
www.elsevier.com/locate/patrec

Pattern Recognition Letters 27 (2006) 1768–1775
Hallucinating multiple occluded face images of different resolutions

Kui Jia *, Shaogang Gong

Department of Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK

Available online 19 April 2006
Abstract

Learning-based super-resolution has recently been proposed for enhancing human face images, known as ‘‘face hallucination’’. In this
paper, we propose a novel algorithm to super-resolve face images given multiple partially occluded inputs at different lower resolutions.
By integrating hierarchical patch-wise alignment and inter-frame constraints into a Bayesian framework, we can probabilistically align
multiple input images at different resolutions and recursively infer the high-resolution face image. We address the problem of fusing par-
tial imagery information through multiple frames and discuss the new algorithm’s effectiveness when encountering occluded low-resolu-
tion face images. We show promising results compared to those of existing face hallucination methods from both simulated facial
database and live video sequences.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Super-resolution is a technique to generate a higher
resolution image given a single or a set of multiple low-
resolution input images. The computation requires the
recovering of lost high-frequency information occurring
during the image formation process. Super-resolution can
be performed using two different approaches: reconstruc-
tion-based (Elad and Feuer, 1997; Irani and Peleg, 1991;
Schulz and Stevenson, 1996; Hardie et al., 1997), and learn-
ing-based (Freeman and Pasztor, 1999; Baker and Kanade,
2000a; Capel and Zisserman, 2001; Liu et al., 2001; Dedeo-
glu et al., 2004; Sun et al., 2003). The reconstruction-based
approach inherits limitations when the magnification factor
increases. In this paper, we focus on learning-based super-
resolution, when applied to the human face, also com-
monly known as ‘‘hallucination’’ (Baker and Kanade,
2000b).

Capel and Zisserman (2001) used eigenfaces from a
training face database as model prior to constrain and
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super-resolve low-resolution face images. To further
improve the performance, they divided the human face into
six unrelated parts and applied PCA on them separately.
Combined with a MAP estimator, they can recover the
result from a high-resolution eigenface space. A similar
method was proposed by Baker and Kanade (2000a).
Rather than using the whole or parts of a face, they estab-
lished the prior based on a set of training face images pixel
by pixel using Gaussian, Laplacian and feature pyramids.
Freeman and Pasztor (1999) took a different approach
for learning-based super-resolution. Specifically, they
tried to recover the lost high-frequency information from
low-level image primitives, which were learnt from several
general training images. They broke the images and scenes
into a Markov network, and learned the parameters of the
network from the training data. To find the best scene
explanation given new image data, they applied belief
propagation in the Markov network. A very similar image
hallucination approach was also introduced in (Sun et al.,
2003). They used the primal sketch as the prior to recover
the smoothed high-frequency information. Liu et al. (2001)
combined the PCA model-based approach and Freeman’s
image primitive technique. They developed a mixture
model combing a global parametric model called ‘‘global
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Fig. 1. A realistic face detection environment.
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face image’’ carrying common facial properties, and a local
nonparametric model called ‘‘local feature image’’ record-
ing local individualities. The high-resolution face image
was naturally a composition of both.

More recently learning-based techniques have also been
extended to video. In (Bishop et al., 2003), a direct applica-
tion of (Freeman and Pasztor, 1999) to video sequences
was attempted, but severe video artifacts were found. As
a remedy, an ad hoc solution was proposed. It consisted
of re-using high-resolution solutions for achieving more
coherent videos. In (Dedeoglu et al., 2004), the authors
extended the work of (Baker and Kanade, 2000a) to
super-resolve a single human face video, using different vid-
eos of the face of the same person as training data. By
exploiting Bayesian framework and spatial-temporal con-
straints, they reported an extremely high face video magni-
fication factor. However, all existing techniques have not
addressed the problem of variable resolutions of partially
occluded inputs often encountered in video.

In this paper, we extend the work in (Jia and Gong, 2005)
and propose a novel algorithm to super-resolve face images
given multiple partially occluded inputs at different lower
resolutions. By integrating hierarchical patch-wise align-
ment and inter-frame constraints into a Bayesian frame-
work, we can probabilistically align multiple inputs at
different resolutions and recursively infer the high-resolu-
tion face image. We address the problem of fusing partial
imagery information through multiple frames and discuss
the new algorithm’s effectiveness when encountering
occluded low-resolution face images. We show promising
results compared to those of existing face hallucination
methods from both simulated facial database and live video
sequences.

The paper is organized as follows. In Section 2, we
define the problem of hallucinating multiple partially
occluded face images at different lower resolutions, and
present a novel algorithm to probabilistically both align
and infer high-resolution face images from a Bayesian
framework perspective. Section 3 extends the new algo-
rithm to cope with occluded face images in super-resolu-
tion. Experimental results are presented in Section 4
before conclusions are drawn in Section 5.

2. Hallucinating multiple images of different resolutions

2.1. Problem definition

In a surveillance video, a sequence or some snapshots of
a human face can be captured, where their resolutions are
often too small and vary significantly over time. The
images can also be partially occluded. Such conditions
make the images less useful for automatic verification or
identification. Existing techniques have not considered
hallucinating a high-resolution face image under these
conditions.

In this paper, we define the problem of face hallucina-
tion in video as how to super-resolve a face image with
multiple partially occluded inputs of different resolutions.
As shown in Fig. 1, low-resolution face images are auto-
matically detected as patches within rectangular regions
in a video. We are interested in developing an algorithm
that take into account these multiple inputs of different res-
olutions in order to yield an optimal higher resolution
image. Furthermore, we also wish to perform super-resolu-
tion when some or all of the low-resolution inputs are
occluded in the face detection process. An example of a
hallucinated complete face image from multiple occluded
inputs is also shown in Fig. 2.

The underlying challenges we aim to address are there-
fore three-fold. Firstly, how to align multiple inputs at dif-
ferent lower resolutions. Secondly, how to cross-refer and
recover missing pixel information in different image frames
due to occlusion. And finally, a unified algorithm to per-
form aligning, inferring missing information and super-
resolving a high-resolution face image given multiple
sources.

2.2. A Bayesian formulation

In this section, we formulate our problem of hallucinat-
ing multiple inputs of different resolutions by means of a
Bayesian framework. Assuming H is the high-resolution
image needs to be constructed, L1,L2, . . . ,LS are the low-
resolution inputs with different resolutions. The task comes
as finding the Maximum A Posterior (MAP) estimation of
H given L1,L2, . . . ,LS. Let us first consider the problem of
only two low-resolution inputs L1, L2 (see Fig. 2), which
can be formulated as

HMAP ¼ arg max
H

log P ðH jL1; L2Þ ð1Þ

Furthermore, we define T as an unknown intermediate
template and I as the aligning parameter between low-res-
olution inputs L1 and L2 (how to determine parameter I

and generate template T will be presented in Section 2.3).
We can marginalize P(HjL1,L2) over these unknown
parameters as

P ðH jL1; L2Þ ¼
X

i

X
j

P ðH ; T i; IjjL1; L2Þ



Fig. 2. An illustration of our hallucination process given multiple occluded input images: L1 and L2 are occluded low-resolution inputs, Ti and bT are
intermediate templates, H is the final hallucination result of a higher resolution: (a) is the hierarchical image aligning process, and (b) is the process of
patch learning and inter-frame constraint for estimating optimal intermediate template bT .
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where i and j are possible choices for T and I respectively.
By applying the Bayes rule twice, the above becomesX

i

X
j

P ðH jIj; T i; L1; L2ÞP ðIj; T ijL1; L2Þ

¼
X

i

X
j

P ðH jT i; Ij; L1; L2ÞP ðT ijIj; L1; L2ÞP ðIjjL1; L2Þ

ð2Þ

Assuming aligning parameter I will peak at the true value
Iw, gives

P ðI jL1; L2Þ ¼ dðI � IHÞ ð3Þ

By substituting (3) into (2) and using the Bayesian rule, we
haveX

i

P ðH jIH; T i; L1; L2ÞP ðT ijIH; L1; L2Þ

¼
X

i

P ðL1; L2jH ; IH; T iÞPðH jIH; T iÞ
P ðL1; L2jIH; T iÞ

P ðT ijIH; L1; L2Þ ð4Þ

Assuming H exists and based on the basic image observa-
tion model, the low-resolution inputs can be independently
sub-sampled from H, then we have P(L1,L2jH, Iw,Ti) =
P(L1jH)P(L2jH). By setting the denominator as a constant
C, P(HjL1,L2) can be rewritten as

C
X

i

P ðL1jHÞP ðL2jHÞP ðH jIH; T iÞP ðT ijIH; L1; L2Þ ð5Þ

Although there could be many options for the intermediate
template Ti, the one which is optimal maximizes the prob-
ability P(TijIw,L1,L2). We define it as bT , and compute tem-
plate bT by means of hierarchical low-level vision, similar to
that of (Baker and Kanade, 2000a; Dedeoglu et al., 2004)
(more details in Section 2.3). Then with (1) and (5), we
maximize the following cost function for HMAP:

log P ðL1jHÞ þ log P ðL2jHÞ þ log P ðH jIH; bT Þ
þ log PðbT jIH; L1; L2Þ ð6Þ
This resulting cost function is easily generalized from 2 to S

inputs as follows:

log P ðL1jHÞ þ log P ðL2jHÞ þ � � � þ log P ðLS jHÞ

þ log P ðH jIH

1 ; I
H

2 ; . . . ; IH

S�1;
bT Þ

þ log P ðbT jIH

1 ; I
H

2 ; . . . ; IH

S�1; L1; L2; . . . ; LSÞ ð7Þ

where IH

1 ; I
H

2 ; . . . ; IH

S�1 are aligning parameters for S � 1
low-resolution inputs with respect to the largest resolution.

The individual components in (7) can be interpreted as
follows. The first S terms require the inferred high-resolu-
tion result H to satisfy the basic image observation model
with respect to each of input L. The penultimate term
assures bT to serve as a prior in this Bayesian framework.
Finally, the last term provides an entrance to compute bT .

2.3. Finding the intermediate template

The basic idea for finding the intermediate template
comes from (Dedeoglu et al., 2004). As in (6), to find the
best bT , we need to maximize the probability P ðbT jIH;
L1; L2Þ. By the Bayes rule we have

PðbT jIH; L1; L2Þ / P ðL1; L2jbT ; IHÞP ðbT Þ
Assuming L1 is the low-resolution input that aligning is
based on, Iw defines the hierarchical patch-wise correspon-
dence between L1 and L2, we factorize the low-resolution
inputs into independent patches. The above likelihood
can be derived asYN
p¼1

XM

q¼1

PðL1
p; L

2
qjbT p; IHÞP ðbT Þ !

where L1
p, L2

q refer to the local patches in L1 and L2, N and
M are their patch numbers respectively. Regarding each
patch p for L1, there is only one matching q from 1 to
M. Assuming Iw is known, we have the final likelihood
function as
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YN
p¼1

PðL1
p; L

2
pjbT pÞP ðbT Þ ¼YN

p¼1

P ðL1
pjbT pÞP ðL2

pjbT pÞP ðbT Þ ð8Þ

where the L2
p stands for the hierarchically corresponding

patch in L2 with regard to L1
p. In other words, a patch in

L2 corresponds to multiple patches in L1. This expression
can also be generalized from two to S low-resolution in-
puts, and the likelihood expression becomes

YN
p¼1

PðL1
pjbT pÞPðL2

pjbT pÞ � � � P ðLS
p jbT pÞP ðbT Þ ð9Þ

The first S · N terms in (9) give the basic idea for how to
generate the intermediate template from the hierarchical
patch matching perspective. But their constraints are still
too weak considering each low-resolution patch could be
generated from many high-resolution database patches.
One remedy to this problem is to pool contextual informa-
tion among patches. To this end, we used parent vector
(DeBonet and Viola, 1998) as a local feature structure to
strengthen these constraints. The prior P ðbT Þ finally pro-
vides a spatial dependency constraint to refine the gener-
ated template.

2.3.1. Aligning multiple low-resolution inputs

For determining the aligning parameter Iw, let us first
consider the two inputs L1 and L2 case again. Assuming
L1 is the low-resolution input that aligning is based on,
we sub-sample L1 to the resolution of L2, and it becomes
L1. To compute the aligning parameter Iw, we need to max-
imize the likelihood function P ðI jL1; L2Þ, which is consistent
with the likelihood function P(IjL1,L2) in (2) and (3).
Assume patches in L1 are mutually independent, by apply-
ing Bayes rule we attain

P ðI jL1; L2Þ ¼ P ðL1; L2jIÞP ðIÞ ¼
Y

i

PðL1
i ; L

2
i jIÞP ðIÞ ð10Þ

where L1
i and L2

i have similar meanings as L1
p and L2

p in (8).
Given any aligning parameter estimation, we define the
above probability density function as

P ðL1
i ; L

2
i jIÞ / exp �kF L1

i
� F L2

i
k2

� �
where F L1

i
and F L2

i
are local patch feature vectors to be de-

fined in Section 2.3.2. The value Iw that maximizes the cost
function (10) gives the optimal aligning parameter. Simi-
larly we can generalize the two input case to that of S

inputs.

2.3.2. Template prior and local feature structure
The Markov Random Field (MRF) model assigns

a probability to each template patch configuration T,
and according to the Hammersley–Clifford theorem, P(T)
is a product

Q
T m;T n

/ðT m; T nÞ of comparability function
/(Tm,Tn) over all pairs of neighboring patches. The details
as how to compute P(T) can be found in (Dedeoglu et al.,
2004).
Suppose Ls
p is an image patch in low-resolution input Ls,

and T p is a random patch from the training database which
has already been sub-sampled to the resolution of Ls

p. For
each of these patches, we adopt the parent vector (DeBonet
and Viola, 1998) as their feature vectors, which stacks
together local intensity, gradient and Laplacian image
values at multiple scales. To each of the term P ðLs

pjT pÞ,
we define the probability density function as

P ðLs
pjT pÞ / exp �kF Ls

p
� F T p

k2
� �

where F Ls
p

and F T p
are the feature vectors for Ls

p and T p.
Similarly to (7), the pdf of the first S · N terms in (9) is gen-
eralized asYN
p¼1

P ðL1
pjbT pÞP ðL2

pjbT pÞ � � � P ðLS
p jbT pÞ

/
YN
p¼1

exp �
XS

s¼1

kF Ls
p
� F T p

k2

 !
ð11Þ

The final intermediate template bT is estimated as

arg max
T

YN
p¼1

P ðL1
p; L

2
p; . . . ; LS

p jT pÞ
Y
m;n

/ðT m; T nÞ ð12Þ
2.4. Inferring the high-resolution image

After obtaining the intermediate template bT , we can use
the first S + 1 terms of (7) as objective function to infer the
final result H.

Suppose the acquisition of L1,L2, . . . ,LS should observe
the image observation model by blurring and sub-sampling
the high-resolution H, we approximate the process as

Ls ¼ AsH þ gLs

where s = 1, . . . ,S, As is a sub-sampling model, and gLs
is

Gaussian noise. Assuming any Ls is pixel-wise independent,
then we have

P ðLsjHÞ ¼
Y

u

1

rLs

ffiffiffiffiffiffi
2p
p exp �ðLsðuÞ � ðAsHÞðuÞÞ2

2r2
Ls

 !
ð13Þ

The final inference of H should be coherent with the inter-
mediate template bT with a probability of P ðH jIH; bT Þ. We
express the relationship as

H ¼ bT þ gH

Assuming noise gH is pixel-wise independent and Gaussian,
we have

P ðH jbT ; IHÞ ¼
Y

v

1

rH

ffiffiffiffiffiffi
2p
p exp �ðHðvÞ �

bT ðvÞÞ2
2r2

H

 !
ð14Þ

Substitute (13) and (14) into the above objective function,
we can finally infer high-resolution H by minimizing the
following quadratic expression:
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r2
H

r2
L1

kL1 � A1Hk2 þ r2
H

r2
L2

kL2 � A2Hk2 þ � � �

þ r2
H

r2
LS

kLS � ASHk2 þ kbT � Hk2 ð15Þ
3. Hallucinating multiple occluded face images

Another significant advantage of the Bayesian frame-
work presented above is its ability in recovering missing
data from occluded low-resolution face images. This capa-
bility is important because occlusion is very common when
capturing faces in video, as illustrated in Fig. 1.

Given occluded low-resolution inputs L1,L2, . . . ,LS, the
task here is to super-resolve the high-resolution H, even in
the extreme case that none of the inputs captures a com-
plete face. Within our Bayesian framework, we need first
to estimate the aligning parameter Iw, and then compute
the intermediate template bT . Given bT , we can infer the final
high-resolution H by minimizing (15).

Assuming L1 and L2 are two partially occluded images,
even though not all patches from both images are present
(i.e. partially missing) for alignment, a Iw can still be esti-
mated by maximizing (10). Given Iw, we can simplify
(12) as

arg max
T

Y
pi

P ðL1
pi
jT pÞ

Y
pj

P ðL2
pj
jT pÞ

�
Y
pk

P ðL1
pk
jT pÞP ðL2

pk
jT pÞ

Y
m;n

/ðT m; T nÞ ð16Þ

from which bT can be generated, where pi stands for the
patches in L1 without corresponding patches in L2, pj

stands for the patches in L2 without corresponding patches
in L1, and pk are those patches that are common in both L2

and L2. The remaining process follows details in the above
section. Fig. 2 illustrates the entire process for hallucinating
occluded face images.

4. Experimental results

4.1. Setup

Our face images come from a subset of AR, FERET and
Yale databases. The database consists of 845 images of 169
different individuals (60 women and 109 men), in which
each person has five different face images. Originally face
images from these databases have different sizes, and also
the area of the image occupied by the face varies consider-
ably. To build up a standard training patch database, we
need to align these face images manually. This alignment
was performed by hand marking the location of three
points: the centers of the eyeballs and the lower tip of the
nose. These three points define an affine warp, which was
used to warp the images into a canonical form. The canon-
ical image has 56 · 46 pixels with the right eye at (25, 31),
the left eye at (25,16), and the lower tip of the nose at
(34,24).
In our current experiments, instead of testing our algo-
rithm on automatically detected face images in live video,
we generated the test images as follows. We first blurred
any given high-resolution image from this database with
different filters to introduce different Point Spread Func-
tions (PSF) accordingly, and then sub-sampled the blurred
images to low-resolutions. We then added random transla-
tional motion to introduce a measurable degree of random
misalignment resulting from most automatic face detection
processes on live video feed. For selecting high-resolution
face images to generate testing data, we used ‘‘leave-one-
out’’ methodology: For any series of generated testing
low-resolution face images, we removed their correspond-
ing high-resolution source from the database, and the
remaining high-resolution images serve as the learning
database. The removed high-resolution images later served
as the ground truth images in the experiments on quantify-
ing model error as shown in Fig. 5.

4.2. Comparison of single face images without

missing parts

One advantage of our framework is its ability to deal
with face hallucination with multiple inputs at different res-
olutions. To evaluate its effectiveness, for any given 56 · 46
image from the database, we generated three low-resolu-
tion images at the sizes of 14 · 11, 9 · 7 and 7 · 5 using
the above method. Given these three testing face images,
we took the largest 14 · 11 one as the low-resolution input
that alignment is to be based upon, and estimated the
aligning parameters for the 9 · 7 and 7 · 5 images. Then
we generated the intermediate template based on (12).
The high-resolution result was constructed by solving the
quadratic cost function (15). Column (b) of Fig. 3 shows
some example high-resolution results.

To compare these results with hallucination using a
single face image similar to those in (Baker and Kanade,
2000a; Dedeoglu et al., 2004), we performed experiments
by taking only simulated 14 · 11 images as low-resolution
input; example results are shown in column (c) of Fig. 3.
Comparing (b) and (c) in Fig. 3 suggests that we improved
the hallucination results. However, the improvement is not
dramatic because the largest low-resolution inputs already
contain most of the information that could also be contrib-
uted from the other low-resolution inputs. In other words,
the information from the other low-resolution inputs is
mostly redundant.

4.3. Comparison of occluded face images

Significantly, the advantage of our multiple input based
approach over existing hallucination methods becomes
dramatic when low-resolution input images are partially
occluded with missing parts. Such input images are com-
mon when detecting and tracking face images of moving
targets in live video. In other words, if many of the low-res-
olution inputs at different resolutions miss pixels due to



Fig. 3. Comparing face hallucination using single and multiple inputs without occlusion or missing parts: (a) multiple low-resolution inputs with frame
resolution of 14 · 11, 9 · 7 and 7 · 5, (b) results from our approach, (c) results using 14 · 11 single image face hallucination and (d) ground truth images
with resolution of 56 · 46.
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occlusion (or pool lighting and viewpoint), it becomes
essential to align them before super-resolving a high-reso-
lution image takes place. Different from early experimental
settings, given any 56 · 46 image in this experiment, we first
randomly removed part of it to simulate the face image
being partially occluded, and then generated the first
occluded test image with the frame resolution of 14 · 11.
By the same token we could yield another test image with
frame resolution of 7 · 5. Some examples are shown in col-
umn (a) of Fig. 4.

Based on the deduced objective function (16) in Section
3, combined with Eqs. (10) and (15) in Section 2, we can
probabilistically infer a high-resolution reconstruction
making use of all the information from the two occluded
test inputs. With existing learning-based super-resolution
techniques, neither of two partially occluded low-resolution
input images can provide sufficient information for recover-
ing a complete face image at a higher resolution. Fig. 4
shows example results using single-image face hallucination
technique similar in (Baker and Kanade, 2000a; Dedeoglu
et al., 2004) given partially occluded low-resolution input
images of 14 · 11 (b) and 7 · 5 (c) respectively. As expected,
only part of a face was recovered at the higher resolution of
56 · 46. Furthermore, we show results in column (d) based
on fusing the partially hallucinated face images from col-
umns (b) and (c) of Fig. 4. It shows clearly that motion
and illumination variations between different occluded
input images at different lower resolutions make simple fus-
ing a poor solution. On the other hand, our results shown in
(e) improve significantly those of either (b) or (c) at the
resolution of 56 · 46. It is also worth pointing out that given
that our inputs were partially occluded with significant
missing parts at the resolutions of 7 · 5 and 14 · 11, our
magnification factor is effectively over 8 · 8 which goes
beyond the existing 4 · 4 limit (to obtain a desired high-res-
olution result) for the current hallucination techniques.

To quantify the performance of different techniques, we
measured the average root Sum of Squared Error (SSE) per
pixel w.r.t. the original high-resolution image ground truth,
as shown in Fig. 5. Consistent to Fig. 4, the average root
SSE/pixel from our results (represented by the solid line)
are the smallest compared to both those using the occluded
14 · 11 inputs (represented by the dotted line) and those
using the occluded 7 · 5 inputs (represented by the dashed
line). Fig. 5 also suggests that the results based on fusing
the partially hallucinated parts by pixel averaging (repre-
sented by the dash-dot line) are much worse than our
results. To explain this, we should notice that, although
the partial face images in columns (b) and (c) of Fig. 4 (cor-
responding to the dotted and dashed lines in Fig. 5) are



Fig. 4. Hallucination with occluded faces: (a) occluded face images with resolution of 14 · 11 and 7 · 5, (b) results using the occluded 14 · 11 input only,
(c) results using the occluded 7 · 5 input only, (d) results based on fusing the partial face images in column (b) and (c) by pixel averaging at overlapped
parts, (e) our hallucination results. Ground truth images are the same as in column (d) of Fig. 3.
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Fig. 5. Average root Sum of Squared Error (SSE) per pixel w.r.t. ground
truth of hallucination results. The solid line represents error from our
hallucination results, the dotted line represents error from partially
hallucinated parts using occluded 14 · 11 inputs, the dashed line repre-
sents error from partially hallucinated parts using occluded 7 · 5 inputs,
and the dash-dot line shows error from fusing the partially hallucinated
results using occluded 14 · 11 and 7 · 5 input images respectively by pixel
averaging at overlapped parts.
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already independently aligned into general face frames
with reference to the training database, they are essentially
pixel-wise uncorrelated. The occluded low-resolution
inputs were respectively super-resolved into partial high-
resolution face images without considering the motion
and illumination variations between them. Indeed it is these
variations at low-resolution that make aligning and fusing
at high-resolution fail. Only by utilizing a hierarchical
and recursive formulation of an intermediate template as
proposed in our approach, we are able to align and
super-resolve across occluded inputs of different reso-
lutions.
4.4. Experiments on live video data

For testing the robustness of our approach when applied
on real data, we captured video sequences from a corridor
surveillance camera. Since it is unrealistic to assume that
partially occluded face images could be accurately detected,
especially in case of low-resolution, in this experiment
we selected frames where complete faces at different lower
resolutions existed, and manually cropped out these face
images. After that we randomly removed partial faces



Fig. 6. Example of hallucinating multiple occluded face images using live video data: (a) low-resolution facial images in live video were located and
segmented first and (b) partial faces were randomly removed to simulate the occlusion conditions.
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and used the left parts as testing inputs. The high-resolu-
tion training images are from a subset of AR face database.
Fig. 6 demonstrates the illustration example.

In the live sequence experiments, we have no ground
truth images which could be collected, to verify the likeness
of hallucinated results. But the resulting images do demon-
strate the robustness of our approach. As suggested in
Fig. 6, the quality of hallucinated face is as good as, if
not better than, those in simulated database experiments.

5. Conclusion

In summary, by introducing an intermediate template
recursively estimated into a Bayesian framework, we pres-
ent a novel model to super-resolve face images with multi-
ple occluded inputs at different lower resolutions. The
model in essence performs hierarchical patch-wise align-
ment and global Bayesian inference. Beyond the classic
face hallucination algorithms, we both consider the spatial
constraints and exploit the inter-frame constraints across
multiple face images of different resolutions. As a conse-
quence, the new algorithm is more effective for dealing with
occluded low-resolution face images. We showed signifi-
cantly improved results over existing face hallucination
methods.

In this work, we manually conducted experiments on
live video sequences, in which the pose and illumination
variations were solved by manual alignment and normali-
zation. In the future we will extend our work on hallucinat-
ing automatically detected low-resolution face videos.
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