
Vol 8. No. 2 June, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 41

Multi-agent Based Course Allocator Using GAIA Methodology and JADE

Framework

K.T. Igulu
Department of Computer Science

Rivers State Polytechnic,Bori

Rivers State, Nigeria.

E-mail: igulukt@gmail.com,

Phone: +2347018827522

Z.P. Piah
Department of Computer Science

Rivers State Polytechnic, Bori

Rivers State, Nigeria.

P.O. Asagba PhD
Department of Computer Science

University of Port Harcourt

Rivers State, Nigeria.

ABSTRACT

This paper discusses our work on the development of an interactive multi-agent system that automates university course

allocation. The system receives as input the courses to be offered in a particular semester, their respective credit units and

appropriately allocate it to competent lecturers based on their teaching profile. The system is composed of two agent types- The

administrator agent and the lecturer agents which were the final concrete artifacts of the system. Four roles (allocation handler,

environment monitor, administrator assistant and lecturer assistant) were discovered in the analysis stage. However, the

allocation handler and environment monitor were subsumed by the administrator and lecturer agents at the design stage. The

elicitation, analysis, design to implementation were quite natural. This proves Agent-Based Software Engineering (ABSE) as a

viable paradigm. We used GAIA methodology for analysis and design and Java Agent DEvelopment (JADE) framework for

implementation.

Keywords- Mmulti-agent; course allocation; Gaia, JADE; software engineering; intelligent, agent.

African Journal of Computing & ICT Reference Format:
K.T. Igulu, Z.P. Piah & P.O. Asagba (2015). Multi-agent Based Course Allocator Using GAIA Methodology and JADE Framework.

Afr J. of Comp & ICTs. Vol 8, No. 2. Pp 41-52.

I. INTRODUCTION

It is a known fact that scheduling is an NP problem. A

problem where there is no universally accepted optimal

solution. Most Universities do this manually and of course

becomes so tedious with the growing number of students

and courses offered in a University. Along with the innate

limitations or problems of traditional manual systems,

manual course allocation and scheduling has the following

key problems: 1) Keep and manage record of the previous

data. 2) Meeting person. 3) Manage multiple queries for the

same subject. 4) Make availability of the interested subjects

for a faculty member. 5) Manage rooms for delivering

lectures. Every university has a number of schools with

respective heads and each school has a number of

departments with respective heads. A department is

composed of lecturers, students and other teaching

enhancement facilities.

In a well-established university, a department should offer

degrees ranging from undergraduate to post graduate. Each

degree depending on the duration, has several levels (e.g.,

Bachelor of Science in Computer Science should have first,

second, third and fourth year level students) administered

concurrently in every academic session. The task of

allocation is usually the job of the head of the department

or can also be delegated to another fellow who proves

competent. Allocation of this kind is never void of

irregularities and anomalies. The problem faced by

academic departments is the inefficient/ inappropriate

allocation of courses to competent lecturers. In our

interview with the faculty in charge of course allocation in

the department of Computer Science, University of

PortHarcourt, the following were discussed; 1.) Allocation

is dedicated to a particular lecturer 2.) Number of courses

to be offered is known a priori, 3.) Number of classes is

also known a priori, 4.) The faculty needs information

regarding the areas of expertise of the lecturers. 5.)

Vol 8. No. 2 June, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 42

The subjects are communicated to lecturers and they are

required to give their choices according to their levels and a

minimum number of credit units to offer. 6.) When reply is

received, courses-lecturers table is made. 7.) The course

allocation administrator willfully allocates the courses. 8.)

The number of courses to be allocated is determined by the

designation of the lecturer. Professors are given less but

highly technical load. 9.) Designation also determines the

level course that can be assigned to a lecturer. E.g: an MSc

holder can’t be allowed to teach doctorate students. 10.)

Conflict is bound to occur. 11.) These conflicts are usually

resolved on a one to one basis. 12.) The administrator

lecturer prepares an allocation chart. 13.) Conflict is bound

to occur.

This work discusses a typical university course allocation

problem using ABSE paradigm. The system receives as

input the courses to be offered in a particular semester,

their respective credit units and appropriately allocate it to

competent lecturers based on their teaching profile. The

system is composed of two agent types- The administrator

agent and the lecturer agents which were the final concrete

artifacts of the system. Four roles (allocation handler,

environment monitor, administrator assistant and lecturer

assistant) were discovered in the analysis stage. However,

the allocation handler and environment monitor were

subsumed by the administrator and lecturer agents at the

design stage. Figure 1 shows the interactions among the

agents in the system. There are m number of Lecturer agent

instances and one instance of Admin agent. The Admin

Agent performs the allocation, monitors the environment

for any request and does resolve conflicts among lecturer

agents

Figure 1. Interactions in the system

In this work, we assume that 1.)Each level(e.g., first year)

has a single sections. 2.) No external lecturer is needed 3.)

All courses are offered by the assumed department.

The paper is organized as follows: In section 2, we discuss

works that are related to our work. In section 3, we discuss

our motivations for agency and the general benefits of

using ABSE paradigm. Section 4 introduces the Gaia

methodology. Section 5 discusses the analysis phase of the

system with respect to Gaia standards. Section 6 provides

information about the design phase of the system. Section 7

gives the implementation details of the system. Finally,

section 8 wraps up our work.

2. RELATED WORKS

In [17], the authors argued that for certain classes of
problem, adopting a multi-agent approach to system
development affords software engineers a number of
significant advantages over contemporary methods. If a
problem domain is particularly complex, large or
unpredictable, it might be only way it can be reasonably
addressed is to develop a set of modular components that are
specialized at solving a particular aspect of it.

Vol 8. No. 2 June, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 43

In [22] the system is composed of intelligent agents but does
not follow any Agent-Based software Engineering (ABSE)
conventions. Other notable works can be found in [5] and
[6] that uses stimulated annealing and genetic algorithm
respectively. [1] uses Heuristic approach in generating the
schedule. Literatures on time table scheduling can also be
found in [14,17,31,40,41,43] whereas works on Gaia and
Jade can be found in [8,9,16,18,20,22,34]. It is worthwhile
to note that most of the works focused on time tabling not
course allocation.

3. MOTIVATION/BENEFITS OF AGENCY

The human-like characteristics of agents provide a high

abstraction level which may simplify the modeling and

implementation of systems for complex domains. Agents

can be trusted to pursue their goals and take initiative to

interact only when needed; this independence reduces the

need for external communications. Their autonomy leads to

encapsulation of functionality, and coupling is reduced

because agents do not provide any control point to external

entities. The following list highlights some of the main

dimensions along which agent systems are believed to

enhance performance, these aspects are further elaborated

on in [19]:

Computational efficiency because concurrency of

computation is exploited. This requires that the

communication is kept minimal, e.g. by transmitting high-

level information and results rather than low-level data.

Reliability Components that fail can be gracefully

recovered. Agents with redundant capabilities or

appropriate inter-agent coordination are found dynamically

and can take up responsibilities of agents that fail.

Maintainability A system composed of multiple

components is easier to maintain because of its modularity.

Responsiveness The modularity of a multi-agent system

leads to the possibility of handling anomalies locally

without propagating them to the whole system.

Flexibility Agents with different abilities can adaptively

organize to solve a given problem. An agent can also have

a number of plans for reaching its goal and adapt its

strategy to changes in the environment.

In order to deal with the complexities, the timeliness

response and avoiding subjective impositions of course

allocation and yet maintaining robustness and flexibility,

great level of autonomy must be maintained. We identified

some conflicts that may arise in course of allocation. These

conflicts require negotiation without much influence on the

negotiating parties.

In [24,27] intelligent software agents(or intelligent agents

or simply agents) are characterized as being autonomous,

proactive, reactive, social, flexible and robust, as well as

situated in an environment which they can sense and act

upon. We found AOSE ideal to deal with the problems

identified above. In fact, Multi agent systems provide the

modularity that we want and the agents’ social ability

makes them capable of meeting different restrictions and

goals through negotiation and collaboration.

4. GAIA METHODOLOGY

The Gaia methodology deals with both the macro-level

(societal) and the micro-level (agent) aspects of systems

[26]. The Gaia methodology is based on organizational

metaphor. It is assumed that the software entity is a

collection of various self-functioning roles of the

organization with their dedicated responsibilities towards

meeting the global organizational objective. In fact in most

complex systems, the system could be modeled as

composing of sets of organizations with their respective

organizational responsibilities (functionalities).

A software system is conceived as the computational
instantiation of a (possibly open) group of interacting and
autonomous individuals (agents). Each agent can be seen as
playing one or more specific roles: it has a well-defined set
of responsibilities or sub goals in the context of the overall
system and is responsible for pursuing these autonomously.
Such sub goals may be both altruistic (to contribute to a
global application goal) or opportunistic (for an agent to
pursue its own interests). Interactions are no longer merely
an expression of interdependencies, and are rather seen as a
means for an agent to accomplish its role in the system.
Therefore, interactions are clearly identified and localized in
the definition of the role itself, and they help characterize
the overall structure of the organization and the position of
the agent in it [26].

The evolution of the activities in the organization, deriving
from the autonomous execution of agents and from their
interactions, determines the achievement of the application
goal, whether an a priori identified global goal (as, e.g., in a
workflow management systems where altruistic agents
contribute to the achievement of a specific cooperative
project), or a goal related to the satisfaction of individual
goals (as, for example, in agent-mediated auctions, whose
purpose is to satisfy the needs of buyer and seller agents), or
both (as, for example, in network enterprises exploiting
market mechanisms to improve efficiency)[26].

Vol 8. No. 2 June, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 44

Figure 2. Canonical view of a multi-agent System [9]

The organizational perspective leads to a general
architectural characterization of Multi-agent System (MAS)
as depicted in Figure 2. A simpler system will eventually be
modeled as a single organization. However, as complexity
increases, programming practices like modularity and
encapsulation suggest decomposing the system into
different sub organizations consisting of a considerable
number of agents to pursue its (sub)-organizational goal(s).
In an organization, agents may interact to share
computational tasks or for exchange of knowledge. In such
system as depicted in Figure 2, there could be intra-
organization (within) or/and inter-organizational (outside)
interactions. In some other complex computation, agents
may need to migrate from one organization to another. An
agent may perform one or more roles in an organization [9].

Moreover, the MAS is completely immersed in an
environment which is basically an ensemble of resources
that the agents may need to interact with to accomplish their
role. Of course, interaction with the environment occurs via
some sort of sensors and actuators-mechanisms enabling
agents to perceive and act upon some part of the
environment. Such portion of visibility is determined by
agent’s specific role, as well as by its current status.

The first proposed Gaia methodology consists of two
iterative phases, analysis and design. Gaia does not address
requirement elicitation but does not necessarily ignore it.
Gaia is usually open to any platform of implementation but
experience shows that it is better implemented with a FIPA
compliant platform like JADE [16,34,35]. Thus our choice
of implementation platform.

Figure 3. Gaia methodology Phases and
Relationships[26]

5. ANALYSIS PHASE

The analysis phase involves building conceptual or abstract

models that may not directly impact the system. It assumes

that the analyst has conceptualized the problem and is clear

of what the system should and should not do. Here, roles

are identified and their interactions are modeled. The two

artifacts produced at the end of the analysis phase of Gaia

are role model and interaction models. The roles may not

be detailed at the analysis stage [9].

5.1 Role Models
Roles consist of four attributes- responsibilities,

permissions, activities and protocols.

Responsibilities (Rs) are said to be a key attribute of a role

since they determine the functionality. Responsibilities are

of two kinds- liveness properties-the role has to add

something good to the system and safety properties- the

role must prevent that something bad happens to the

system.

Permissions(Ps) are the rights associated with a role. They

identify the resources that are available to that role in order

to realize its responsibilities.

Activities of a role are computations associated with the

role that may be carried out by the agent without interacting

with other agents. Activities are thus “private” actions.

Protocols are computations that require interaction with

other agents. (P,A) will be used for Protocols and Activities

and (D) for description in the role model because of space.

Vol 8. No. 2 June, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 45

Figure 4. Role and its attributes [26]

With thorough analysis, we identified four roles in the

system. Environment monitor, Lecturer Assistant

Administrator Assistant and Allocation Handler.

Having identified the roles, we now move on to

documentation of the roles. We will only show

documentation of three roles-Administrator Assistant,

Lecturer assistant and allocation Handler roles.

Role Schema: AdminAssistant[ADA]

D It publishes requests for bidding of courses; it subscribes to the yellow pages knowledgebase and receives notification if a LA

role registers; It receives commitment messages from LAs and relays same to AH; it publicizes the result of allocation to respective

LA.

P,

A

RegisterDF, QueryDF, SubscribeToDF, SaveLAs, RegisterCourse UpdateCourse, BroadCastMessageForbidding,

ReceiveCommittmentToOffer, SendAllocationInstruction, AllocationChartPublishing

Ps reads, updates LADataS, AllocationChart, CourseDataS Creates LADataS, CourseDataS

Rs Liveness: RegisterDF . InitializeLADataS|| InitializeCourseDataS .SubscribeToDF. ((ReceiveMessageFromDF.SaveLAServices)

+||RegisterCourses. (SendRequestForAllocation .ReceiveCommitmentToOffer)+.

PublishAllocationResult+)||[UpdateCourses||UpdateLA]*.[AlterAllocation]*

Safety: CourseList not nil, LAlist not Nil, No Course is Allocated to more than one LA,

Figure 5. Admin Assistant Role model

Role Schema: LecturerAssistant[LA]

Ds It acts on behalf of a lecturer; it does most intelligent decisions a lecturer is supposed to take; it registers its service(lecturer)to

DF; it replies the ADA when sent message to decide course to offer by choosing from experience profile; the lecturer can also set the

priority of course to choose.

P,A RegisterDF DecideCoursePriority, ChooseCourse , QueryAvailableCourses, SaveAllocation , SendsSatisfactoryMessage

Ps Creates, reads, and updates own experience profile.

Rs Liveness: RegisterDF . InitializeCourseTaughtDataS. [QueryAvailableCourses]* ReceiveMessageToOfferCourse

+.SendCommitmentToOffer+.ReceiveCourseAllocated+.SendsSatisfactoryMessage.SaveAllocation Safety: true

Figure 6. Lecturer Assistant Role model

Role Schema: AllocationHandler[AH]

D Does the allocation computation; it resolve allocation conflicts when they arise, it forwards allocation chart to ADA

P,

A

AllocationOfCoursesToLecturers, CheckForConflict, SendAllocationStatusMessage

Ps Creates, reads and updates AllocatonChart

Rs Liveness: InitializeAllocationChart .ReceiveAllocationMessage + .Allocate +.[ConflictResolutionModule]*.

SendAllocationStatus Safety: one course to one lecturer

Figure 7. Allocation Handler Role model

Vol 8. No. 2 June, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 46

7.2 Interaction Model
The model consists of set of protocol definitions, one for

each type of inter-role interaction. Here, a protocol can be

viewed as an institutionalized pattern of interaction [9,26].

A protocol definition consists of the following:

Purpose: Brief textual description of the nature of the

interaction (e.g., “AllocateCourses”);

Initiator: the role(s) responsible for starting the interaction

(e.g. admin);

Responder: the role (s) with which the initiator interacts;

Inputs: Information used by the role initiator while

enacting the protocol (list of courses to be allocated);

Output: Information supplied by/to the protocol responder

during the course of the interaction (e.g., allocation chart);

Processing: brief textual description of any processing the

protocol initiator performs during the course of

computation.

We present some of the protocols of our system.

1 PublishRequestForBidding

ADA LA CourseList, LecturerList

Packages courses and sends request to all discovered LAs for bidding. CommitmentToOfferMes

sage

1 UpdateAgentRecord

DFA ADA Yellow page notification

When an agent registers in DF, DF notifies ADA of its presence and

ADA updates its AgentRecord

Updated AgentRecord

1 SendAllocationMessage

ADA AH CommitmentToOfferMessa

ge

After Receipt of commitment to offer message from LA, ADA relays same to AH

for allocation

Partial Allocation Chart

2 AllocationStatusMessage

ADA LA PartialAllocationChart

After Receipt of allocation status from AH, ADA sends the status to various LAs. Allocated Courses

Figure 8. Protocols related to Admin Assistant Role

Vol 8. No. 2 June, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 47

Figure 9. .Protocols related to Lecturer Assistant Role

AllocationCommeceNotification

ADA AH

When the GUI is triggered for
allocation, ADA sends such to AH

Figure 10. Protocol related to Allocation Handler Role

6. SYSTEM DESIGN PHASE
The analysis phase is basically the conceptualization of the

system. It produces the input for the design phase. The

activities of design phase involve the transformation of the

abstract entities (represented in role and interaction models)

of the analysis phase to concrete entities that may have

direct impact on the realization of the system[9,26].

Agent Type, Services and Acquaintances models are

identified and documented in this phase. The succeeding

sections present the artifacts of Gaia design phase with

respect to our case study. We exclude discussion of the

Service model for privacy reasons.

6.1 Agent Type Model
Agent types are the counterparts of objects in object-
oriented approaches. They are basic design units of an
agent-based system and their realization at runtime is agent
instances. Agent types in the system under development are
defined on the basis of the roles that they play. In most
cases, there is one-one mapping between roles to agent
types. Gaia represents Agent Type with a rectangle and a
role with an oval [8]. It uses annotation to represent the
number instances of such agent mapped and a directed edge
from role to agent.

In our system, the Lecturer Assistant Role is mapped to

Lecturer Agent whereas the Environment monitor fades out

during analysis and allocation handler is subsumed by the

Admin Agent. The agent type model is depicted in

Figure 11 below.

Figure 11. Agent Type Model

6.2 Acquaintance Model
The Acquaintance model depicts the communication links

existing between agent types. It is in fact a directed graph

in which nodes represent agent types and arcs show

communication pathways.

Figure 12. Acquaintances model

7. IMPLEMENTATION

As we have stated, we use JADE for implementation. We

now discuss the implementation of the system based on

JADE. JADE is FIPA compliant [16, 34, 35].

7.1 Admin Agent Class

The adminAgent class is the core class of this MAS. It

embeds the core functionalities such as

• searching and discovery of lecturer agents,

• initiating conversation by sending appropriate

messages to Lecturer Agents,

Vol 8. No. 2 June, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 48

• Checking the appropriating of accepting a

proposal from a lecturer agent

• Appropriately allocating courses to lecturer and

• Resolution of conflicts.

In order to implement Jade agents in GUI, Jade distribution

comes with middleware support based on java Window tool

Kit and Swing APIs. Our AdminAgent class extends the

AgentGui instead of jade.core.Agent. In Jade, the tasks an

agent performs are embedded in its behaviours. Usually, an

agent has one or more behaviours depending. Jade comes

with a number of behavioral classes which can be used to

achieve diverse tasks of an agent[8,16, 44].

The following are the behaviours of Admin Agent;

• OneShotBehaviour is extended to achieve DF()

registration.

• TickerBehaviour is used when the start allocation is

triggered. This behavior searches the DF (Directory

Facilitator[16]) every 60 seconds for 5 minutes after it

has received the trigger. A TickerBehaviour repeats

periodically using the millisecond parameter passed to its

constructor. It does not stop except stopped explicitly.

This behavior embeds the task of searching the DF for

LECTURER_TYPE service of lecturer agents. It then

adds the sendCallForProposalToAllLecturerAgent

behavior that sends them CALL FOR PROPOSAL (CFP)

(FIPA performative [10,12,13]) message with appropriate

content. Here the content is a list of AgentAction objects

called Offer (a class with Course attribute), a part of

CourseAllocationOntology. The behavior also handles

the incoming proposal and the rest of the conversation

between lecturer agents and carries the allocation

process.

• WakerBehaviour is used to terminate the Ticker

behaviour by calling the stop() method of

TickerBehaviour. This behavior waits for 6 minutes and

then triggers the transfer of the content of

partialAllocationTable to mainAllocationTable and also

alerts the AgentGui.

• SequentialBehaviour embeds the behaviours described

above.

7.2 Lecturer Agent Class
The Lecturer Agent (LA hereafter) handles all

communication with Admin Agent using appropriate

message attributes. It has two behaviours-OneShot and

cyclic behviours to register and communicate with Admin

respectively.

7.3 Ontology

As human, we communicate with a using the symbol,

syntaxes and semantic of a particular language. The

language’s syntax and semantic must be known and

understood by the communicating parties[7,32]. One

problem that may occur in agent approach is the choice of

format of encoding the content of a message (here,

ACLmessages).

Sending information as primitives (Strings, numbers or

characters) will only turn to be efficient if we are interested

in primitive values. Serializing objects would have been the

next option but serialized object can’t be decoded on

transit. Conveniently, Jade provides us with content

language and ontology for converting and checking the

semantics information encoded by another agent. One of

the importance of ontology is that agent architecture may

differ in the sense language and platform[7,

10,11,12,13,16].

It is clear however that, if on the one hand information

handling inside an agent is eased, on the other hand each

time agent A sends a piece of information I to agent B

• “A” needs to convert its internal representation of I into

the corresponding ACL content expression representation

and B needs to perform the opposite conversion.

• Moreover B should also perform a number of semantic

checks to verify that I is a meaningful piece of

information, i.e. that it complies with the rules of the

ontology by means of which both A and B ascribe a

proper meaning to I.

The support for content languages and ontologies provided

by JADE is designed to automatically perform all the above

conversion and check operations.

By Jade design recommendations, we found the structure

suitable;

• CourseAllocationOntology

• CourseAllocationVocabulary

• Course as Concept

• Lecturer as Concept

• Problem as Concept

• Conflict as Concept

• Offer as Action

• Allocated as Predicate

• Taught as predicate

We adopted the SL0 as our content language.

7.4 Allocation Core and Conflict Resolution
Here we present how the allocation core is done and how

the agent resolves several conflicts that could arise. For

simplicity, we will depict the conflict resolution with a

flowchart.

Vol 8. No. 2 June, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 49

Figure 13. Conflict Resolution

Vol 8. No. 2 June, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 50

8. CONCLUSION/ FUTURE WORK

We acknowledge the fact that considerable efforts have

been channeled towards school timetabling research but it

is worthy to note that few of the works uses the concept of

agency and very few follows ABSE paradigm.

Our work- Multi-Agent Based Course Allocator is fully

ABSE compliant. We follow the Gaia methodology

convention in the analysis and design of the system. The

final artifacts of the design phase (Agent model, service

model and acquaintance model) are directly mapped to the

various classes provided by JADE framework.

The Admin Agent performs the allocation, monitors the

environment for any request and does resolve conflicts

among lecturer agents. This system has proven to increase

the efficiency and a high level of appropriateness of course

allocation with respect to a lecturer’s choice and

experience. The administrator can alter allocation when

necessary and be able to update lecturer and course records

when necessary. This is an extreme situation. As a matter

of fact, the human administrator has less or no work except

for this extreme case.

With respect to applications, ABSE is still at its infancy. In

fact the software industry is yet to embrace it but it is

envisaged that ABSE will be what OO (object-oriented)

paradigm is today in less than two decades.

As future work,

• Adding learning capability. Learning in agent systems

is a very interesting topic which we would have loved to

have the time to investigate further. This capability could

be introduced at various places in our design and would,

at least in theory, which could eventuate to a more

dynamic agent system.

• Making it a web-based so that system communicates

with human via email.

ACKNOWLEDGEMENT
We acknowledge the researchers whose works were cited

in our work especially the Gaia and JADE teams.

Vol 8. No. 2 June, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 51

REFERENCES

[1] A. Nanda, M. P. Pai, and A. Gole, “An Algorithm to

Automatically Generate Schedule for School Lectures
Using a Heuristic Approach,”International Journal of
Machine Learning and Computing vol. 2(4) , 2012.

[2] A. S. Rao, M. P. Georgeff, “Formal Models and
Decision Procedures for Multi-agent Systems,”
Technical note 61, Australian AI Institute, level 6, 171
La Trobe Street, Melbourne, Australia. 1995.

[3] A.S. Rao, M.P. Georgeff, E.A. Sonenberg, “Social
Plans: A Preliminary Report,” Proc. of the 3rd
European Workshop on ModellingAutonomous
Agents in a Multi-Agent World (MAAMAW 91), pp.
57-76. Elsevier, Amsterdam. 1992.

[4] B. Brewington, “Mobile agents for distributed
information retrieval,” In Intelligent Information
Agents, pp. 355-395. Springer, Berlin, 1999.

[5] D. Abramson “Constructing School Timetables Using
Simulated Annealing: Sequential and Parallel
Algorithms,” Management Science, vol. 37(1), pp. 98-
113, 1991.

[6] D. Abramson, J. Abela, “A Parallel Genetic
Algorithm for the Solving the School Timetabling
Problem,” Proc of the Fifteenth Australian
Conference: Division of Information Technology,
C.S.I.R.O, pp. 1-11, 1991.

[7] F. Tim, F. Richard, M. Don and M. Robin, “KQML as
an Agent Communication Language,” Proc. of the
Third International Conference on Information and
KnowledgeManagement, pp.456–463, 1994.

[8] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa,: Jade
Programmer’s Guide. JADE 4.3
http://jade.tilab.com/doc/programmersguide.pdf, 2013.

[9] F. Zambonelli, N.R. Jennings, A. Omicini, M.J
Wooldridge, Coordination of Internet Agents: Models,
Technologies and Applications, chapter 13. Springer-
verlag, Agent-Oriented Software Engineering for
Internet Applications, 2000.

[10] FIPA: The foundation for intelligent physical agents.
See http://www.fipa.org/

[11] FIPA-OS: A component-based toolkit enabling rapid
development of FIPA compliant agents: http://fipa-
os.sourceforge.net/

[12] FIPA Specification part 2 - agent communication
language. The text refers to the specification dated 16
April 1999.

[13] FIPA specification XC00061E: FIPA ACL Message
Structure Specification (2000) http://www.fipa.org

[14] G.S. Bello, M.C. Rangel, M.C.S. Boeres, “An
Approach for the Class /Teacher Timetabling
Problem,” Proc. of the 7th International Conference on
the Practice and Theory of Automated Timetabling
(PATAT2008), http://w1.cirrelt.ca/~patat2008/
PATAT_7_ PROCEEDINGS/Papers/Boeres-
WA2b.pdf, 2008.

[15] I. Rezek, D. S. Leslie, S. Reece, S. J. Roberts, A.
Rogers, R. K. Dash, N. R. Jennings,“On Similarities
between Inference in Game Theory and Machine
Learning,” Journal of AI Research, vol. 33
pp.259‐283, 2008.

[16] Jade site [online] http://jade.tilab.com/

[17] L. Tran‐Thanh, A. Rogers, N. R. Jennings,
“Long‐term Information Collection with Energy
Harvesting Wireless Sensors: A Multi‐armed Bandit
based Approach,” Journal of Autonomous Agents and
Multi‐Agent Systems,vol. 25 (2). 2012.

[18] L. Padgham, M. Winikoff, Developing Intelligent
Agent Systems- A Practical Guide. John Wiley &
Sons, Ltd, 2004.

[19] L. Engmo, L. Hallen, Software Agent Applied in Oil
Production. A master degree thesis, Department of
Computer and Information Sciences, Norwegian
University of Science and Technology, Norway, 2007.

[20] M. Niazi, A. Hussain (2010), “Agent-based
Computing from Multi-agent Systems to Agent-based
Models: A Visual Survey,” 2010.

[21] M. P. Singh, N.M. N.M. Asher, “Towards a Formal
Theory of Intentions,” Proceedings of the European
Workshop (JELIA-90), vol. 478,pp. 472-486.
Springer, Berlin, 1991.

[22] M. P. Tariq, M. Waqar Mirza, R. Akbar, “Multi-agent
Based University Timetable Scheduling System
(MUTSS),” IJMSE, vol. 1(1), 2010.

[23] M. Wooldridge, An Introduction to Multi-agent
Systems, John Wiley and Sons ltd., 2002.

[24] M. Wooldridge, “The Logical Modelling of
Computational Multi-Agent Systems,”PhD thesis,
Department of Computation, UMIST, Manchester,
UK. 1992.

[25] M. Wooldridge,“Verifying that Agents implement a
Communication Language,” Proc. of the 16th National
Conference on Artificial Intelligence (AAAI-99),
Orlando, FL, pp. 52-57.

[26] M. Wooldridge, N.R. Jennings, D. Kinny,“The Gaia
Methodology for Agent-oriented Analysis and
Design,”Journal of Autonomous Agents and Multi-
Agent System, vol. 3(3), pp. 285–312, 2000.

[27] N. R. Jennings, M. Wooldridge, “Agent-Oriented
Software Engineering,”, Handbook of Agent
Technology. AAAI/MIT Press, 2001.

[28] N. R. Jennings, M. Wooldridge, Agent Technology:
Foundations, Applications and Markets. Springer,
Berlin. 1998.

[29] N. R. Jennings, K. Sycara, M. Wooldridge, “A
Roadmap of Agent Research and
Development,”Journal of Autonomous Agents and
Multi-Agent Systems, vol. 1(1), pp. 7-38, 1998.

N. Spanoudakis, P. Moraitis, “Using ASEME
Methodology for Model-Driven Systems

Development,” Springer Workshop, AOSE Toronto,
Cannada, 2010.

Vol 8. No. 2 June, 2015
African Journal of Computing & ICT

© 2015 Afr J Comp & ICT – All Rights Reserved - ISSN 2006-1781

www.ajocict.net

 52

[30] O. Mihaela, O.MAS,_ “UP-UCT: A Multi-Agent
System for University Course Timetable Scheduling,”
International Journal of Computer, Communications &
Control, vol. 2, pp. 94-102, 2007.

[31] P. R. Cohen, C. R. Perrault, “Elements of a Plan Based
Theory of Speech Acts,”Cognitive Science, vol. 3, pp.
177-21, 1979.

[32] P. Vytelingum, T. D. Voice, S. D. Ramchurn, A.
Rogers and N. R. Jennings, “Theoretical and practical
foundations of Large‐scale Agent‐based Micro‐storage
in the Smart Grid,” Journal of AI Research, vol. 42.
2011.

[33] P. Moraïtis, E. Petraki, N. I. Spanoudakis ,
“Engineering JADE Agents with the Gaia
Methodology,” Proc. Agent Technologies,
Infrastructures, Tools, and Applications for E-
Services, 2006, pp. 77–91, Berlin: Springer-Verlag.

[34] P. Moraïtis, N. Spanoudakis, “The Gaia2jade Process
for Multi-Agent Systems Development,” Applied
Artificial Intelligence, vol. 20, 2006, pp. 251–273,
Taylor & Francis Group, LLC, doi:
10.1080/08839510500484249

[35] Prometheus Methodology Tools, [online] Available:
http://www.cs.rmit.edu.au/agents/pdt/index.shtml
[21/01/2013].

[36] R. Kota, N. Gibbins and N. R. Jennings,
“Decentralised approaches for Self‐organising Agent
Systems,”ACM Trans on Autonomous and Adaptive
Systems, vol.7 (1) , 2012.

[37] R.V.M. Lorena, (2011), “Requirement Modelling for
Multi-agent Systems, ” A master degree thesis, 2011.

[38] S. J. Russell, P. Norvig; Artificial Intelligence:
Mordern Approach., Englewood Cliffs:, New Jersey
07632: Prentice Hall,1995.

[39] T. Birbas, S. Daskalaki, E. Housos “School
Timetabling for Quality Student and Teacher
Schedules,” Journal of Scheduling, vol. 12(2), pp.
177-197, April 2009.

[40] T. Birbas, S. Daskalaki , E. Housos,“Timetabling for
Greek High Schools,” Journal of the Operational
Research Society, vol. 48(2), pp. 1191-1200,
December 1997

[41] T. Rahwan, T. Michalak, M. Wooldridge and N. R.
Jennings, “Anytime Coalition Structure Generation in
Multi‐agent Systems with positive or
negativeExternalities,” Artificial Intelligence, vol.186,
pp. 95‐122, 2012.

[42] T. Takeshi, T. Megumi, “Production of the Time
Table Management System of Commercial Course
University,” Proc. World Conference on E-Learning in
Corporate, Government, Healthcare, & Higher
Education, vol. 30, pp.48-52, 2006.

[43] V. Jean, N. Ambroise, Jade Tutorial and Primer
[online] available:
http://www.iro.umontreal.ca/~vaucher/Agents/Jade/Ja
dePrimer.html

[44] X. Luo, C. Miao, N. R. Jennings, M. He, Z. Shen,
“KEMNAD: A knowledge Engineering Methodology
for Negotiating Agent Development,” Journal of
Computational Intelligence, vol.28(1), pp. 51‐105,
2012.

