
Explicit Window Adaptation:A Method to Enhance TCP PerformanceLampros KalampoukasAnujan VarmaComputer Engineering DepartmentUniversity of CaliforniaSanta Cruz, CA 95064E-mail: flampros, varmag@cse.ucsc.eduK. K. RamakrishnanAT&T Labs - ResearchFlorham Park, NJ 07932E-mail: kkrama@research.att.com
This research is supported by the Advanced Research Projects Agency (ARPA) under Contract No. F19628-96-C-0038 andby the NSF Young Investigator Award No. MIP-9257103. The OPNET modeling tool used for simulations was donated to usby MIL-3, Inc.

Explicit Window Adaptation:A Method to Enhance TCP PerformanceAbstractWe study the performance of TCP in an internetwork consisting of both rate-controlled and non-rate-controlled segments. A common example of such an environment occurs when the end systems are partof IP datagram networks interconnected by a rate-controlled segment, such as an ATM network using theABR service. In the absence of congestive losses in either segment, TCP keeps increasing its window toits maximum size. Mismatch between the TCP window and the bandwidth-delay product of the networkwill result in accumulation of large queues and possibly bu�er over
ows in the devices at the edges ofthe rate-controlled segment, causing degraded throughput and unfairness. We develop an explicit feedbackscheme, called Explicit Window Adaptation based on modifying the receiver's advertised window in TCPacknowledgments returning to the source. The window size indicated to TCP is a function of the free bu�erin the edge device. Results from simulations with a wide range of tra�c scenarios show that this explicitwindow adaptation scheme can control the bu�er occupancy e�ciently at the edge device, and results insigni�cant improvements in packet loss rate, fairness, and throughput over a packet discard policy such asDrop-from-Front or Random Early Detection.Keywords: TCP, congestion control, bu�er management, explicit window adaptation.

1 IntroductionCongestion control in the current Internet is primarily a function of the TransmissionControl Protocol (TCP).TCP congestion control is based on controlling the end-to-end window as a function of the congestion stateof the network. The TCP congestion control mechanisms continue to evolve as more insight is gained ontheir behavior, and as new requirements emerge.An important attribute of TCP congestion control mechanisms is that they do not assume any supportfrom the network for explicit signaling of congestion state. TCP infers the congestion state of the networkfrom implicit signals | arrival of acknowledgements (acks), timeouts, and receipt of the duplicate acks. Theevolution of the congestion window in a TCP source consists of two phases: the slow start phase and thecongestion avoidance phase. The slow-start phase occurs during startup, as well as when a packet loss isdetected by way of a timeout at the source. During the slow-start phase, the congestion window essentiallydoubles during each round-trip time (RTT), until a threshold window size known as slow-start threshold(ssthresh) is reached. At this point the host enters the congestion avoidance phase where TCP is probingfor additional bandwidth by increasing the window more slowly, at the rate of one segment per RTT. �In the original \Tahoe" version of TCP, the only means of detecting a packet loss was by a timerexpiration at the source, causing the slow-start to be triggered upon every such loss [1]. This can lead tosevere oscillations in bu�er occupancy at the routers, as well as in the connection throughput, when lossesare random. This de�ciency was corrected in the later \Reno" version by adding the Fast Retransmit andFast Recovery mechanisms [2, 3]. The Fast Retransmit mechanism retransmits a packet when three duplicateacks are received at the source, without waiting for the timer to expire. The Fast Recovery mechanism avoidsslow-start in such cases by setting the congestion window to approximately half its current value and keepingthe connection in the congestion avoidance phase. This avoids severe
uctuations in throughput and bu�eroccupancy when the congestion is not severe enough to warrant a large reduction in o�ered load.An important consequence of using the Fast Retransmit and Fast Recovery mechanisms at the TCPsource is that it becomes advantageous for routers to signal congestion to the source by discarding a packetearly at the onset of congestion, without waiting for its bu�ers to become full, when the router may beforced to discard multiple packets. This avoids the source entering slow-start, and the resulting oscillationsin throughput. The Random Early Detection (RED) scheme [4] for routers is based on this idea. Multiplelosses within the same TCP window, however, can still cause timeouts at the source, causing slow-start tobe invoked.In this paper, our interest is on the behavior of TCP congestion control algorithms in an internetworkconsisting of both rate-controlled and non-rate-controlled segments. The most common example of such anenvironment occurs when the end systems are part of IP datagram networks that are interconnected by arate-controlled ATM virtual circuit over a wide area. In the absence of congestive losses, the TCP congestionwindow grows up to the maximum window size permitted by the destination system. However, the use ofrate control in the ATM segment enables the queue lengths to be maintained small in the ATM switches.The result is that most of the TCP window is now bu�ered in the routers at the edges of the rate-controlledchannel, causing severe congestion, degraded throughput, and unfairness. Our objective in this paper isto develop a scheme for controlling congestion in the edge routers in such an environment. Note that thisproblem is not limited to internetworks employing rate-controlled ATM segments, but applies in general to�The TCP window is actually maintained in terms of bytes. For simplicity, however, we assume that the TCP segments areof �xed size so that the window size can be maintained in segments.1

internetworks where the edge routers employ some form of rate-based scheduling at the entry point to awide-area network.One approach to control congestion in the edge router is to employ an intelligent packet-discard policysuch as Random Early Detection (RED), so that congestion can be signaled to the TCP sources early.However, when the delay in the wide-area segment is large, this policy may still cause timeouts, forcingconnections to enter slow start. Another discard policy that has been shown to work well with TCP isDrop-from-Front, which drops the packets at the head of the FIFO queue in the router when the bu�erbecomes full [5]. This approach, however, may still cause back-to-back losses and unfairness. Both RED andDrop-from-Front are generic solutions with the potential of improving the e�ciency and fairness of networkswith TCP-controlled tra�c, without being tied to a speci�c network technology. Being general does notallow them to take full advantage of information that is available at the entry point of a rate-controllednetwork segment.The objective of our scheme is to match the sum of the windows of active TCP connections sharingthe bu�er in the edge router to the e�ective network bandwidth-delay product, thus avoiding packet losseswhenever possible. This is achieved by explicitly controlling the window size of the connections as a functionof the available space in the bu�er at the edge router. The window size information is communicated by theedge router to the TCP sources by modifying the window advertisement �eld in the acks
owing back tothem. Our scheme, which we call Explicit Window Adaptation, does not require modi�cations to the TCPimplementations in the end systems, and does not need to maintain per-
ow state in the router. Resultsfrom extensive simulations with a wide range of network con�gurations show that our scheme is able toprovide almost perfect throughput and fairness when the delays in the local segments are small comparedto that in the rate-controlled wide-area network. Even when the latter is small compared to the former,Explicit Window Adaptation resulted in close-to-ideal throughput and fairness.The performance of TCP when operating exclusively over IP datagram networks has been the subjectof extensive research in the past [6, 7, 8, 9, 10, 11, 12, 13, 14, 5]. Similarly, TCP performance over ATMnetworks using the Available Bit-Rate (ABR) service has also been studied [15, 16, 17]. These studiesprovide valuable insights into TCP dynamics and how TCP congestion control mechanisms interact withABR congestion control algorithms. Several modi�cations to TCP have also been proposed with the objectiveof improving both network utilization and fairness. Floyd [18] proposed to modify TCP to include ExplicitCongestion Noti�cation (ECN) from routers to the source. By combining explicit noti�cation with RED, theperformance of both delay-sensitive (telnet-like) and delay-insensitive (ftp-like) tra�c can be improved [18].Other approaches such as Tri-S [19] andTCP-Vegas [20] attempt to estimate the bandwidth-delay product foreach TCP connection and adjust the window size based on this estimate. However, these schemes introducecomplexity in the end-system and require extensive modi�cations to current TCP implementations.This paper is organized as follows: In the next section, we provide the motivation for this work bydiscussing simulation results from an example network con�guration. We introduce the Explicit WindowAdaptation scheme in Section 3 and discuss its implementation. In Section 4, we present results fromextensive simulations of the scheme with a wide range of network parameters and tra�c scenarios. Weconclude the paper in Section 5 with a summary of the results.2

2 MotivationWindow-based protocols control the amount of outstanding data in the network. Even though several exten-sions to TCP have been proposed with the objective of adapting the window size to the actual bandwidth-delay product of the underlying network [19, 20], current implementations require a packet loss to reduce thecongestion window size. In the absence of such losses the congestion window increases up to the maximumsocket bu�er advertised by the receiver.When TCP tra�c is carried over an ATM network, the window-based congestion control mechanismsof TCP can interact with the rate-based control mechanisms in the ATM network in undesirable ways.These interactions are a result of the mismatch in the dynamics introduced by rate-based and window-basedcontrol [21]. TCP controls the total amount of data injected into the network, but does not control itsburstiness. However, the service rate the connection receives at the edge of the ATM network is constant.Thus, segments transmitted by the TCP connection arrive typically as a burst at the edge router, and aredrained at the available rate on the ATM network. As a result, assuming no losses elsewhere in the network,the TCP window size grows to eventually cause a bu�er over
ow at the access point into the rate-controlledpart of the network. This behavior tends to be periodic, and may result in loss of throughout and overallperformance degradation. The e�ect of such periodic losses on TCP performance was analyzed by Lakshman,et. al. [7].Although the above problem could occur in more general environments, we focus our attention in thispaper on TCP/IP internetworks where the end systems are connected to legacy LANs (such as Ethernetor Token Ring), with the LANs interconnected through a rate-controlled ATM virtual circuit. Figure 1,shows the example network con�guration that will be used in our study. We will refer to the routers at theboundary between the two networks as ATM Access Points (AAPs) and to the LAN segments as IP networks.For IP over ATM we assume the framework described in [22]. According to this framework, a single VC isset up for carrying ABR tra�c between a source and a destination system. TCP connections destined todi�erent IP networks will be carried over separate VCs. Multiple TCP connections set up between the samepair of source and destination IP networks will be multiplexed into a single ATM virtual circuit. In Figure 1,we identify each IP-to-ATM router with the label of the IP network it is connected to, i.e., we will refer toIP-to-ATM Router 1 as AAP-1.Unless stated otherwise, we assume that the AAPs use Drop-Tail packet discard policy. With Drop-Tail,the packet that arrives at a full bu�er is dropped. This scheme is widely used today in switches and routers,due mostly to its simplicity. This simplicity, however, comes at the cost of degraded performance: when thebu�er becomes full it is likely that many connections will face a loss at the same time. These synchronizedlosses result in a corresponding synchronized reaction by multiple connections simultaneously reducing theirwindows. The potential over-correction may eventually lead to reduced throughput [14]. Furthermore,if multiple losses occur from a single connection within one RTT, the connection may be forced into theslow-start phase.We will now consider two scenarios to illustrate the e�ects of packet losses occurring at the AAPs onTCP performance. Both scenarios use the network con�guration shown in Figure 1. However, a di�erent setof connections is activated in each of these scenarios.In the �rst scenario, sources 1, 2b, and 3b are activated and their tra�c is destined to IP networks 2, 3,and 4, respectively. The tra�c for each of the three connections will be carried by di�erent VCs in the ATMnetwork. We assume the use of per-VC queueing and scheduling in the AAPs to provide isolation between the3

5 msecs

155 Mbits/sec

Source

nodes

IP Network 1

1, 6

2, 7

3, 8

4, 9

5,10

Destination

 nodes

IP Network 2

2b

IP-ATM

Router 1

3b

ATM Switch

IP-ATM

Router 2

Destination

 node

IP-ATM

Router 3

IP Network 3

IP Network 4

Destination

 node

IP-ATM

Router 4

1, 6

2, 7

3, 8

4, 9

5, 10

2b
3b

L1

L2

L4
L3

Figure 1: Generic network topology with IP and ATM subnetworks.di�erent ATM virtual circuits. We also assume the use of an e�cient rate allocation algorithm in the ATMnetwork for support of ABR service, providing the three VCs with a fair and loss-free environment [23]. Weconsider this as a best case scenario. Each of the links in this con�guration has a capacity of 155 Mbits/sec.The one-way propagation delays of connections 1 and 2b in IP Network 1 are set to 3 milliseconds and thatof connection 3b to 0.8 �sec. The delays in IP Networks 2, 3, and 4 as well as the link delays L1, L2, L3,and L4 are assumed to be insigni�cant. The TCP segment size is set to 1500 bytes. The bu�er size for eachATM connection at the ATM layer in AAP-1 was set to 64 KBytes and the maximum socket bu�er size atthe receivers for all three connections was set to 200 KBytes.Figures 2 and 3 show the sequence number growth and the congestion windows for all three activeconnections. Observe that all three connections periodically go through slow-start because of bu�er over
owsin AAP-1. As a result, the performance is poor even though there is per-VC queueing and scheduling at theATM layer. The average throughput for each connection is shown in Figure 4, where the long connectionscan be seen to receive signi�cantly lower throughput as compared to the short connection. This can beattributed to the long connections losing multiple back-to-back packets and recovering slower from theselosses.The problem becomes even more pronounced when tra�c from multiple TCP connections is multiplexedinto a single ATM virtual circuit. To study such a con�guration, we multiplexed the tra�c from ten TCPconnections into a single VC. The network con�guration for this simulation remains as shown in Figure 1,but the propagation delay of link L1 was set to 5 milliseconds and that of each link in the IP Network to0.5 milliseconds. A single VC was established between IP Networks 1 and 2, carrying multiplexed tra�cfrom the ten TCP connections (1 { 10). The segment size for TCP was set to 1500 bytes. All ten connectionswere opened at time t = 0. We studied the way TCP adapts to changing network conditions by varying thenumber of active TCP connections: At time t = 10 secs we closed �ve of the ten active connections (6{10)and at time t = 15 secs we closed another three (3{5). The bu�er size at AAP-1 was set to 200 Kbytes4

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

0 1 2 3 4 5

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Drop-Tail

Connection 1
Connection 2b
Connection 3bFigure 2: TCP sequence numbers for the three con-nections (64 Kbytes IP bu�er size in the host, packetsize = 1500 bytes). 0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3

C
on

ge
st

io
n

W
in

do
w

 (
K

B
yt

es
)

Time (secs)

Drop-Tail

Connection 1
Connection 2b
Connection 3bFigure 3: TCP Congestion Windows for one long andone short connection (64 Kbytes IP bu�er size in theIP-ATM router, 200 Kbytes maximum socket bu�erat receiver, packet size = 1500 bytes).

0

10

20

30

40

50

60

0 1 2 3 4 5

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Time (secs)

Drop-Tail

Connection 1
Connection 2b
Connection 3bFigure 4: Average e�ective throughput per TCP connection (64 Kbytes IP bu�er size in the host, 200 Kbytesmaximum socket bu�er at receiver, packet size = 1500 bytes).which is approximately equal to the bandwidth-delay product of the network. The destination bu�er, whiche�ectively sets the maximumTCP window size, was also set to 200 Kbytes. Thus, a single TCP connectionmay potentially operate at the maximum available link capacity if necessary.Figure 5 illustrates the sequence number growth of the active TCP connections. We observe that oncesteady state is reached, all connections make fair progress during the �rst 10 seconds. The utilizationof link L1, measured in intervals of 250 milliseconds, is shown in Figure 6. During the �rst 10 secs theutilization is approximately 70%. The throughput loss is mainly due to the synchronization of the losses forthe connections and their simultaneous recovery. This results in idling the link substantially.At time t = 10 secs, when �ve of the ten connections close, we would expect the slope of the sequencenumber growth to almost double since the available bandwidth per connection also doubles. However, weobserve that it remains almost unchanged, limiting the utilization of link L1 to approximately 50%. This isbecause of the synchronization between the connections during periods following a bu�er over
ow. Finally,during the last 5 seconds of the simulation, when only two TCP connections are active, we observe thatthe link utilization improves to approximately 80%. This, however, occurs at the cost of degraded fairness.This is because, on retransmitting a lost packet and recovering from the loss, one of the connections (theconnection that had the larger window prior to the loss) will increase its window much faster, thus obtaining5

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 2 4 6 8 10 12 14 16 18

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Drop-Tail

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 5: Sequence number growth for TCP connec-tions with Drop-Tail bu�er management (IP Networkdelays = 0.5 msecs, ATM backbone delay = 5 msecs,ssthresh = 64 KBytes initially). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Drop-Tail

Figure 6: E�ective utilization of the ATM link at IP-ATM Router 1 with Drop-Tail bu�er managementmeasured every 250 msecs (IP Network delays =0.5 msecs, ATM backbone delay = 5 msecs, initialvalue of ssthresh = 64 KBytes).a larger portion of the available bandwidth.2.1 TCP Performance with Drop-from-Front AAPsTo reduce the tendency of Drop-Tail routers to synchronize losses of multiple connections, and the possibilityof multiple losses to a connection in a round-trip, two alternative policies have been suggested: Drop-from-Front [5] and Random Early Detection [4]. With Drop-from-Front, when a packet arrives at a full queue,the packet stored at the head of the queue is dropped. If service for the packet at the head of the queuehas already started, the following packet in the queue is dropped instead. The arriving packet is alwaysaccepted, using the space freed by the dropped packet.The Drop-from-Front strategy has the potential to (i) provide faster feedback to tra�c sources regardingcongestion, and (ii) break synchronization between competing connections, thus improving fairness. Drop-from-Front provides an indication of congestion about one bu�er drain time earlier. This early feedbackto TCP sources results in shortening the congestion episode and signi�cantly reduces the subsequent over-correction. Looking at the head of the queue is similar to observing the system state as far in the pastas possible. Consequently, the distribution of connections that occupy the head of the queue position isexpected to be closer to the actual bandwidth distribution when the congestion epoch started (or as closeas possible to that time). Hence, the dropping probability is more likely to be proportional to the inherentbandwidth distribution among the connections.We investigate now how Drop-from-Front a�ects TCP performance when applied to AAPs. We use againthe network topology of Figure 1 and the tra�c scenario described in the previous simulation experiment:during the interval (0; 10) seconds, ten TCP connections are active; at time t = 10 seconds �ve of the tenconnections close; and at t = 15 seconds three more connections close, leaving only two active. The sequencenumber growths for the active TCP connections are presented in Figure 7, and the utilization of link L1 inFigure 8.During the �rst 10 seconds all the connections make fair progress, with better overall throughput thanthat with Drop-Tail. From Figure 8, we observe that the link utilization during the �rst 10 seconds is6

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 2 4 6 8 10 12 14 16 18

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Drop-from-Front

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 7: Sequence number growth for TCP connec-tions with Drop-Front bu�er management (IP Net-work delays = 0.5 msecs, ATM backbone delay =5 msecs, ssthresh = 64 KBytes initially). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Drop-from-Front

Figure 8: E�ective utilization of the ATM link atIP-ATM Router 1 with Drop-Front bu�er manage-ment measured every 250 msecs (IP Network delays =0.5 msecs, ATM backbone delay = 5 msecs, ssthresh= 64 KBytes initially).approximately 90% compared to 70% with Drop-Tail AAPs. Even when only �ve TCP connections areactive we can again see that the throughput is signi�cantly better, approximately 75% compared to 50% forDrop-Tail. While better than Drop-Tail, this loss in throughput indicates that the mechanism is still unableto overcome the fundamental problem: there is throughput degradation when packet loss is used as the soleindicator of congestion.Finally, during the last 5 seconds when only two TCP connections are active, the throughput is againquite high, approximately 90%. In contrast to the Drop-Tail case, the progress of the two active TCPconnections is fair.2.2 TCP performance with Random Early Detection (RED) AAPsThe Random Early Detection (RED) scheme also has the same objective of improving TCP throughput andfairness [4]. Congestion is determined by comparing the average queue size to a predetermined threshold.Congestion can be detected even before the bu�er is full, thus controlling the average queue size. In periodsof congestion RED marks incoming packets in order to indicate congestion to TCP sources. Marking can beperformed by setting a bit in the packet header. The current version of TCP protocol, however, does notsupport such explicit congestion noti�cation. Therefore, congestion must be signaled to the source through apacket loss. RED applies randomization in selecting the connections to notify, with the objective of avoidingglobal synchronization and to achieve a dropping probability that is proportional to the inherent bandwidthdistribution among the connections.RED maintains two bu�er occupancy thresholds in the router: a low thresholdminth and a high thresholdmaxth. No packets are dropped when the average queue size is below minth. When the average queue sizeexceeds maxth, all incoming packets are dropped with probability one. When the average queue length isbetween minth and maxth, the incoming packet is dropped with a probability that is a linear function ofthe average queue length, varying linearly from zero to a pre-determined maximum value maxp.Using the con�guration of Figure 1 and the same tra�c scenario used in the previous experiments, westudied the performance when RED was used. We ran two sets of simulationswith di�erent sets of parameters7

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 2 4 6 8 10 12 14 16 18

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Random Early Detection (RED)

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 9: Sequence number growth for TCP connec-tions with RED bu�er management (maxp = 0:02,minth = 15, maxth = 30, IP Network delays =0.5 msecs, ATM backbone delay = 5 msecs, ssthresh= 64 KBytes initially). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Random Early Detection (RED)

Figure 10: E�ective utilization of the ATM link at IP-ATM Router 1 with RED bu�er management mea-sured every 250 msecs (maxp = 0:02, minth = 15,maxth = 30, IP Network delays = 0.5 msecs, ATMbackbone delay = 5 msecs, ssthresh = 64 KBytes ini-tially).for RED. First, we set minth to 15 packets, maxth to 30 packets and maxp to 0.02. The total bu�er size inAAP-1 was set to 110 packets, equivalent to the bandwidth-delay product of a single TCP connection. Thesequence number growth plots for this �rst experiment are shown in Figure 9 and the utilization is shownin Figure 10. During the �rst 10 seconds all connections progress in a fair manner and the overall e�ciencyis high. When the number of active connections drops from ten to �ve at t = 10 seconds, and subsequentlyfrom �ve to two at t = 15 seconds, the active connections manage to claim most of the leftover bandwidth.However, as can be seen in Figure 10, the link utilization is still not ideal, re
ecting the penalty of lostthroughput in response to packet loss. However, RED succeeds in achieving fairness.To study the sensitivity of the scheme to the maximum marking probability, we increased maxp from0.02 to 0.05, while keeping the rest of the parameters the same. This value is within the range suggested forRED [4]. The sequence number plots for this case are given in Figure 11, and the measured link utilizationin Figure 12. We observe that the connection progress is again fair but the overall performance is furtherdegraded, and the results are now comparable to those from Drop-from-Front.The simulation results presented in this section suggest that RED has the potential of improving per-formance beyond that achieved by Drop-Tail and Drop-from-Front. However, the sensitivity to parameterssuggests that further understanding is needed on how to tune the parameters.3 Explicit Window AdaptationThe packet discard algorithms discussed in the previous section attempt to control the TCP windows implic-itly by forcing the connections to respond to packet losses. An alternative approach is to control the windowsizes explicitly from the bottleneck point in the network as a function of the e�ective bandwidth-delay prod-uct of the network. Such a scheme requires two key components: (i) A mechanism to signal window updatesfrom the network to the source, and (ii) a scheme at the bottleneck point to estimate the window size basedon the congestion state of the network. The former can be accomplished without modi�cations to the TCP8

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 2 4 6 8 10 12 14 16 18

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Random Early Detection (RED)

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 11: Sequence number growth for TCP connec-tions with RED bu�er management (maxp = 0:05,minth = 15, maxth = 30, IP Network delays =0.5 msecs, ATM backbone delay = 5 msecs, ssthresh= 64 KBytes initially). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Random Early Detection (RED)

Figure 12: E�ective utilization of the ATM link at IP-ATM Router 1 with RED bu�er management mea-sured every 250 msecs (maxp = 0:05, minth = 15,maxth = 30, IP Network delays = 0.5 msecs, ATMbackbone delay = 5 msecs, ssthresh = 64 KBytes ini-tially).protocol by allowing the network elements to modify the receiver's advertised window �eld carried by TCPacknowledgements from the destination to the source. The latter problem, however, is signi�cantly moredi�cult: First, when there are multiple bottlenecks on the path of a TCP connection, the window estimationalgorithms at these bottlenecks may interact in undesirable ways. Second, estimating the bandwidth-delayproduct of the link from the bottleneck element is often as di�cult as estimating it at the source. Finally,the advantages of the scheme must be compared against those of implicit (packet discard) schemes of com-parable complexity. For example, if the scheme requires maintaining per-connection state at the routers, itsperformance needs to be compared against alternative packet discard schemes that could be designed whenthe routers provide per-
ow queueing and scheduling.For the speci�c network environment we consider in this paper, however, the problem is much simpler.First, we assume that the only bottleneck in the path of the TCP connections occurs at the AAP. Second,both the bandwidth available in the ATM segment, and the delay through it, remain relatively steadyover short timescales, independent of the number of TCP connections transported over it. This makes iteasier for the AAP to estimate the available bandwidth-delay product for each TCP connection sharing theoutgoing ATM virtual circuit. Finally, the per-VC queueing and bu�ering at the ATM layer isolates theTCP connections sharing a single virtual circuit from other tra�c. In this section we outline a scheme thattakes advantage of these facts, for explicitly controlling the TCP congestion windows from the AAP.The Explicit Window Adaptation (EWA) scheme provides TCP with explicit feedback on the state of theAAP bu�er. The objective is to allow TCP connections to grow their window to �ll the network pipe (i.e.,bandwidth-delay product). Any further increase of the window size contributes only to increased queueingdelay, not improved throughput. Optimal setting of the window size, however, requires knowledge of theRTT and the bandwidth-delay product of the network [24]. Such information is usually not available atnetwork elements. Instead, EWA determines when the network pipe is full by monitoring the occupancy ofthe bu�er serving the outgoing ATM virtual circuit at the AAP: non-empty bu�er is either an indicationof a full pipe or bursty tra�c. At that time EWA \marks down" slowly the window size fed back to the9

TCP source so that the steady-state bu�er occupancy can be maintained well below the bu�er capacity, stillkeeping the network pipe full. Furthermore, controlling the bu�er occupancy allows the network elementsto accommodate short-term bursts while avoiding bu�er over
ows or under
ows most of the time. Whenmultiple TCP connections share a common VC, the approach matches the aggregate window sizes of allactive TCP
ows to the bandwidth-delay product of the network while at the same time providing all theconnections with similar feedback to achieve fairness.EWA sends explicit feedback to TCP sources to adjust their window sizes. The feedback is carriedby returning TCP acknowledgments in the receiver's advertised window �eld. If the current value in thereceiver's advertised window, which is set by the destination system, exceeds the feedback value computed inthe AAP, the receiver's advertised window is marked down to the feedback value. The computed feedback isa function of the free bu�er space at the AAP. In that sense it is similar to the idea proposed by Choudhuryand Hahne [25] for controlling dynamic bu�er thresholds in a shared-memory switch. In our case, however,the feedback computed is used to adapt the TCP window maintained at the sources in order to limit packetlosses in the AAP's bu�er.Let us denote with Be(t) = B�Q(t) the empty bu�er space at time t when a returning ack arrives at anAAP, where B is the total bu�er space and Q(t) is the total bu�er occupancy at time t. Let Wr(t) denotethe value in the receiver's advertised window �eld seen in the ack. The algorithm computes a target windowsize for the TCP connection as a function of the available bu�er, that is f(Be(t)). This computed value isthen used to mark down the receiver's advertised window �eld in the acknowledgement. Since setting thewindow size smaller than the maximum segment size (MSS) negotiated during connection establishment canlead to starvation and deadlocks, a minimum window size of MSS is enforced. Thus, the feedback value,W 0r(t), used to set the receiver's advertised window �eld, is computed at the AAP asW 0r(t) = max(min(Wr(t); f(Be(t)));MSS): (3.1)The window size computed by Eq.(3.1) is used to modify the returning acknowledgements, regardlessof the connections they belong to. That is, all TCP connections are treated equally and receive the samefeedback for the same bu�er occupancy. This avoids the need to maintain the number of active TCPconnections or their states in the AAP. In the case of a connection not making use of its allocated window,the bu�er occupancy will start to go down in the AAP, causing an increase in the window size signaledto all connections: This results in the active connections increasing their throughput, sharing the availablebandwidth equally.The di�cult task in such an algorithm is to design the feedback function f(Be(t)). The dynamicsof the system depend heavily on this feedback function. The goal of the function is to provide all TCPconnections with similar feedback, and as a result have them operate with equal windows. We now discussthe requirements and tradeo�s in the choice of the feedback function and describe a function that satis�esthese requirements.3.1 Choosing the feedback functionThe window feedback is based solely on the amount of free bu�er at the AAPs. This makes the system self-adaptive to the tra�c load and the number of active connections. All connections receive similar feedbackand as a result the bu�er occupancy will reach an equilibrium state. For example, assuming that a knownnumber of N connections are active and that all the connections have equal round-trip times, the system10

converges to a state that satis�es the following equationQi(t) = f(B � NQi(t)); (3.2)where Qi(t) is the amount of bu�er occupied by connection i, which is also equal to the feedback given tothat connection. In steady state and under the assumptions made, every connection will occupy the sameamount of bu�er. It should be noted that the assumption of equal round-trip delays is not necessary for thesystem to reach an equilibrium state.In order for such a feedback control system to be able to bring the bu�er occupancy in AAPs to equi-librium, it is required that the sources react to feedback messages and increase their current windows ratherslowly. TCP already uses such mechanisms to control window increases, imposing a window increase of onepacket for every acknowledgement received or for every RTT, depending on whether the connection is in theslow-start or congestion avoidance phase. When a connection receives an advertised window size less thanits current window size, the former takes e�ect immediately.Note that if all the connections are in the congestion avoidance phase, they increase their window byapproximately one segment every round-trip time and therefore, the bu�er occupancy can be expected togrow rather slowly. However, it is possible that the window sizes for some of the connections sharing thebu�er are below the slow-start threshold ssthresh, and are therefore growing exponentially in time. Since theconnections in slow-start phase cannot be identi�ed at the AAP without maintaining per-connection state,we must design a feedback function that does not penalize connections in the congestion-avoidance phaseover those in slow-start.One approach is to estimate the target window size as a linear function of the instantaneous free spaceat the AAP bu�er. That is, the window for each connection is set to the available bu�er space multipliedby a fraction �. f(Be(t)) = �Be(t) = �(B � Q(t)): (3.3)The fraction � determines the the bu�er occupancy in steady state. From simulations, we observedthat such a function performs well and is able to reach a stable state when the TCP sources are physicallyclose to the AAP, that is when the delays in the control loop are small. With larger feedback delays,however, especially when all the connections are in the congestion avoidance phase, such a function maycause substantial over-correction. To illustrate this, consider an example where N TCP sessions with equalround-trip times are active, with all of them in the congestion avoidance phase. Let the parameter � be 1.The behavior of bu�er occupancy at the AAP is graphically illustrated in Figure 13. As long as the totalbu�er occupancy is below a target setpoint, all the connections are allowed to increase their windows by onesegment. Thus, the overall bu�er occupancy increases by N segments every RTT. In Figure 13 this is thecase for intervals (t0; t1), (t1; t2), and (t2; t3). Notice that because of the feedback delay, the new windowfeedback becomes e�ective one round-trip time later. At time t2 the bu�er occupancy exceeds the theoreticalsetpoint and all the connections are requested to decrease their window. The amount of decrease dependson the exact time that the ack from an individual connection is processed at the AAP. In the worst case,each TCP connection will be asked to reduce its window by N segments, since at time t3 the overall bu�eroccupancy exceeds the target setpoint by N . In the next RTT, that is during the interval (t3; t4), all Nconnections will decrease their windows by N segments, and the bu�er occupancy at the AAP may go downby as many as O(N2) segments. These large oscillations in the windows can cause frequent under
ows inthe AAP, resulting in under-utilization of the available capacity in the ATM pipe.11

O(N)
time

qu
eu

e
le

ng
th

target setpoint

O(N2)
Bb

0 t0 t1 t2 t3 t4RTT RTT RTT RTTFigure 13: Potential queue behavior when computing feedback using a linear function.A method of managing the bu�er allocation dynamically without resulting in large over-correction isneeded. The computed feedback should change rather slowly compared to the actual amount of emptybu�er in order to the system to reach a steady state in the general case. We use a logarithmic function tocompute the feedback sent to individual TCP sessions. That is,f(Be(t)) = � log2Be(t) = � log2(B �Q(t)): (3.4)The total bu�er size B and the bu�er occupancy Q(t) are expressed in terms of number of packets ratherthan bytes.The motivation for a logarithmic function for estimation of the target window size is based on an un-derstanding of the di�erence in behavior of TCP when it is in congestion avoidance phase and in slow startphase. We would like a fair allocation of the bu�er to all connections sharing the bu�er and, subsequently, thebandwidth in the ATM network. A TCP connection in slow-start phase doubles its window every round-triptime in contrast to a connection in congestion avoidance phase, where it increases only by one every RTT.The slow-start phase is to allow a TCP connection to rapidly ramp up to the point where the round-trippipe is �lled. Any further increases in the window would result in a gradual build-up of the queue at thebottleneck. Once the round-trip pipe is full, we would like the queue occupancy to increase at most linearlywith time so that large oscillations in window size can be avoided. By using a logarithmic function to com-pute the explicit window feedback, we force all TCP connections to behave as if they are in the congestionavoidance phase. To illustrate this point, consider the case where all TCP connections are in the slow-startphase. The bu�er occupancy can be expected to increase exponentially in this case, causing the free bu�eralso to decrease exponentially. The feedback values signaled to each connection will now decrease linearly,since they are the logarithm of an exponentially varying signal. The behavior when the bu�er occupancydrops will be similar. Notice that if some of the active TCP connections are in congestion avoidance phase,their window increase process will be una�ected as long as their current window size is smaller than thatindicated in the most recently received ack. 12

This logarithmic feedback function allows us to allocate the free bu�er among the TCP connections, incre-mentally, on encountering an ack from each connection. This does not require maintaining any connection-level state. Although this scheme has similarities with bu�er allocation in credit-based
ow control [26, 27],our goal is not to achieve loss-free operation, but to reduce losses dramatically, while achieving fairness.Gross over-allocation is avoided because of the incremental allocation of the bu�er upon each ack received,so that the feedback returned is a function of the current free bu�er.Using this function, rapid changes in the bu�er occupancy will cause relatively small changes to theactual feedback sent to the TCP connections and therefore, the bu�er occupancy manages to reach thesteady state independent of the phase that TCP connections operate in. In Section 4 we evaluate extensivelywith simulations the system performance when the feedback is computed using the logarithmic functiongiven by Eq. (3.4).The feedback computed for each TCP connection when using the logarithmic function can be signi�cantlysmaller than that computed with the linear function. This may cause under-utilization when only a smallnumber of TCP connections is active: the sum of the windows of the TCP connections may not be able to�ll the network round-trip pipe. In the following section we describe a simple adaptive method that adjustsparameter � to the o�ered load so that performance is maximized even when a single TCP connection isactive.3.2 Adapting � to the bandwidth-delay product and bu�er sizeWe would like the feedback computed by EWA to a�ect the source windows only after the round-trip pipebecomes full. However, when � is small, it is possible that the feedback computed by the logarithmic functionis small. As a result, if only a small number of TCP connections are active, the bottleneck link will be under-utilized. Also, a side-e�ect of using the free bu�er to compute the feedback is that the bu�er occupancy insteady state increases with an increasing number of connections. To be able to bring the bu�er occupancyto the desired setpoint, we make the scaling parameter � adaptive to the bu�er state.We use a simple method to adapt �. The method attempts to correct � only over long timescales, sothat it will not a�ect the robustness and stability of the feedback computation process itself. The objectiveof EWA is to have the average queue length operate within a prede�ned range. The adaptive method thatwe propose keeps track of the average queue length. In our experiments the average queue size is computedusing a �rst order low-pass �lter. At a sampling point t, if Q(t�) is the average queue length and Q(t) thethe current queue length sample, then the average queue length is updated asQ(t) = (1� g)Q(t�) + gQ(t);where in our experiments the gain g is set to 1/128.Two thresholds are de�ned for Q(t), with the goal of maintaining the bu�er occupancy between thesethresholds. If the average bu�er occupancy is below the low threshold, then, � is increased by a smallconstant quantity wup every T seconds, that is� �+wup:If the average bu�er occupancy exceeds the high threshold, then � is reduced multiplicatively everyT seconds as follows: 13

� � �wdown:The additive increases allow the system to slowly increase the computed feedback so that eventually thebu�er occupancy will be within the desired operating range. On the other hand, in the event of sudden queuebuild up (possibly due to a reduction in the available bandwidth in the ATM segment) the multiplicativedecreases will enable the bu�er occupancy to be brought down rapidly. Thus, the combination of additiveincreases and multiplicative decreases allows the system to search for a value that will bring the bu�eroccupancy within the desired range. It is important to note here that, because of the hysteresis introducedby the two bu�er thresholds, there is a range of values for � that can bring the bu�er occupancy withinthe speci�ed region. As a result, the robustness and stability of the system can be expected to show littlesensitivity to the setting of the parameters used for adapting �.The high bu�er threshold is used to control the maximumbu�er occupancy in steady state. Therefore, thesetting of this threshold determines the ability of the system to accommodate bursty tra�c without causingan over
ow. Similarly, the low threshold allows the the system to tolerate short breaks in incoming tra�cwithout causing an under
ow. In our experiments we set the high and the low thresholds to 60% and 20%,respectively, which we found to be good choices to achieve these goals. Notice that the dynamic behavior ofEWA will be fundamentally the same for other choices as well. We set the parameters wup and wdown usedto correct � to 1/8 and (1-1/32), respectively. The update interval T was chosen as 10 milliseconds. Thesechoices make the adaptation process su�ciently slow so that the system behavior will be determined mostlyby the EWA feedback rather than by the method used to adapt �. In all our simulation experiments, weused an initial value of 1 for �,Adapting the value of � based on the bu�er occupancy solves the problem of under-utilization when onlya small number of connections is active and the round-trip delay is long: if the value of � is quite small sothat the sum of the feedback sent to the connections sharing the bu�er is less than the bandwidth-delayproduct, the average occupancy will drop below the low threshold. As a result, � will increase until thebu�er occupancy is within the desired range. Similarly, when a large number of TCP connections becomesactive, the bu�er occupancy may increase beyond the high threshold and consequently the value of � willdrop, bringing the steady state bu�er occupancy within the desired range.In the following section we use results from extensive simulation experiments to show that the combinationof the logarithmic feedback function and adaptive algorithm for adjusting � brings the bu�er occupancywithin the desired range and achieves high network utilization and fairness.4 Performance EvaluationHaving described the details of the Explicit Window Adaptation scheme, we now turn to evaluating itsperformance using simulation. The topology used in all our simulations is the one shown in Figure 1, whereall the network links are assigned a bandwidth capacity of 155 Mbits/sec. We test the performance of thescheme for a large range of RTTs | from 11 to 100 milliseconds. We tested the scheme not only for thesimple case of constant available rate in the ATM segment, but also when the available rate changes overa wide range. In addition to persistent TCP sources, we also investigated the performance of the schemeunder on-o� sources where feedback is often less e�ective. The total bu�er size in the AAPs is a parameterin the simulations, but was always set not to exceed the bandwidth-delay product of the network.14

Since the feedback loop in our scheme extends only from the AAP to the sources of the TCP connections,the response of the algorithm is determined by the delay in the local IP network rather than the total RTTof the connections. Fortunately, we can expect the delay in the ATM segment to dominate the RTT of theconnection in an environment where IP-based local networks are interconnected through a wide-area ATMnetwork segment. The di�cult case for EWA, however, occurs when the delay in the IP part dominatesthe total RTT of the connection. To test the performance of the scheme in such a con�guration, we alsodesigned simulation experiments where the IP delay is as large as 49 milliseconds and the delay in the ATMsegment is only 1 millisecond. Although such a combination is unlikely in the environment we consider, itserves as a worst-case scenario for testing the e�ectiveness of the scheme.We used the OPNET modeling tool for all the simulations. The TCP model is based on the Renoversion. It supports the congestion control mechanism described by Jacobson [1], exponential back-o�,enhanced round-trip time (RTT) estimation based on both the mean and the variance of the measured RTT,and the fast retransmit and fast recovery mechanisms. However, some adjustments had to be made to theTCP timers; since the RTT values in some of our simulations are of the order of just a few milliseconds, weset the granularity of the timers to 20 milliseconds. We used a constant TCP segment size of 1500 bytesin all the simulations. Unless stated otherwise, the throughput measurements are performed in intervals of250 milliseconds.The metrics we use to evaluate the scheme are the link utilization, fairness, and bu�er occupancy atAAP-1. In the speci�c network con�guration considered, the utilization of the ATM link L1 (which isthe bottleneck link) serves as an indication of the overall network performance. In most of our simulationexperiments, the entire capacity of this link is available to the TCP connections under observations, thussimulating a steady rate in the ATM segment. However, we also conducted experiments where the capacityof the link L1 was shared by other on-o� tra�c during the course of the simulation, forcing the available rateto vary. We demonstrate the ability of the scheme to achieve fairness by plotting the growth of sequencenumbers for each simulated TCP connection. Finally, the bu�er occupancy plots serve to demonstrate theconvergence dynamics of the algorithm.4.1 Performance with small IP delaysWe begin the evaluation of the scheme by �rst using the tra�c scenario used in Section 2. In this scenario,a total of ten connections open simultaneously at time t = 0 and remain active for 10 seconds. At timet = 10 seconds �ve of the connections (6{10) close. The remaining connections stay active for another5 seconds, when three more connections (3{5) close. The last two connections remain active until the endof the simulation at time t=20 seconds.The one-way network delay in the IP datagram network is set to 0.5 millisecond, and the one-way delayof the ATM backbone to 5 milliseconds, giving rise to 11 milliseconds of round-trip delay. The feedback delayfor the EWA scheme is 1 millisecond. The bu�er size at AAP-1 is set to 200 Kbytes which is approximatelythe bandwidth-delay product of the network. Note that these network parameters are identical to thoseused for comparing the Drop-Tail, Drop-from-Front, and the RED approaches in Section 2. The maximumwindow size is set to 200 Kbytes, so that a single connection will be able to utilize the available bandwidth.The ssthresh variable of TCP is initialized to 64 Kbytes.The sequence number growths of the TCP connections are plotted in Figure 14. Observe that theprogress of all TCP connections is fair. When the number of active connections decreases at time t = 1015

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 5 10 15 20

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 14: Sequence number growth for TCP connec-tions with EWA (IP Network 1 delays = 0.5 msecs,ATM backbone delay = 5 msecs). 0

50000

100000

150000

200000

0 5 10 15 20

B
uf

fe
r

oc
cu

pa
nc

y
(b

yt
es

)

Time (secs)

Explicit Window Adaptation

Figure 15: Bu�er size at IP-ATMRouter 1 with EWA(IP Network 1 delays = 0.5 msecs, ATM backbonedelay = 5 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 16: Utilization for each individual connec-tion at link L1 with EWA measured in intervals of250 msecs (IP Network 1 delays = 0.5 msecs, ATMbackbone delay = 5 msecs). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Figure 17: E�ective utilization of the ATM link atIP-ATM Router 1 with EWA measured in intervalsof 250 msecs (IP Network 1 delays = 0.5 msecs, ATMbackbone delay = 5 msecs).and 15 seconds, the remaining active connections detect and recover the unused bandwidth rapidly whilemaintaining fairness. Observe in Figure 14 how the slope of the sequence number lines changes at timest = 10 and 15 seconds as a result of extra bandwidth becoming available for the active connections.The amount of bandwidth utilized by each TCP connection is shown in Figure 16, normalized to themaximum throughput that can be achieved (for a 155 Mbits/sec link this is approximately 135 Mbits/secbecause of the overhead of cell headers, RM cells, TCP/IP headers, etc.). In this �gure, the throughput foreach TCP connection is measured in intervals of 250 milliseconds. Observe that the throughput allocationis perfectly fair among the active connections. During the �rst 10 seconds, when ten TCP connections areactive, each of them receives 1/10th of the available bandwidth. From time t=10 secs to t=15 secs, when�ve TCP connections are active, each receives 1/5th of the available bandwidth. Finally, when only twoconnections are active, each gets half of the available bandwidth.Figure 15 illustrates the bu�er occupancy at AAP-1. As can be seen in this �gure, the bu�er neverunder
ows in steady state, leading to perfect link utilization. This is veri�ed by Figure 17 where themeasured link utilization is shown. Except for brief periods when the number of active connections changes,the utilization of link L1 remains 100%. The reason for the under
ows at time 10 and 15 seconds can be16

explained as follows: When the number of active connections decreases, more bandwidth becomes availableto each of the remaining active connections. However, the sum of the windows of the active TCP connectionsis not large enough to �ll the round-trip network pipe. As a result, it will take a few RTTs before the windowsof the remaining active TCP connections grow to a size that can �ll the network links. Note that the rateat which the window of a given TCP connection grows decreases signi�cantly if the connection is operatingin the congestion avoidance phase (window size above the ssthresh value). This is indeed the case in thissimulation experiment at time t = 15 when only two connections remain. The window size for the twoactive connections must increase from approximately 40 Kbytes up to 85 Kbytes to achieve full utilizationof the network bandwidth. At the rate of one segment per RTT, this takes approximately 150 milliseconds,as can be veri�ed from Figure 15. Thus, the interval over which the under-utilization occurs in this caseis determined by the TCP window increase process rather than by the dynamics of our window adaptationscheme.4.2 Performance with long IP delaysIn this section we test the sensitivity of the explicit window adaptation method to the IP network delays.We study the behavior of the proposed method in the case where most of the network delays are in the IPpart. This kind of con�gurations is the hardest for our scheme since the delays of the feedback loop aredetermined by the IP delays (assuming that the network pipe in the ATM part is full).We test the performance of the proposed scheme in the extreme case where the one-way IP network delayis 49 milliseconds and the total round-trip network delay is 100 milliseconds. The one-way delay in the ATMnetwork is only 1 millisecond. The bu�er size in AAP-1 is set to be equal to bandwidth-delay product ofthe network which is approximately 2 Mbytes. Because of the size of the network and in order to isolate thee�ects of slow window increases, due to the TCP congestion avoidance phase, on the system performance,we have set ssthresh to 1 Mbyte, so that all TCP connections will be able to increase rapidly their windowsin the absence of packet losses. Therefore, the dynamics of the network will depend mostly on the explicitwindow adaptation scheme and more speci�cally on how fast the parameter �, which is used to compute thefeedback sent to TCP sources, adapts to network changes rather than on the TCP window growth rate.Figure 18 shows the sequence number growth for the active TCP connections. Observe that the progressis perfectly fair, even though the round-trip delay of the network is 100 milliseconds. Figure 20 illustratesexactly what portion of the available bandwidth is used by each TCP connection. The bu�er occupancy atAAP-1 is shown in Figure 19. Observe that even in this extreme case where the total delay in the IP networkis almost 100 milliseconds, and even though all active TCP connections increase their window exponentially,the explicit window adaptation scheme is able to bring the bu�er occupancy to equilibrium very fast. Whenthe number of active connections decreases, at times t = 10 secs and t = 15 secs, the bu�er under
ows whichunavoidably leads to some link underutilization. Two factors a�ect the duration of the bu�er under
ow: theTCP window increase time and the time required for parameter � to bring the system in a state with non-zero bu�er occupancy. Faster increase rate for � would help reduce the duration of link underutilization byincreasing the risk of packet losses. The observed underutilization, however, is not expected to be a problemin actual networks mainly for two reasons: (i) the number of active connections will be much larger than two,and (ii), the ssthresh variable in TCP will not be set to something even close to 1 Mbyte. In current TCPimplementations the initial ssthresh value is in the range of 16 Kbytes-64 Kbytes. Therefore, the duration oflink underutilization will be dominated by the time needed by individual TCP connections to increase their17

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 5 10 15 20

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 18: Sequence number growth for TCP connec-tions with EWA (IP Network 1 delays = 49 msecs,ATM backbone delay = 1 msecs). 0

500000

1e+06

1.5e+06

2e+06

0 5 10 15 20

B
uf

fe
r

si
ze

 (
by

te
s)

Time (secs)

Explicit Window Adaptation

Figure 19: Bu�er size at IP-ATMRouter 1 with EWA(IP Network 1 delays = 49 msecs, ATM backbonedelay = 1 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 20: Utilization for each individual connec-tion at link L1 with EWA measured in intervals of250 msecs (IP Network 1 delays = 49 msecs, ATMbackbone delay = 1 msecs). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Figure 21: E�ective utilization of the ATM link atIP-ATM Router 1 with EWA measured in intervalsof 250 msecs (IP Network 1 delays = 49 msecs, ATMbackbone delay = 1 msecs).windows. For example, in the scenario considered, if the ssthresh variable was set to 512 Kbytes insteadof 1 Mbyte (which is again unrealistically large), TCP would need approximately 20-30 seconds before itwas able to achieve 100% utilization after time t = 15 seconds when only two TCP sessions remain activecompared to approximately 2 seconds needed with the proposed method. In any case, even during the periodof under
ow and underutilization, the performance of the active connections constantly improves and theprogress is fair. Figure 21 shows for the test case considered, that the total link utilization never drops below60%.4.3 Performance with small bu�ers and unequal IP delaysWe now show that Explicit Window Adaptation can be equally e�cient and stable even when the availablebu�er in AAP-1 is much smaller than the bandwidth-delay product of the network and when not all TCPconnections have equal delays in the local IP network segment.The fairness and e�ciency of packet discard schemes such as Drop-Tail, Drop-from-Front, and REDdegrade dramatically when the amount of bu�er at the AAP is less than the round-trip bandwidth-delay18

product. Lakshman and Madhow [7] showed that the amount of bu�er in Drop-Tail switches should be atleast two to three times the bandwidth-delay product of the network in order for TCP to achieve decentperformance and to avoid losses when operating in the slow-start phase. Also, Lakshman, et. al. [5] demon-strated that the bu�ering needed by the Drop-from-Front scheme must be of the order of the bandwidth-delayproduct for the network to achieve good performance.For this experiment we use the same network topology and tra�c scenario from the previous experiment.The one-way delay in the ATM backbone is set to 5 milliseconds. The delays in the IP network vary from1 to 5 milliseconds for the individual connections. The one-way IP delay is 1 millisecond for connections 1and 6, 2 milliseconds for 2 and 7, and increasing so on to 5 milliseconds for connections 5 and 10. Accordingto this setup the total round-trip delays varies from 12 to 20 milliseconds for the individual connections.The bandwidth-delay product for the longest connection is approximately 390 Kbytes. To test the ability ofour scheme to work with small bu�ers, we set the bu�er capacity to 200 Kbytes, approximately half of thisbandwidth-delay product.The sequence number growth for the TCP connections is shown in Figure 22. The progress for all theactive connections is steady and fair. Fairness is achieved in terms of having all TCP connections operate withequal transmission windows, since AAP-1 computes similar feedback for each connection. The throughputachieved by each connection is shown in Figure 24. Note the small variations in the utilization of individualconnections because of the di�erences in round-trip delays. This is because of the well-known e�ect of TCPfavoring connections with smaller round-trip times [28]. Achieving equal throughputs under asymmetricRTTs requires bandwidth allocation and scheduling at the level of individual TCP
ows.The bu�er occupancy in AAP-1 is shown in Figure 23. The bu�er occupancy is able to reach its equi-librium state rapidly, even though its total capacity is limited to half the bandwidth-delay product of thenetwork and the active TCP sessions have unequal round-trip delays. The duration of the bu�er under
owand the resulting link underutilization when the number of active connections decreases are both small tobe of concern.4.4 Performance with increasing number of TCP connectionsIn the results presented so far, the number of active TCP connections was made to decrease over the courseof the simulation, and consequently the available bandwidth for the remaining connections increases. In thissection we consider the case where new TCP connections join already active ones during the simulation. Ane�ective bu�er management scheme must be able to cause the existing TCP connections to withdraw part oftheir bu�er and bandwidth allocations quickly in order to accommodate tra�c sent by the new connections.We have modi�ed slightly the tra�c scenario we used in the preceding sections in order to illustrate theability of the scheme to accommodate new connections. At time t = 0 we activate �ve TCP sessions (1{5).At time t = 10 seconds, we open �ve more TCP sessions (6{10), thus, changing the total number of activeTCP connection from �ve to ten. Finally, at time t = 15 seconds we close eight of the ten active connections(3{10). All connections have equal round-trip delays. Both the IP and the ATM network delays are set to5 milliseconds, resulting in a total round-trip delay of 20 milliseconds. The bu�er size at AAP-1 is set equalto the bandwidth-delay product, which is approximately 390 Kbytes.The simulation results for this experiment are shown in Figures 26, 27, 28, and 29. The sequence numbergrowth for the TCP connections is shown in Figure 26. During the �rst 10 seconds, when there are �veconnections active, the progress for all of them is fair and steady. As shown in Figure 28 each connection19

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 5 10 15 20

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 22: Sequence number growth for TCP connec-tions with EWA (IP Network 1 delays vary from 1 to5 msecs, ATM backbone delay = 5 msecs). 0

50000

100000

150000

200000

0 5 10 15 20

B
uf

fe
r

oc
cu

pa
nc

y
(b

yt
es

)

Time (secs)

Explicit Window Adaptation

Figure 23: Bu�er size at IP-ATMRouter 1 with EWA(IP Network 1 delays vary from 1 to 5 msecs, ATMbackbone delay = 5 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 24: Utilization for each individual connec-tion at link L1 with EWA measured in intervalsof 250 msecs (IP Network 1 delays vary from 1 to5 msecs, ATM backbone delay = 5 msecs). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Figure 25: E�ective utilization of the ATM link atIP-ATM Router 1 with EWA measured in intervalsof 250 msecs (IP Network 1 delays vary from 1 to5 msecs, ATM backbone delay = 5 msecs).acquires exactly 20% of the available bandwidth. Figure 27 shows that the bu�er occupancy reaches itssteady state quickly and remains at that level as long as the number of TCP connections remains the same.When the �ve new connections open at time t = 10 seconds, the existing connections release quicklysome of the available bandwidth. This is evident from Figure 26 by the change in the slope of the sequencenumber growth lines. Notice that the initial sequence number for the new TCP connections is 2,780,000.The newly opened TCP connections manage to utilize quickly a fair portion of the available bandwidth. Thisfact is more clearly illustrated in Figures 28 where we can see that right after time t = 10 secs, the explicitwindow adaptation scheme quickly revokes part of the bandwidth, currently in use by the pre-existing TCPconnections, to accommodate the new ones. Within approximately half a second all ten connection havereached their steady state and achieved equal thoughputs. It is interesting also to observe in Figure 27 that,after the number of active TCP connections increases from �ve to ten, the bu�er reaches it new equilibriumstate without dropping any packets. The behavior of the scheme when the number of active connectionsdecreases is fundamentally identical to that observed and analyzed in the previous experiments.The results presented in this section suggest that the EWA scheme is capable of accommodating increasingnumber TCP connection while achieving fairness, high utilization and stable behavior: the existing connec-20

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 5 10 15 20

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 26: Sequence number growth for TCP con-nections with EWA (IP Network 1 delays = 5 msecs,ATM backbone delay = 5 msecs). 0

50000

100000

150000

200000

250000

300000

350000

0 5 10 15 20

B
uf

fe
r

oc
cu

pa
nc

y
(b

yt
es

)

Time (secs)

Explicit Window Adaptation

Figure 27: Bu�er size at IP-ATMRouter 1 with EWA(IP Network 1 delays = 5 msecs, ATM backbone de-lay = 5 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 28: Utilization for each individual connec-tion at link L1 with EWA measured in intervals of250 msecs (IP Network 1 delays = 5 msecs, ATMbackbone delay = 5 msecs). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Li
nk

 U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Figure 29: E�ective utilization of the ATM link atIP-ATM Router 1 with EWA measured in intervalsof 250 msecs (IP Network 1 delays = 5 msecs, ATMbackbone delay = 5 msecs).tions withdraw part of their allocations to allow a quick ramp-up for the new ones. Furthermore, during thetransient time the scheme does not show any bias for either the existing or the new TCP connections.4.5 Performance with varying bandwidthIn all the experiments so far we assumed that the available bandwidth in the ATM segment was constant.We now explore how changes in the bandwidth available to the aggregate TCP tra�c a�ect the behaviorand the performance of the TCP connections. We vary the bandwidth available to TCP tra�c by openingand closing a high-priority ATM connection that shares the same link L1 with the aggregate TCP tra�c.The amount of bandwidth reserved for this high-priority connection is a simulation parameter. Although wehave studied the behavior of the scheme for both low- and high-frequency changes in the TCP bandwidth,due to space limitations we will present results only for the case where the available bandwidth changes withhigh frequency. For this experiment all ten TCP connections open at time t = 0 and remain open for theduration of the simulation, lasting 20 seconds.We model these high-frequency changes in available bandwidth by opening and closing the high priority21

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

0 5 10 15 20

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 30: Sequence number growth for TCP connec-tions with EWA when the available bandwidth variesfrom 80 Mbits/sec to 155 Mbits/sec (IP Network 1delays = 5 msecs, ATM backbone delay = 5 msecs). 0

50000

100000

150000

200000

250000

300000

350000

0 5 10 15 20

B
uf

fe
r

oc
cu

pa
nc

y
(b

yt
es

)

Time (secs)

Explicit Window Adaptation

Figure 31: Bu�er size at IP-ATM Router 1 withEWA when the available bandwidth varies from80 Mbits/sec to 155 Mbits/sec (IP Network 1 delays= 5 msecs, ATM backbone delay = 5 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Connection 1
Connection 2
Connection 3
Connection 4
Connection 5
Connection 6
Connection 7
Connection 8
Connection 9

Connection 10Figure 32: Utilization for each individual connec-tion at link L1 with EWA measured in intervals of250 msecs when the available bandwidth varies from80 Mbits/sec to 155 Mbits/sec (IP Network 1 delays= 5 msecs, ATM backbone delay = 5 msecs). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

T
C

P
 L

in
k

U
sa

ge

Time (secs)

Explicit Window Adaptation

Figure 33: E�ective utilization of the ATM link atIP-ATM Router 1 with EWA measured in intervals of250 msecs when the available bandwidth varies from80 Mbits/sec to 155 Mbits/sec (IP Network 1 delays= 5 msecs, ATM backbone delay = 5 msecs).connection using an ON/OFF model where the duration of the ON and OFF periods is exponentiallydistributed with a mean of 50 milliseconds. When in the ON state, the high priority connection is allocated75 Mbits/sec. Therefore, the bandwidth variability is of the order of 50% of the link capacity. Both theIP and the ATM delays are set to 5 milliseconds and the bu�er size is set to 390 Kbytes, equal to thebandwidth-delay product of the network.The simulation results for this experiment are presented in Figures 30, 31, 32, and 33. The progress ofall ten TCP connections is fair and the EWA mechanism successfully controls the bu�er occupancy: thereare no bu�er over
ows or under
ows. However, careful examination of the simulation results revealed thatthe high variability in the queueing delays triggered packet retransmissions for some TCP connections. Thisis because the TCP timeout estimation algorithm was not able to adapt to large variations in the round-trip delays fast enough.y However, these retransmissions have only a minor e�ect on the progress of theyLarger granularities for the TCP timers would have prevented the retransmissions in this particular case.22

corresponding TCP connections, as can be seen in Figures 30 and 32. Since the bu�er never under
ows,we conclude that the total link utilization is 100%. Also, since the high-priority connection is active 50% ofthe time and the active connections use approximately 48% of total link capacity, we can expect that, onthe average, 76% of the link bandwidth will be available for transporting TCP tra�c. This expectation isveri�ed by the results in Figure 33.4.6 Performance with large number of connections and non-persistent sourcesSo far in our experiments, the TCP connections were allowed to transmit long enough to reach steadystate. Next, we consider the case of non-persistent TCP connections where the connections do not have datato transmit at all times. In this experiment, we simulate a mix of greedy and non-persistent connectionsto study their interaction and the resulting dynamics when the EWA scheme is used to control the TCPwindows.We increase the total number of TCP connections to forty. Ten of them are driven by persistent (greedy)sources. The remaining thirty connections are driven by ON-OFF sources where the ON and OFF periodsare exponentially distributed, each with an average of 200 milliseconds. Eight connections originate fromeach of the �ve source nodes in Figure 1. Six of them carry tra�c from ON-OFF sessions and the remainingtwo carry tra�c from persistent sessions. The one-way delay in the IP is set to 49 milliseconds and that in theATM backbone to 1 millisecond, giving rise to 100 milliseconds of round-trip delay for each connection. Thus,the ON and OFF periods are on the average small multiples of the RTT. It is important to emphasize herethat all the TCP connections remain open for the entire duration of the simulation. It is the applicationsthat feed the corresponding TCP connections that follow the ON-OFF model. We set the bu�er size inAAP-1 to be equal to the bandwidth-delay product of the network, which is approximately 2 Mbytes. Thestart time for each of the forty TCP connections is uniformly distributed from 0 to 5 milliseconds.TCP-controlled ON-OFF sources can introduce signi�cant amount of burstiness to the network: it islikely that during an OFF period of the connection, all of the outstanding data transmitted during the lastON period have been acknowledged. As a result, in the subsequent ON period the connection may transmitan entire window worth of data as a single burst. In addition, since the connection may not have receivedany feedback for some time before entering the ON period, it may operate with a larger window size thanthe current value computed by the window adaptation scheme, until the �rst feedback arrives from the AAPafter one RTT. These two e�ects pose di�culties for the EWA scheme. Despite these problems, the resultsto be presented next reveal that EWA remains highly e�cient and fair even in the presence of a large numberof bursty connections.Figure 34 shows the sequence number growth for one representative TCP connection from each of the�ve source nodes carrying ON-OFF tra�c, and one TCP connection carrying tra�c from a greedy source.Since the ON-OFF sources have a 50% duty cycle, we would expect the sequence number growth rate forON-OFF sources to be approximately half of that of persistent ones. This is indeed the case, as seen inFigure 34. Deviations from this expected value are due to the statistical nature of the tra�c model andbecause the connections do not open in a synchronized manner. It is important to note that the ON-OFFconnections make fair progress and have nearly identical behavior.The bu�er occupancy at AAP-1 for this experiment is shown in Figure 35. Notice that EWA protectsthe bu�er from over
ows. In addition, the bu�er under
ows are brief and do not signi�cantly a�ect theutilization of link L1. Therefore, we can conclude that EWA manages to control the bu�er occupancy well23

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

0 5 10 15 20 25 30 35 40 45 50

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Explicit Window Adaptation

Connection 1 (ON-OFF)
Connection 2 (ON-OFF)
Connection 3 (ON-OFF)
Connection 4 (ON-OFF)
Connection 5 (ON-OFF)

Connection 6 (persistent)Figure 34: Sequence number growth for 5 ON-OFFTCP connections (one from each source node) and 1persistent TCP connection with EWA (in total thereare 10 persistent TCP sources, 30 ON-OFF TCPsources with mean ON-time = mean OFF-time =200 ms, IP Network 1 delays = 49 msecs, ATM back-bone delay = 1 msecs).
0

500000

1e+06

1.5e+06

2e+06

0 5 10 15 20 25 30 35 40 45 50

B
uf

fe
r

si
ze

 (
by

te
s)

Time (secs)

Explicit Window Adaptation

20% threshold

60% thresholdFigure 35: Bu�er size at IP-ATMRouter 1 with EWA(in total there are 10 persistent TCP sources, 30 ON-OFF TCP sources with mean ON-time = mean OFF-time = 200 ms, IP Network 1 delays = 49 msecs, ATMbackbone delay = 1 msecs).
0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50

T
ra

ns
m

is
si

on
 W

in
do

w
 (

K
B

yt
es

)

Time (secs)

Explicit Window Adaptation

Connection 1 (ON-OFF)
Connection 6 (persistent)

70

75

80

85

90

95

100

35 35.5 36 36.5 37 37.5 38Figure 36: Congestion window size for one ON-OFFand one persistent TCP connection with EWA. (intotal there are 10 persistent TCP sources, 30 ON-OFF TCP sources with mean ON-time = mean OFF-time= 200ms, IP Network 1 delays = 49 msecs, ATMbackbone delay = 1 msecs). 0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Li
nk

 U
til

iz
at

io
n

Time (secs)

Explicit Window Adaptation

Figure 37: E�ective utilization of the ATM link atIP-ATM Router 1 with EWA measured in intervalsof 250 msecs (in total there are 10 persistent TCPsources, 30 ON-OFF TCP sources with mean ON-time = mean OFF-time = 200 ms, IP Network 1 de-lays = 49 msecs, ATM backbone delay = 1 msecs).in this experiment. The utilization of link L1, as can be seen in Figure 37, is perfect most of the time.The TCP transmission windows for one ON-OFF and one persistent connection are shown in Figure 36where we can see that both connections operate with equivalent transmission windows. Notice that the ON-OFF connection is not penalized for being idle. Therefore, during the ON period of the ON-OFF connection,the scheme is able to force the greedy source to withdraw rapidly the bandwidth and bu�er allocations inorder to accommodate tra�c from the ON-OFF source.For comparison, we performed the same experiment with packet discard using the RED algorithm in24

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

0 5 10 15 20 25 30 35 40 45 50

T
C

P
 S

eq
ue

nc
e

N
um

be
rs

Time (secs)

Random Early Detection (RED)

Connection 1 (ON-OFF)
Connection 2 (ON-OFF)
Connection 3 (ON-OFF)
Connection 4 (ON-OFF)
Connection 5 (ON-OFF)

Connection 6 (persistent)Figure 38: Sequence number growth for 5 ON-OFFTCP connections (one from each source node) and 1persistent TCP connection with RED (in total thereare 10 persistent TCP sources, 30 ON-OFF TCPsources with mean ON-time = mean OFF-time =200 ms, maxp = 0:05,minth = 150, maxth = 400, IPNetwork 1 delays = 49 msecs, ATM backbone delay= 1 msecs).
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Li
nk

 U
til

iz
at

io
n

Time (secs)

Random Early Detection (RED)

Figure 39: E�ective utilization of the ATM link atIP-ATM Router 1 with RED measured in intervalsof 250 msecs (in total there are 10 persistent TCPsources, 30 ON-OFF TCP sources with mean ON-time = mean OFF-time = 200 ms, maxp = 0:05,minth = 150, maxth = 400, IP Network 1 delays =49 msecs, ATM backbone delay = 1 msecs).place of EWA. Figures 38 and 39 summarize the simulation results. As we can see in the sequence numbergrowth graph, the burstiness of the ON-OFF sources a�ect the performance of the persistent ones. Moreover,the overall progress is not as fair and steady as in the EWA scheme. It can be seen in Figure 38 that allthe connections go through a large number of slow-starts, signi�cantly a�ecting the e�ciency and fairnessof the network. As can be seen in Figure 39, depending solely on packet losses to detect congestion has animpact on the congested link's utilization which is signi�cantly worse than that achieved by EWA.5 ConclusionThe Explicit Window Adaptation scheme may be seen as an attempt to reconcile the inherent mismatchbetween window-based and rate-based congestion control approaches. This mismatch can cause large oscilla-tions in bu�er occupancy at the edge device (switch or router) connecting the rate-controlled segment to therest of the internetwork. The EWA scheme overcomes this problem by explicitly controlling the end-to-endwindow size to correspond to the round-trip delay-bandwidth product. By careful design of the feedbackfunction to set the window size, the scheme is able to achieve very low packet loss, a high degree of fairness,and almost perfect bandwidth utilization.An important advantage of the EWA scheme is its simplicity. The scheme is able to adapt automaticallyto the number of active connections, the tra�c load, the bu�er size, and the bandwidth-delay product of thenetwork without maintaining any per-connection state. In addition, the TCP implementations in the endsystems do not need to be modi�ed, nor does it require modifying the TCP protocol itself. Updating thewindow size in returning acks is done in a manner transparent to TCP. The processing performed by theAAP on each TCP acknowledgement consists of updating the receiver's advertised window and the checksum�elds. Note that checksum can be updated from knowing only the previous and new values of the advertised25

window �eld, as well as the old checksum value.Results from our simulation experiments demonstrate that the EWA scheme operates well under a widerange of tra�c scenarios. These experiments were not just \toy" simulations, but designed to represent thetra�c scenarios in a real network. In addition, we have also compared the results from our scheme with thosefrom using intelligent packet discard policies such as Drop-from-Front and RED. Both the Drop-from-Frontand RED policies have exhibited sensitivity to the speci�c tra�c scenario used. For example the dynamicsof TCP change when the number of active connections change. The performance of RED can be tuned byadjusting its parameters but such a process requires precise knowledge of the network topology and tra�cload. Adjusting RED's parameters to optimize network performance is an open issue and requires furtherinvestigation. The EWA scheme achieves fairness in steady state by signaling the same window size to all theTCP connections. It can also operate with bu�er sizes smaller than the round-trip delay-bandwidth productof the network. In addition, by adapting the parameter � to control the long-term bu�er occupancy, thescheme is able to work well with both small and large number of connections sharing the bu�er.Another important advantage of EWA is that it can accommodate non-responsive or ill-behaved tra�c.UDP tra�c is an example of such tra�c. Our scheme can be extended in ways to isolate the TCP tra�cfrom UDP tra�c. One approach is to simply to keep track of the amount of bu�er occupied by each UDPconnection and drop incoming packets when the connection's share of the bu�er exceeds the target valuecomputed by EWA. Although this approach o�ers fair usage of the available bu�er space it requires per-connection accounting for UDP
ows. Furthermore, such an approach may not be the best choice for NFStra�c: NFS often uses UDP datagrams as large as 64 Kbytes. If the allowed bu�er occupancy for a UDPconnection carrying NFS tra�c is less than 64 Kbytes, the whole UDP packet will be dropped. A solutionto this problem would be to reserve a minimum amount of the available bu�er space for the overall UDPtra�c. In case the feedback computed by EWA for a UDP
ow exceeds its bu�er usage, this additional spacecan be used accommodate large packets.When multiple ATM virtual circuits share the same bu�er at the AAP, the bu�er must be partitionedacross the VCs, and each partition must be controlled by a separate instance of EWA. A simple static methodthat partitions the bu�er proportionally to the bandwidth allocated to each VC would be adequate. Such anapproach is acceptable because the explicit window adaptation method is not sensitive to the exact amountof bu�ering available in a given partition. Clearly, the scheme can also be applied to the case when eachTCP connection is carried over a separate VC.The operation of the proposed method is not signi�cantly a�ected by the TCP segment size. Even thoughit is known that TCP favors connections with large segments when the window is allowed to grow, fairnesswill be reached in steady state because all active connections will receive similar feedback independent oftheir current window or segment size.Although in this paper we studied EWA in the limited context of an edge device, we believe that thescheme is applicable to more general environments to control congestion and improve fairness. In the future,we plan to explore its applications in more general network environments.References[1] V. Jacobson, \Congestion avoidance and control," in Proceedings of ACM SIGCOMM'88, pp. 314{329,1988. 26

[2] V. Jacobson, \Modi�ed TCP congestion avoidance algorithm."message to end2end-interest mailing list,April 1990.[3] W. R. Stevens, TCP/IP Illustrated, vol. 1. Addison-Wesley Publishing Company, 1994.[4] S. Floyd and V. Jacobson, \Random Early Detection gateways for congestion avoidance," IEEE/ACMTransactions on Networking, vol. 1, no. 4, pp. 397{413, August 1993.[5] T. V. Lakshman, A. Neidhardt, and T. J. Ott, \The drop from front strategy in TCP and in TCP overATM," in Proc. of IEEE INFOCOM'96, vol. 3, pp. 1242{50, March 1996.[6] V. Jacobson, R. Braden, and D. Borman, \TCP extensions for high performance," Request for Com-ments: 1323, May 1992.[7] T. V. Lakshman and U. Madhow, \Performance analysis of window-base
ow control using TCP/IP: Thee�ect of high bandwidth-delay products and random loss," in Proc. of High Performance Networking,V. IFIP TC6/WG6.4 Fifth International Conference, vol. C, pp. 135{149, June 1994.[8] J. C. Mogul, \Observing TCP dynamics in real networks," in Proceedings of ACM SIGCOMM'92,pp. 305{317, August 1992.[9] R. Wilder, K. K. Ramakrishnan, and A. Mankin, \Dynamics of congestion control and avoidance oftwo-way tra�c in an OSI testbed," ACM Computer Communication Review, vol. 21, no. 2, pp. 43{58,April 1991.[10] L. Zhang and D. D. Clark, \Oscillating behavior of network tra�c: A case study simulation," Intenet-working: Research and Experience, vol. 1, no. 2, pp. 101{112, December 1990.[11] L. Zhang, S. Shenker, and D. D. Clark, \Observations on the dynamics of a congestion control algorithm:The e�ects of two-way tra�c," in Proceedings of ACM SIGCOMM'91, pp. 133{147, September 1991.[12] A. Mankin, \Random drop congestion control," in Proceedings of ACM SIGCOMM'90, pp. 1{7, Septem-ber 1990.[13] A. Mankin and K. K. Ramakrishnan, \Gateway congestion control survey," Request for Comments:1254, August 1991.[14] S. Floyd and V. Jacobson, \On tra�c phase e�ects in packet-switched gateways," Internetworking:Research and Experience, vol. 3, no. 3, pp. 115{156, September 1992.[15] A. Romanow and S. Floyd, \Dynamics of TCP tra�c over ATM networks," IEEE Journal on SelectedAreas in Communications, vol. 633-41, no. 4, p. 13, May 1995.[16] L. Kalampoukas and A. Varma, \Performance of TCP over multi-hop ATM networks: A comparativestudy of ATM layer congestion control schemes," in Proceedings of ICC'95, pp. 1472{1477, June 1995.[17] B. J. Ewy, J. B. Evans, V. S. Frost, and G. J. Minden, \TCP/ATM experiences in the MAGIC testbed,"in Proc. of the Fourth IEEE International Symposium on High Performance Distributed Computing,pp. 87{93, August 1995. 27

[18] S. Floyd, \TCP and explicit congestion noti�cation," Computer Communication Review, vol. 24, no. 5,pp. 8{23, October 1994.[19] Z. Wang and J. Crowcroft, \A new congestion control scheme: Slow start and search (Tri-S)," ComputerCommunication Review, vol. 21, no. 1, pp. 32{43, January 1991.[20] L. S. Brakmo and L. L. Peterson, \TCP Vegas: End to end congestion avoidance on a global Internet,"IEEE Journal on Selected Areas in Communications, vol. 13, no. 8, pp. 1465{80, October 1995.[21] R. Jain, \Myths about congestion management in high-speed networks," Internetworking: Research andExperience, vol. 3, no. 3, pp. 101{113, September 1992.[22] R. Cole, D. Shur, and C. Villamizar, \IP over ATM: A framework document," Request for Comments(RFC): 1932, April 1996.[23] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan, \Dynamics of an explicit rate allocation algorithmfor ATM networks," in Proc. of International Broadband Communications Conference'96, IFIP-IEEE,April 1996.[24] D. Mitra, \Asymptotically optimal design of congestion control for high speed data networks," IEEETransactions on Communications, vol. 40, no. 2, pp. 301{311, February 1992.[25] A. K. Choudhury and E. L. Hahne, \Dynamic queue length thresholds in a shared memory ATMswitch," in Proc. of IEEE INFOCOM'96, vol. 2, pp. 679{87, March 1996.[26] H. T. Kung, T. Blackwell, and A. Chapman, \Credit-Based
ow control for ATM networks: Creditupdate protocol, adaptive credit allocation, and statistical multiplexing," in Proceedings of ACM SIG-COMM'94, pp. 101{114, September 1994.[27] C. M. Ozveren, R. Simcoe, and G. Varghese, \Reliable and e�cient hop-by-hop
ow control," IEEEJournal on Selected Areas in Communications, vol. 13, no. 4, pp. 642{650, May 1995.[28] S. Floyd, \Connections with multiple congested gateways in packet-switched networks, Part I: One-waytra�c," Computer Communication Review, vol. 21, no. 5, pp. 30{47, October 1991.
28

