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Abstract

Performance metrics in classification are fundamental to assess the quality of learn-
ing methods and learned models. However, many different measures have been de-
fined in the literature with the aim of making better choices in general or for a
specific application area. Choices made by one metric are claimed to be different
from choices made by other metrics. In this work we analyse experimentally the be-
haviour of 18 different performance metrics in several scenarios, identifying clusters
and relationships between measures. We also perform a sensitivity analysis for all of
them in terms of several traits: class threshold choice, separability/ranking quality,
calibration performance and sensitivity to changes in prior class distribution. From
the definitions and the experiments, we give a comprehensive analysis on the rela-
tionships between metrics, and a taxonomy and arrangement of them according to
the previous traits. This can be useful to choose the most adequate measure (or set
of measures) for a specific application. Additionally, the study also highlights some
niches in which new measures might be defined and also shows that some supposedly
innovative measures make the same choices (or almost) than existing ones. Finally,
this work can also be used as a reference for comparing experimental results in the
pattern recognition and machine learning literature, when using different measures.

Key words: Classification, Performance Measures, Class Threshold, Class
Separability, Ranking, Calibration.

1 Introduction

The correct evaluation of learned models is one of the most important issues
in pattern recognition. One side of this evaluation can be based on statis-
tical significance and confidence intervals, when we want to claim that one
model is better than another or that one method is better than another. The
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other side of evaluation relies on which metric is used to evaluate a learned
model. It is certainly not the same evaluating a regression model with abso-
lute error that doing so with squared error. In fact, for regression, the relation
and appropriateness of several evaluation measures have been analysed both
theoretically and experimentally [28, 42, 2], and the difference between the
existing measures is sufficiently clear. The continuous character of the output
(and measures) makes the task easier, especially on the theoretical level. How-
ever, for classification, there is a very extensive number of measures, some of
them without a clearly justified theoretical basis, some of them recently intro-
duced, and there is no comprehensive analysis of whether some of them bring
a really new point of view when evaluating classifiers.

In this work we concentrate on metrics for evaluating classifiers, such as Ac-
curacy, F-measure, Rank Rate, Area Under the ROC Curve (AUC), Squared
Error (Brier Score), LogLoss/Entropy, etc. Some of these metrics have been
introduced for very different applications and, supposedly, measure quite dif-
ferent things. More specifically, we will use 18 different metrics, which we
classify in three families as follows:

• Metrics based on a threshold and a qualitative understanding of error: accu-
racy, macro-averaged accuracy (arithmetic and geometric), mean F-measure
(F-score) and Kappa statistic. These measures are used when we want a
model to minimise the number of errors. Hence, these metrics are usual in
many direct applications of classifiers. Inside this family, some of these mea-
sures are more appropriate for balanced or imbalanced datasets, for signal
or fault detection, or for information retrieval tasks.

• Metrics based on a probabilistic understanding of error, i.e. measuring the
deviation from the true probability: mean absolute error, mean squared
error (Brier score), LogLoss (cross-entropy), two versions of the probability
(rank) rate and two measures for calibration. These measures are especially
useful when we want an assessment on the reliability of the classifiers, not
only measuring when they fail but whether they have selected the wrong
class with a high or low probability. This is also crucial for committee models
(machine ensembles) to properly perform a weighted fusion of the models.

• Metrics based on how well the model ranks the examples: AUC [22], which
for two classes is equivalent to the Mann-Whitney-Wilcoxon statistic, and
is closely related to the concept of separability. These are important for
many applications, such as mailing campaign design, Customer Relationship
Management (CRM), recommender systems, fraud detection, spam filtering,
etc., where classifiers are used to select the best n instances of a set of data
or when a good class separation is crucial.

We also include two other measures, SAUC and PAUC which are supposedly
in the middle between the last two groups.
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In this paper we analyse how these 18 metrics correlate to each other, in or-
der to ascertain in which extent and in which situations the results obtained
and the model choices performed with one metric are extensible to the other
metrics. The results show that most of these metrics really measure different
things and in many situations the choice made with one metric can be dif-
ferent from the choice made with another. These differences become larger
for multiclass problems, problems with very imbalanced class distribution and
problems with small datasets. But it also shows that other measures are highly
correlated (or they make the same choice) and results obtained on one mea-
sure could be extrapolated to other measures. For instance, we will see that
probabilistic rank rate always makes the same decision that absolute error.

The analysis is completed with a set of experiments to quantify the sensitivity
to four important traits which are present in some measures but not present in
others. These traits are class threshold choice optimality, separability/ranking
quality, calibration performance and sensitivity (or conversely robustness) to
changes in prior class distribution. From this analysis, we can quantify the
relations on these ‘dimensions’, which is very useful to complement the results
of the correlation analysis.

To our knowledge, this is the first experimental work which thoroughly com-
pares the most generally used classifier evaluation metrics for binary and mul-
ticlass problems drawing conclusions about the correlation, interdependence
and sensitivity of these measures. It is also the first work which gives a com-
prehensive taxonomy of these measures.

The paper is organised as follows. In the next Section, we explore some re-
lated work. In Section 3 we introduce the measures employed in this work and
we present a first taxonomy, based on their definition. Next, in Section 4, we
explain the methodology used in the experiments. The results of these exper-
iments are detailed in Section 5. Section 6 presents four different experiments
to analyse the sensitivity of the 18 measures to the four above-mentioned
traits: class threshold choice, separability/ranking quality, calibration perfor-
mance and sensitivity to changes in prior class distribution. Finally, Section 7
includes the conclusions, and gives some ideas for future work.

2 Related works

Several works have shown the fact that usually, given a dataset, the learning
method that obtains the best model according to a given measure, is not the
best method if we employ a different measure. For instance, it is said in [31]
that Naive Bayes and pruned decision trees are very similar in predictive ac-
curacy. However, using exactly the same algorithms, in [29] the authors show
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that Naive Bayes is significantly better than pruned decision trees in AUC.
The different results cannot be explained here by slightly different implemen-
tations or variants of machine learning algorithms, but on the fact that the
two measures (accuracy and AUC) evaluate different things.

The relationship between AUC and accuracy has been specially studied. For
instance, [8] gives a detailed statistical analysis of the relationship between the
AUC and the error rate. The results show that “the average AUC is mono-
tonically increasing as a function of the classification accuracy, but that the
standard deviation for uneven distributions and higher error rates is notice-
able. Thus, algorithms designed to minimize the error rate may not lead to the
best possible AUC values”. On the opposite side, [43] is a surprising work, since
it shows that if we use AUC for selecting models using a validation dataset,
we obtain better results in accuracy (in a different test dataset) than when
employing accuracy for selecting the models. Following this idea, [47] shows
that an AUC-inspired measure (SAUC) is better for selecting models when we
want to improve the AUC of the models. It has also been shown [11, 17] that
although pruning usually improves accuracy in decision trees, it normally de-
creases the AUC of the decision trees. Specifically, most of the studies on the
effect of pruning on decision trees have been performed taking accuracy into
account (see e.g. [13]). Not many works can be found which compare other
measures in similar terms as accuracy and AUC have been studied recently.
An exception is [9] where the authors study the relationship between ROC
curves and Precision-Recall curves.

In Multi-classifier Systems [32] many works have been devoted to study the
resulting accuracy of an ensemble of combined classifiers given the original
accuracies and some other conditions [37, 40, 33] or how to combine them in
order to increase accuracy [45]. However, little is known when the performance
measure is different from accuracy [23, 8, 34].

Finally, in other works [48], different probabilistic measures (MSE, log-loss
and profit) are used to evaluate different methods for calibrating classifiers.

All of these works are difficult to compare and understand together especially
because there is no comprehensive study of the several metrics they are using
to evaluate performance.

There are some previous works that compare some performance measures for
classification theoretically. [21, 24] analyse several metrics (AUC, accuracy,
Fmeasure) using the ROC space. [5] studies several metrics (LogLoss, squared
error, and others) checking whether these are proper scoring rules, defining
proper score rules as, “functions that score probability estimates in view of
data in a Fisher-consistent manner”. [30] is also a theoretical work on the
features a metric should have and proposing new ones.
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However, empirical studies have been scarce and limited in the literature. The
only exception to this is [6], independent and simultaneous to a preliminary
work of us [19]. Caruana & Niculescu-Mizil’s work analyses the behaviour
of several performance measures against a great number of machine learning
techniques, analyse the relation between the measures using multi-dimensional
scaling and correlations and, finally, derive a new central measure based on
other measures. The main goal of the paper is to analyse which family of algo-
rithms behave best with which family of measures. We disagree on this point
because each machine learning family of algorithms includes hundreds or even
thousand of variants. Some of them are tuned to optimise accuracy, others to
optimise MSE, others to optimise AUC, ... so a clear result on whether neural
networks, or support-vector machines are better for this or other measure is,
in our opinion, very difficult to state.

Additionally, the work in [6] only used two-class measures and relative large
datasets. Small datasets are essential, because the size of the training but,
very especially, the test set is a very important issue when comparing mea-
sures: measures based on a probabilisitc view of error integrate more informa-
tion than qualititative ones and, consequently, they are supposedly better for
smaller datasets.

The methodology used in [6]’s analysis is different. Some experiments use Eu-
clidean distances between measures, which requires a normalisation and, even
with this, it is very sensitive to outliers, non-linear behaviours (e.g. MSE) or
unboundness (e.g. LogLoss). Then they use correlations. They combine multi-
dimensional scaling (on a 2D projection) with the results from the correlation
matrix, but they do not use any clustering technique to arrange the measures.
As we will see below, there are more than two basic dimensions, so we decided
not to use projections (as multi-dimensional scaling) because of this.

Finally, our work is much more exhaustive in many ways. We include much
more measures, some of them very important, such as macro-averaged accu-
racy, the AUC variants and probability rate, we use a much larger number of
datasets, w analyse the results in a segmented way for two-class vs. multiclass,
small vs. large datasets, balanced vs. imbalanced, etc.

After these differences in goals and methodologies, the results obtained by [6]
and the rest of works mentioned in this section, as we will see below, are more
complementary than overlapping with this work.
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3 Measures

In this section we present the definition of the measures we will analyse. The
selection of measures is based both on the properties of each measure (we
want to cover a broad range of different measures) and their use (we want to
cover the most popular ones in the machine learning and pattern recognition
literature).

Regarding a broad range of different measures, we are particulary interested in
three types of measures, as mentioned in the introduction: measures that are
sensitive to a good choice of the threshold, measures that quantify the quality
of rankings (separability), and measures which quantify the deviation of the
estimated probability wrt. to the actual probability. For instance, a very good
classifier in terms of separability (rankings) can yield very bad accuracy if we
choose a bad threshold to separate the classes. On the other side, a classifier
can have very good results for a threshold, but perform very badly for other
thresholds (when costs or context changes, as ROC analysis deals with).

The difference which is sometimes most difficult to grasp is the difference
between good rankings and good probabilities. A classifier can produce very
good rankings, but probabilities might differ from the actual probabilities.
In this case, we say that the classifier is not well calibrated. More precisely,
calibration is defined as the degree of approximation of the predicted proba-
bilities to the actual probabilities. It is usually a measure of the reliability of
the prediction [10]. If we predict that we are 99% sure, we should expect to be
right 99% of the times. More formally, a classifier is perfectly calibrated iff for
a sample of examples with predicted probability p, the expected proportion of
positives is close to p. The problem of measuring calibration is that the test
set must be split into several segments or bins. If too few bins are defined, the
real probabilities are not properly detailed to give an accurate evaluation. If
too many bins are defined, the real probabilities are not properly estimated.
A partial solution to this problem is to make the bins overlap. These different
approaches have produced several measures to estimate calibration.

In fact, the relation between good class separability and calibration has been
analysed in the literature. The most remarkable approach is based on the so-
called “decompositions of the Brier score” [44, 39], which separate the Brier
scores (Mean Squared Error) measure into a reliability, a resolution, and an
uncertainty components, or, alternatively, in a calibration term and refinement
term. This calibration term requires binning.

In what follows we will introduce the definitions of 18 measures. The first 5
are qualitative and the other 13 are probabilistic.
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3.1 Definition of Measures

We use the following notation. Given a (test) dataset, we denote by m the
number of examples, and c as the number of classes. f(i, j) represents the
actual probability of example i to be of class j. We assume that f(i, j) always
takes values in {0,1} and, strictly, it is not a probability but an indicator

function. With mj =
m∑

i=1
f(i, j), we denote the number of examples of class j.

We denote by p(j) the prior probability of class j, i.e., p(j) = mj/m.

Given a classifier, p(i, j) represents the estimated probability of example i to
be of class j taking values in [0,1]. Cθ(i, j) is 1 iff j is the predicted class for
i obtained from p(i, j) using a given threshold or decision rule (especially in
multiclass problems) θ. Otherwise, Cθ(i, j) is 0. We will omit θ in what follows.

• Accuracy: (Acc) This is the most common and simplest measure to evalu-
ate a classifier. It is just defined as the degree of right predictions of a model
(or conversely, the percentage of misclassification errors).

Acc =

m∑
i=1

c∑
j=1

f(i, j)C(i, j)

m
• Kappa statistic: (KapS) This is originally a measure of agreement be-

tween two classifiers [7], although it can also be employed as a classifier per-
formance measure [46] or for estimating the similarity between the members
of an ensemble in Multiclassifiers Systems [32].

KapS =
P (A)− P (E)

1− P (E)

where P (A) is the relative observed agreement among classifiers, and P (E)
is the probability that agreement is due to chance. In this case, P (A) is just
the accuracy of the classifier, i.e. P (A) = Acc as defined above, and P (B)
is defined as follows:

P (E) =

c∑
k=1

([
c∑

j=1

m∑
i=1

f(i, k)C(i, j)] · [
c∑

j=1

m∑
i=1

f(i, j)C(i, k)])

m2

• Mean F-measure: (MFM) This measure has been widely employed in
information retrieval [1].

Fmeasure(j) =
2 · recall(j) · precision(j)

recall(j) + precision(j)

where

recall(j) =
correctly classified positives

total positives
=

m∑
i=1

f(i, j)C(i, j)

mj
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precision(j) =
correctly classified positives

total predicted as positives
=

m∑
i=1

f(i, j)C(i, j)

mj∑
i=1

C(i, j)

where j is the index of the class considered as “positive”. Finally, mean
F-measure is defined as follows:

MFM =

c∑
j=1

FMeasure(j)

c
• Macro average arithmetic: (MAvA) This is defined as the arithmetic

average of the partial accuracies of each class. This is usually referred as
macro-average [38].

MAvA =

c∑
j=1

m∑
i=1

f(i,j)C(i,j)

mj

c
• Macro average geometric: (MAvG) This is defined as the geometric av-

erage of the partial accuracies of each class.

MAvG =
c

√√√√√√ c∏
j=1

m∑
i=1

f(i, j)C(i, j)

mj

• AUC of each class against the rest, using the uniform class distri-
bution: (AUNU) The AUC (Area Under the ROC Curve)[15] of a binary
classifier is equivalent to the probability that the classifier will rank a ran-
domly chosen positive instance higher than a randomly chosen negative
instance (Mann-Whitney-Wilcoxon statistic interpretation).

AUC(j, k) =

m∑
i=1

f(i, j)
m∑

t=1
f(t, k)I(p(i, j), p(t, j))

mj ·mk

I(·) is a comparison function satisfying I(a, b) = 1 iff a > b, I(a, b) = 0 iff
a < b and I(a, b) = 0.5 iff a = b.

This measure has been extended for multi-class problems in more than
one way. We present four variants below.

AUNU computes the area under the ROC curve treating a c-dimensional
classifier as c 2-dimensional classifiers, where classes are assumed to have a
uniform distribution, in order to have a measure which is independent to
class distribution change. Formally,

AUNU =

c∑
j=1

AUC(j, restj)

c
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where restj gathers together all classes different from class j.
Here, the area under the ROC curve is computed in the one against all

approach, i.e. we compute this measure as the average of c iterations.
• AUC of each class against the rest, using the a priori class dis-

tribution: (AUNP) This measure [14] computes the area under the ROC
curve treating a c-dimensional classifier as c 2-dimensional classifiers, taking
into account the prior probability of each class (p(j)).

AUNP =
c∑

j=1

p(j)AUC(j, restj)

• AUC of each class against each other, using the uniform class
distribution: (AU1U) This metric also represents the approximation of
AUC in the case of multidimensional classifiers, computing the AUC of
c(c−1) binary classifiers (all possible pairwise combinations) and considering
uniform distribution of the classes [27].

AU1U =
1

c(c− 1)

c∑
j=1

c∑
k 6=j

AUC(j, k)

• AUC of each class against each other, using the a priori class
distribution: (AU1P). In order to complete all the reasonable extensions
of AUC for more than two classes, we define a final AUC-based measure.
This measure represents the approximation of AUC in the case of multi-
dimensional classifiers, computing AUC of c(c− 1)/2 binary classifiers and
considering the a priori distribution of the classes.

AU1P =
1

(c− 1)

c∑
j=1

c∑
k 6=j

p(j)AUC(j, k)

• Scored AUC: (SAUC) is a variant of the AUC, which includes probabilities
in the definition [47]. The idea is to introduce a rank measure which is robust
to rank changes due to small probability variations.

First, Scored AUC for two classes is defined as:

ScoredAUC(j, k) =

m∑
i=1

f(i, j)
m∑

t=1
f(t, k)I(p(i, j), p(t, j)) · (p(i, j)− p(t, k))

mj ·mk

which is equal to AUC(i, j) except from an additional factor (p(i, j) −
p(t, k)), which is added to quantify the deviation in probability estimation
whenever the rank is incorrect.

From the binary AUC, the multiclass SAUC measure is defined as:

SAUC =
1

c(c− 1)

c∑
j=1

c∑
k 6=j

ScoredAUC(j, k)

9



• Probabilistic AUC: (PAUC) is also a variant of the AUC which includes
probabilities in the definition [18] in more or less the same line than SAUC,
although the part with the indicator function is no longer used. This means
that it is not properly a rank measure.

First, Probabilistic AUC for two classes is defined as:

ProbAUC(j, k) =

m∑
i=1

f(i,j)p(i,j)
mj

−
m∑

i=1

f(i,k)p(i,j)
mk

+ 1

2

From the binary AUC, the multiclass PAUC measure is defined as:

PAUC =
1

c(c− 1)

c∑
j=1

c∑
k 6=j

ProbAUC(j, k)

• Macro Average Mean Probability Rate:(MAPR). It is computed as
an arithmetic average of the mean predictions for each class (see [38]).

MAPR =

c∑
j=1

m∑
i=1

f(i,j)p(i,j)

mj

c
• Mean Probability Rate: (MPR) This measure is also a measure which

analyses the devation from the true probabilitiy. It is a non-stratified version
of the previous one, the arithmetic average of the predicted probabilities of
the actual class [34].

MPR =

c∑
j=1

m∑
i=1

f(i, j)p(i, j)

m
• Mean Absolute Error: (MAE) This is the simplest metric telling how

much the predictions deviate from the true probability and it only differs
from the previous one in that the product is changed by the absolute value
of the difference.

MAE =

c∑
j=1

m∑
i=1

|f(i, j)− p(i, j)|

m · c
• Mean Squared Error: (MSE) This is just a quadratic version of MAE,

which penalises strong deviations from the true probability. This metric is
also known as Brier score [4] and integrates calibration and other compo-
nents, usually grouped under the term ‘refinement’.

MSE =

c∑
j=1

m∑
i=1

(f(i, j)− p(i, j))2

m · c
• LogLoss: (LogL) This is also a measure of the goodness of probability esti-

mates (also known as cross entropy) and it has been used when calibration
is important [25, 26, 12].
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LogL =

−
c∑

j=1

m∑
i=1

(f(i, j) log2 p(i, j))

m

To avoid the case of log2(0), log2p(i, j) is computed as log2(max(p(i, j), ε)),
where ε will be set to 0.00001 for the experiments.

• Calibration Loss: (CalL). In [16] and, independently, in [20], the relation-
ship between the AUC-based measures, and ROC analysis in general, with
calibration has been clarified. A perfectly calibrated classifier always gives
a convex ROC curve. A method for calibrating a classifier is to compute the
convex hull or, which is equivalent, to use isotonic regression. In [20], they
derive a decomposition of the Brier Score into calibration loss and refine-
ment loss. Calibration loss is defined as the mean squared deviation from
empirical probabilities derived from slope of ROC segments.

CalLoss(j) =
rj∑

b=1

∑
i∈sj,b

(p(i, j)−
∑

i∈sj,b

f(i, j)

|sj,b|
)2

where rj is the number of segments in the ROC curve for class j, i.e. the
number of different estimated probabilities for class j: |{p(i, j)}|. Each ROC
segment is denoted by sj,b, with b ∈ 1..rj, and formally defined as:

sj,b = {i ∈ 1..m | ∀k ∈ 1..m : p(i, j) ≥ p(k, j) ∧ i 6∈ sj,d,∀d < b}

From the previous binary CalLoss, the general multiclass Calibration Loss
measure is defined as:

CalL =
1

c

c∑
j=1

CalLoss(j)

• Calibration by Bins: (CalB).
A calibration measure based on overlapping binning is CAL [6]. This is de-

fined as follows. For each class, we must order all cases by predicted positive
class p(i, j), giving new indices i∗. Take the 100 first elements (i∗ from 1 to
100) as the first bin. Calculate the percentage of positives (class j) in this bin
as the actual probability, f̂j. The error for this bin is

∑
i∗∈1..100 |p(i, j)− f̂j|.

Take the second bin with elements (2 to 101) and compute the error simi-
larly. At the end, average the errors. The problem of using 100 as [6] suggest
is that it might be a much too large bin for small datasets. Instead of 100
we fix a different bin length, s = m/10, to make it more size-independent.
Formally:

CAL(j) =
1

m− s

m−s∑
b=1

b+s−1∑
i∗=b

|p(i∗, j)−

b+s−1∑
i∗=b

f(i∗, j)

s
)|
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We indicate with i∗ that indexes are ordered by p(i, j). For more than
two classes, the measure is the average for all classes, i.e.

CalB =
1

c

c∑
j=1

CAL(j)

Some of the previous measures (MFM, MAvA, MAvG, AUC variants, SAUC,
PAUC, MAPR, MPR, CalL and CalB) have to be carefully implemented to
exclude any class for which the test set has no instance.

3.2 Taxonomy of measures according to their properties

Before, we mentioned that from the 18 measures, the first 5 measures are
qualitative and the remaining 13 are probabilistic. This is now clear from
the definitions if we just check that the first 5 use the term C(i, j) in their
definition (which is compared to the actual f(i, j)). So, the first 5 measures
are sensitive to the class threshold. The other 13 measures do not use the
term C(i, j) in their definition but use the term p(i, j). It is the estimated
probability which is compared to the actual probability f(i, j).

We can enrich the previous analysis if we also take into account whether the
measure takes into account the ranking (this corresponds to the I(p(i, j), p(t, j))
term) but not the direct value of the probability estimation. Additionally, we
can also analyse whether the measures are sensitive to class frequency changes
or not.

In Table 1, we indicate whether each of the 18 measures is influenced or not by
changes in these four traits: changes in class thresholds, changes in calibration
which preserve the ranking, changes in ranking which do not cross the class
thresholds (but usually affect calibration), and changes in class frequency.

As can be seen in the table, according to the three first traits, threshold,
calibration and ranking, the measures can be grouped on those focussed on
error (yes, no, no), those focussed on ranking (no, no, yes) and thosed focussed
on probabilities (no, yes, yes). The fourth trait, sensitivity to class frequency
change is present in some of them.

Some interesting things can be observed from the table. The most surprising
issue is that there is no measure which has a ‘Yes’ on both the class threshold
column and either the calibration or ranking column. This means that, to
date, and as far as we know, there is no measure which combines, at the same
time, the threshold and the estimated probability at the same time. In fact,
in the defintion of the 18 measures, none of them use C(i, j) and p(i, j) at
the same time. This would be a good niche to study in the future, especially
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Measure Class Threshold Calibration Ranking Class Frequencies

Acc Yes No No Yes

KapS Yes No No Yes

FME Yes No No Partially

MAVA Yes No No No

MAVG Yes No No No

AU1u No No Yes No

AU1p No No Yes Yes

AUnu No No Yes No

AU1p No No Yes Yes

SAUC No Yes Yes No

PAUC No Yes Yes No

MAPR No Yes Yes No

MPR No Yes Yes Yes

MAE No Yes Yes Yes

MSE No Yes Yes Yes

LogL No Yes Yes Yes

CalL No Yes Yes No

CalB No Yes Yes Yes

Table 1
Characterisation of measures according to different traits.

because in some applications the deviation from the actual probability is only
relevant when the classifier fails. For instance, measures with a term like f(i, j)·
C(i, k) · p(i, k) might be analysed. Another interesting observation from the
table is that many measures have exactly the same characterisation for the
four traits, so the difference can only be shown from a quantitative analysis.
For instance, it seems that LogL is more sensitive to calibration than MSE,
and MSE is more sensitive than MAE, but we cannot quantify these difference
from the previous table. The experimental analyses in Section 5 and Section
6 will confirm one of these statements and refute the other.

4 Methodology

The experiments were performed using Weka [46], which we extended with sev-
eral new metrics, not included in the current distribution. We used six well-
known machine learning algorithms: J48, Naive Bayes, Logistic Regression,
Multilayer Perceptron, K-Nearest Neighbour, AdaBoost with ten J48 trees
and we performed the experiments with 30 small and medium-size datasets
included in the machine learning repository [3], 15 of them being two-class (bi-
nary) problems and 15 of them being multiclass. Also half of them are consid-
ered to be balanced, and the rest, imbalanced. Table 2 includes further details
of the datasets (size, number of classes, number of nominal attributes, number

13



of numerical attributes, percentage of the majority class). The datasets which
we consider balanced are highlighted in bold.

# Datasets Size Classes Nom. Num. %Maj-%Min.

1 Autos5c 202 5 10 15 33.16%-10.89%

2 Balance Scale 625 3 0 4 46.08%-7.84%

3 Breast Cancer 286 2 0 9 70.27%-29.72%

4 Chess 3196 2 36 0 52.22%-47.48%

5 Cmc 1473 3 7 2 42.70%-22.61%

6 Credit Rating 690 2 9 6 55.50%-44.50%

7 Dermatology 366 6 33 1 30.60%-5.46%

8 German-Credit 1000 2 13 7 70.00%-30%

9 Glass 214 6 9 0 35.51%-4.2%

10 Heart-Statlog 270 2 13 0 55.55%-44.45%

11 Hepatitis 155 2 14 5 79.35%-20.65%

12 House Voting 435 2 16 0 54.25%-45.75%

13 Ionosphere 351 2 0 34 64.10%-35.9%

14 Iris Plan 158 3 0 4 33.33%-33.33%

15 Monks1 556 2 6 0 50%-50%

16 Monks2 601 2 6 0 65.72%-34.27%

17 Monks3 554 2 6 0 51.99%-48.01%

18 New Thyroid 215 3 0 5 69.97%-13.95%

19 Pima 768 2 0 8 65.10%-34.90%

20 Sick 3772 2 22 7 93.87%-6.12%

21 Soybean 683 19 31 0 13.46%-1.17%

22 Segmentation 2310 7 0 19 14.28%-14.28%

23 Spect 80 2 0 44 50%-50%

24 Tae 151 3 2 3 34.43% -32.45%

25 Tic-tac 958 2 8 0 65.34% -34.65%

26 Vehicle3c 846 3 0 18 51.41% -23.52%

27 Waveform 5000 3 0 21 33.92%-33.06%

28 Wine 178 3 0 13 39.88%-26.97%

29 Wovel 990 11 3 11 9.09%-9.09%

30 Zoo 101 7 16 1 40.6%-3.96%

Table 2
Datasets used in the experiments.

The above mentioned models were evaluated using 20× 5 fold cross-validation,
each of the 6 models being applied to each of the 30 datasets, getting 600 re-
sults for each dataset, making 18,000 results in total. We set up seven types
of analysis: an overall analysis for all datasets, an analysis for binary prob-
lems, for multiclass problems, for balanced, for imbalanced problems, for short
datasets and for large datasets. In each case we calculated the Pearson (stan-
dard) linear correlation and Spearman rank correlation between all eighteen
metrics. Apart from the global view for all the datasets which will be presented

14



using linear and rank correlations, the other six analysis will only be shown
for rank correlations.

It is important to remark that we compute the correlation for each dataset, i.e.,
we analyse the results of the 6 models for one dataset and the corresponding
100 combinations of the cross-validation. Not merging results from different
datasets is crucial, since measure values are influenced in very different ways
depending on the dataset, e.g. number of classes, imbalance, problem difficulty,
etc. Consequently, we construct one correlation matrix per dataset. Finally, we
average (arithmetically) the 30 correlation matrices. The results when we use
the Pearson correlation indicate the strength and direction of a linear rela-
tionship between two measures, while the rank correlation assesses how well
an arbitrary monotonic function could describe the relationship between two
variables, without making any assumptions about the frequency distribution
of the variables. A high rank correlation between two measures means that for
the same problem these two measures have ranked the 6 models similarly. In
other words, both measures would usually select the same model. Unlike the
standard correlation coefficient, it does not require the assumption that the
relationship between the variables is linear. In order to avoid negative values
for correlation we worked with 1-MAE, 1-MSE, 1-LogL, 1-CalL and 1-CalB.

Since there are hence eight correlation matrices, and these are difficult to
understand at a glance, we will use dendrograms for representation; where
the linkage distance is defined as (1 − correlation). A dendrogram is a tree
diagram frequently used to illustrate the arrangement of the clusters produced
by a clustering algorithm. This kind of diagrams has several advantages: we
can easily visualise the clusters formed by the measures, as well as the linkage
distance among clusters. It is also quite easy to know the number of clusters
and their components once we have selected a linkage distance. There are
several methods to construct a dendrogram using a linkage distance. We will
use the “average group distance” method, which joins to an existing group
the element (or group) whose average distance to the group is minimum.

5 Analysis of Results

In this section we discuss some of the interesting outcomes we found from the
analysis of the correlation between metrics. First we analyse the correlation
matrix (both linear and rank) for all datasets, as shown in Table 3.

In Figures 1 and Figure 2 we show dendrograms built from the obtained linear
and rank correlations using all the available results. This figure represents the
relations between the measures in an abridged and more comprehensible way.
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- Acc KapS MFM MavA MavGA1U A1P ANU ANP sauc pauc mapr MPR MAE MSE LogL CalL CalB

Acc 0.00 0.98 0.95 0.92 0.83 0.70 0.72 0.70 0.72 0.68 0.76 0.76 0.79 0.79 0.88 0.40 0.55 0.58

KapS 0.98 0.00 0.97 0.95 0.88 0.72 0.74 0.72 0.73 0.71 0.79 0.79 0.78 0.78 0.87 0.40 0.55 0.56

MFM 0.95 0.97 0.00 0.98 0.93 0.71 0.71 0.70 0.69 0.74 0.81 0.81 0.78 0.78 0.85 0.38 0.54 0.57

MAvA 0.90 0.94 0.97 0.00 0.95 0.73 0.71 0.71 0.70 0.75 0.81 0.81 0.74 0.74 0.82 0.38 0.51 0.52

MAvG 0.85 0.90 0.95 0.98 0.00 0.67 0.66 0.66 0.64 0.75 0.80 0.80 0.72 0.72 0.75 0.32 0.47 0.52

AU1U 0.69 0.71 0.70 0.72 0.69 0.00 0.99 1.00 0.97 0.47 0.58 0.58 0.52 0.52 0.81 0.67 0.45 0.48

AU1P 0.71 0.73 0.70 0.71 0.68 0.98 0.00 0.99 1.00 0.46 0.57 0.57 0.52 0.52 0.82 0.67 0.46 0.48

AUNU 0.69 0.71 0.70 0.71 0.68 1.00 0.99 0.00 0.98 0.45 0.56 0.56 0.50 0.50 0.80 0.67 0.46 0.46

AUNP 0.71 0.73 0.69 0.70 0.67 0.97 0.99 0.98 0.00 0.45 0.55 0.55 0.51 0.51 0.81 0.67 0.46 0.46

SAUC 0.67 0.71 0.73 0.74 0.75 0.45 0.45 0.43 0.43 0.00 0.97 0.97 0.92 0.92 0.61 0.03 0.32 0.60

PAUC 0.74 0.77 0.79 0.80 0.80 0.55 0.55 0.54 0.53 0.97 0.00 1.00 0.95 0.95 0.72 0.14 0.40 0.65

MAPR 0.74 0.77 0.79 0.80 0.80 0.55 0.55 0.54 0.53 0.97 1.00 0.00 0.95 0.95 0.72 0.14 0.40 0.65

MPR 0.78 0.77 0.77 0.72 0.70 0.48 0.49 0.47 0.48 0.90 0.93 0.93 0.00 1.00 0.73 0.11 0.42 0.69

MAE 0.78 0.77 0.77 0.72 0.70 0.48 0.49 0.47 0.48 0.90 0.93 0.93 1.00 0.00 0.73 0.11 0.42 0.69

MSE 0.88 0.87 0.85 0.81 0.76 0.80 0.81 0.79 0.81 0.58 0.70 0.70 0.71 0.71 0.00 0.63 0.67 0.66

LogL 0.47 0.47 0.45 0.45 0.42 0.73 0.74 0.73 0.73 0.08 0.20 0.20 0.17 0.17 0.67 0.00 0.55 0.24

CalL 0.61 0.61 0.59 0.55 0.53 0.47 0.48 0.47 0.48 0.38 0.46 0.46 0.50 0.50 0.70 0.50 0.00 0.29

CalB 0.61 0.59 0.59 0.55 0.53 0.49 0.50 0.48 0.48 0.57 0.64 0.64 0.67 0.67 0.69 0.31 0.42 0.00

Table 3
Linear (bottom-left) and Rank (top-right) Correlation results for all
datasets.

Fig. 1. Dendrogram of standard correlations between the metrics for all
datasets.

The correlations shown on the matrix for both kinds of correlations, as well as
both dendrograms are very similar (rank correlations are slightly higher than
linear correlations, as expected). Consequently, there is no point in replicating
the analysis. Hence, we will focus on the results and dendrogram for rank
correlation.

A general observation is that all correlations are positive, and usually strong
(greater than 0.5). The only clear exceptions are some correlations between
LogL and some probabilistic measures, which we might consider in the same
family a priori. This is mostly due to the fact that LogL is an unbounded
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Fig. 2. Dendrogram of rank correlations between the metrics for all
datasets.

measures, i.e, a 0 wrong probability has an infinity penalty (or very high if
log0 is avoided in implementations).

A first specifc observation is the close relationship between all the qualitative
measures: MAvA and MAvG, MFM, Acc and KapS, as expected. Although not
exactly equal, their choices are almost the same. A second specific observation
can be made with the ranking measures (AU*). The 4 variants of AUC behave
quite similarly, so they can even be used interchangeably. This means that
previous works in the literature using these different variants for evaluating
rankers can be contrasted safely, independently of which variant they have
used. Additionally, it is interesting to note that no other measure correlates
to AUC more than 0.82, justifying the use of the AUC as a genuinely different
and compact measure/family. Finally, on the probabilistic measures, there is
a clear equivalence between MPR and MAE, which is not surprising if we
take a look at their definitions. The same happens for PAUC and MAPR. In
fact, it is shown that PAUC has no relation whatsoever with AUC. These four
measures, jointly with SAUC collapse at a linkage distance of 0.1, which mean
that all of them are very similar. MSE behaves differently, and, as already
mentioned, LogL, which seem to be out of this group.

In fact, if we take a look to dendrograms, and using linkage distance 0.1, we
discover 7 clusters: AUC measures, qualitative measures, ‘plain’ probabilis-
tic measures (MPR, MAE, PAUC, MAPR) with SAUC, and then 4 isolated
measures: MSE, LogL, CalL and CalB. MSE and LogL use a quadratic or log-
arithmic function on the probabilities, which might explain their distance to
the other probabilistic measures. The two calibration measures are outsiders
because they are not properly performance measures, they try to recognise
the degree in which probabilities are calibrated. Their closest measure is MSE
(correlations about 0.7), since MSE can be decomposed into a calibration
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term and other terms. However, it is interesting to see that both calibration
measures do not correlate well (0.42), which suggest that both measures of cal-
ibration are significantly different (partly because bins for CalL are smaller).
If we use linkage distance 0.3, we discover 4 clusters. One with the AUC mea-
sures and LogL, a second cluster with all the probabilisitc and qualitative
measures (including MSE), and a third and fourth isolated measures: CalL
and CalB. It is remarkable that MSE finds its highest correlation with the
qualitative measures (Acc in particular) and LogL with the AUC measures.
Other surprising results are the low correlation between the AUC measures
and some of the derived measures (SAUC and PAUC), most especially SAUC,
which has an AUC-based definition, but only shows correlations of about 0.45.
LogL shows the worst correlation of all with the group of ‘plain’ probabilistic
measures (MPR, MAE, PAUC, MAPR, SAUC), mainly due to its logarithmic
behaviour.

Despite methodology is different, these results are consistent with [6], our
previous preliminary results [19] and other works we have referred to in Section
2, with the only difference that we do not find a strong correlation between
MSE and LogL, which was found on these two works, and might be found in
the implementation of LogL, which might avoid log(0) in different ways and
also because [6] only analyses two class problems.

In fact, if we compare the correlation results of 2-class problems with multiclass
problems (see Figure 3 and Figure 4), we have some expected results. All the
AUC variants collapse for 2 classes, since they are all extensions for multiclass
problems but equivalent for 2-class problems. The rest of the correlations are
similar in both cases although a little bit stronger for multiclass problems. The
only big difference is that MSE is joined with the AUC measures in the 2-class
datasets and not with the qualitative measures. This suggests that MSE has
a different behaviour for 2-class problems and multiclass problems.

If we compare the correlations for the datasets with balanced class distribu-
tion against the correlations for the datasets with imbalanced class distribution
(see Figure 5 and Figure 6), the results show more variations. Correlations are
much lower for imbalanced datasets, and the way in which the definition of
each measure mixes the partial functions for each class is very relevant. For
instance, qualitative measures are very close for balanced datasets. There is
virtually no difference between Acc, KapS, MAvG, MFM and MAvA for bal-
anced datasets, while it is amplified for imbalanced dataset. In fact, CalL is
associated with qualitative measures for balanced datasets, but not for imbal-
anced datasets. It happens similarly for LogL, which is associated with AUC
measures for balanced datasets, but not for imbalanced datasets. Finally, it
happens conversely with CalB. It is associated with ‘plain’ probabilistic mea-
sures for imbalanced datasets, but not for balanced datasets. This highlights
the relevance of metric choice depending on the class balance of the dataset.
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Fig. 3. Dendrograms of rank correlations between the metrics for two-class
datasets.

Fig. 4. Dendrograms of rank correlations between the metrics for multi–
class datasets.

Finally, the results for relatively small vs. large datasets (see Figure 7 and Fig-
ure 8), is significant around linkage distance of 0.2. While qualitative measures
and AUC measures are joined for small datasets, and it is the probabilistic
measures which gather more information from less data, for large datasets,
AUC and LogL are very clearly separated from the rest of measures.

6 Sensitivity Analysis

The previous analysis disentangles the relationships of the performance mea-
sures and cluster them in groups, according to their correlation. From the
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Fig. 5. Dendrogram of rank correlations between the metrics for balanced
datasets.

Fig. 6. Dendrogram of rank correlations between the metrics for imbal-
anced datasets.

definitions, the correlations and the clusters, we have been able to give an
interpretation of these groups and their relation with the three families of
measures: those based on error, those based on ranking and those based on
probabilities. Additionally, we have also analysed the influence of imbalance to
these measures. However, for those cases where we have a “Yes” on one trait
we do not know the degree of sensitivity to that trait. The following experi-
ments try to bring more light on this. Furthermore, some measures integrate
features from more than one the previous families and behave differently to
changes on prior probability distribution (especially, class frequencies). To
get more insight on the relation on these measures and their ability to cap-
ture misclassifications, bad rankings (separability), bad probabilities, and class
proportion drifts, we have devised some experiments to directly assess these
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Fig. 7. Dendrogram of rank correlations between the metrics for small
datasets.

Fig. 8. Dendrogram of rank correlations between the metrics for large
datasets.

issues, to complement the theoretical arrangement performed in Table 1.

We present four experiments on model selection over four synthetic scenarios.
The idea is that, given two models M1 and M2, with M1 being better than
M2, we progressively introduce some noise to both models to check whether
the performance measures are able to choose M1. In order to analyse the four
traits mentioned above, noise is applied to both models in four different ways
.

• Misclassification noise. Noise is applied to actual classes. In this scenario
we measure how sensitive the measure is to changes in the actual class
produced.
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• Probability noise. Noise is applied to the probabilities the models produce
for each prediction. In this scenario we measure how sensitive the measure
is to changes on model probabilities. This can be interpreted as a situa-
tion where we analyse the reliability of the estimated probabilities, good
calibration, etc.

• Ranking noise. Noise is applied to the ranking of the model prediction.
In this scenario we measure how sensitive the measure is to model ranking
change. This can be interpreted as situations where we analyse the reliability
of the order of scores, i.e. good or bad class separability, etc.

• Class proportion noise. Noise is applied to the frequency of the dataset
classes, i.e. we vary the proportion of classes. In this scenario we mea-
sure how sensitive the measure is to class proportion drifts. This can be
interpreted as situations where we analyse the robustness (or conversely,
sensitivity) to changes in prior class distribution.

The first part for the four experiments is the same. Two binary (two-class)
models are created. These artificial classifiers are randomly created in the
following way. First, we generate 100 real numbers from a uniform distribution
on [0,1]. These numbers represent probabilities of the positive class. We order
these probabilities decreasingly. Secondly, we assign a positive class to the
elements where the probability is greater than 0.5 and negative class to the
rest. Finally, we randomly modify 10 probabilities using the same uniform
distribution on [0,1]. As a result, we have a classifier, denoted by M1, with
a good separability/ranking and a performance of about 95% . This is just
a way to generate such an artificial classifier, and does not have a significant
influence to the following experiments if made otherwise (provided that the
classifier has good separability and classification rate.

The second classifier, M2, is obtained from the first one by randomly modifying
10 additional probabilities (different from the ones which were modified on the
first classifier and copied to the second). Consequently, on average, the second
classifier has worse separability and worse classification rate (about 90%) than
the first one.

A remarkable issue of this setting is that, as a result, M2 is better calibrated
initially than M1. We will se this through the CalB measures, which will be
ignored from the analysis, due to its ‘strange’ behaviour, since it is not a
performance metric useful for model selection, but it is purely a measure of
calibration.

We generate two classifiers in the previous way 10.000 times (so giving 10.000
experiments). For each experiment we record the selection made by the mea-
sure. If it selects M1, we score 1, if it select M0, we score 0. For ties, we score
0.5. When no noise is introduced, since M1 is generally better than M2, all per-
formance measures should select M1 on average. The thing changes, though,
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if we introduce some type of noise to M1 or M2.

The following experiments gradually introduce different types of noise, in order
to check the degree in which the selection made by each measure is affected.

6.1 Misclassification noise

In this first scenario, we apply noise to actual class in order to measure the
sensitivity (or conversely, robustness) to changes (or noise) in the actual class.
Noise ranges from 0% (where no class label is modified on the dataset) to 100%
(where all class labels are randomly generated). At 100% noise, all labels are
new and both models should behave similary. In this area, since M1 must be
better than M2, we record the estimated probability (i.e. frequency) of making
a wrong guess (choosing M2 instead).

Fig. 9. Measure sensitivity to misclassification noise.

As we can see in Figure 9, measures go from 0.0 (no wrong guesses) to 0.5
(half the chance of wrong guess). The point at 0% and 100% noise shows a
high coincidence for all measures. The interesting part of the plot is precisely
the evolution from 0% noise to 50%. We can see four lines where the measures
cluster. The first cluster on the bottom (with an average around 0.29 mistakes)
is more robust to this misclassification noise and is logically composed on
measures based on misclassification or error: Acc, MFM, MAvA, MAvG and
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KapS. At an important distant are the rest of measures (with an average
around 0.31): AUC measures, SAUC, PAUC, MSE, MPR, MAPR, MAE, CalL.
The least robust is LogL with an average of 0.33. This means that if the
dataset can have noise on the class labels (i.e. noise in the test set), these
latter measures will not behave well in choosing the best model. The two
main clusters are clearly consistent with the first column (“Class Threshold”)
on Table 1.

6.2 Probability noise

In this second scenario, we apply noise to the probabilities of the models in
order to measure the sensitivity (or conversely, robustness) to bad probability
estimation. Class labels on the datasets are left unaltered, but classification
thresholds might vary.

Here, all the probabilities are modified at all the degrees of noise. The level
of noise determines the degree in which probabilities are modified. A value α
(α obtained randomly from a uniform distribution [−β..β) is added to each
probability. beta goes from 0 (noise=0) to 0.5 (noise = 100).

Fig. 10. Measure sensitivity to probability noise.

As we can see in Figure 10, the results are very different from those on the
previous scenario. Here, qualitative measures such as Acc, MAvA, MAvG,
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KapS and MFM make bad choices in general. The groups begin at the bottom
with the four AUC measures, which jointly with MSE present an average bad
choice ratio of 0.087 to 0.088. The explanation of why AUC measures behave
well is simple. Only at great degrees of probability noise the ranking is affected
significantly. Consequently, the good choice is preserved. The behaviour of
MSE is more difficult to explain, since MSE has a quadratic behaviour, but it
can be understood if we see that at the right of the picture probabilities are
modified +/-0.25 on average, which means that great changes, for which the
quadratic stress will have big impact are not common.

At quite a distance (more or less in the middle band of the graph) we find
MPR, MAPR, MAE and PAUC (with averages about 0.13), which are all
probabilistic measures equally sensitive to small or large probability changes.
At a distant band (the upper one), we find the qualitative measures (with an
average value or 0.18): Acc, MAvA, MAvG, KapS and MFM. The explanation
of this bad behaviour is that for qualitative measures, if all probabilities are
modified, as this is the case, the border between classes is highly affected,
and this makes these measures worse to select the good model. SAUC is,
surprisingly, found next with 0.15. SAUC might be found here for different
reasons, because the rankings in the middle (which have more weight due
to the inclusion of probabilities in this measure) have more relevance in this
measure. Finally, CalL and LogL present inverse behaviours and are more
erratic then the rest. CalL starts badly but it is the best measure at the
end. This means that when distortion on probabilities is high, CalLoss is still
able to tell between models. Logloss on the contary, has a reasonably good
behaviour for small probability distortions but the logarithmic character make
it the worst measure for high distortions (since many probabilities will be cut
to 0 or 1, yielding -inf and 0 logarithms).

With this experiment, we have a view which gives more information that that
seen on column (“Calibration”) on Table 1.

6.3 Ranking noise

The third scenario introduces noise to the ranking. In particular, given a model
where the probabilities are sorted, we introduce random swappings of two
consecutive elements. The degree of noise goes from no swapping (noise=0)
to 100.000 (noise=80).

Class labels on the datasets are remained unaltered, and classification thresh-
olds are constant at 0.5. However, calibration, misclassification and separabil-
ity are affected by this type of noise.

The results shown on Figure 11 indicate three types of measures. On one
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Fig. 11. Measure sensitivity to ranking noise.

hand, at the bottome, we have the measures based on misclassification or
error: Acc, MFM, MAvA, MAvG and KapS. These are more affected to these
swappings than the rest since chained swappings will be more frequent in
probabilities around 0.5, which will imply a change of class. Close to this first
group of measures we find LogL, although it shows a more erratic behaviour. A
third cluster is found with probabilistic measures such as SAUC, PAUC, MSE,
MPR, MAPR, MAE, and CalL. Finally, and not very far from the previous
cluster, we can find the AUC measures, which are the ones which are less
affected (note that changes in the middle of the ROC curve are less important
than changes on the periphery).

These clusters are clearly consistent with the third column (“Ranking”) on
Table 1.

6.4 Class frequency variation

The last experiment evaluates what happens if one of the classes has few
examples and how this affects the robustness of a comparison between models.
From the original classes 0 and 1, we progressively eliminate examples from
class 1. At a level of noise of 0 we eliminate no element from class 1. At a level
of noise of 50 we eliminate all the elements (50 elements) from class 1.
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Fig. 12. Measure sensitivity to class frequency noise.

The results in figure 12 show that the AUC-based measures (the four AUCs,
and SAUC, PAUC/MAPR) are the ones which behave worst, because their 1-
vs-1 or 1-vs-n definition. Especially bad, we find SAUC and PAUC/MAPR. At
a distance, we find MAvA and MAvG which have a non monotonic behaviour.
At a short distance MPR/MAE. LogL, CalL and MSE are quite robust. Then,
MFM and KapS. Acc is very robust. Even with noise close to 50 where about
only one element is of class 1, the selection error is just 0.034.

The interpretation is straightforward in this case. If we want to measure the
quality of models that might be affected by classes with a very low percentage
of elements, the AUC-based measures and the MPR, MAE and macro-averages
are not a good idea, because the global measure is quite influenced by a poor
assessment of an infrequent class. This is precisely because these measures give
equal value to all classes independently of their frequency. On the other side,
Acc, MFM, KapS, LogL, CalL and MSE give a relevance to each class which
is proportional to its frequency. In this sense a badly assessed class is not a
problem. This is consistent with the fourth column (“Class Frequency”) on
Table 1, and the dendrograms for imbalanced datasets shown in the previous
section.
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6.5 Discussion

From the previous four scenarios, we can say that accuracy and other qual-
itative measures are the best when noise is present on the dataset (the first
experiment). Consequently, models evaluated with qualitative measures will
be more robust when concept drift or other strong changes appear on the
evidence. Probability-based measures are not good here and AUC measures
behave relatively well. However, qualitative measures are very bad when dis-
tortion is produced during learning because a bad algorithms is used or small
training datasets (models are distorted, which are reproduced by the second
and the third experiment). In these cases, AUC measures are the best. Ac-
cording to this, if we have a learning scenario where distortion might happen
on the datasets or on the learning process, the AUC measure is preferrable, as
has been shown in many previous studies (e.g. [43]). Finally, if we have very
few examples from a class, measures which are based on macro-averages or
1-vs-1 or 1-vs-n combinations are a bad option, because they will be highly
influenced by a bad estimation of the error for the minority class.

7 Conclusions

We have studied the relations between the most common performance mea-
sures for classifiers. In this study, we have started from the definitions, then
we have designed a set of experiments to analyse the correlations between
measures and their sensitivity to several identified traits. The results uncover
the existence of important similarities between measures but also significant
differences between others.

The previous analysis shows that most of the measures used in machine learn-
ing and pattern recognition for evaluating classifiers really measure different
things, especially for multiclass problems and problems with imbalanced class
distribution, where correlations are worse. One of the most surprising results
from the study is that the correlations between metrics inside the same family
are not very high, showing that with a probabilistic understanding of error,
it is very different to use MSE, LogL or MPR. It is even more different for
the calibration measures. With a qualitative understanding of error, it is still
different to use Acc or MAvG, although correlations in this group are higher.
The only compact group happens when we want to rank predictions, it is not
significantly different to use different variants of AUC. Consequently, the pre-
vious analyses in pattern recognition or machine learning (stating, e.g., that
one method is better than other) using different metrics (even inside the same
family, except AUC measures) could not be comparable and extensible to the
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other metrics, since, usually, the differences in performance between modern
machine learning methods are tight.

As future work, one interesting issue would be to analyse the relationship be-
tween measures when one is used with a small sample and the other is used
with a large sample from the same distribution. This would complete our sen-
sitivity study on which measure captures more information and is more robust
for small datasets. Another line of future research would be the development
of new measures (not as an average of measures as other works have done
[6, 30], but in the way suggested at the end of section 3.1), or the inclusion
of more measures in the study, such as the chi-square statistic [41], or the
Critical Success Index (CSI) and Heidke’s Skill Statistic (HSS) [35, 36].

Summing up, apart from the clarification and the many observations found on
the relation between metrics and their sensitivity to several characteristics, this
work can be used as a reference when comparing two different experimental
works in the literature which use different metrics, in order to see whether the
results are comparable or not.
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