
Adaptive Video Streaming:
Pre-encoded MPEG-4 with Bandwidth Scaling

A. Balk, M. Gerla, and M. Sanadidi
Network Research Laboratory, UCLA, Los Angeles, CA 90024 USA�

abalk, gerla, medy � @cs.ucla.edu

D. Maggiorini
Department of Informatics and Communication, Università degli Studi di Milano

dario@dico.unimi.it

Abstract

The increasing popularity of streaming video is a cause for
concern for the stability of the Internet because most streaming
video content is currently delivered via UDP, without any end-
to-end congestion control. Since the Internet relies on end sys-
tems implementing transmit rate regulation, there has recently
been significant interest in congestion control mechanisms that
are both fair to TCP and effective in delivering real-time streams.

In this paper we design and implement a protocol that at-
tempts to maximize the quality of real-time MPEG-4 video
streams while simultaneously providing basic end-to-end con-
gestion control. While several adaptive protocols have been pro-
posed in the literature [28, 37], the unique feature of our proto-
col, the Video Transport Protocol (VTP), is its use of receiver
side bandwidth estimation. Such estimation is transmitted to the
sender and enables it to adapt to network conditions by altering
its sending rate and the bitrate of the transmitted video stream.
We deploy our protocol in a real network testbed and extensively
study its behavior under varying link speeds and background
traffic profiles using the FreeBSD Dummynet link emulator [31].
Our results show that VTP delivers consistent quality video in
moderately congested networks and fairly shares bandwidth with
TCP in all but a few extreme cases. We also describe some of
the challenges in implementing an adaptive video streaming pro-
tocol.

1 Introduction

As the Internet continues to grow and mature, transmission
of multimedia content is expected to increase and compose a
large portion of the overall data traffic. Film and television dis-
tribution, digitized lectures, and distributed interactive gaming
applications have only begun to be realized in today’s Internet,
but are rapidly gaining popularity. Audio and video streaming
capabilities will play an ever-increasing role in the multimedia-
rich Internet of the near future. Real-time streaming has wide
applicability beyond the public Internet as well. In military and
commercial wireless domains, virtual private networks, and cor-
porate intra-nets audio and video are becoming commonplace
supplements to text and still image graphics.

Currently, commercial programs such as RealPlayer [27] and
Windows Media Player [24] provide the predominant amount of

the streamed media in the Internet. The quality of the content
delivered by these programs varies, but they are generally asso-
ciated with low resolution, small frame size video. One reason
these contemporary streaming platforms exhibit limited quality
streaming is their inability to dynamically adapt to traffic condi-
tions in the network during a streaming session. Although the
aforementioned applications claim to be adaptive, there is no
conclusive evidence as to what degree of adaptivity they employ
as they are proprietary, closed software [28]. Their video streams
are usually delivered via UDP with no transport layer conges-
tion control. A large-scale increase in the amount of streaming
audio/video traffic in the Internet over a framework devoid of
end-to-end congestion control will not scale, and could poten-
tially lead to congestion collapse.

UDP is the transport protocol of choice for video streaming
platforms mainly because the fully reliable and strict in-order
delivery semantics of TCP do not suit the real-time nature of
video transmission. Video streams are loss tolerant and delay
sensitive. Retransmissions by TCP to ensure reliability intro-
duce latency in the delivery of data to the application, which in
turn leads to degradation of video image quality. Additionally,
the steady state behavior of TCP involves the repeated halving
and growth of its congestion window, following the well known
Additive Increase/Multiplicative Decrease (AIMD) algorithm.
Hence, the throughput observed by a TCP receiver oscillates
under normal conditions. This presents another difficulty since
video is usually streamed at a constant rate (VTP streams are ac-
tually piecewise-constant). In order to provide the best quality
video with minimal buffering, a video stream receiver requires
relatively stable and predictable throughput.

Our protocol, the Video Transport Protocol (VTP), is de-
signed with the primary goal of adapting an outgoing video
stream to the characteristics of the network path between sender
and receiver. If it determines there is congestion, the VTP sender
will reduce its sending rate and the video encoding rate to a level
the network can accommodate. This enables VTP to deliver a
larger portion of the overall video stream and to achieve inter-
protocol fairness with competing TCP traffic. A secondary goal
of VTP is the minimal use of network and computer resources.
We make several trade-offs to limit processing overhead and
buffering requirements in the receiver. In general, VTP follows
a conservative design philosophy by sparingly using bandwidth
and memory during the streaming session.

In essence, the VTP sender asks the receiver the question: are

1

you receiving at least as fast as I am sending? If so, the sender
increases its rate by a small amount to probe the network for
unused bandwidth. If not, the sender immediately reduces its
rate by an amount based on the receiver’s bandwidth, the current
sending rate and video bitrate.

An important aspect of VTP is that it is completely end-to-
end. VTP does not rely on QoS functionality in routers, random
early drop (RED), other active queue management (AQM) or ex-
plicit congestion notification (ECN). It could potentially benefit
from such network level facilities, but in this paper we focus
only on the case of real-time streaming in a strictly best effort
network. Possible interactions between VTP and QoS routers,
AQM or ECN are areas of future work.

VTP is implemented entirely in user space and designed
around open video compression standards and codecs for which
the source code is freely available. The functionality is split
between two distinct components, each embodied in a separate
software library with its own API. The components can be used
together or separately, and are designed to be extensible. VTP
sends packets using UDP, adding congestion control at the ap-
plication layer.

This paper discusses related work in the next section and
presents an overview of the MPEG-4 compression standard in
Section 3. The VTP design is described in Section 4. Section
5 covers the VTP implementation and receiver buffering strate-
gies. The experimental evaluation of VTP is treated in Section 6
and is followed by the conclusion.

2 Related Work

Recent research approaches to address the lack of a suitable
end-to-end service model for multimedia streaming generally
fall into two categories: 1) modifications or enhancements to
AIMD congestion control to better accommodate streaming ap-
plications, or 2) model-based flow control based primarily on
the results of [26]. We give several examples of each technique
before presenting the motivation and design of VTP.

The Rate Adaptation Protocol (RAP) [28] is a rate based
AIMD protocol intended for transmitting real-time video. The
RAP sender uses receiver feedback about congestion conditions
to make decisions about its sending rate and the transmitted
video quality. The RAP algorithm does not result in fairness with
TCP in many cases, but router support in the form of Random
Early Drop (RED) can improve RAP’s inter-protocol behavior
to some extent.

A major difference between VTP and RAP is the degree to
which they comply to AIMD. While RAP is a full AIMD proto-
col, VTP performs additive increase but it does not decrease its
sending rate multiplicatively. Rather, it adjusts its sending rate
to the rate perceived by the receiver. RAP and VTP also dif-
fer in the type of video encoding they stream. RAP is based on
layered video encoding where the sender can decide how many
layers can be sent at any given time. On the other hand, VTP
assumes a discrete encoding scheme, where the sender chooses
one of several pre-encoded streams and exclusively sends from
that stream until it decides to change the video quality. Video
compression is described in further detail in the next section.

In the spirit of RAP, N. Feamster proposes SR-RTP [12, 13],
a backward compatible extension to the Real Time Protocol
(RTP). SR-RTP uses a quality adaptation mechanism similar to
RAP, but “binomial” congestion control reduces the congestion
window size proportional to the square root of its value rather
than halving it in response to loss. This is shown to assuage os-
cillations in the sending rate and produce smoother throughput.
Binomial algorithms also display a reasonable amount of TCP
fairness [6].

The main benefits of SR-RTP come from its features of se-
lective retransmission of certain video packets and decoder post-
processing to conceal errors due to packet loss. However, the
effectiveness of selective retransmission depends strongly on the
round trip time (RTT) between sender and receiver. Further, in
[13], the receiver post-processing is performed offline for ease
of analysis. It is not clear such recovery techniques are viable in
real time or with limited processing resources.

The Stream Control Transmission Protocol (SCTP) [32] is
a recently proposed protocol with many novel features de-
signed to accommodate real-time streaming. SCTP supports
multi-streaming, where a sender can multiplex several outgoing
streams into one connection. This can potentially be very advan-
tageous for compressed video formats since packets belonging to
different parts of the video stream can be treated differently with
respect to retransmission and order of delivery. The congestion
control mechanism in SCTP is identical to TCP, where the con-
gestion window is reduced by half in the event of packet loss.
Like TCP, SCTP employs slow start to initially seek out avail-
able bandwidth and congestion avoidance to adapt to changing
path conditions. This results in perfect fairness with TCP, but
leads to high variability in throughput at the receiver. An inves-
tigation of the applicability of SCTP to MPEG-4 streaming is the
subject of [4].

The work of J. Padhye, et. al. [26] has led to TCP-Friendly
Rate Control (TFRC) [16]. TFRC is not itself a protocol, but an
algorithm for maintaining the sending rate at the level of a TCP
flow under the same conditions. The TFRC sender adjusts its
rate according to an equation that specifies throughput in terms
of packet size, loss event rate, RTT, and the retransmission timer
value. TFRC is meant to serve as a congestion control frame-
work for any applications that do not require the full reliability
of TCP and would benefit from low variation in sending rate.

Application domains appropriate for TFRC include multime-
dia streaming, interactive distributed games, Internet telephony,
and video conferencing. Several authors have applied the TFRC
model to video streaming. In [34], a new error-resilient video
compression method is developed which relies on simplified
derivation of the TCP throughput equation. The relationship be-
tween the compression level and the congestion control model
is examined. The Multimedia Streaming TCP-Friendly Protocol
(MSTFP) is part of a comprehensive resource allocation strategy
proposed in [37] which uses a TFRC model to adapt streaming
MPEG-4 video.

Ostensibly, any rate adjustment scheme derived from TCP
would suffer the same limitations of TCP itself.1 TCP’s behav-
iors of poor link utilization in high-loss environments and un-

1The TCP throughput equation in TFRC is derived for TCP New
Reno in particular.

2

fairness against flows with large RTTs have been documented
repeatedly (see, for example, [2]). Although VTP decreases its
sending rate in response to packet loss, the decrease decision
does not assume that all packet loss is a result of overflowed
router buffers. At the same time, the amount of decrease is suf-
ficient to restrict the sending rate to within its fair share of the
network bandwidth.

In this paper we argue that it is possible to build a stable and
scalable network protocol that is not underpinned by AIMD.
VTP borrows the idea of additive increase from AIMD, but
its decrease step is not strictly multiplicative. VTP also uses
network bandwidth estimation, but in a different way than the
model-based approaches described above. By combining el-
ements of AIMD and model-based congestion control while
not directly following either, VTP attempts to benefit from the
strengths of each approach. VTP aims to be adaptive and flexi-
ble by making minimal assumptions about the network and us-
ing network feedback as a rough indicator, not as rigorous set
of input parameters. These principles encompass the motivating
factors of the VTP design.

3 MPEG-4 Background
The MPEG-4 video compression specification [18, 25] has

been developed as an open standard to encourage interoperabil-
ity and widespread use. MPEG-4 has enjoyed wide acceptance
in the research community as well as in commercial develop-
ment owing to its high bitrate scalability and compression ef-
ficiency. Packetization markers in the video bitstream are an-
other feature which make MPEG-4 especially attractive for net-
work video transmission. MPEG-4 is a natural choice for VTP
since abundant documentation exists and numerous codecs are
freely available. Like other MPEG video compression tech-
niques, MPEG-4 takes advantage of spatial and temporal redun-
dancy in individual frames of video to improve coding efficiency.
A unique capability of MPEG-4 is support for object-based en-

I P B B P PB B

Figure 1: Group of Visual Object Planes (GOV) in MPEG-4.

coding, where each scene is decomposed into separate video ob-
jects (VOs). A typical example of the use of object based encod-
ing is a news broadcast, where the news person is encoded as a

separate foreground VO while the background images compose
another object. VO motion is achieved by a progression of video
object planes (VOPs).

There are three different types of VOPs in the MPEG-4 for-
mat: (1) Intra-coded VOPs (I-VOPs) that are encoded indepen-
dently and can be considered “key” VOPs; (2) Predicted VOPs
(P-VOPs) that depend on preceding I- or P-VOPs and contain
predicted motion data and information about the error in the
predicted values; and (3) Bi-directionally predicted VOPs (B-
VOPs) that depend on both previous and next VOPs. Figure 1
shows a sequence of MPEG-4 VOPs, known as a Group of Video
Object Planes (GOV), with the dependencies represented above
each plane. If a VOP upon which other VOPs depend is dam-
aged during network transmission, decoding errors will manifest
in the damaged VOP as well as all its dependent VOPs, a phe-
nomenon known as propagation of errors. RFC 30162 describes
a structured packetization scheme that improves error resiliency,
making error concealment and error recovery more effective to
counteract error propagation.

I I

B B

P

B B B B

P

Base

Layer

Enhancement

Layer

Figure 2: 2 Layered MPEG-4 encoding, VOPs at the head of an arrow
depend on the VOPs at the tail.

Each VO can be composed of “layers”. A base layer contains
the basic representation of the VO and additional enhancement
layers can be added by the codec to improve video resolution
if needed. Figure 2 depicts a simple 2-layered MPEG-4 encod-
ing, with B-VOPs comprising the enhancement layer. Since each
VOP sequence can be accessed and manipulated independently,
MPEG-4 encodes information about the scene composition in a
separate stream within the video bitstream. The decoder’s job is
somewhat complex: in order to assemble a frame, it must calcu-
late dependencies and perform the decoding algorithm for each
layer of each VOP, build the scene according to the composition
information, and synchronize between the independent VOP se-
quences, all while observing the play out time constraint.

The fundamental processing unit in MPEG-4 is a 16x16 block
of pixels called a macroblock. Figure 3 shows a typical VOP
composed of rows of macroblocks called slices. Macroblocks
from I-, P-, and B-VOPs contain different kinds of data that re-
flect the particular dependency relationships of the VOP. A dis-
crete cosine transform (DCT) is applied to each macroblock, and
the resulting 16x16 matrix is then quantized. The range of the

2http://www.faqs.org/rfcs/rfc3016.html

3

II P B B P B B P I P B B P B B P I P B B P B B P

II P B B P B B P I P B B P B B P I P B B P B B P

II P B B P B B P I P B B P B B P I P B B P B B P

128 Kbps

256 Kbps

384 Kbps

Figure 4: Example of video level switching in discrete encoding.

. . .

.

.

.

.

.

.

.

.

.

. . .

.

.

.

.

.

.

.

.

.

16

16

slice

macroblock

VOP

Figure 3: Macroblocks and slices in MPEG-4.

quantization parameters (QPs) is normally from 1 to 31, with
higher values indicating more compression and lower quality.
Ultimately, the bitrate of an MPEG-4 video stream is governed
by the quantization scale of each DCT transformed macroblock.

Q. Zhang, et. al. [37] exploit this object based encoding struc-
ture by using network feedback to choose different quantizers for
each VOP in real time. Foreground (more important) and back-
ground (less important) VOPs are weighted unequally, with QP
values selected so that the quality of the background VOs is sac-
rificed first in times of congestion. The ranges of all quantizer
values are such that the sum of bitrates of all the VOP streams
equals the target bitrate of the whole video stream.

In contrast, VTP achieves adaptivity through a less complex
approach with considerably looser semantics and lighter pro-
cessing requirements. VTP is founded on the technique of dis-
crete video encoding, where each video level is independent of

the others. Each frame in the discrete encoded stream consists
of only one rectangular VOP of fixed size,3 which implies a one
to one correspondence between VOPs and frames. In this sense,
the MPEG-4 codec in VTP performs like a conventional frame-
based encoder. In the remainder of this paper the terms “VOP”
and “frame” are used interchangeably.

The VTP sender determines from which discrete stream to
send video data based on receiver feedback, and sends from that
level exclusively until a decision is made to change. The QPs
across all frames in a single level are all within a pre-defined
range. In effect, VTP adapts to one of the pre-encoded quantiza-
tion scales in the video source instead of computing the quantiz-
ers in real time during the streaming session.

In Figure 4, three discrete levels of an example streaming ses-
sion are shown with corresponding average bitrates. The vari-
able in this diagram is frame size (in bytes); the frame rate and
the GOV pattern are fixed between levels. The arrows indicate
video quality changes during the sent stream. The stream starts
at the lowest level – 128 Kbps, and then progresses to 256 Kbps
and 384 Kbps as VTP determines bandwidth share is available.
Later, VTP reduces the rate to 256 Kbps again as it notices con-
tention for the link. All three streams are synchronized by frame
throughout the transmission, but only one stream is sent at any
given time. The quality change occurs only on I-frames, since
the data in the P- and B-frames is predicted from the base I-frame
in each GOV.

4 The Video Transport Protocol

A typical streaming server sends video data by dividing each
frame into fixed size packets and adding a header containing,

3That is, there is only one video object in every scene.

4

for example, a sequence number, the time the packet was sent
and the relative play out time of the associated frame. Upon
receiving the necessary packets to reassemble a frame, the re-
ceiver buffers the compressed frame for decoding. The decom-
pressed video data output from the decoder is then sent to the
output device. If the decoder is given an incomplete frame due to
packet loss during the transmission, it may decide to discard the
frame. The mechanism used in the discarding decision is highly
decoder-specific, but the resulting playback jitter is a universal
effect. As predicted frames depend on key frames, discarding a
key frame can severely reduce the overall frame rate.

The primary design goal of VTP is to adapt the outgoing video
stream so that, in times of network congestion, less video data
is sent into the network and consequently fewer packets are lost
and fewer frames are discarded. VTP rests on the underlying
assumption that the smooth and timely play out of consecutive
frames is central to a human observer’s perception of video qual-
ity. Although a decrease in the video bitrate noticeably produces
images of coarser resolution, it is not nearly as detrimental to the
perceived video quality as inconsistent, start-stop play out. VTP
capitalizes on this idea by adjusting both the video bitrate and
its sending rate during the streaming session. In order to tailor
the video bitrate, VTP requires the same video sequence to be
pre-encoded at several different compression levels. By switch-
ing between levels during the stream, VTP makes a fundamental
trade-off by increasing the video compression in an effort to pre-
serve a consistent frame rate at the client.

In addition to maintaining video quality, the other important
factor for setting adaptivity as the main goal in the design is
inter-protocol fairness. Unregulated network flows pose a risk
to the stability and performance of the Internet in their tendency
to overpower TCP connections that carry the large majority of
traffic. While TCP halves its window in response to congestion,
unconstrained flows are under no restrictions with respect to the
amount of data they can have in the network at any time. VTP’s
adaptivity attempts to alleviate this problem by interacting fairly
with any competing TCP flows.

The principal features of this design, each described in the
following subsections, can be summarized as follows:

1. Communication between sender and receiver is a “closed
loop,” i.e. the receiver sends acknowledgments to the
sender at regular intervals.

2. The bandwidth of the forward path is estimated and used
by the sender to determine the sending rate.

3. VTP is rate based. There is no congestion window or slow
start phase.

4.1 Sender and Receiver Interaction

VTP follows a client/sever design where the client initiates a
session by requesting a video stream from the server. Once sev-
eral initialization steps are completed, the sender and receiver
communicate in a closed loop, with the sender using the ac-
knowledgments to determine the bandwidth and RTT estimates.

The VTP video header and acknowledgment or “control
packet” formats are shown in Figure 5. The symmetric design fa-
cilitates both bandwidth and RTT computation. The TYPE field

B) VTP Control Packet

32 bits

Video Data

A) VTP Video Packet

TYPE

SEQUENCE NO.

SENDER TIMESTAMP (secs)

SENDER TIMESTAMP (µsecs)

RECEIVER TIMESTAMP (secs)

RECEIVER TIMESTAMP (µsecs)

SIZE

32 bits

TYPE

SEQUENCE NO.

SENDER TIMESTAMP (secs)

SENDER TIMESTAMP (µsecs)

RECEIVER TIMESTAMP (secs)

RECEIVER TIMESTAMP (µsecs)

SIZE

Figure 5: VTP packet formats for a) video packets and b) control packets.

is used by the sender to explicitly request a control packet from
the receiver. For every � video packets sent, the sender will mark
the TYPE field with an ack request, to which the receiver will re-
spond with a control packet. The value of � is a server option that
is configurable at run time by the user. The two timestamp fields
for sender and receiver respectively are used for RTT measure-
ment and bandwidth computation. VTP estimates the bandwidth
available to it on the path and then calibrates its sending rate to
the estimate, as detailed in the following paragraphs.

When the receiver receives a data packet with the TYPE field
indicating it should send a control packet, it performs two simple
operations. First, it copies the header of the video packet and
writes its timestamp into the appropriate fields. Second, it writes
the number of bytes received since the last control packet was
sent into the SIZE field. The modified video packet header is
then sent back to the sender as a control packet. This minimal
processing absolves the receiver of bandwidth computation and
frees it for decoding and video playback, which are highly time
constrained.

Upon receipt of the control packet, the sender extracts the
value in the SIZE field and the receiver timestamp. The sender is
able to compute the time delta between control packets at the re-
ceiver by keeping the value of one previous receiver timestamp
in memory and subtracting it from the timestamp in the most re-
cently received packet. The value of the SIZE field divided by
this time delta is the rate currently being achieved by this stream.
This rate is also the “admissible” rate since it is the rate at which
data is getting through the path bottleneck. In essence, the mea-
sured rate is equal to the bandwidth available to the connection.
Thus, it is input as a bandwidth sample into the bandwidth esti-
mation algorithm described in the next section.

The sender uses its own timestamps to handle the RTT com-
putation. When the sender sends a video packet with the TYPE
field marked for acknowledgment, it remembers the sequence
number. If the sequence number on the returning control packet
matches the stored value (recall the receiver simply copies the
header into the control packet, changing only its own timestamp

5

and the SIZE field), the sender subtracts the sender timestamp in
the control packet from the current time to get the RTT sample.

If either a data packet that was marked for acknowledgment
or a control packet is lost, the sender notices a discrepancy in
the sequence numbers of the arriving control packets. That is,
the sequence numbers do not match those that the sender has
recorded when sending out video packets with ack requests. In
this case, the sender disregards the information in the control
packets. Valid bandwidth or RTT samples are always taken from
two consecutively arriving control packets.

4.2 Bandwidth Estimation and
Rate Adjustment

Bandwidth estimation is an active area of research in its own
right [1, 7, 8, 20]. In this paper we provide only a brief summary
following [8]. Recall from the previous section that the achieved
rate sample ��� can be obtained by dividing the amount of data
in the last � packets by the inter-arrival time between the current
and ����� previous packets. As a concrete example, suppose

���	� and four packets arrive at the receiver at times
������������
�� ,
each with � � ����������� � bytes of data respectively. The sum � ���� � ���
is sent to the sender in the SIZE field of the control packet.

The sender, knowing
� from the last control packet and
��
from the current control packet, computes

����
�� ��� � ����
 � ��
 ��� (1)

Exponentially averaging the samples using the formula

 ��� �"! � �"# �%$ � �&� ! �(' � � $ � �)# �* + (2)

yields the bandwidth estimate
 � that is used by the sender to ad-

just the sending rate. The parameter
!

is a weighting factor that
determines how much the two most recent samples should be
weighed against the history of the bandwidth estimate. In exper-
imental trials, it was determined that VTP performs best when

!
is a constant close to 1. Packet loss is reflected by a reduction
in the achieved rate and thus in the bandwidth estimate. Since
the bandwidth estimation formula takes into account losses due
to both congestion and random errors, using an exponential aver-
age prevents a single packet drop due to a link error from causing
a steep reduction in the estimate.

Through the estimate of the connection bandwidth, the VTP
sender gains considerable knowledge about the conditions of the
path. The sender uses the estimate as input into an algorithm
that determines how fast to send the data packets and which pre-
encoded video to use. We describe the algorithm in terms of a
finite state machine (FSM), shown in Figure 6. Assuming three
video encoding levels, the states Q0, Q1 and Q2 each correspond
to one distinct video level from which VTP can stream. We use
three levels throughout this example for simplicity, but ,.-0/
levels are possible in general. Each of the IR states, IR0, IR1,
and IR2, represent increase rate states, and DR represents the de-
crease rate state. In Figure 6, the states and transitions involved
in a quality level increase are highlighted with dashed lines.

DR

Q0 Q1 Q2

IR0 IR1 IR2

Figure 6: VTP finite state machine with states and transitions involved
in a video quality level increase represented with dashed lines.

Starting in state Q0, a transition to IR0 is initiated by the re-
ception of a bandwidth estimate that is equal to or greater than
the current sending rate. Being in state Q0 only implies the VTP
server is sending the lowest quality level, it says nothing about
the sending rate. In state IR0, the server checks several condi-
tions. First, it checks if the RTT timer has expired. If it has not,
the server returns to Q0 without taking any action and awaits
the next bandwidth estimate. If one RTT has passed, it remains
in IR0 and investigates further. It next determines whether the
sending rate is large enough to support the rate of the next high-
est level (level 1 in this case). If not, the server increases the
sending rate by one packet size and returns to state Q0. If, on
the other hand, the sending rate can accommodate the next qual-
ity level, the server checks the value of a variable we call “the
heuristic.”

The heuristic is meant to protect against over ambitiously in-
creasing the video quality in response to instantaneous available
bandwidth on the link that is short-lived and will not be able to
sustain the higher bitrate stream. If the heuristic is satisfied, the
server increases the sending rate by one packet size and transi-
tions to state Q1. If the heuristic is not met, the server increases
the rate by one packet and returns to state Q0. In normal opera-
tion, the server will cycle between states Q0 and IR0 while con-
tinually examining the RTT timer, the bandwidth estimate and
the heuristic, and adjusting the sending rate. When conditions
permit, the transition to Q1 occurs. The process repeats itself for
each of the quality levels.

In the current implementation the heuristic is an amount of
time, measured in units of RTT, to wait before switching to the
next higher level of video quality. Ideally, the heuristic would
also take into account the receiver buffer conditions to ensure a
video quality increase would not cause buffer overflow. Since
the receiver is regularly relaying timestamp information to the
sender, it would be expedient to notify the sender of the amount
of buffer space available in the ack messages. The sender would
then be able to make the determination to raise the video quality
with the assurance that both the network and the receiver can

6

handle the data rate increase. [29] examines the factors that need
to be taken into account in quality changing decisions in detail.

In a rate and quality decrease, the transition to DR is initiated
when the server receives a bandwidth estimate less than its cur-
rent sending rate. In DR, the server checks the reference rate
of each constituent quality to find the highest one that can fit
within the bandwidth estimate. The server sets its sending rate
to the bandwidth estimate and transitions to the state correspond-
ing to the video quality that can be supported. Unlike the state
transitions to increase quality levels, the decrease happens im-
mediately, with no cycles or waits on the RTT timer. This con-
servative behavior contributes greatly to the fairness properties
of VTP discussed in Section 6.2.

As the FSM suggests, the selection of the encoding bitrates is
important. VTP observes the rule that a particular video encod-
ing level must be transmitted at a rate greater than or equal to its
bitrate and will not send slower than the rate of the lowest qual-
ity encoding. This could potentially saturate the network and
exacerbate congestion if the lowest video bitrate is frequently
higher than the available bandwidth. Additionally, if the step
size between each reference rate is large, more data buffering
is required at the receiver. This follows from the fact that large
step sizes lead to the condition where VTP is sending at a rate
that is considerably higher than the video bitrate for long periods
of time.

4.3 Rate Based Congestion Control

The stability of the Internet depends on the window based
AIMD algorithm of TCP. Any protocol that does not observe
the AIMD scheme requires justification to be considered viable,
especially for large-scale deployment. VTP has no congestion
window, does not perform slow start, and does not halve its send-
ing rate on every packet loss. However, VTP uses resources in
a minimal way and relinquishes them on the first indication of
congestion. Justification for the plausibility of VTP is based
mainly on the practical observation that the threat to Internet
stability is not posed by flows using congestion control schemes
that are non-compliant to AIMD, but rather by flows under no
end-system control at all – flows that are completely impervious
to network conditions.

It has not been proven that Internet stability requires AIMD,
but some form of end-to-end congestion control is necessary in
order to prevent congestion collapse [16]. Even though VTP is
not founded on AIMD, it is still able to fairly share links with
TCP competitors as evidenced by the experimental results of
Section 6.2. Inter-protocol fairness of VTP notwithstanding, any
end-to-end mechanism that limits the flow of the real-time traffic
in an environment where it competes with TCP is advantageous
from the perspective of fairness. Furthermore, unlike TCP, VTP
is aimed at preserving minimum variance in delivery rate at the
receiver. Streaming applications that eschew TCP due to its os-
cillatory steady state nature can benefit from the smooth delivery
rate of VTP while during times of congestion their data load on
the network will be judiciously constrained.

By default, VTP performs a type of congestion avoidance: it
increases its rate by a small amount on every estimated RTT.
Normally the rate increase is one packet size per RTT, but it can

be tuned to compensate for large RTTs. The gradual rate in-
crease seeks out available bandwidth and enables VTP to “ramp
up” the video quality if network conditions remain accommodat-
ing. This behavior parallels the additive increase phase of AIMD
so that rate increases in VTP and TCP are comparable.

Throughout the duration of the connection, VTP estimates the
forward path bandwidth. If the bandwidth estimate falls below
the sending rate, VTP takes this as an indication of network con-
gestion and reduces its rate. In summary, the protocol behaves
conservatively by slightly increasing the send rate every RTT
and cutting the rate immediately upon the arrival of “bad news.”

5 VTP Implementation
We implemented VTP on the Linux platform and performed

extensive evaluations using the Dummynet link emulator [31].
We developed a technique to smooth the bandwidth required by
the outgoing video stream and compute the client buffer require-
ment for specific pre-encoded video segments. In this section we
cover the software implementation of VTP and our approach to
client buffering.

5.1 Software Architecture

The VTP implementation effort has strived to build a fully
functioning video streaming platform. VTP software accepts
standard Audio/Video Interleaved (AVI) files as input. For each
video segment, VTP requires multiple AVI files, each of a dif-
ferent level of MPEG-4 compression. Two main functional units
comprise the VTP architecture. A transport layer component
called NetPeer provides an interface that returns an estimate of
the bandwidth share of the connection. A middleware compo-
nent called FileSystemPeer manages the source video data and
determines the sending rate based on the estimate provided by
NetPeer.

For each set of AVI files, a binary file is created that con-
tains the discrete encoded video along with packet delimiters to
guide the server in selecting the right frame when a level change
needs to be made. Figure 7 shows the fields in a single record
of the binary file. Within the file the video data is packetized
and sorted first by frame number, then by video encoding level,
and finally by number of the packet within the frame. This or-
ganization enables the FileSystemPeer to find the right packet
on a video level change without performing “seeks” on the file.
Audio and video portions of the AVI files are de-multiplexed in
the process of creating the binary file and only the video data is
stored and transmitted. Streaming audio and video in combina-
tion with VTP is a subject of future research. Upon receiving the
client’s request to start a stream, the FileSystemPeer opens the
binary file and begins to send data at the lowest quality encod-
ing. As the session progresses, the FileSystemPeer changes the
video level in response to the NetPeer feedback.

The client and server communicate over two separate sockets:
one UDP socket for data and one UDP socket for control infor-
mation. Timestamps are gathered using the Berkeley Packet Fil-
ter utility (BPF)4 running in a separate thread to minimize the in-

4Available from http://www-nrg.ee.lbl.gov/.

7

Client NetPeerServer NetPeer

F
il

e
M

an
ag

em
en

t
Disk

Network/

Estimation

Thread

Data
Socket

Control
Socket

Server FileSystemPeer Player

Network/

Estimation

Thread

RTT Probe

Thread

RTT Probe

Thread

Buffer

Buffer

Decoder

Buffer

Video Out

Figure 8: VTP Software Architecture.

field bytes description
timestamp 4 application level

video playout time
sequence # 4 sequence number of packet

within current frame
frame # 4 frame number
size 4 number of bytes of video

data for this record
video level 4 video encoding level
rate 4 nominal sending rate

for this packet
frame done 1 indicates if this is the last

packet for this frame
video level 4 video encoding level
I frame 1 indicates if this packet

belongs to an I frame
video data variable MPEG-4 compressed video data

Figure 7: Fields included in the VTP binary input file. The timestamp,
sequence number, and size fields are different from and independent of
the fields of the video packet header.

fluence of the data processing on the RTT value. The BPF allows
the user mode player and server processes to collect timestamps
at the network interface level that exclude operating system and
protocol overhead time. The minimum measured RTT during the
connection is used as the RTT value in the rate adjustment algo-
rithm. Figure 8 presents a functional diagram of the VTP soft-
ware architecture. Each of the two server components of VTP
is independent and could potentially be used with other software
modules. Similarly, the client NetPeer is intended to function as
a generic plug-in to any software player that supports modular
input. In this implementation we used the xine video player [36]
for Unix systems.

A VTP software server may be implemented easily by linking
the FileSystemPeer and NetPeer modules and providing a main
routine to form an executable. The client side NetPeer includes
buffering capability to accommodate network level buffering of

video data.
The FileSystemPeer API provides two major functions:

is_eof = getPacket(qual, buffer, size);
rate = setRate(rtt_val, bw_est, &qual);

The getPacket function fills the buffer field with a
header and size bytes of video data from video quality qual,
where qual corresponds to one of the pre-encoded compres-
sion levels in the binary file. A flag is returned indicating if
this is the last packet in the file. The setRate function real-
izes the algorithm in Section 4.2. The values for the parameters
rtt val and bw est are provided by NetPeer (see NetPeer
API below). The last parameter, qual, is passed by reference
and is set by the setRate function and used as input in the next
call to getPacket. It should be noted that both getPacket
and setRate maintain state between calls.

The NetPeer API provides three functions:

bw_est = getBWE();
rtt_val = getRTT();
sendData(rate, buffer);

The sender uses getBWE to get the latest bandwidth estimate
from its NetPeer. Internally, NetPeer performs non-blocking
reads on the control socket to obtain the latest acknowledgment
from the receiver. From the information in the ack, it computes
a bandwidth estimate which is the return value of the function.
The sending rate can then be computed by calling the setRate
function of the FileSystemPeer with the bandwidth estimate as
the second parameter. GetRTT returns the latest value of the
RTT estimate. The sendData function determines the amount
of time to wait from the rate parameter and then sends the
buffer containing the header and video data.

In addition to these exported functions, several other func-
tions are provided to handle connection initiation, opening the
source video files, and other initialization and configuration
tasks. The � parameter, the value of the heuristic variable (in
units of RTT), and the port numbers that VTP uses are all user
configurable.

8

5.2 Transmission Schedules for
Variable Bitrate Video

In a constant bitrate (CBR) video source, the quantization pa-
rameters are continuously adjusted to maintain the target bitrate
of the overall video stream. This is beneficial for network trans-
mission but leads to varying video quality from frame to frame,
and can have an unpleasant effect on the viewer’s perception.
MPEG-4 preserves consistent quality by increasing the bitrate
at times of high motion or detail, producing a variable bitrate
(VBR) encoding. In some instances the bitrate can change dra-
matically during the course of a video clip. The amount of rate
variability is codec-dependent. In this research we investigated
three MPEG-4 video codecs: DivX 4.2 [11], FFmpeg 0.4.6 [15],
and Microsoft MPEG-4 version 2 [24]. After several initial tests,
the Microsoft codec was found to be inappropriate for VTP. This
codec uses an algorithm that drops entire frames to achieve the
desired compression level, conflicting with the VTP assumption
of a similar frame pattern across the set of encodings. More-
over, dropping frames for the purpose of compression has other
highly undesirable effects: inconsistent frame rates, shortening
of the duration of the video, and an awkward, “jumpy” play-
back. The rest of this section assumes that the video source is
compressed with a codec that does not skip frames to affect the
level of compression; such is the case with DivX and FFmpeg.

Since it would be ineffective to transmit video data at uneven,
bursty rates, we developed a method for determining a transmis-
sion schedule for VBR MPEG-4 video that leads to a piecewise-
constant nominal sending rate. By taking advantage of a pri-
ori knowledge of the bitrates of the stored video files, the peak
bandwidth requirements and rate variability of the transmission
can be significantly reduced. An appropriate sending rate can
be incrementally computed by averaging the video bitrate over
discrete intervals.

Let � �
 � represent the cumulative amount of bytes consumed
by the client from the start of the streaming session to time
 . In
other words, if the video is encoded at a variable rate � ��� � ,

� �
 � � ��
� ��� � ��� � (3)

As a starting point for a constant rate transmission plan, let � �
 �
be the cumulative amount of bytes received at the client under a
very simple CBR schedule: the constant rate equal to the size of
the entire video segment (in bytes) divided by the duration.

Figure 9 shows � �
 � and � �
 � for a 16 MB, 130 second sam-
ple MPEG-4 video from a scene of the movie “TRON,” encoded
with DivX. If this video sample is sent at a constant rate equal to
the slope of � �
 � , the function

	 �
 � �
� �
 � ��� �
 � (4)

in the bottom plot in Figure 9 leads to several basic observations
that are of interest.

Intuitively,
	 �
�� ���� for a particular
�� signifies that trans-

mitting the video stream at simply the average bitrate of the en-
tire segment would lead to buffer underrun at time
 � . The maxi-
mum positive value of

	 �
 � corresponds to the largest buffer oc-
cupancy in bytes under the same constant transmission rate. A

0

2

4

6

8

10

12

14

16

18

C
um

ul
at

iv
e

M
B

yt
es

C(t)
V(t)

-1
0
1
2

25 50 75 100 125

U
(t

)

seconds

Figure 9: Cumulative amount of bytes received, ������� , when the entire
video segment is transmitted at a constant rate. Shown with the con-
sumption rate, ������� .

0

2

4

6

8

10

12

14

16

18

C
um

ul
at

iv
e

M
B

yt
es

C(t)
V(t)

-1
0
1
2

25 50 75 100 125

U
(t

)

seconds

Figure 10: Cumulative amount of bytes received based on a piecewise-
constant rate schedule with ten segments of equal duration.

straightforward generalization of this approach involves shorten-
ing the interval over which the average is taken, and connecting
several CBR “runs” to form a sequence of transmission rates.

Figure 10 shows the same video source dissected into ten in-
tervals of equal length. Within each interval, the rate is computed
as the average of the video bitrate, as before. In this figure, � �
 �
stays closer to the � �
 � curve, resulting in smaller peaks in

	 �
 � .
The use of ten segments in particular was found in experimental
trials to be a good compromise between the length and number
of separate intervals. Under this plan, the sender adjusts its send-
ing rate ten times during the course of the stream. Each sending
rate is exactly the slope of the line segment for the corresponding
interval. The bottom plot shows that the condition

	 �
 ���� still
holds at around
 ��� � ,
 � � � � , and
 �.� * � , indicating buffer
underruns at these times for this sending plan. The next section
addresses eliminating these underruns, and finding the minimum
buffer size required in the case of equal length, constant rate in-
tervals.

9

C
u

m
u

la
ti
v
e

 M
B

y
te

s

time

successful transmission schedule

V(t) + b

b

V(t)

}

Figure 11: Cumulative bytes received under successful transmission
rates.

5.3 Minimizing Client Buffer Requirements
The technique in the previous section can be extended to opti-

mize the transmission schedule to ensure minimal use of receiver
memory for video data buffering. Our approach follows closely
the PCRTT algorithm of [23]. Given the consumption rate � �
 �
and a buffer size � at the client, a successful transmission rate
would deliver at least � �
 � but not more than � �
 � $ � bytes to
the client at any time
 , as illustrated in Figure 11.

To find the minimum � required for a particular video stream
while protecting against buffer underruns, we consider again the
function

	 �
 � from equation 4. The maximum of
	 �
 � is the

amount of data that the piecewise-constant rate plan will send
ahead of the consumption rate. The client must allocate a buffer
of at least ����� 	 �
 � bytes of data to avoid data loss due to over-
flowing buffers. The minimum value of

	 �
 � corresponds to the
greatest difference between the consumption rate and the server
sending rate, i.e., the point where the sender falls most behind
the receiver.

If
�� ���	� 	 �
 � �� bytes could be transmitted before the time at

which ���
� 	 �
 � occurs, underruns would be prevented. Sup-
pose that a time
�� is chosen such that

�� ���	� 	 �
 � �� bytes of data
is sent in the interval � ��
 ��� in addition to the amount of data
that needs to be sent under the constant rate plan. This way,
we add

�� ���	� 	 �
 � �� �
�� bytes/second to the rate computed by the
piecewise-constant method to all the rates that lie in the interval
[� ��
 �]. In the worst case, time
 � can fall precisely when

	 �
 �
is at its maximum. The client would then have to be able to
buffer both the maximum of

	 �
 � and
�� ���	� 	 �
 � �� at the instant
�� . Hence, if a ����� � byte buffer is allocated at the client, where

����� � � �� ����� 	 �
 � �� $ �� ���
� 	 �
 � �� (5)

both underruns and overruns will be prevented. The time
�� must
be chosen before the time that ���
� 	 �
 � occurs, but ideally it
should be chosen to be before the time of the first negative value
of

	 �
 � . Figure 12 shows the adjusted CBR ten-segment trans-
mission plan for the TRON video sources with
 � � �

. The cu-
mulative amount of bytes received under the new plan, � �
 � , is
always above the consumption rate � �
 � . The value of ����� � for

0

2

4

6

8

10

12

14

16

18

25 50 75 100 125

C
um

ul
at

iv
e

M
B

yt
es

seconds

C(t)
V(t)

Figure 12: Cumulative bytes received, ������� , under the piecewise CBR
transmission schedule computed for “TRON.”

this video segment is is a relatively modest 2.7 Mbytes, which
is required around time
 � ��� . In general, choosing a suit-
able
 � depends on the size of

�� ���	� 	 �
 � �� and the time at which
���	� 	 �
 � occurs. If

�� ���	� 	 �
 � �� is large, some care must be
taken so that
�� is not too small. That is, the additional bytes that
need to be sent are spread out over time and not sent in a burst at
the beginning of the stream.

With discrete encoding, each video is stored on disk as sev-
eral distinct streams differing in their level of compression. Each
stream has an associated � ��� � and the transition points between
segments occur at the same time points in each level. The ����� �
for the whole segment is simply chosen to be the maximum ����� �
of the constituent streams. Since the sending rates for all the
video levels are pre-computed, this value of � ��� � is known be-
fore any video data is sent. The next figures present the encoded
bitrates and resulting sending rate profiles for the two sets of
video sources used throughout the experimental evaluation of
VTP.

The left plot of Figure 13 shows the encoded bitrate of three
levels of quantization for the “TRON” video segment. The bi-
trates of this DivX compressed MPEG-4 video exhibit a great
deal of variability – from 500 Kbps to more than 4.5 Mbps in the
case of the stream with QPs in the 2 to 10 range. The correspond-
ing piecewise-constant sending rates computed with
�� � �

are
shown in the right plot of Figure 13. The peak rate is reduced
significantly to around 1.6 Mbps. The left plot of Figure 14
presents the bitrate trace for a trailer for the movie “Atlantis,”
compressed with the FFmpeg MPEG-4 video codec. The FFm-
peg codec produces video that is markedly less variable rate than
DivX. Another interesting point to note is that files created with
FFmpeg are smaller and use less bandwidth than DivX for the
same QPs. The right plot of Figure 14 shows the rate profile for
the “Atlantis” sequence, with
 � again set at 5 seconds.

An alternative and commonly used approach to “pre-sending”
extra bytes for protecting against underruns is to delay the ini-
tial playback at the client while it accumulates some amount of
buffered video data. The video player, however, usually has its
own requirements for buffering in addition to buffering done at

10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120 140

M
bp

s

seconds

QP range 2 - 10
QP range 16 - 20
QP range 30 - 31

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140

M
bp

s

seconds

QP range 2 - 10
QP range 16 - 20
QP range 30 - 31

Figure 13: Source bitrates (left) and sending rate profile (right) produced for “TRON.”

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45 50

K
bp

s

seconds

QP range 2 - 10
QP range 16 - 20
QP range 30 - 31

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45 50

K
bp

s

seconds

QP range 2 - 10
QP range 16 - 20
QP range 30 - 31

Figure 14: Source bitrates (left) and sending rate profile (right) produced for “Atlantis.”

the network level. As can be seen in the architecture diagram
(Figure 8), the player buffers data between the codec and the
video output system to synchronize the display of consecutive
frames. Buffers also need to absorb the small time scale rate
changes due to variance in delay or “jitter.” VTP is designed
modularly to operate with many video players, hence it does not
place any restrictions on the player with regard to play out start
time. VTP offers � ��� � as a guard against buffer overruns and un-
derruns resulting from differences between the sending rate and
consumption rate. The decisions of exactly how much buffer
space to allocate and when to start play out are left to the player.

6 Experimental Evaluation

The goals of our experimentation with VTP were to assess
inter-protocol fairness between VTP and TCP and to evaluate
the quality of the transmitted video played by the client. We
streamed both the “TRON” and “Atlantis” video sources under
various scenarios differing in the � parameter, the number of
connections, and link capacity.

6.1 Basic Protocol Behavior

One of the main goals of VTP is to fairly share network re-
sources with other traffic. VTP attempts to achieve fairness with
TCP by reducing its sending rate whenever the bandwidth es-
timate indicates that the current rate cannot be supported. De-
pending on the difference between the estimate and the current
rate, VTP can take several steps to back off, freeing network re-
sources to ensure other flows obtain an even share of the link.

Figure 15 shows the behavior of VTP sending the “Atlantis”
segment isolated on a 10 Mbps link with a 10 millisecond RTT.
This single connection is an unlikely scenario but it clearly illus-
trates VTP progressing through its rate change algorithm. The
plot on the left displays the sending rate and computed band-
width estimate, while the plot on the right displays which pre-
encoded video stream VTP is sending at the corresponding time.

Each video packet contains 1 Kbyte of video data, and the
� parameter, which determines how often to send control pack-
ets, is set to 5. For the purpose of this example, these settings
strike a balance between minimizing protocol overhead resulting
from acknowledgments and the need to keep packet sizes small

11

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45

K
bp

s

seconds

sending rate
bandwidth est

30-31

16-20

2-10

0 5 10 15 20 25 30 35 40 45

seconds

QP range

Figure 15: VTP isolated on a 10 Mbps, 10 millisecond RTT link.

to promote even packet flow. Later in this section we examine
the effect of the � parameter more closely. The so-called heuris-
tic variable, which tells VTP how long to wait before moving to
the next higher video quality, is set to 2 RTTs.

In the initial phase of the “Atlantis” session, the protocol starts
sending the video segment at the rate of the transmission sched-
ule for the lowest quality video. Since there is plenty of band-
width available on the free 10 Mbps link, VTP raises its sending
rate and the quality of the video stream. By about
 � � sec-
onds, the highest quality video is being sent (with QPs in the 2
to 10 range). For the remainder of the flow, VTP sends the high-
est video quality at the rate prescribed in the transmission plan,
with the exception of times 12 and 30 seconds. At these times
VTP reduces the video quality one level for a brief time and then
returns to sending the high quality video.

The reason behind these quality “valleys” can be understood
by referring to the “Atlantis” transmission plan, the right plot of
Figure 14. According to the plan, the rate requirement for the
highest video quality suddenly increases by roughly 100 Kbps
at about
&� �� and again at
 � / � seconds. In the interest of
fairness, VTP does not instantaneously increase its rate by such
large amounts. Instead, it switches to sending video that is one
quality level lower, and continues to probe for available band-
width by increasing the sending rate by 1 packet per RTT. After
1 second, the sending rate reaches the rate required for the high-
est video level and the heuristic is satisfied. This allows VTP to
switch back to the highest quality video. A threshold is applied
to the sending rate so that if the difference between the sending
rate and the reference rate is small, the VTP server can increase
its rate without performing bandwidth exploration. This hap-
pens, for example, at
 � * � seconds in Figure 15. This way,
VTP conservatively favors fairness when the prescribed rate in-
crease is large, but it does not rapidly change video streams on
every minor rate adjustment in the send plan. The threshold is
configurable by the user at run time. In this experiment, the
threshold was set to 1 Kbps.

6.2 Fairness with TCP

The following experiments were designed to quantitatively
measure how much bandwidth TCP and VTP attain when com-
peting directly with each other. The experiments were performed
using a relatively simple network topology in which two inde-
pendent LANs were connected through a PC running FreeBSD
acting as a gateway. The sender and receiver machines were
located on separate LANs so that all traffic passed through the
gateway which emulated a bottleneck router along an Internet
path. The Dummynet utility and the Iperf program5 were used
to vary the link capacity and generate background TCP traffic
respectively. In this environment all packets arrive in order, so
any gap in sequence numbers can immediately be interpreted by
the VTP receiver as packet loss.

Figure 16 presents the normalized throughput of VTP sending
the “Atlantis” segment on a 3 Mbps, 10 ms RTT link with various
numbers of TCP flows. Each column of data points represents a
separate experiment where a single VTP flow several and TCP
flows share the link. The � axis is labeled with total number of
flows (e.g. the column labeled “16” is the result of one VTP and
15 TCP flows). As before, � is set at 5, the heuristic is 2 RTTs,
and 1 Kbyte video packets are sent. The normalized throughput
is computed by simply dividing the average bandwidth received
by each flow by the fair share bandwidth value for each case.
Perfect inter-protocol fairness would be exhibited by both VTP
and TCP scoring a normalized throughput of 1. The vertical
bars show the standard deviation of the TCP bandwidth values
for cases where there is more than 1 TCP connection.

In the case of 2 connections, TCP obtains much more band-
width simply because VTP has no need to transmit faster than
about 450 Kbps, the average rate of the sending plan for the
highest video quality (see Figure 14). As the number of con-
nections increases, VTP and TCP compete for the limited re-
sources of the link. VTP shares the link relatively fairly except
for the case of 32 connections. In this case, the fair share value
is / � � � � / * � � /�� � Kbps, which is roughly three quarters of the
rate of the lowest video quality according to Figure 14. Since

5http:// dast.nlanr.net/Projects/Iperf/

12

0

0.5

1

1.5

2

2 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

connections

TCP flows
VTP flow

Figure 16: Single VTP flow competing with TCP on a 3 Mbps link.

0.6

0.8

1

1.2

1.4

1 2 5 10 20

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

value of k parameter

TCP flows
VTP flow

Figure 17: Effect of control packet frequency on fairness.

VTP does not send slower than the rate of the transmission plan
for the lowest video quality (about 125 Kbps according to Figure
14) it uses slightly more than the fair share value of the band-
width. It is important to note that this unfairness is not an inher-
ent limitation of VTP, but a circumstance of the relationship be-
tween the link capacity and the video encoding. The case where
VTP shares the link with 7 TCP connections results in near per-
fect fairness.

Looking at this case in more detail reveals the significance of
the frequency at which the control packets are sent. Figure 17
shows 5 values for the � parameter, which determines how often
the VTP sender will mark a video packet with a request for an
acknowledgment. The experimental scenario is the same as in
the previous figure where 1 VTP flow shares a 3 Mbps, 10ms
RTT link with 7 TCP flows; only the value of � differs. When �
is small, the bandwidth samples are taken over a shorter period.
This leads to higher variability in the sampled values and over-
estimation of available bandwidth to a slight degree. The proto-
col aggressively uses more bandwidth than its fair share in cases

��� � and � � *
. With increasing � , unfairness is eliminated.

Even with � � * � , VTP shows a reasonable amount of efficiency

0

0.5

1

1.5

2

2 4 8 12 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

connections

TCP flows
VTP flow

Figure 18: “TRON” video stream transmitted using VTP sharing a 5
Mbps link with TCP connections.

in its estimation and only loses to TCP by a modest amount. Ad-
ditionally, as � increases, protocol overhead from sending ac-
knowledgment decreases. Figure 17 clearly shows that VTP can
maintain fairness with TCP without relying on constant receiver
feedback.

In Figure 18, VTP sends the “TRON” video segment on a 5
Mbps, 10 ms RTT link against background TCP traffic. The
“TRON” send plan requires significantly higher bitrates than
“Atlantis,” thus we set the link speed correspondingly higher.
The “TRON” transmission plan also contains larger instanta-
neous jumps in send rate, as much as 1 Mbps for the highest
video quality (see Figure 13). Both of these differences are a
result of the dissimilar bitrate profiles produced by the DivX
and FFmpeg codecs, as evident in Figures 13 and 14. Figure 18
shows that VTP uses less than or equal to its fair share of band-
width in all cases except that of 16 connections, where again the
link limitation is reached. The figure verifies the “Atlantis” ex-
periments: VTP behaves fairly, in some cases generously leav-
ing bandwidth unused, if its bandwidth share allocation is at least
enough to stream the lowest quality of video.

6.3 Random Link Errors

It is of interest to determine the effect of lossy network con-
ditions, e.g. noisy wireless links, on the performance of VTP.
In Figure 19, VTP and TCP share a link on which the percent-
age of random errors ranges from 0.1 to 5, configured by setting
Dummynet parameters accordingly. The scenario is the same
as in the previous experiment where VTP streams the “TRON”
segment on a 5 Mbps link and competes with 11 TCP connec-
tions (for a total of 12 connections). The average throughput
of VTP is shown alongside the average throughput of the all
the TCP flows for each error percentage. As evident from the
figure, VTP throughput increases slightly as the error percent-
age increases. This results from the dynamics of the combined
random loss and congestion network conditions. When TCP re-
acts to lost packets by halving its congestion window, it leaves
bandwidth open which VTP is able to utilize since it is not so

13

0

100

200

300

400

500
TCP
VTP

K
bp

s

percentage random error
0.1 0.5 1 2 5

Figure 19: Average VTP and TCP throughput on a 5 Mbps, 10ms RTT
link with 12 total connections and varying degrees of random errors.

severely affected by the random errors. This clearly illustrates
the advantage of the estimation based design of VTP in random
loss scenarios.

In summary, we have demonstrated that VTP uses network
resources fairly when facing competition from the AIMD based
congestion control of TCP. In lightly loaded networks, VTP uses
only the bandwidth required to transmit at the rate of the highest
quality video stream, the remaining bandwidth can be claimed
by other connections. In environments of moderate congestion,
VTP fairly shares the link as long as its fair share is at least the
rate of the lowest quality video. We have shown the relationship
between VTP fairness and control packet frequency. We found
that VTP’s fairness properties are not codec specific, and that it
is able to maintain stable sending rates when streaming source
video with significantly different transmission plans.

6.4 Comparison with TFRC
Several recently proposed protocols [34, 35, 37] use the

TFRC [16] model-based approach to adapt video streams to net-
work conditions. As mentioned in Section 2, TFRC is a method
for setting the transmit rate based on a closed form equation
that estimates the throughput TCP would receive under similar
packet loss conditions. Namely, an upper bound for the transmit
rate � is computed by

� � �
��� ���� $

	����� / � � ������ � � $ / * � � � (6)

where � is the packet size,
�

the RTT, � the steady state loss
event rate, and
 	��� the value of the TCP retransmit timeout
[26]. Since, like TCP, equation 6 assumes packet loss indi-
cates congested router buffers along the sender-receiver path, the
problem of poor efficiency in noisy environments resurfaces in
TFRC. In this section, we show that VTP displays an advanta-
geous characteristic in comparsion with TFRC in network envi-
ronments with random link errors.

Using the publicly available TFRC experimental code, we
developed an experiment to analyze the behavior of VTP and

100

200

300

400

500

600

K
bp

s

VTP 1% errors
VTP 5% errors

100

200

300

400

500

600

0 5 10 15 20

K
bp

s

seconds

TFRC 1% errors
TFRC 5% errors

Figure 20: VTP and TFRC throughput under 1% and 5% random loss.

TFRC under the same lossy conditions. We used our test LANs
to submit TFRC and VTP to the same random loss environment
configured with Dummynet. TFRC was set to use the Average
Loss Interval method with ,0��� and � � through � � set to
1, 1, 1, 1, 0.8, 0.4, 0.6, 0.2 respectively. Figure 20 shows the
throughput acheived by VTP and TFRC for two relatively high
cases of loss: 1% and 5%. Each plot shows 20 seconds of steady
state solitary flow for both schemes, with TFRC set to transmit at
400 Kbps and VTP sending the “Atlantis” video segment at the
highest video quality, also at 400 Kbps. We used the TCPDump
utility6 to measure the performance of TFRC.

In the figure, the TFRC flow succumbs to random loss as
throughput severely drops in both cases, falling below 200 Kbps
in the 1% case, and to 100 Kbps for the 5% case. This is a conse-
quence of the TCP-inspired nature of the TFRC scheme, where
multiplicative decrease takes effect whenever it is determined
that packet loss has occured. In comparison, VTP throughput is
reduced by a smaller fraction and for shorter time periods since
the bandwidth estimation acts as a filter against the effect of
random loss. After every reduction in throughput, VTP reacts
quickly and is able to regain its previous delivery rate before the
next instance of errors.

Along with the results from Section 6.2, this demonstrates
the adaptablity of VTP’s bandwidth estimation based approach.
In congestion environments, VTP conservatively yields to other
traffic to promote fairness. In random loss environments, VTP
maintains consistent throughput by avoiding the large drops in
sending rate inherent in multiplicatively decreasing schemes.

6.5 Video Quality

An accurate, well-defined, and widely accepted standard for
measuring the application-level perceived quality of network
transmitted, compressed video does not exist in the literature at
this time. In [21], the authors detail the problematic and subjec-
tive nature of quality assessment and discuss the shortcomings of
several existing approaches. [19] suggests gathering a group of

6http://www.tcpdump.org

14

20

25

30

35

40

45

50

400 450 500 550 600 650 700

P
S

N
R

 (
db

)

frame number

QP = 2 to 10
QP = 16 to 20
QP = 30 to 31

Figure 21: PSNR values for frames 400 to 700 of “Atlantis.”

viewers in a room with specialized equipment to subjectively as-
sign grades to the video they observe. Extracting a general quan-
titative measure from this type of assessment would be nearly
impossible. The American National Standards Institute (ANSI)
has produced a specification of parameters for quality degrada-
tion (blurring, distortion, tiling, etc.) [3]. However, these mea-
sures are focused entirely on quality degradation due to com-
pression, not packet loss. Degradation due to loss is transient
in nature and only affects part of the frame, whereas degrada-
tion due to compression invariably affects the whole frame. The
ANSI quality parameters are insensitive to severely degraded or
missing parts of frames, which are very noticeable to the human
viewer.

Another commonly used metric for attempting to objectively
measure video quality is the Peak Signal to Noise Ratio (PSNR),
which is the pixel-by-pixel difference between the original and
degraded images in one of the chrominance or luminance com-
ponents. PSNR is defined in terms of the root mean squared
error (�������) as PSNR =

* ���
	�� � � � * � � � ������� � . For an 8 bit
image component of a degraded , by frame ��� from an origi-
nal frame � ,

������� �
���� �,�����

��� ���
� # ��� � ��� � � � �! � �"� � � � �! �$# � (7)

Figure 21 shows the evolution of the PSNR of the luminance
component of the “Atlantis” segment from frames 400 to 700,
indicating the effect of increasing the quantization in terms of
PSNR. The chart represents how PSNR can be a suitable indica-
tor of changes in quality due to varying levels of compression.
Using PSNR as a measure of perceived quality of the transmitted
and client-displayed video, however, is fraught with difficulties.
First, it is widely known that PSNR values do not correspond
well with the characteristics of the human visual system, mak-
ing it a poor gauge of perceived quality. Second, codecs that
skip frames to affect compression can easily yield video that has
a very high average PSNR per frame, but looks inferior in play-
back when compared with video with a lower average PSNR

where the frame rate is held constant. Lastly, VTP draws video
from the different pre-encoded streams as it progresses through
its congestion control algorithm. Each received frame would
have to be matched to its source stream to compute the correct
PSNR values. This is also complicated by the fact that it is nat-
ural for two consecutive frames to have considerably different
PSNR values, as evident from Figure 21.

For these reasons, in the experimental evaluation of the video
quality delivered by VTP, we concentrate on two key parameters
that are easy to interpret: the frame rate of the received video
and the average values of the quantization parameters. We place
a rather strict constraint on the player by configuring it to only
display frames which are received completely intact, i.e., frames
which have any errors due to packet loss are discarded. This
bolsters the importance of the play out frame rate and magnifies
the performance of VTP in terms of its key goal of providing a
stable frame rate through quantization scale adjustment.

Figure 22 contrasts the frame rate of the received “Atlantis”
stream using VTP and non-adaptive streaming. By non-adaptive
streaming, we mean the highest video rate is sent according to
its transmission plan throughout the duration of the streaming
session, regardless of network conditions. No bandwidth es-
timation or video quality changes are performed, and the rate
changes only when dictated by the piecewise-constant transmis-
sion schedule developed for “Atlantis.” The experimental sce-
nario is the same as in the previous section where VTP is com-
peting with 15 TCP flows on a 3 Mbps capacity link with a 10
millisecond RTT. The non-adaptive streaming flow is likewise
examined under the same conditions. The overall frame rate of
the encoded source video is 23.975 frames per second (fps) in
both cases. At several instances, around times 7 and 15 seconds,
the non-adaptive frame rate drops below 15 fps, which is widely
held to be the threshold of viewable video. With VTP, these se-
vere decreases are avoided and the frame rate is always in the
range 18 to 24 fps.

Figure 23 depicts another representative example of the ad-
vantage gained by VTP adaptivity. In this experiment, the con-
ditions are those of the fourth case in figure 18: 1 monitored flow
(either VTP or non-adaptive streaming) sharing a 5 Mbps, 10 ms
RTT link with 11 competing TCP connections. As the stream-
ing session progresses, VTP discovers the fair share of available
bandwidth and appropriately tunes to sending rate and video bi-
trate to avoid overflowing the router buffer. The resulting frame
rate of the VTP stream stabilizes with time, while the frame rate
of the non-adaptive stream increasingly oscillates toward the end
of the segment, suffering from the effect of router packet drops.

In Figure 24 we present the average values of the QPs of the
“Atlantis” segment throughout the duration of the session. Both
the 2 Mbps and 3 Mbps cases are shown. The plot verifies that
VTP adapts the outgoing video stream to fit the available net-
work bandwidth. When there is little contention for the link,
e.g. 2 and 4 total connections, VTP chooses video primarily
from the high quality, high bitrate stream (recall lower QP val-
ues imply less compression and higher quality). As the number
of competing TCP connections increases, the QP values consis-
tently increase, indicating VTP lowering the quality of the out-
going video in response to congestion. This clearly illustrates
the mechanism by which VTP attains adaptivity. VTP is also

15

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

F
ra

m
es

 P
er

 S
ec

on
d

Time (s)

VTP

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

F
ra

m
es

 P
er

 S
ec

on
d

Time (s)

Non Adaptive Stream

Figure 22: Frame rate of received “Atlantis” stream using VTP and Non-Adaptive Streaming.

0

5

10

15

20

25

0 20 40 60 80 100 120 140

F
ra

m
es

 P
er

 S
ec

on
d

Time (s)

VTP

0

5

10

15

20

25

0 20 40 60 80 100 120 140

F
ra

m
es

 P
er

 S
ec

on
d

Time (s)

Non Adaptive Stream

Figure 23: Frame rate of received “TRON” stream with VTP and Non-Adaptive Streaming.

5

10

15

20

25

30

35

2 4 8 16 32

A
ve

ra
ge

 Q
P

 v
al

ue

connections

2 Mbps Link
3 Mbps Link

Figure 24: Average values of quantization parameters of the delivered
“Atlantis” stream.

aware of the additional bandwidth afforded to it by the increase
in link capacity from 2 to 3 Mbps. In the cases of 8, 16, and 32
connections, VTP carefully chooses the highest quality outgoing
stream that will fit its fair share of the available bandwidth. This
leads to a QP reduction of between 3 and 5, indicating higher
quality video being sent when more bandwidth is available at 3
Mbps.

7 Conclusion

In this paper we designed, implemented and tested a new pro-
tocol to stream compressed video in real-time. A distinct feature
of VTP is the use of bandwidth estimation to adapt the sending
rate and the video encoding in response to changes in network
conditions. We developed VTP in accordance with open stan-
dards for video compression and file formats, and built a plug-in
for a widely used video player to serve as the VTP receiver. We
have made an effort to make VTP easily extensible.

VTP was evaluated in a controlled network environment un-
der a variety of link speeds and background traffic. Experimen-

16

tal results show that VTP offers considerable gains over non-
adaptive streaming in effective frame rate. To a large extent,
VTP behaves fairly toward TCP when both protocols compete
in a congested network.

We found that VTP fairness toward TCP is vulnerable if the
lowest video bitrate is higher than the average link fair share
available to VTP. A priori knowledge of the general link capac-
ity and typical network utilization can be extremely useful in
the selection and configuration of the video sources for VTP.
We believe this information is usually not difficult to obtain for
administrators, and that a small amount of careful manual con-
figuration is a reasonable price for the advantages of VTP.

References
[1] N. Aboobaker, D. Chanady, M. Gerla, and M. Y. Sana-

didi, “Streaming Media Congestion Control using Band-
width Estimation,” In Proceedings of MMNS ’02, October,
2002.

[2] A. Augé and J. Aspas, “TCP/IP over Wireless Links: Per-
formance Evaluation,” In Proceedings of IEEE 48th VTC
’98, May 1998.

[3] American National Standards Institute. American National
Standard for Telecommunications - Digital Transport of
One-Way Video Telephony Signals - Parameters for Objec-
tive Performance Assessment, T1.801.03-1996.

[4] A. Balk, M. Sigler, M. Gerla, and M. Y. Sanadidi, “In-
vestigation of MPEG-4 Video Streaming over SCTP,” In
Proceedings of SCI ’02, July 2002.

[5] C. Barker, Z. Xiong, and A. Kuh, “Dynamic Programming
Based Smoothing of VBR Video Traffic,” In 12th Interna-
tional Packet Video Workshop, April 2002.

[6] D. Bansal and H. Balakrishnan, “Binomial Congestion
Control Algorithms,” In Proceedings of INFOCOMM ’01.
April 2001.

[7] C. Casetti, M. Gerla, S. S. Lee, S. Mascolo, and M. Sana-
didi, “TCP with Faster Recovery,” In Proceedings of MIL-
COM ’00, October 2000.

[8] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and
R. Wang, “TCP Westwood: Bandwidth Estimation for En-
hanced Transport over Wireless Links,” In Proceedings of
ACM MOBICOM ’01, July 2001.

[9] S. Cen, J. Walpole, and C. Pu, “Flow and Congestion Con-
trol for Internet Media Streaming Applications,” In Pro-
ceedings of SPIE Multimedia Computing and Networking
’98, January 1998.

[10] L. Cheng and M. El Zarki, “The Analysis of MPEG-4 Core
Profile and its System Design,” In Proceedings of MTAC
’01, November 2001.

[11] The DivX Networks home page.
http://www.divxnetworks.com/

[12] N. Feamster, D. Bansal, and H. Balakrishnan, “On the In-
teractions Between Layered Quality Adaptation and Con-
gestion Control for Streaming Video,” In 11th Interna-
tional Packet Video Workshop, April 2001.

[13] N. Feamster, Adaptive Delivery of Real-Time Streaming
Video. Masters thesis, MIT Laboratory for Computer Sci-
ence, May 2001.

[14] W. Feng and J. Rexford, “Performance Evaluation of
Smoothing Algorithms for Transmitting Variable Bit
Rate Video,” IEEE Trans. on Multimedia, 1(3):302-313,
September 1999.

[15] The FFmpeg homepage. http://ffmpeg.sourceforge.net/

[16] S. Floyd, M. Handley, J. Padhye, and J. Widmer,
“Equation-Based Congestion Control for Unicast Appli-
cations,” In Proceedings of ACM SIGCOMM ’00, August
2000.

[17] S. Floyd, M. Handley, and E. Kohler, “Problem
Statement for DCP,” IETF Internet-Draft, Feb. 2002
http://www.icir.org/floyd/papers.html

[18] International Organization for Standardization. Overview
of the MPEG-4 Standard, December, 1999.

[19] ITU-T Recommendation P.910. Subjective Video Quality
Assessment Methods for Multimedia Applications, Inter-
national Telecommunication Union, Telecommunication
Standardization Sector, 1996.

[20] K. Lai and M Baker, “Measuring Link Bandwidths using
a Deterministic Model of Packet Delay,” In Proceedings of
ACM SIGCOMM ’00, August 2000.

[21] X. Lu, R. Morando, and M. El Zarki, “Understanding
Video Quality and its use in Encoding Control,” In 12th
International Packet Video Workshop, April 2002.

[22] A. Manhanti, D. Eager, M. Vernon, and D. Sundaram-
Stukel, “Scalable On-Demand Media Streaming with
Packet Loss Recovery,” In Proceedings of ACM SIG-
COMM ’01, August 2001.

[23] J. McManus and K. Ross, “Video-on-Demand Over ATM:
Constant-Rate Transmission and Transport,” IEEE Journal
on Selected Areas in Communications, 14(6):1087-1098,
August 1996.

[24] Microsoft Windows Media Player home page.
http://www.microsoft.com/windows/windowsmedia/

[25] The MPEG home page. http://mpeg.telecomitalialab.com/

[26] J. Padhye, V. Firoio, D. Townsley, and J. Kurose, “Mod-
eling TCP Throughput: A Simple Model and its Empir-
ical Validation,” In Proceedings of ACM SIGCOMM ’98,
September 1998.

[27] The RealPlayer home page. http://www.real.com/

[28] R. Rejaie, M. Handley, and D. Estrin, “RAP: An End-to-
End Rate-Based Congestion Control Mechanism for Real-
time Streams in the Internet,” In Proceedings of INFO-
COMM ’99, March 1999.

[29] R. Rejaie, M. Handley, and D. Estrin, “Layered Quality
Adaptation for Internet Video Streaming,” In Proceedings
of ACM SIGCOMM ’99, September 1999.

[30] R. Rejaie, M. Handley, and D. Estrin, “Architectural Con-
siderations for Playback of Quality Adaptive Video over
the Internet,” In Proceedings of IEEE Conference on Net-
works, September 2000.

17

[31] L. Rizzo, “Dummynet and Forward Error Correction,” In
Proceedings of Freenix ’98. June 1998.

[32] The Stream Control Transmission Protocol (SCTP),
RFC 2960, http://www.ietf.org/rfc/rfc2960.txt

[33] B. Smith, Implementation Techniques for Continuous Me-
dia Systems and Applications. PhD thesis, Univ. of Califor-
nia at Berkeley, December 1994.

[34] D. Tan and A. Zahkor, “Real-time Internet Video Using
Error Resilient Scalable Compression and TCP-friendly
Transport Protocol,” IEEE Trans. on Multimedia, 1(2):172-
186, May 1999.

[35] N. Wakamiya, M. Miyabayashi, M. Murata, and H. Miya-
hara, “MPEG-4 Video Transfer with TCP-friendly Rate
Control,” In Proceedings of MMNS ’01. October 2001.

[36] The xine video player home page.
http://xine.sourceforge.net.

[37] Q. Zhang, W. Zhe, and Y. Q. Zhang, “Resource Allocation
for Multimedia Streaming Over the Internet,” IEEE Trans.
on Multimedia, 3(3):339-355, September 2001.

18

