the state-space realization. Third, the bal-
anced realization is truncated. Using this type of balanced realization approach has a key

advantage: the resulting reduced Hy(s) is guaranteed stable if H(s) is stable.

4.1 State-Space Realization

To reduce the order of the transmission line model derived in the previous section, first

we consider its state-space representation

r = Az + Bu, zeR” ueR, AR BeR"

(11)
= Cz yeR,CeR”

5
such that H(s) = C(sI — A)"'B.

Converting H (s) in pole-residue form to state-space form is a standard problem [10], and
it is tempting to use one of the common techniques (canonical controllability realization,
canonical observability realization, etc.) to find the matrices A, B, and C. However, these
approaches can result in a system matrix A which is poorly scaled and therefore unsuitable
for computations.

Instead, when all the poles are simple and real, the matrix A can be chosen equal
to a diagonal matrix having the real poles as diagonal coefficients [10]. The control and
observation matrices B and C can then be chosen based on the residues of the poles. More
explicitly, given

"o

H(s)=)_ (12)

k:ls_pk

where all the poles are negative reals and all the residues are real,

A dvag(pi, ..., Pn)

B = (Iril,--,y/Iral)”
c (sign(r1)y/Iral, - - -, sign(ra)y/|ra)

When H(s) has pairs of complex conjugate poles, a block diagonal matrix A can be
constructed where the blocks are all 2 x 2 and correspond to pairing the complex conjugate
poles in state-space realizations of order 2. It is also possible to find suitable state-space
realizations when some of the poles are repeated. For transmission line examples there are

only real, simple poles, and therefore the purely diagonal realization can be used.

13
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4.2 Balanced Realizations

Once the state-space representation is adopted, it has to be internally balanced [7, 11].
That is, given H(s) = C(sI — A)™! B, the choice of the triplet [A, B, C] is not unique. In-
deed, a linear coordinate transformation & = Tx modifies the triplet [A, B, C] to [A, B, C]
without modifying H(s).

For the specific purpose of extracting stable reduced-order models from the state-space
representation, it is desirable that the new triplet [A, B, é’] be in a form that allows such an
extraction using some simple operation on the new state & = T'x. The easiest conceivable
such operation would be simple state truncation. Moore has shown [7] that such a transfor-
mation exists and he called the corresponding triplet [A, B, é] a balanced realization of the
transfer function H(s). The word “balanced” refers to the fact that the controllability and
observability gramians of the triplet [A, B, C’] are both equal to the same diagonal matrix.
The balancing transformation T' can be computed explicitly for any triplet [A, B, C], and in
particular for the diagonal realization that we have proposed in the previous paragraph. The
numerical cost of such a computation is that of solving two matrix Lyapunov equations to
obtain the controllability and observability gramians and one symmetric eigenvalue problem

to diagonalize their product.

4.3 Truncated Realization

The triplet [A, B, é’] obtained by applying the balancing transformation T to the triplet
[A, B, C] has the property that simple reordering and truncation of the state vector & with
the corresponding reordering of the system matrices necessarily produce stable reduced-order
models at any desirable order. Let k& be this order, and let [Ak, By, ék] be the reduced-order
model with a transfer function Hg(s). It can then be shown [7, 8] that the error transfer
function Ey(s) = H(s) — Hg(s) has an Lo, norm that consistently decreases to zero as k is
increased to n, the order of the original model. This L, norm corresponds to the peak of the
magnitude Bode plot of Ef(jw). Note that Padé approximation methods [4] do not enjoy
such an error reduction property, and there is in fact ample experimental evidence that the
Padé methods produce unstable reduced-order models.

Truncating the balanced-realization has the same flavor but is radically different from
a spectral truncation, i.e., one that is based on neglecting the “fast” modes. Indeed, the
latter method looks only at the state matrix A without taking into account how controllable
or observable the neglected modes are. This is exactly what is achieved by truncating the
balanced realization where the controllability and observability properties of the modes are

taken into account through the gramian matrices.

14
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4.4 Time-Domain Constraints

Judging the validity of the reduced-order model depends not only on meeting the L,
error criterion mentioned above but also on meeting the goals of the circuit simulation task
for which this reduced model is used. Typically, in circuit simulations, it is essential that the
reduced model match the original transfer function at s = 0 so that the steady-state behavior
of both the reduced and full models are identical. Moreover, when the objective is to have a
good match between the time-domain responses of the two models, it is essential that their
transfer functions match at s = co so that their initial behavior is the same [12]. To ensure
the recovery of the steady-state behavior a final least-squares/collocation technique is used

to match the reduced-order model with the full model at zero frequency [13].

4.5 Truncated Balanced Realization: numerical example

In order to test the accuracy of the order reduction algorithm, the method was applied
to the transfer function obtained using the section-by-section procedure (see Section 3.3). It
was found that reduced models with seven poles each were sufficient to approximate the full
transfer functions of both S12(jw) and Y,(jw). In Figures 4 and 5, the magnitude plots of
the reduced transfer functions of S13(jw) and Y,(jw) are compared with the transmission
line data points. As is clear from the figures, the match is very accurate and the error is
within 1%.

However in contrast to the section-by-section approximation the low-frequency error is
more noticeable. In Figures 6 and 7, the magnitude plots of the frequency dependent fitting
errors from the section-by-section approximation and the reduced-order model are shown for

S12(jw) and Y,(jw), respectively.

5 Experimental Results

In this Section, we present results from an implementation of our algorithm for efficient
time-domain simulation of transmission lines with arbitrary scattering parameter descrip-
tions. The implementation is based on a modified version of SPICE3 [14], and uses a combi-
nation of sectioning, reduced-order modeling, and fast recursive convolution. We first show
that the reduced-order model produces nearly the same time-domain waveforms as the more
complete sectioning based model, but with many fewer poles. For completeness we will also
apply a more traditional FFT-based method to this problem and compare the results in
terms of accuracy and computational cost. Second, we show an example with realistic tran-

sistor drivers and receivers, to demonstrate the ability of the method to simulate complete

15
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Figure 4: Accuracy of the reduced-order model fit for the magnitude of the S;, transfer
function with respect to the transmission line data points.
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Magnitude Plots for Yo=1/Zo
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Figure 5: Accuracy of the reduced-order model fit for the magnitude of the Y, transfer
function with respect to the transmission line data points.
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x10° Magnitude Plots of the S12 Parameter Error
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Figure 6: Magnitude plots of the errors with respect to the transmission line data points
of the section-by-section approximant and the reduced-order transfer function for the S,
parameter.
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Figure 7: Magnitude plots of the errors with respect to the transmission line data points of
the section-by-section approximant and the reduced-order transfer function for Y.
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circuit descriptions.

In Figure 8 we present the time-domain results of applying a 5 volt step to a 502 termi-
nated transmission line with significant skin-effect. The pulse has a 1ns rise time, is applied
at t = 50ns and the delay of the line is 250ns. In the figure, we compare the time response of
the 7-th order reduced-order model with the time response obtained using the full sectioning
based approximant, which has more than twenty poles. The fact that the two responses
are indistinguishable in the figure shows that an excellent match has been obtained. In the
same figure we show the time response obtained using a full convolution method applied to
an impulse response obtained via inverse fast Fourier transform (iFFT) on 2048 frequency
data points. As can be seen from the figure, the iFFT-derived response is equally accurate
as expected since a fairly large number of frequency points were used. In Table 1 we show
the CPU times required for obtaining the three time responses shown. The total number
of timesteps required for obtaining the solution in the interval shown was 1004. From the
results in the table, we can see that simulation of the reduced-order model is most efficient,
as expected. Since the cost of recursive convolution is roughly proportional to the number
of poles in the reduced-order model, the 7-th order model is over one and a half times more
efficient than the sectioning approach. Both of these methods are over an order of mag-
nitude faster than the full convolution method which shows that the recursive convolution
procedure is extremely efficient. For a simulation on a longer interval, the difference in CPU
times would tend to increase since, as we saw, the cost of a recursive convolution method is
linear in the number of timesteps while the cost of a full convolution method is quadratic on

the number of timesteps.

| Algorithm | CPU time (s) |
Full convolution 133
Section-by-section 13
Reduced-order model 8

Table 1: CPU time comparisons for full convolution versus recursive convolution methods.
Times are in seconds on a SUN IPX.

In Figure 10 we present the time-domain results obtained from the circuit in Figure 9,
using the transmission line from the previous example. The driver and the load are both
CMOS inverters, where the transistors are described using SPICE3’s default level 2 model with
W/L = 750 for the p-type pullup devices and W/L = 400 for the n-type pull-down devices.
The simulation results show clearly that the improper line termination causes reflections to

transmit back and forth on the line.
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Transmission Line Response with Resistive load
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Figure 8: Time response obtained from applying a 5V pulse with a 1ns rise time at ¢t = 50ns
to a resistively terminated transmission line. The figure shows the response of a line modeled
with a 7 pole reduced-order model and that of a line modeled with the approximation
resulting from our sectioning algorithm, which has more than 20 poles. The figure also
shows the response of the line computed using full convolution with an impulse response
obtained via inverse fast Fourier transform. For this example 2048 frequency points were
used for the iFFT algorithm. The three waveforms are indistinguishable. The delay of the
transmission line is 250ns.

S12: Yo

./

> @

—— 8pF SpF——

>0

=~ Gnd Gnd

Figure 9: CMOS driver and load connected by a transmission line with skin-effect.
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Response of Driver/Load transmission line connected pair
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Figure 10: Time response obtained from a nonlinear circuit with a transmission line connect-
ing driver and load. The transmission line is modeled with a 7 pole reduced-order model.
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6 Conclusions

In this paper, we have proposed a robust algorithm for deriving stable, low-order, and
accurate models for transmission lines based on realistic scattering data.
The main highlights of our algorithm are as follows: First, a stable, high-order transfer

function is fitted to the scattering data using a two-step algorithm:

i) The frequency range is sectioned, and a section-by-section constrained £,, forced stable

rational function approximation is fitted to the data in each frequency section.

ii) The section transfer functions are combined using a global £, criterion to obtain a

stable, accurate, high order model valid for the whole frequency range.

Second, a guaranteed stable, low-order model is obtained from the high-order model using
the method of truncated balanced realizations.

Third, the DC gain of the low-order model is matched to that of the full model using a
constrained £, minimization scheme.

We have shown that our section by section approximation is very accurate and that the
final stable low-order approximation derived using the truncated balanced realization has
excellent match with the frequency response of the full model.

The resulting rational transfer function was incorporated in a circuit simulator, and the
numerical experiments using a transmission line with skin-effects indicates that the time-
domain responses match those obtained using the more computationally expensive convolu-
tion procedures currently in use for transmission line simulations. Moreover a reduction by

over an order of magnitude in the computation time was observed.
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