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Abstract— In many known examples where compress-and-
forward (CF) for relay networks is capacity achieving, it is only
trivially so, i.e., it falls back to hashing without quantization.
A potentially better strategy is to decode as much as possible
and to compress the residual information, i.e., a combination
of decode-and-forward (DF) and CF (Cover and El Gamal’s
Theorem 7). Indeed such a strategy was shown to be optimal by
Kang and Ulukus for a certain class of diamond relay networks
consisting of a source, a noisy relay, a noiseless relay, and a
destination. In this paper, we discuss why it can be optimal
for such channels. Furthermore, we generalize the result to a
certain class of tree networks with an arbitrary number of nodes
consisting of multiple cascaded diamond relay networks. We show
that a combination of DF and CF is optimal for the network and
its capacity is given by a simple expression. As in the diamond
channel, the capacity is strictly less than the cut-set bound.

I. INTRODUCTION

Two fundamental coding strategies for relay networks (RN)
were proposed by Cover and El Gamal in [1]. In one strategy,
the relay decodes the message and forwards it to the destina-
tion. This decode-and-forward (DF) coding scheme achieves
the capacity for physically degraded relay channels [1]. In
the other strategy, commonly called compress-and-forward
(CF), the relay compresses its received block and sends the
compressed information to the destination. The optimality of
DF is relatively well understood, whereas it is not so clear
when and how CF can be optimal in a non-trivial way.

In many examples, where CF is known to achieve capacity,
it is only trivially so, i.e., no quantization is required and CF
falls back to hashing. Such examples include some determin-
istic relay channels [2] and noisy network coding [3] applied
to noiseless and interferenceless networks. If the channel
from the relay to the destination is good enough such that
the relay’s observation can be conveyed to the destination
without quantization, then CF can also be trivially optimal.
The optimality of CF in such discrete cases is often translated
to asymptotic optimality in additive white Gaussian noise
(AWGN) channels, e.g., when the signal-to-noise ratio (SNR)
of the channel between the relay and the destination tends to
infinity. CF for a Gaussian RN was shown to achieve a rate
within a constant number of bits from the cut-set bound in [3],
[4].

One of the examples where CF is non-trivially optimal is the
mod-sum relay channel studied in [5]. For this case, an optimal
rate-distortion code is needed to achieve the capacity. This
was generalized in [6]. Another non-trivial case is the class
of diamond RN’s studied in [7], which consists of a source–
destination pair, one noisy relay, and one noiseless relay. For
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Fig. 1. Diamond RN

this class of diamond RN’s, it was shown that a combination of
CF and DF is optimal and the cut-set bound is loose [7]. In this
paper, we discuss why it can be optimal, i.e., because we can
always find optimal distributions such that what is compressed
is a noisy observation of uncoded information. Furthermore,
we generalize the result to a certain class of tree networks with
an arbitrary number of nodes consisting of multiple cascaded
diamond RN’s. We show that a combination of DF and CF
is also optimal for this class of networks and the capacity is
given by a simple expression.

II. MODEL

A diamond RN consists of a source, a noisy relay, a
noiseless relay, and a destination. See Fig. 1. The noisy
and noiseless relays can send messages to the destination
at rates up to r1 and r2 without error, respectively. The
channel between the source and the noisy relay is given
by (X1, p(y2|x1),Y2) consisting of alphabets X1,Y2 and a
conditional probability distribution p (y2|x1), where x1 ∈ X1

and y2 ∈ Y2. A
(
2nR, n

)
code consists of a message set

W = [1, 2nR] , {1, 2, ..., 2nR}, an encoding function

f : W → Xn
1 ,

a processing function at the noisy relay

h1 : Yn
2 → [1, 2nr1 ],

a processing function at the noiseless relay

h2 : Xn
1 → [1, 2nr2 ],

and a decoding function

g : [1, 2nr1 ]× [1, 2nr2 ] →W.

The source chooses an index w uniformly from the set
W and sends xn

1 = f(w). The destination decodes ŵ =



g(h1(yn
2 ), h2(xn

1 )). The average probability of error for the
(2nR, n) code is given as

P (n)
e , 1

2nR

∑

w∈W
Pr (ŵ 6= w|w sent) .

A rate R is said to be achievable if there exists a sequence of
(2nR, n) codes such that P

(n)
e → 0 as n → ∞. The capacity

is the supremum of all achievable rates.

III. MAIN RESULT

The capacity of the diamond RN is identified as follows by
Kang and Ulukus [7].

Theorem 1 (Kang and Ulukus [7]): The capacity of the di-
amond RN is given by (2) with cardinalities of alphabets
bounded as follows:

|U| ≤ |X1|+ 4 (1a)

|Ŷ2| ≤ |U||Y2|+ 2 ≤ |X1||Y2|+ 4|Y2|+ 2. (1b)
The capacity of the diamond RN is characterized as the
following alternative expression whose proof is in Appendix I.

Theorem 2 (Alternative expression): The capacity of the
diamond RN is given by (3) with cardinalities of alphabets
bounded by (1).
Here U corresponds to the part of the message intended
to be decoded by the noisy relay. The capacity characteri-
zation (3) shows that the superposition of one coded, i.e.,
one of 2n(I(U ;Y2)−ε) Un’s, and one uncoded, i.e., one of
2n(H(X1|U)−ε) Xn’s, codewords for ε > 0 is always enough
to achieve the capacity. After decoding Un, the noisy relay
sees a noisy version of the uncoded information. Therefore,
it is not surprising to see that CF can be optimal since the
uncoded part has no structure.

In the following, we also present a min-cut-like expression
for the capacity of the diamond RN whose proof is in the full
version of this paper.

Theorem 3 (Min-cut-like expression): The capacity of the
diamond RN is given by (4) with cardinalities of alphabets
bounded by (1).
We note that the relationship between the two capacity charac-
terizations in Theorems 2 and 3 is similar to that between the
two equivalent achievable rate characterizations of CF for the
3-node relay network in [1] and [8], which are given by (5)
and (6), respectively, where node indices follow the convention
that nodes 1, 2, and 3 are the source, relay, and destination,
respectively.

The min-cut-like expression in Theorem 3 can be extended
to a class of RN’s with N nodes, called tree networks, in
which the probability distribution has the following form:

p (y1, ..., yN |x1, ..., xN ) =
N∏

k=1

p (yk|xpk
)

where pk is the parent node of k and k is a child node of pk.
We call a node that has no parent node a root node and the
node that has no child node a leaf node. We consider a tree
network that has a single root node where the root node is the

source, the set D of leaf nodes is the destination, and each
parent node has at most one noisy child node and any number
of noiseless child nodes, i.e., yk = xpk

if k is a noiseless child
node of pk. Let nk and Sk denote the noisy child node and
the set of noiseless child nodes of node k, respectively and
let Lk denote the subset of D that branches out from node
k. For the this class of tree networks, the capacity is given as
follows, whose proof is in the full version of this paper.

Theorem 4: For tree networks, the capacity is given as
follows:

maxmin
T

I(UT ; YT c \XT)+I(XT ; ŶT c |UT)−I(YT ; ŶT |UT ,XT)

over all cuts T such that 1 ∈ T , D ⊆ T c, Sk ⊂ T if
nk ∈ T , and pk ∈ T if k ∈ T . Here Ŷj = Xk for
j ∈ Sk and k ∈ [1, N ], YT c \XT denotes the set {Yj |j ∈
T c, j /∈ Sk for all k ∈ T}, and the maximization is over∏N

k=1 p(uk, xk)p(ynk
|xk)p(ŷnk

|uk, ynk
) with cardinalities of

alphabets such that

|Uk| ≤ |Xk|+ 4

|Ŷnk
| ≤ |Uk||Ynk

|+ 2 ≤ |Xk||Ynk
|+ 4|Ynk

|+ 2

for k ∈ [1, N ].
This result is the first to show that the combination of DF
and CF is capacity achieving for a non-trivial class of noisy
networks with an arbitrary number of nodes.

IV. CONCLUSION

In this paper, we presented two equivalent capacity expres-
sions for the diamond RN. Using the results, we showed why a
combination of DF and CF can be optimal for such a network,
i.e., because what is compressed is a noisy observation of un-
coded information. Furthermore, we characterized the capacity
of a class of noisy networks with an arbitrary number of nodes.
Its proof is very different from that of noisy network coding,
yet the capacity has a similar form as the noisy network coding
with an additional DF part.
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APPENDIX I
PROOF OF THEOREM 2

Let C1 and C2 denote the right-hand terms of (2) and (3),
respectively. Let us note that the constraint on r1 in C1 can be
easily shown to be redundant. It is trivial to show C2 ≤ C1.
Let us focus on C1 ≤ C2. To show C1 ≤ C2, it is enough to
show that for p(u, x1)p(ŷ2|u, y2) and (R, r1, r2) such that

R < I(U ; Y2) + H(X1|U), (7a)

R = r1 + r2 − I(Y2; Ŷ2|U,X1), (7b)

r2 ≥ H(X1|U, Ŷ2), (7c)



C = max
p(u,x1)p(ŷ2|y2,u):

r1≥I(Y2;Ŷ2|U,X1)

r2≥H(X1|U,Ŷ2)

min{I(U ;Y2) + H(X1|U), r1 + r2 − I(Y2; Ŷ2|U,X1)}. (2)

C = max
p(u,x1)p(ŷ2|y2,u):

r2≥H(X1|U,Ŷ2)

r1+r2≥I(U ;Y2)+H(X1|U)+I(Y2;Ŷ2|U,X1)

I(U ; Y2) + H(X1|U) (3)

C = max
p(u,x1)p(ŷ2|y2,u)

min{I(U ;Y2) + H(X1|U), r2 + I(U ;Y2) + I(X1; Ŷ2|U), r1 + r2 − I(Y2; Ŷ2|U,X1)} (4)

C ≥ max
p(x1)p(x2)p(ŷ2|y2,x2):

I(X2;Y3)≥I(Y2;Ŷ2|X2,Y3)

I(X1; Ŷ2, Y3|X2) (5)

C ≥ max
p(x1)p(x2)p(ŷ2|y2,x2)

min{I(X1; Ŷ2, Y3|X2), I(X1, X2; Y3)− I(Y2; Ŷ2|X1, X2, Y3)} (6)

there exists p(u∗, x∗1)p(ŷ2
∗|u∗, y2) that satisfies

R = I(U∗;Y2) + H(X∗
1 |U∗), (8a)

R ≤ r1 + r2 − I(Y2; Ŷ ∗
2 |U∗, X∗

1 ), (8b)

r2 ≥ H(X∗
1 |U∗, Ŷ ∗

2 ). (8c)

Let (U ′, X ′
1, Ŷ

′
2) , (X1, X1, ∅) where X1 follows the

marginal distribution p(x1) =
∑

u∈U p(u, x1). Let Q denote
the random variable that has values of 1 and 2 with probability
λ and λ , 1 − λ, respectively. Let (U ′′, X ′′

1 , Ŷ ′′
2 ) and

(U ′′′, X ′′′
1 , Ŷ ′′′

2 ) denote triplets of random variables such that

(U ′′, X ′′
1 , Ŷ ′′

2 ) =

{
(U,X1, Ŷ2), for Q = 1
(U ′, X ′

1, Ŷ
′
2), for Q = 2

(U ′′′, X ′′′
1 , Ŷ ′′′

2 ) =

{
(∅, ∅, ∅), for Q = 1
(U ′, X ′

1, Ŷ
′
2), for Q = 2

We will show the existence of p(u∗, x∗1)p(ŷ2
∗|u∗, y2) that

satisfies (8) for cases I(X1;Y2) < R and I(X1; Y2) ≥ R
separately. First, let us consider the case I(X1; Y2) < R. Let
U∗ = (U ′′, Q), X∗

1 = X ′′
1 , and Ŷ ∗

2 = (Ŷ ′′
2 , Q). Then, we have

I(U∗; Y2) + H(X∗
1 |U∗)

= I(U ′′, Q; Y2) + H(X ′′
1 |U ′′, Q)

≥ I(U ′′; Y2|Q) + H(X ′′
1 |U ′′, Q)

= λ(I(U ;Y2) + H(X1|U)) + λI(X1;Y2)

I(Y2; Ŷ ∗
2 |U∗, X∗

1 ) = I(Y2; Ŷ ′′
2 |U ′′, X ′′

1 , Q)

= λI(Y2; Ŷ2|U,X1)

≤ I(Y2; Ŷ2|U,X1) (9)

H(X∗
1 |U∗, Ŷ ∗

2 ) = H(X ′′
1 |U ′′, Ŷ ′′

2 , Q)

= λH(X1|U, Ŷ2)

≤ H(X1|U, Ŷ2) (10)

Since I(U∗; Y2) + H(X∗
1 |U∗) becomes I(U ;Y2) + H(X1|U)

and I(X1; Y2) for λ = 1 and λ = 0, respectively, and it

is a continuous function of λ, there exists λ ∈ [0, 1] such
that I(U∗; Y2)+H(X∗

1 |U∗) = R from the intermediate value
theorem. Furthermore, (8b) and (8c) are satisfied from (9) and
(10), respectively.

For the case I(X1;Y2) ≥ R, let U∗ = (U ′′′, Q), X∗
1 = X ′′′

1 ,
and Ŷ ∗

2 = (Ŷ ′′′
2 , Q). Then, we get

I(U∗;Y2) + H(X∗
1 |U∗)

= I(U ′′′, Q;Y2) + H(X ′′′
1 |U ′′′, Q)

≥ I(U ′′′; Y2|Q) + H(X ′′′
1 |U ′′′, Q)

= λI(X1; Y2)

I(Y2; Ŷ ∗
2 |U∗, X∗

1 ) = I(Y2; Ŷ ′′′
2 |U ′′′, X ′′′

1 , Q) = 0 (11)

H(X∗
1 |U∗, Ŷ ∗

2 ) = H(X ′′′
1 |U ′′′, Ŷ ′′′

2 , Q) = 0 (12)

Similarly as in the case I(X1; Y ) < R, there exists λ ∈ [0, 1]
such that I(U∗; Y2) + H(X∗

1 |U∗) = R. (8b) and (8c) are
satisfied from (11) and (12), respectively.
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