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1 Introduction

We present a simple and fast distributed algorithm for Bluetooth network for-
mation. Our algorithm requires no knowledge on the underlying physical topol-
ogy, and proceeds in only one phase to connect the devices. If the physical
topology is weakly connected, then the algorithm guarantees that the resulting
network will be connected with high probability. The algorithm is also symmet-
ric in the sense that each device executes exactly the same algorithm, thereby
increasing the flexibility of network deployment. In contrast, previous results
(e.g., [6, 3, 2, 5, ,1, 8, 4]) on Bluetooth network formation require the under-
lying physical topology to be a complete graph, nodes to be asymmetric, or
proceed in more than one phase to connect disconnect components constructed
in the first phase.

2 The BlueTag Algorithm

A distinguishing characteristic of Bluetooth link formation procedure is that two
devices must be in a pair of complementary states—INQUIRY and INQUIRY
SCAN. The two devices hop through the same, predetermined, frequency se-
quence, but the one in INQUIRY state hops at a faster rate than the other so
that they have a chance to ‘meet’ in the same frequency, and therefore to discover
each other and exchange the necessary information for synchronization.

Existing algorithms either let Bluetooth devices randomly alternate between
the two complementary states, or predetermine devices’ states for them to stay
throughout the discovery process. Our approach is to let each node alternate be-
tween INQUIRY and INQUIRY SCAN in some pattern determined uniquely by
its root value, initialized to its device ID BD ADDR. We refer to these patterns
as state alternation sequences. Nodes with the same root value have exactly the
same, and synchronized, sequence; while nodes with different root values have
different sequences. This design allows two nodes with different root values to
be in complementary states, and therefore have a chance to discover each other
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Fig. 1. State alternation sequences. The expanded interval shows the hopping frequen-

cies

via the baseband. On the other hand, nodes with the same root value are always
either all in state INQUIRY, or all in INQUIRY SCAN, and so have no chance
to discover one another. For example, in Figure 1, nodes 2 and 3 are in different
states in the gray intervals, while nodes 1 and 2 are always in the same state
because they have the same synchronized sequences.

The algorithm is outlined in Figure 2. We refer to the algorithm as BlueTag.
Lines 3-7 initialize variables. In line 6, the initial state is INQUIRY; but this
can be set arbitrarily. The timer ALT TIMER is used to determine when to
alternate state (INQUIRY or INQUIRY SCAN). After initialization, every node
alternates between INQUIRY and INQUIRY SCAN according to its state al-
ternation sequence determined by its current root value. When ALT TIMER is
timed out (lines 9-12), u computes the time to stay in the new state and then
alternates to the state. State alternation sequences can be implemented by some
pseudorandom number generators using a device’s BD ADDR as seed.

Meanwhile, if some neighbor v is discovered by u (line 13), they establish
a communication link and exchange information for adjusting their state alter-
nation sequences (line 15). Then, the one with smaller root value adjusts its
ALT TIMER and state to synchronize with the other. Both nodes reset their
DC TIMER to discover other nodes with different root values. We can say that
a temporary piconet is formed by u and v to exchange information for synchro-
nization (other than to know the existence of each other). However, the piconet
is broken after the procedure. The two nodes then continue on their own to
discover other nodes.

DC TIMEOUT can be determined by analyzing the connection establish-
ment time Tc between two Bluetooth devices with different state alternation
sequences, and then use the following empirical formula [7]:

DC TIMEOUT = E[Tc] +
√

V ar[Tc] + rmax (1)

A node’s DC TIMER will time out when it cannot find any neighboring node
with a different root value. Then it terminates its action in the network formation



A Simple and Fast Algorithm for Bluetooth Network Formation 1415

1 Main(Bluetooth node u)
2 {
3 root ← u.BD ADDR
4 reset DC TIMER
5 neighbors ← ∅
6 state ← INQUIRY
7 ALT TIMER ← −1

/* beginning of neighbor discovery process */
8 while DC TIMER not timed out {
9 if ALT TIMER timed out {
10 compute new ALT TIMER
11 state ← state /* alternate state */
12 }
13 if a Bluetooth node v is discovered {
14 neighbors ← neighbors

⋃ {v}
15 EXCHANGE INFO(v)
16 if v.root > u.root {
17 u.root ← v.root

/* synchronize with v */
18 compute new ALT TIMER
19 state ← state /* change to v’s state */
20 }
21 reset DC TIMER
22 }
23 }
24 ROLE ASSIGNMENT (u, neighbors)
25 }

Fig. 2. Outline of the algorithm executed by a node u

process. Note that at this point although the overall network construction may
not yet complete, the terminating node has full knowledge on its neighboring
nodes in the network to be constructed. So the node may now start its upper-level
application. If in the application the node needs to communicate to its neighbors
and they have not yet started the application, the communicating messages can
be queued until they are ready. So a node will not necessarily be blocked from
starting the application even if other nodes may still be in the network formation
process.

To illustrate the algorithm, consider Figure 3. We label each node with i[j],
where i is the node’s BD ADDR, and j is its root value. Part (a) shows the
initial physical topology, where dashed lines represent physical links. In (b),
node 3 and 1 discover each other and establish a link (solid line). Since node 3
has larger root value, it beats node 1, and makes node 1 to carry its root value,
so as to synchronize with its state alternation sequence. In (c), 4 and 5 discover
each other and establish a link. At the same time, 2 and 3 discover each other
and establish a link. Moreover, node 1 terminates the algorithm (represented in
gray color) because it cannot discover any node. In (d), 5 and 3 discover each
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Fig. 3. A scenario of BlueTag

other and establish a link. Node 3 (with new root 5) now synchronizes with
node 5, and so its synchronization with node 2 (still with root 3) is broken. Note
that the previously established link between 2 and 3 (stored in their variables
neighbors) is not affected even though each node re-synchronizes with another.
In (e), 4 and 2 discover each other and establish a link. Node 2 now carries root
value 5. So nodes 2 and 3 are now synchronized again (by root value 5 this time).
A variation of scenario (e) (shown in (e′)) is that, instead of 4 and 2 discovering
each other, 3 and 2 re-discover each other as they carry different root values after
(d). If this is the case, then no new link will be established, as 3 and 2 already
knew each other from scenario (c). However, node 2 will adjust its root to 5,
avoiding it from re-discovering 3, or discovering 4. In either case, nodes 2, 3, 4
and 5 will all terminate because they cannot discover any more node. From the
example we can also see that the nodes may not terminate with the same root
value (but the connected property of the final network is guaranteed).

To complete the network formation, each node needs to know which piconets
it is involved in and its roles in them. This can be done by either root-based—x
is the master of y if x has larger root value than y has when they last discover
each other; ID-based—x is the master of y if x has larger BD ADDR than y
has; or Random—x is the master of y if x is in INQUIRY state when they last
discover each other.
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