Proceedings of the Workshop on

Feature Selection for Data Mining:
Interfacing Machine Learning and Statistics

in conjunction with the
2005 STAM International Conference on Data Mining
April 23, 2005
Newport Beach, CA

Chairs Huan Liu (Arizona State University)
Robert Stine (University of Pennsylvania)
Leonardo Auslender (SAS Institute)

Sponsored By \)OsaS@

Workshop on Feature Selection for Data Mining:

Interfacing Machine Learning and Statistics

http://enpub.eas.asu.edu/workshop/

2005 STAM Workshop
April 23, 2005

Workshop Chairs: Huan Liu (Arizona State University)
Robert Stine (University of Pennsylvania)
Leonardo Auslender (SAS Institute)

Program Committee:

Constantin Aliferis, Vanderbilt-Ingram Cancer Center
Leonardo Auslender, SAS Institute

Stephen Bay, Stanford University

Hamparsum Bozdogan, University of Tennessee
Carla Brodley, Tufts University

Yidong Chen, National Center for Human Genome Research
Manoranjan Dash, Nanyang Technological University
Ed Dougherty, Texas A&M University

Jennifer Dy, Northeastern University

Edward George, University of Pennsylvania

Mark Hall, University of Waikato

William H. Hsu, Kansas State University

Igor Kononenko, University of Ljubljana

Huan Liu, Arizona State University

David Madigan, Rutgers University

Stan Matwin, University of Ottawa

Kudo Mineichi, Hokkaido University

Hiroshi Motoda, Osaka University

Sankar K. Pal, Indian Statistical Institute

Robert Stine, University of Pennsylvania

Nick Street, University of lowa

Kari Torkkola, Arizona State University

loannis Tsamardinos, Vanderbilt University

Bin Yu, University of California Berkeley

Lei Yu, Arizona State University

Jacob Zahavi, Tel Aviv University

Jianping Zhang, AOL

Proceedings Chair: Lei Yu (Arizona State University)

Message from the Workshop Chairs

Knowledge discovery and data mining (KDD) is a multidisciplinary effort to extract nuggets of
knowledge from data. The proliferation of large data sets within many domains poses unprece-
dented challenges to KDD. Not only are data sets getting larger, but new types of data have also
evolved, such as clickstream data on the Web and microarrays in genomics. Research in com-
puter science, engineering, and statistics confront similar issues in feature selection, and we see a
pressing need for the interdisciplinary exchange and discussion of ideas. We anticipate that our
collaborations will shed new light on research directions and approaches and lead to breakthroughs.

Researchers in data mining and knowledge discovery recognize the value of knowledge imbedded in
massive data sets. This knowledge can often be represented as ‘patterns’ that allow summarization,
classification, prediction, and planning. Typically, these useful patterns are derived from data by
empirical modeling. Few domains have developed theories that are adequate to organize the large
quantities of data now held in repositories that continue to grow larger, with both more dimensions
and instances. To arrive at patterns, many techniques simplify the task by reducing number of
dimensions by selecting variables and features. This approach has proven to be efficient and effec-
tive in dealing with high-dimensional data in various data-mining applications. These applications
include pattern recognition, image processing, machine learning, and data mining (including Web,
text, and microarrays). The objectives of feature selection include: building simpler and more
comprehensible models, improving data mining performance, and helping to prepare, clean, and
understand data.

This workshop aims to encourage cross-disciplinary, collaborative research in variable and feature
selection. Both computer scientists and statisticians have made important contributions to variable
and feature selection and both groups continue to pursue a variety of innovative research programs.
Though sharing a common interest, the two groups have not been well-connected. Thus, it is ben-
eficial to computer scientists and statisticians that a bridge of communication be established and
maintained. This connection among researchers would enhance learning from one another and help
all address the challenges arising from massive data.

These proceedings contain a wide range of research work in feature selection: feature selection
methodology research, text categorization and classification, analysis of microarray measures of ge-
netic structure, predictive modeling, multivariate time series analysis, performance improvement,
and subspace detection. It has been an enjoyable process for us to work together in achieving the
aims of this workshop.

We would like to convey our gratefulness to our PC members and authors who have contributed
tremendously to make this workshop a success.

Huan Liu, Robert Stine, and Leonardo Auslender

Workshop Schedule

7:00am — 8:15am Continental Breakfast

8:30am — 10:00am
A Novel Feature Selection Score for Text Categorization (25 minutes)
Susana Eyheramendy, David Madigan
Text Classification by Augmenting the Bag-of-Words Representation with Redundancy-Compensated
Bigrams (25 minutes)
Constantinos Boulis, Mari Ostendorf
Comparing and Combining Dimension Reduction Techniques for Efficient Text Clustering (25 minutes)
Bin Tang, Michael Shepherd, Evangelos Milios, Malcolm 1. Heywood
Near-Optimal Feature Selection (15 minutes)
Jaekyung Yang, Sigurdur Olafsson

10:00am — 10:30am Coffee Break (poster session)

10:30am — 12:00
Boosted Lasso (25 minutes)
Peng Zhao, Bin Yu
Feature Selection with a General Hybrid Algorithm (25 minutes)
Jerffeson Souza, Nathalie Japkowicz, Stan Matwin
Minimum Redundancy and Maximum Relevance Feature Selection and Recent Advances in Cancer
Classification (25 minutes)
Hanchuan Peng, Chris Ding
Gene Expression Analysis of HIV-1 Linked p24-specific CD4+ T-Cell Responses for Identifying Genetic
Markers (15 minutes)
Sanjeev Raman, Carlotta Domeniconi

12:00 — 1:45pm Lunch

1:45pm — 2:45pm Keynote Talk
Model Building and Feature Selection with Genomic Data
Trevor Hastie

2:45pm — 3:15pm Coffee Break (poster session)

3:15pm — 4:30pm

Feature Filtering with Ensembles Using Artificial Contrasts (15 minutes)
FEugen Tuv, Kari Torkkola

Speeding up Multi-class SVM Evaluation by PCA and Feature Selection (15 minutes)
Hansheng Lei, Venu Govindaraju

Detecting Outlying Subspaces for High-Dimensional Data: A Heuristic Approach (15 minutes)
Ji Zhang

An Optimal Binning Transformation for Use in Predictive Modeling (15 minutes)
Talbot Michael Katz

A Supervised Feature Subset Selection Technique for Multivariate Time Series (15 minutes)
Kiyoung Yang, Hyungin Yoon, Cyrus Shahabi

4:30pm Workshop Adjourns

Poster Papers

A Hybrid Cluster Tree Algorithm for Variable Selection
Zhiqian Fu, Zhiwei Fu, Isa Sarac

Parallelizing Feature Selection
Jerffeson Souza, Nathalie Japkowicz, Stan Matwin

Optimal Division for Feature Selection and Classification
Mineichi Kudo, Hiroshi Tenmoto

Table of Contents

1 A Novel Feature Selection Score for Text Categorization
Susana Eyheramendy, David Madigan

9 Text Classification by Augmenting the Bag-of-Words Representation with Redundancy-
Compensated Bigrams
Constantinos Boulis, Mari Ostendorf

17 Comparing and Combining Dimension Reduction Techniques for Efficient Text
Clustering

Bin Tang, Michael Shepherd, Evangelos Milios, Malcolm I. Heywood

27 Near-Optimal Feature Selection
Jaekyung Yang, Sigurdur Olafsson

35 Boosted Lasso
Peng Zhao, Bin Yu

45 Feature Selection with a General Hybrid Algorithm
Jerffeson Souza, Nathalie Japkowicz, Stan Matwin

52 Minimum Redundancy and Maximum Relevance Feature Selection and Recent
Advances in Cancer Classification
Hanchuan Peng, Chris Ding

60 Gene Expression Analysis of HIV-1 Linked p24-specific CD4+ T-Cell Responses
for Identifying Genetic Markers
Sanjeev Raman, Carlotta Domeniconi

69 Feature Filtering with Ensembles Using Artificial Contrasts
Fugen Tuv, Kari Torkkola

72 Speeding up Multi-class SVM Evaluation by PCA and Feature Selection
Hansheng Lei, Venu Govindaraju

80 Detecting Outlying Subspaces for High-Dimensional Data: A Heuristic Approach
Ji Zhang

87 An Optimal Binning Transformation for Use in Predictive Modeling
Talbot Michael Katz

92 A Supervised Feature Subset Selection Technique for Multivariate Time Series
Kiyoung Yang, Hyunjin Yoon, Cyrus Shahabi

102 A Hybrid Cluster Tree Algorithm for Variable Selection
Zhiqian Fu, Zhiwei Fu, Isa Sarac

104 Parallelizing Feature Selection
Jerffeson Souza, Nathalie Japkowicz, Stan Matwin

106 Optimal Division for Feature Selection and Classification
Mineichi Kudo, Hiroshi Tenmoto

A novel feature selection score for text categorization

Susana Eyheramendy
Department of Statistics
1 South Parks Road
Oxford University
Oxford, OX1 3TG

Abstract

This paper proposes a new feature selection
score for text classification. The value that
this score assigns to each feature has an
appealing Bayesian interpretation, being the
posterior probability of inclusion of the fea-
ture in a model. We evaluate the performance
of the score, together with five other feature
selection scores that have been prominent in
the text categorization literature, using four
classification algorithms and two benchmark
text datasets. The proposed score performs
reasonably well. We find that it is among the
best two scores,together with y2.

Keywords: feature selection, text classifica-
tion, Bayesian analysis.

1 Introduction

Since many text classification applications involve large
numbers of candidate features, feature selection algo-
rithms continue to play an important role. The text
classification literature tends to focus on feature selec-
tion algorithms that compute a score independently for
each candidate feature. This is the so-called filtering ap-
proach. The scores typically contrast the counts of oc-
currences of words or other linguistic artifacts in train-
ing documents that belong to the target class with the
same counts for documents that do not belong to the
target class. Given a predefined number of words to be
selected, say d, one chooses the d words with the highest
score. Several score functions exist (Section 2 provides
definitions). Yang and Pedersen (1997) show that In-
formation Gain and x? statistics performed best among
five different scores. Forman (2003) provides evidence
that these two scores have correlated failures. Hence
when choosing optimal pairs of scores these two scores
work poorly together. He introduced a new score, the

David Madigan
Department of Statistics
501 Hill Center
Rutgers University
Piscataway, NJ 08855

Bi-Normal Separation, that yields the best performance
on the greatest number of tasks among twelve feature
selection scores. Mladenic and Grobelnik (1999) com-
pare eleven scores under a Naive Bayes classifier and
find that the Odds Ratio score performed best in the
highest number of tasks.

In regression and classification problems in Statistics,
popular feature selection strategies depend on the same
algorithm that fits the models. This is the so-called
wrapper approach. For example, Best subset regression
finds for each k the best subset of size k based on resid-
ual sum of squares. Leaps and bounds is an efficient
algorithm that finds the best set of features when the
number of predictors is no larger than about 40. Miller
(2002) provides an extensive discussion.

Barbieri and Berger (2004) in a Bayesian context
and under certain assumptions show that for selection
among normal linear models, the best model contains
those features which have overall posterior probabil-
ity greater than or equal to 1/2. Motivated by this
study we introduce a new feature selection score (PIP)
that evaluates the posterior probability of inclusion of a
given feature over all possible models, where the mod-
els correspond to a set of features. Unlike typical scores
used for feature selection via filtering, the PIP score
does depend on a specific model. In this sense, the new
score straddles the filtering and wrapper approaches.

We present experiments that compare the new feature
selection score with five other feature selection scores
that have been prominent in the studies mentioned
above. The feature selection scores that we consider
are evaluated on two widely-used benchmark text clas-
sification datasets, Reuters-21578 and 20-Newsgroups,
and implemented on four classification algorithms. Fol-
lowing previous studies, we measure the performance of
the classification algorithms using the F} measure.

We have organized this paper as follows. Section 2 de-
scribes the various feature selection scores we consider,

Ck Cr
w | Nkw nzw Ny
W | Ngw TLEE Nw
N nz

Table 1: Two-way contingency table of word w and
category cy,

both the new score and the various existing competitors.
In Section 3 we mention the classification algorithms
that we use to compare the feature selection scores.
The experimental settings and experimental results are
in Section 4. Section 5 has the conclusions.

2 Feature Selection Scores

Feature selection, or word selection in the experiments
of this study, uses a score to select the best d words from
all words that appear in the training set. Before we list
the feature selection scores that we study, we introduce
some notation. Table 1 show the basic statistics for a
single word and a single category (or class).

Nk : n° of documents in class ¢, with word w.
nw - n° of documents in class ¢, without word w.
Mgy - 1 of documents not in class ¢, with word w.
N - n® of documents not in class ¢, without word w.
ny : total n° of documents in class cg.

+ : total n° of documents that are not in class c.
Ny : total n® of documents with word w.
ng : total n® of documents without word w.
n : total n° of documents.

2.1 Posterior Inclusion Probability (PIP)
under a Bernoulli distribution

We introduce a new feature selection score which is mo-
tivated by the median probability model. We first con-
sider the binary naive Bayes model. Section 2.2 consid-
ers a naive Bayes model with Poisson distributions for
word frequency. This score for feature or word w and
class ¢y, is defined as

lOwk
PIP(w,cp) = —2wk__ 1
(w Ck) lOwk + lwk ()
where
I B(nk:w + Akw, nkﬁﬁkw)
Owk

B(akwy ﬁkw)
o B0y, + 0y g + Bry)
B(O‘va ﬂzw)

bo.
olioNoNoNoloNolo

an 1.0 o1 ©0)

Figure 1: Graphical model representation of the four
models with two words, wy and ws.

B(nw + Q, Ny + ﬂw)
B(awaﬁw)

lwk -

B(a,b) is the Beta function which is defined as

B(a’ b) - Fr(éla)ig,l;)a and Qw, Uw, QCw, Brw, Bkw, Puw are
constants set by the practitioner. In our experiments
we set them to be a,, = 0.2, 3, = 2/25 for all words w,
g = 0.1, ags = 0.1, Brw = 1/25 and B = 1/25 for
all categories k and words w. These settings correspond
to rather diffuse priors.

We explicate this score on the context of a two-
candidate-word model. In general, with d candidate
words, there are 2¢ models corresponding to allpossible
subsets of the words. For two words, Figure 1 we show
a graphical representation of the four possible models.
The corresponding likelihoods for each model are given
by

My : T1; Pr(wi, wig, ¢il01c, O2c) = [1; B(wir, Ox1)
xB(wﬂ, HEI)B(wiQ, Gkg)B(wig, QEQ)PT(CZWK)

M0y ¢ [1; Pr(wii, wiz, ¢il01c, 02) =], B(wi1, Ox1)

XB(U}“, 9E1)8<U/i2, QQ)B(U)Q, 92)P7”(Ci|9k)

) = LI Pr(win, wig, ¢i]01, 02c) = [1; B(wii, 01)
XB(wﬂ,el)B(wig,91@)8(’(1%2,9;2)})7“(01"916)

Mo,0y : TI; Pr(wir, wia, ci01,02) = [, B(wi1, 1)
XB(’LUM, 01)B(wi2, GQ)B(IUZ'Q, 92)PT(CZ|0k)

where w;; takes the value 1 if document 7 contains
word j and 0 otherwise, ¢; is 1 if document ¢ is in
category k otherwise is 0, Pr(c;|0r) = B(c;, 6k) and
B(w,0) = 6¥(1—0)~* denotes a Bernoulli probability
distribution.

Therefore, in model M, ;) the presence or absence of
both words in a given docuement depends on the docu-
ment class. 01 corresponds to the proportion of docu-
ments in category cx with word w; and 951 to the pro-
portion of documents not in category ¢ with word wy.
In model M, gy only word w; depends on the category
of the document and f#; correspond to the proportion
of documents with word wy regardless of the category
associated with them. 6 is the proportion of docu-

ments in category ci and Pr(c;|6x) is the probability
that document d; is in category cg.

We assume the following prior probability distribu-
tions for the parameters, O, ~ Beta(gw,lkw)s
tr., ~ Betalag,,Br,) 0w ~ Beta(aw, Bw) and 0f ~
Beta(ay, O;), where Beta(a,3) denotes a Beta dis-
tribution, i.e. Pr(f|a, 3) m@a’l(l —)81
ke{l,..,m}and we{1,..,d}.

Then the marginal likelihoods for each of the four mod-
els above are:

Pr(data|M 1)) = lo X loix X lozk

Pr(data|M(Lo)) =g X lo1k X log
Pr(data|M(0,1)) = l() X llk X logk
Pr(data|M(0,0)) = lo X llk X lgk

where lpwr and Iux &%re defined above for w €
{L.2,...d} and lo = [y [, Pr(c;|0k)Pr(Oxlek, Br)dox
is the marginal probability for the category of the doc-
uments.

The overall posterior probability that a feature is in-
cluded in a model, its posterior inclusion probability
(PIP), is defined as

PIP(w,ck) = Y Pr(M,|data) (2)
I:l;=1

where [is a vector of length the number of features and
the jth component takes the value 1 if the jth feature is
included in model M;, otherwise it is 0. It is straightfor-
ward to show that PIP(w,cg) in equation (4) is equiv-
alent to PIP(w,ci) in equation (5), if we assume that
the prior probability density for the models is uniform,
e.g. Pr(M;) « 1.

In the example above, the posterior inclusion probabil-
ity for word w; is given by,

Pr(wiley) = Pr(Mgq,yldata) + Pr(Mq oy|data)
loik

lowe + lik

To get a single “bag of words” for all categories we
compute the weighted average of PIP(w,cy) over all
categories.

PIP(w) =Y Pr(cx)PIP(w,cx)
k

We note that Dash and Cooper (2002) present sim-
ilar manipulations of the naive Bayes model but for
model averaging purposes rather than finding the me-
dian probability model.

2.2 Posterior Inclusion Probability (PIPp)
under Poisson distributions

A gernalization of the binary naive Bayes model as-
sumes class-conditional Poisson distributions for the
word frequencies in a document. As before, assume
that the probability distribution for a word in a docu-
ment might or might not depend on the category of the
document. More precisely, if the distribution for word
w depends on the category cx of the document we have,

7>\kw>\w

Priwje=1) = “—hw
w!

e#‘iw/\ﬂ’,

Pr(wle=0) = — kw
w!

where w denotes a specific word and the number of
times that word appears in the document and A (Ag,,)
represents the expected number of times that word w
appears in documents in category cy, (cz). If the distri-
bution for word w does not depend on the category of
the document then we have,

—Aw \W

e Ay

Priw) = =5
where A\, represents the expected number of times w
appears in a document regardless of the category of the

document.

Assume the following conjugate prior probability den-
sities for the parameters,

Mew ~ Gamma(agw, Brw)

Mow
Ay~

~ Gamma(az,, 07,)

Gamma(ay, Bw)

where g, Brw, Oy, B, Cw, Bw are hyperparameters
to be set by the practitioner.

Now, as before, the posterior inclusion probability for
poisson distributions (PIPp) is given by

lOwk
PIPp(w,c,) = —————— here,
p(k) lOwk + lu)k v
z ' (Njw + o) T(Vg, + az,,)
owk — X ew %
Do) By T(ag,)85
> (/6167’11) Nkw+xkw (/%71”)11?1”4!‘0(%20
Nk Prw + 1 N0, +1
; _ F(Nw + aw) ﬂw)nw+aw 1
wk T(aw) Bun + 1 Bu

This time, Nk, Ng,,» Nw denote:

N n° of times word w appears in documents in class
Ck.

Nz,,: n° of times word w appears in documents not in
class cg.

N,,: total n° of times that word w appears in all docu-

ments.

As before, to get a single “bag of words” for all cate-
gories we compute the weighted average of PIPp(w, cy)
over all categories.

PIPp(w) =Y Pr(cy)PIPp(w,ck)

k

2.3 Information Gain (IG)

Information gain is a popular score for feature selection
in the field of machine learning. In particular it is used
in the C4.5 decision tree inductive algorithm. Yang and
Pedersen (1997) compare five different feature selection
scores on 2 datasets and show that Information Gain
is among the two most effective ones. The information
gain of word w is defined to be:

m

— Z Pr(cy)log Pr(c)

k=1

IG(w) =

+Pr(w Z r(cx|w) log Pr(ck|w)

Ms i

+Pr(w) » Pr(c;|w)log Pr(ck|w)

>
Il
—

where {ci}}’, denote the set of categories and w the
abscence of word w. It measures the decrease in entropy
when the feature is present versus when the feature is
absent.

The probabilities in /G (w) are estimated using the cor-
responding sample frequencies.

2.4 Bi-Normal Separation (BNS)

Forman (2003) defines Bi-Normal Separation as:

@1 (R 1 (DRwy)

BNS(w,c) = - p—
k

where ® is the standard normal distribution and ®~!
its corresponding inverse. ®~1(0) is set to be equal to
0.0005 to avoid numerical problems following Forman
(2003). By averaging over all categories, we get a score
that selects a single set of words for all categories.

w 1,1
BNS(w ZPw 0B - o7 (R,
k

To get an idea for what this score is measuring, assume
that the probability that a word w is contained in a
document is given by ®(d) if the document belongs to
class ¢, and otherwise is given by ®(d). A word will
discriminate with high accuracy between a document
that belongs to a category from one that does not, if
the value of dy is small and the value of 07 is large , or
vice versa, if d; is large and 7 is small. Now, if we set
0 = ®71(%ke) and o = @_1(%), the Bi-Normal
Separation score is equivalent to the distance between
these two quantities, |d; — dx|.

2.5 Chi-Square

The chi-square feature selection score, x?(w, c), mea-
sures the dependence between word w and category cy.
If word w and category cj are independent x2(w, ¢y) is
equal to zero. When we select a different set of words
for each category we utilise the following score,

n(NpwNgm — N, w)°

nknwnznw

X (w,cx) =

Again, by averaging over all categories we get a score
for selecting a single set of words for all categories.

2(w, cx).

= Z Pr(ci)x

2.6 Odds Ratio

The Odds Ratio measures the odds of word w occur-
ing in documents in category c; divided by the odds
of word w not occuring in documents in category cy.
Mladenic and Grobelnik (1999) find this to be the best
score among eleven scores for a Naive Bayes classifier.
For category ¢ and word w the oddsRatio is given by,

M/ Ny +0.1
nk-‘rO 1 nk-‘rO 1

+0 1 +0 1
n—+0 1 N +O 1

OddsRatio(w, c) =

where we add the constant 0.1 to avoid numerical prob-
lems. By averaging over all categories we get,

OddsRatio(w ZPT ¢)OddsRatio(w,).

k

2.7 Word Frequency

This is the simplest of the feature selection scores. In
the study of Yang and Pedersen (1997) they show that
word frequency is the third best after information gain

and x2. They also point out that there is strong cor-
relation between these two scores and word frequency.
For each category ¢ word frequency for word w, is the
number of documents in ¢, that contain word w, i.e.
WF(w,cr) = Ny

Averaging over all categories we get a score for each w,

WF(w) = ZPr(ck)WF(w, k) = ZPr(ck)nkw.
k k

3 Classification Algorithms

To determine the performance of the different feature
selection scores, the classification algorithms that we
consider are the Multinomial, Poisson and Binary Naive
Bayes classifiers (McCallum and Nigam (1998) Lewis
(1998) Eyheramendy et al (2003)) and the hierarchical
probit classifier of Genkin et al (2003). We choose these
classifiers for our analysis chiefly because of two reasons.
The first one is the different nature of the classifiers.
The naive Bayes models are generative models while
the probit is a discriminative model. Generative clas-
sifiers learn a model of the joint probability Pr(z,y),
of the input = and the label y, and make their predic-
tions by using Bayes rule to calculate Pr(y|z). In con-
trast, discriminative classifiers model Pr(y|z) directly.
The second reason is the good performance that they
achieve. In Eyheramendy et al (2003) the multinomial
model, notwithstanding its simplicity, achieved the best
performance among four Naive Bayes models. The hier-
archical probit classifier of Genkin et al (2003) achieves
state of the art performance, comparable to the per-
formance of the best classifiers such as SVM (Joachims
(1998)). We decide to include the binary and Poisson
naive Bayes models (see Eyheramendy et al (2003) for
details) because they allow us to incorporate informa-
tion of the probability model used to fit the categories of
the documents into the feature selection score. For in-
stance, in the Binary Naive Bayes classifiers the features
that one can select using the PIP score correspond ex-
actly to the features with the highest posterior inclusion
probability. We want to examine whether or not that
offers an advantage over other feature selection scores.

4 Experimental Settings and Results

Before we start the analysis we remove common nonin-
formative words taken from a standard stopword list of
571 words and we remove words that appear less than
three times in the training documents, justifying this
with the fact that they are unlikely to appear in testing
documents. This eliminates 8, 752 words in the Reuters
dataset (38% of all words in training documents) and

Multinomial-Reuters

0.6

micro F
0.4

- WF
] PIPp
7 1 -- BNS r
G
i CHI

0.2
0.4

PIP

0.0
0.2

T : T T T T T
0 200 400 600 800 1000

number of words

Figure 2: Curves of performance (for the multinomial
model) for different number of words measure by macro
and micro F (top and bottom sets of curves resp.) for
the Reuters dataset.

47,118 words in the Newsgroups dataset (29% of all
words in training documents). Words appear on aver-
age in 1.41 documents in the Reuters dataset and in
1.55 documents in the Newsgroups dataset.

4.1 Datasets

The 20-Newsgroups dataset contains 19,997 articles
divided almost evenly into 20 disjoint categories.
The categories topics are related to computers,
politics, religion, sport and science. We split the
dataset randomly into 75% for training and 25% for
testing. We took this version of the dataset from
http://www.al.mit.edu/people/jrennie/20Newsgroups/ .
Another dataset that we use comes from the Reuters-
21578 news story collection. We use a subset of the
ModApte version of the Reuters—21,578 collection,
where each document has assigned at least one topic
label (or category) and this topic label belongs to any
of the 10 most populous categories - earn, acq, grain,
wheat, crude, trade, interest, corn, ship, money-fx. It
contains 6, 775 documents in the training set and 2,258
in the testing set.

4.2 Experimental Results

In these experiments we compare seven feature selec-
tion scores, on two benchmark datasets, Reuters-21578

macro F

Probit-Reuters

o mRTERITIOUITIT. LN
2 /4
o |
o
- L =
o
wow
o o
S
E ©
F S
- WF
S PIPp
- BNS
G | <
CHI s
y OR
Sq i PIP
k)
. | o
: o
o
g -
T T T T T T
0 200 400 600 800 1000

number of words

Figure 3: Curves of performance (for the probit model)
for different number of words measure by macro and
micro F (top and bottom sets of curves resp.) for the
Reuters dataset.

and Newgroups (see subsection 4.1), under four classi-
fication algorithms (see section 3).

We compare the performance of the classifiers for dif-
ferent numbers of words and vary the number of words
from 10 to 1000. For larger number of words the classi-
fiers tend to perform somewhat more similarly, and the
effect of choosing the words using a different feature
selection procedure is less noticeable.

Figure 2 — 5 show the micro and macro average F' mea-
sure for each of the feature selection scores as we vary
the number of features to select for the four classifica-
tion algorithms - multinomial, probit, poisson and bi-
nary respectively. In order to have both sets of curves
(the curves with the micro F and macro F measures)
in the same graph we move them apart. The y — axes
for the micro F (macro F) measure correspond to the
y — axes on the left (right). The reader will find these
figures easier to read in a color rather than black and
white rendition.

We noticed that PIP gives, in general, high values to
all very frequent words. To avoid that bias we remove
words that appear more than 2000 times in the Reuters
dataset (that accounts for 15 words) and more than
3000 times in the Newsgroups dataset (that accounts
for 36 words).

Reuters. Like the results of Forman (2003), if for scal-

macro F

Poisson-Reuters

@
o
o |
o
w = S}
e =
S S
E
— WF
PIPp
BNS
IG L«
CHI °
o -~ OR
° PIP
Lo
o
g - J

400 600 800 1000

number of words

Figure 4: Curves of performance (for the poisson model)
for different number of words measure by micro F and
macro F (top and bottom sets of curves resp.) for the
Reuters dataset.

ability reasons one is limited to a small number of fea-
tures (< 50) the best available metrics are IG and x?
as Figures 2 — 5 show. For larger number of features
(> 50), Figure 2 shows that PIPp and PIP are the best
scores for the mutinomial classifier. Figures 4 and 5
shows the performance for the poisson and binary clas-
sifiers. PIPp and BNS achive the best performance in
the Poisson classifier and PIPp achieves the best per-
formance in the binary classifier. WF performs poorly
compare to the other scores in all the classifiers, having
the best performance with the poisson.

Newsgroups. Y2 followed by BNS, IG and PIP are
the best performing measures in the probit classifier.
x? is also the best one in multinomial model followed
by BNS and in the binary classifier with the macro F
measure. OR performs best in the poisson classifier.
PIPp is best in the binary classifier under the micro F
measure. WEF performs poorly compare to the other
scores in all classifiers. Because of lack of space we do
not show graphical display of the performance of the

classifiers in the Newsgroups dataset.

In Table 2 — 3 we summarize an overall performance
of the feature selection scores considered by integrating
the curves depicted in Figures 2 — 5. Each column cor-
responds to a feature selection. For instance the num-
ber 812 under the header “Multinomial model Reuters-
21578” and in the row “micro F” corresponds to the

macro F

Binary-Reuters

0.6

micro F
0.4

0.2
1

0.0
1

T : T T T T T
400 600 800 1000

number of words

Figure 5: Curves of performance (for the binary naive
Bayes model) for different number of words measure by
micro F and macro F (top and bottom sets of curves
resp.) for the Reuters dataset.

area under the IG top curve in Figure 2. In seven out
of sixteen instances x? is the best performing score and
in three is the second best. PIPp in four out of sixteen
is the best score and in six is the second best. BNS is
the best in two and second best in six. In red are the
best performing score and in blue are the second best.

5 Conclusion

In this study we introduced a new feature selection
score, PIP. The value that this score assigns to each
word has an appealing Bayesian interpretation, being
the posterior probability of inclusion of the word in a
model. Such models assume a probability distribution
on the words of the documents. We consider two proba-
bility distributions, Bernoulli and Poisson. The former
takes into account the presence or absence of words in
the documents, and the latter, the number of times each
word appears in the documents. Future research could
consider alternative PIP scores corresponding to differ-
ent probabilistic models.

The so-called wrapper approach for feature selection
provide an advantage over the filtering approach. The
wrapper approach attempts to identify the best feature
subset to use with a particular algorithm and dataset,
whereas the filtering approach attempts to assess the
merits of features from the data alone. The feature se-

macro F

IG | x> |OR | BNS | WF | PIP | PIPp
Poisson model Reuters-21578 dataset
micro Fy | 708 | 719 | 670 | 763 | 684 | 699 | 755
macro F; | 618 | 628 | 586 | 667 | 590 | 618 | 667
Poisson model 20-Newsgroups dataset
micro Fy | 753 | 808 | 928 | 812 | 684 | 777 | 854
macro F; | 799 | 841 | 936 | 841 773 | 813 | 880
Berboulli model Reuters-21578 dataset
micro Fy | 779 | 794 | 669 | 804 | 721 | 786 | 822
macro F; | 680 | 698 | 618 | 709 | 614 | 696 | 746
Bernoulli model 20-Newsgroups dataset
micro F; | 31 | 566 | 508 | 556 | 436 | 534 | 650
macro Fy | 628 | 673 | 498 | 652 | 505 | 627 | 650

Table 2: This table summarizes an overall performance
of the feature selection scores considered by integrating
the curves depicted in Figures 2 —5. In red are the best
performing score and in blue are the second best.

lection PIP offers that advantage over feature selection
scores that follow the filtering approach, for some clas-
sifiers. Specifically, for some naive Bayes models like
the Binary naive model or Poisson naive model, the
score computed by PIP Bernoulli and PIP Poisson re-
spectively depends on the classification algorithm. Our
empirical results do not corroborate in the benefit of
using the same model in the feature selection score and
in the classification algorithm.

x2, PIPp, and BNS are the best performing scores.
Still, feature selection scores and classification algo-
rithms seem to be highly data- and model-dependent.
The feature selection literature reports similarly mixed
findings. For instance, Yang and Pedersen (1997)
find that IG and x? are the strongest feature se-
lection scores. They perform their experiments on
two datasets, Reuters-22173 and OHSUMED, and un-
der two classifiers, kNN and a linear least square fit.
Mladenic and Grobelnik (1999) find that OR is the
strongest feature selection score. They perform their
experiments on a Naive Bayes model and use the Yahoo
dataset. Forman (2003) favors bi-normal separation.

Our results regarding the performance of the different
scores are consistent with Yang and Pedersen (1997)
in that x? and IG seem to be strong scores for feature
selection in discriminative models, but disagree in that
WF appears to be a weak score in most instances. Note
that we do not use exactly the same WF score. Ours is
a weighted average by the category proportion.

IG | x> |OR | BNS | WF | PIP | PIPp
Multinomial model Reuters-21578 dataset
micro Fy | 812 | 822 | 644 | 802 | 753 | 842 | 832
macro Fy | 723 | 733 | 555 | 713 | 644 | 762 | 753
Multinomial model 20-Newsgroups dataset
micro Fy | 535 | 614 | 575 | 584 | 456 | 564 | 575
macro F; | 594 | 644 | 565 | 634 | 486 | 604 | 585
Probit model Reuters-21578 dataset
micro F; | 911 | 921 | 674 | 891 | 881 | 901 | 891
macro F; | 861 | 861 | 605 | 842 | 753 | 842 | 851
Probit model 20-Newsgroups dataset
micro Fy | 703 | 723 | 575 | 713 | 565 | 693 | 644
macro Fy | 693 | 723 | 565 | 703 | 565 | 683 | 624

Table 3: This table summarizes an overall performance
of the feature selection scores considered by integrating
the curves depicted in Figures 2 —5. In red are the best
performing score and in blue are the second best.

Acknowledgements

We are grateful to David D. Lewis for helpful discus-
sions.

References

Barbieri, M.M. and Berger, J.O. (2004). Optimal
predictive model selection. Annals of Statistics, 32,
870-897.

Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian
Theory. New York: Wiley.

Dash, D. and Cooper, G.F. (2002). Exact model aver-
aging with naive Bayesian classifiers. In: Proceedings
of the Nineteenth International Conference on Machine
Learning, 91-98.

Eyheramendy, S., Lewis, D.D. and Madigan, D. (2003).
On the naive Bayes classifiers for text categorization.
In Proceedings of the ninth international workshop on
Artificial Intelligence and Statistics, eds, C.M. Bishop
and B.J. Frey.

Forman, G. (2003). An extensive Empirical Study
of Feature Selection Metrics for Text Classification.
Journal of Machine Learning Research

Genkin, A., Lewis, D.D., Eyheramendy, S., Ju, W.H.
and Madigan, D. (2003). Sparse Bayesian Classifiers
for Text Categorization, submitted to JICRD.
Joachims, T. (1998). Text Categorization with Sup-
port Vector Machines: Learning with Many Relevant
Features. Proceedings of ECML-98, 137-142.

Lewis, D.D. (1998). Naive (Bayes) at forty: The
independence assumption in information retrieval.
Proceedings of ECML-98, 4-15.

McCallum, A. and Nigam, K. (1998). A comparison
of event models for naive Bayes text classification. In

AAAT/ICML Workshop on Learning for Text Catego-
rization, pages 41 — 48.

Miller, A.J. (2002) Subset selection in regression
(second edition). Chapman and Hall.

Mladenic, D. and Grobelnik, M. (1999). Feature
selection for unbalanced class distribution and naive
Bayes. Proceedings ICML-99, pages 258-267.

Silvey, S. D. (1975). Statistical Inference. Chapman &
Hall. London.

Yang, Y. and Pedersen, J.O. (1997). A comparative
study on feature selection in text categorization.
Proceedings ICML-97, 412-420.

Text Classification by Augmenting the Bag-of-Words Representation with
Redundancy-Compensated Bigrams *

Constantinos Boulis'

Abstract

The most prevalent representation for text classification is
the bag-of-words vector. A number of approaches have
sought to replace or augment the bag-of-words representa-
tion with more complex features, such as bigrams or part-
of-speech tags, but the results have been mixed at best. We
hypothesize that a reason why integrating bigrams did not
appear to help text classification is that the new features
were not adequately examined for redundancy, i.e. the new
feature can be relevant by itself but irrelevant when con-
sidered jointly with other features. Searching for optimal
feature subsets in the combined space of unigrams and bi-
grams is prohibitively expensive given that the vocabulary
size is in the order of tens of thousands. In this work we
propose a measure that evaluates the redundancy of a bi-
gram based only on its unigrams. This approach although
suboptimal, since it does not consider interactions between
different bigrams or different unigrams, is very fast and tar-
gets a main source of bigram redundancy. We apply our fea-
ture augmentation measure in three text corpora; the Fisher
corpus, a collection of telephone conversations; the 20News-
groups corpus, a collection of postings to electronic forums;
and the WebKB corpus, a collection of web pages. We use
Naive Bayes and Support Vector Machines as the learning
methods and show consistent gains.

Keywords: Text categorization, Bigrams, 20Newsgroups,
WebKB, Fisher

1 Introduction

Text classification is an important instance of the clas-
sification problem with unique challenges and require-
ments. The objective is to classify a segment of text,
e.g. a document or a news article, to one (or more) of
C possible classes. A number of D tuples (Z4,yq) are
presented for training where Ty is the vector represen-
tation of the d-th document and y4 is a scalar (or set)
that indicates the class(es) of the d-th document.

A major challenge of the text classification problem

~ *This work has been supported by NSF grant 11S-0121396.
TDept. of Electrical Engineering, University of Washington,
Seattle, USA.
tDept. of Electrical Engineering, University of Washington,
Seattle, USA.

Mari Ostendorf?

is the representation of a document. The simplest and
almost universally used approach is the bag-of-words
representation, where the document is represented with
a vector of the word counts that appear in it. Depending
on the classification method, the bag-of-words vector
can be normalized to unity and scaled so that common
words are less important than rare words, such as in the
tf-idf representation.

Despite the simplicity of such a representation,
classification methods that use the bag-of-words feature
space often achieve high performance. Over the past,
a number of attempts have been made to augment or
substitute the bag-of-words representation with richer
features. In [12, 4] linguistic phrases, proper names and
complex nominals are used and in [20, 16] bigrams are
added to the feature space. In [15] character n-grams
are used for text classification. A recent comprehensive
study [14] surveys the different approaches that have
been taken thus far and evaluates them in standard text
classification resources. The conclusion is that more
complex features do not offer any gain when combined
with state-of-the-art learning methods, such as Support
Vector Machines (SVM).

We argue that a reason past approaches have failed
to show improvements is that they have looked only at
the relevance of the new features and not redundancy.
The issues of relevance and redundancy are both central
to the choice of optimum feature subset selection [9, 21].
Relevance is the degree to which a feature is useful for
classification by itself, and redundancy is the degree to
which a feature is correlated with other features. If a
feature has high relevance but is also strongly correlated
with other equally or more relevant features, adding it
to the feature subset can actually hurt classification per-
formance in the typical situation when training is lim-
ited. When constructing more complex representations,
the number of potential features can increase exponen-
tially. For example, using bigrams increases the vector
dimension from V to V2, where V is the vocabulary
size. With so many features, care must be taken to in-
clude not simply those that are relevant by themselves
but only those that are jointly relevant with the rest of
the features.

A major problem with determining redundancy is
the amount of computations needed. Algorithms such as
[9, 11] are of order O(T?) where T is the original number
of features. Adding bigrams as potential features makes
such an approach impractical, since T =V + V2 and V
is usually on the order of tens of thousands. Even ap-
proaches such as [21] with less than quadratic require-
ments can pose overwhelming computational burdens.
In this work, we propose a filter approach to feature
selection that determines the redundancy of a bigram
based on its unigrams. Although this approach is not
optimum, meaning that only a portion of possible fea-
ture combinations are examined for redundancy, it is
shown that it can offer gains in challenging text classi-
fication tasks and that it scales efficiently with vocab-
ulary size and order of word sequences. Performance
is not the only reason bigrams are a suitable target for
augmenting the feature space. Another important rea-
son is interpretation. A common way to interpret and
describe the topics present is to output the top-N dis-
criminative features. Adding bigrams to the list can
offer a more natural interpretation, although we have
no formal way of measuring this.

2 Adding relevant and non-redundant bigrams

There are two main approaches to the problem of fea-
ture selection for supervised learning. The filter ap-
proach [7] and the wrapper approach [8]. The filter ap-
proach scores features independently of the classifier,
while the wrapper approach jointly computes the clas-
sifier and the subset of features. A third approach, of-
ten called embedded [5], combines the two approaches
into one by embedding a filter feature selection method
into the process of classifier training, rather than treat-
ing the classifier as a black box. While the wrapper
approach is arguably the optimum approach, for appli-
cations such as text classification where the number of
features ranges from dozens to hundreds of thousands
it can be prohibitively expensive.

We followed a filter approach to feature selection,
and we implemented information gain (IG) since it has
been shown before [3] that is one of the best performing
methods. The IG measure is given by:

(21) I1Gyw =—H(C) + p(w)H(C|w) + p(w)H(C|w)
where H(C) = chzlp(c) log p(c) denotes the entropy
of the discrete topic category random variable C. Each
document is represented with the Bernoulli model, i.e.
a vector of 1 or 0 depending if the word appears or not
in the document.

We have also implemented another filter feature
selection mechanism, the KL-divergence, which is given

10

by:

C
(22) KLy = Dlp(clw)[[p(c)] = Y _ plclw) log

c=1

plcw)
p(c)

In the KL-divergence we have used the multinomial
model, i.e. each document is represented as a vector of
word counts. We smoothed the word-topic distributions
by assuming that every word in the vocabulary is
observed at least 10 times for each topic. All words
in the vocabulary are ranked according to KL, the
higher the KL score the more topic-specific the word
is. KL outperformed IG, in all three corpora used and
thus experiments reported here are carried out with KL
only.!

A problem with measures such as IG and KL is
that they do not consider the interactions of features,
rather they evaluate each feature independently. There-
fore, they have no way of dealing with redundancy.
To compensate for that we define the new measure
Redundancy-Compensated KL (RCKL) as:

(2.3) RCKL,,

= .Z:{Lw7 — KLU)i — KLwiH

i+1 W41

Therefore, if a bigram is highly relevant, i.e. K Lw;w;41
is high, but its unigrams are also highly relevant it will
be less likely to get added. In words, equation (2.3)
can be described as How much more topic information
can w;wi+1 give us compared to its unigrams? To
illustrate the basic idea consider some examples from
one of our data sets. For the topic trials, the words
commit and perjury are deemed to be important for
classification. The bigram commit perjury, although
being by itself very much relevant, does not add further
information than the words commit and perjury. As
another example, the bigram a holiday is redundant
given that the word holiday is already included in the
feature subset. Examples of relevant and non-redundant
bigrams would be big brother for the topic reality shows,
or second hand for the topic smoking.

3 Experiments

3.1 Description of corpora used We conducted
experiments on three large corpora. The first is the
Fisher corpus [1] a collection of 5-minute telephone con-
versations on a predetermined topic. The topic was se-
lected from a list of 40 before the start of the conver-
sation. After eliminating conversations where at least
one of the speakers was non-native or the participants
T TA

measure similar to (2.2) has been suggested in [17]. Al-

though we have not seen an exact mention of (2.2) in the litera-
ture, we view this as being variation on a theme and not the main
contribution of this paper.

did not follow closely the topic, we were left with 10127
conversations or 20254 conversation sides. There were
about 15M words in the collection and conversation
sides were unequally divided among the 40 topics. The
median number of sides per topic was 478 with a stan-
dard deviation of 202 (max 1018, min 198). Only words
with 5 or more occurrences were kept, leading to a vo-
cabulary of 23236 words. The Fisher corpus was cre-
ated to facilitate speech recognition research and, to the
best of our knowledge, it has not been used before for
text classification. The Fisher corpus brings interesting
new challenges to the problem of text classification. It
bears the same core characteristics of text classification,
such as a very high dimensional space, but unlike other
corpora such as Reuters-21578 or 20Newsgroups it con-
sists of transcripts of spoken language. The language
is less structured and more spontaneous than written
text, including disfluencies such as repetitions, restarts
and deletions both at the word and above-word level.
An additional difficulty stems from the fact that 14% of
words in spoken language text are pronouns vs. 2% in
written text [18]. Since pronouns substitute for nouns
or noun phrases that are generally considered to con-
vey semantic information, they may have a negative im-
pact on clustering or classification performance. On the
other hand, the vocabulary is about half the size of a
comparable corpus of written text. Also, conversation
classification involves first converting speech into text,
which is a procedure that generates errors (state-of-the-
art systems achieve a word error rate of about 15%-20%
[19]). In this paper we have not dealt with the issue of
errorful transcriptions, i.e. the input to the classifica-
tion algorithms is the human-transcribed conversations.
Classifying conversations by topic can be important in
a number of scenarios, such as summarizing business
meetings or analyzing customer service call-centers.

The second corpus is 20Newsgroups [10], a collec-
tion of 18827 postings to electronic discussion forums or
newsgroups. There are 20 different classes in 20News-
groups and the corpus is almost perfectly balanced, i.e.
equal number of postings per newsgroup. Preprocess-
ing consisted of converting all numbers to a single token
and removing the From: field. Words with 5 or more oc-
currences were kept, resulting in a vocabulary of 34658
words.

The third corpus is a common subset of WebKB
[2]. WebKB is a collection of html pages from different
categories. In this work we selected 4 classes (faculty,
student, project, course) of 4199 pages in total. This is
a subset that has been used before [11]. Standard pre-
processing was followed, such as keeping only the text of
each web page and ignoring hyperlinks and headers and
converting numbers to special tokens. The vocabulary

11

of words with 2 or more occurrences consisted of 26087
words.

All three of the corpora are examples of single-label
collections, i.e. each document is associated with a
single class. A more general setting is a multi-label
corpus where a document is associated with a set of
classes, not necessarily of fixed length. Examples of
multi-label corpora are Reuters-21758 and OHSUMED.
Training multi-label classifiers was not investigated in
this work.

3.2 Learning methods and evaluation measures
Two learning methods were used throughout our exper-
iments: Naive Bayes [13] and Support Vector Machines
(SVM) [6]. The two methods are the most common used
for text classification, with Naive Bayes representing
a standard baseline and SVM being the state-of-the-
art method in text classification. Since our feature
augmentation method is a filter approach, we would
like to investigate how it performs for more than one
classifier. For Naive Bayes we used the Rainbow toolkit
(http://www-2.cs.cmu.edu/mecallum/bow/rainbow/).
For SVM we wused the SVMlLight toolkit
(http://svmlight.joachims.org/). Since SVM are
inherently binary classifiers and SVMLight does not
have implemented multi-class approaches to classi-
fication, we used the one-vs-one approach. In the
one-vs-one approach, given a C-category classification
problem, C'#(C —1)/2 binary classifiers are constructed
for every pair of classes. For each pair {i,j} a function
H; (cf) is estimated, where d is the vector representation
of document d. During testing, if H”(ci) > 0 then
votes(i) = wvotes(i) + 1 else votes(j) = wvotes(j) + 1.
Document d is assigned to the class with the maximum
number of votes i = argmax;votes(i). SVM require
much larger computational resources than Naive Bayes,
although both can be run in parallel on multiple
machines. For Naive Bayes, the feature counts were
used as input, while for SVM the tf-idf measure was
used. Applying tf-idf or other normalization schemes
does not apply in Naive Bayes, since the model assumes
a discrete generation mechanism.

Since we operate in a single-label setting, the class
with the highest likelihood (for Naive Bayes) or number
of votes (for SVM) was selected as output. Classification
accuracy was used as the evaluation measure. Micro-F,
which is a common evaluation measure in text classi-
fication, does not apply in this case since classification
accuracy and micro-F are identical for the single-label
case.

3.3 Results In all our experiments we used 10 ran-
dom 80/20 train/test splits and averaged the classifi-

94

92

90

o]
o

Accuracy

86

*- % Adding 10K bigrams

84

& Not adding bigrams

2

82 | | |
0 0.5 1 1.5
Number of unigrams

Figure 1: Naive Bayes performance with and without
adding bigrams on the Fisher corpus.

cation accuracies over all splits. In Table 1 we see the
performance of both learning methods, Naive Bayes and
SVM, for a varying number of unigrams selected accord-
ing to (2.2) and bigrams selected according to (2.3). We
avoided making a decision on the number of unigrams
and bigrams because we wanted to observe the perfor-
mance of the feature augmentation method for a range
of possible features. In addition, it is not always clear
what criterion we should use to select the optimum num-
ber of features. One choice could be the highest classifi-
cation accuracy on a held-out set. Another choice could
be the ratio of classification accuracy and number of fea-
tures, so that we prefer classifiers with low numbers of
features. From Table 1 we see a clear gain from adding
bigrams for both Naive Bayes and SVM. Table 1 also
reveals a smooth accuracy variation for different num-
ber of bigrams, therefore having an automatic method
for determining the number of bigrams should not be
radically different from the optimum case. In Figures
1, 2 we plot four columns of Table 1 with the associ-
ated standard deviations to show the difference between
unigrams-only and mix of unigrams and bigrams. In
Table 2 we see the performance of using bigrams-only.
We observe that it is the combination of unigrams and
bigrams that achieves the highest accuracy rather than
unigrams-only or bigrams-only representations. In addi-
tion, from Table 1 we can see that by using 1K unigrams
and 1K bigrams we achieve the same performance as 7K
unigrams or 5K bigrams with Naive Bayes. This can be
important when we want the most compact model for
the fastest calculation and the smallest memory or disk
footprint.

12

94

92+

90

> 88
o
©
]
3
< g6}
* % Adding 5K bigrams
84r
& Not adding bigrams
821
80 | | | |)
0 0.5 1 1.5 2 25
Number of unigrams x10*

Figure 2: SVM performance with and without adding
bigrams on the Fisher corpus.

In Table 3 we see the performance of the fea-
ture augmentation method on the 20Newsgroups cor-
pus. This corpus is qualitatively different than Fisher.
Some of the documents are very small (42 with 5 or less
words and 93 with 10 or less words) and the vocabulary
is much bigger than Fisher’s (34658 vs. 23286). Ap-
plying feature selection on unigrams resulted in a slight
increase of classification accuracy for up to 30K features
and then a constant degradation of performance. The
degradation was even worse if IG was used as the fea-
ture selection method. In such a task where feature
selection does not appear to be important, Naive Bayes
did not benefit from augmenting its feature space with
bigrams. Performance did not degrade either, which
shows that the added features are relevant, given the
sensitivity that Naive Bayes has to high-dimensional
spaces. SVM gets a small boost of performance by in-
tegrating bigrams in the feature space. Using bigrams
only did not provide a superior alternative either, as it
is shown in Table 4.

In Table 5 we see the performance of the feature
augmentation method on the WebKB corpus. Here
feature selection appears to be more important than in
20Newsgroups for both Naive Bayes and SVM, even if
the vocabulary is much smaller. Adding bigrams offers
gains for both Naive Bayes and SVM. In Table 6 we
see the performance using bigrams only. Naive Bayes
achieves better results than using unigrams only but
SVM performance is about the same. Overall, the best
text classification accuracy for WebKB is obtained by
augmenting the bag-of-words space with bigrams, from
91.62 to 93.02 with standard deviation being for both

Table 1: 10-fold cross validation mean accuracies using a mix of unigrams and bigrams on the Fisher corpus.
Bigrams are selected according to (2.3). Standard deviations are in 0.2-0.4 range. Horizontal axis is bigrams,
vertical unigrams.

0 05K 1K 3K 5K 10K 20K 90K

23286 NB 86.64 8791 87.97 88.21 88.41 88.67 88.61 84.02
SVM 90.84 91.33 91.28 91.87 91.38 91.22 91.53 90.61
20K NB 88.55 89.25 89.31 89.95 90.25 90.27 90.12 84.62
SVM 91.01 9154 91.25 91.53 92.11 91.86 91.85 90.83
15K NB 89.15 90.00 90.11 90.52 90.70 90.86 90.75 85.07
SVM 91.07 91.19 91.76 91.83 92.18 91.76 91.48 90.39
10K NB 89.31 90.09 90.46 90.53 91.07 91.18 91.38 85.08
SVM 90.87 91.52 9140 91.72 92.02 91.61 9148 90.81
7K NB 89.67 90.38 90.67 9091 91.14 9142 91.30 85.07
SVM 90.61 91.33 91.35 9143 91.94 91.76 91.73 90.73
5K NB 89.49 90.57 90.70 91.10 91.34 9149 9146 85.15
SVM 90.26 90.86 91.24 91.39 91.67 91.72 91.60 90.30
3K NB 88.71 90.34 90.75 90.97 91.26 91.51 9145 84.55
SVM 89.32 90.50 91.11 9149 9144 91.65 91.52 90.21
2K NB 87.28 90.16 90.46 90.97 91.38 91.88 91.64 84.29
SVM 87.63 90.17 90.23 90.93 9140 91.58 91.48 90.00
1K NB 83.16 88.94 89.87 90.62 91.02 91.30 9147 83.58
SVM 80.96 88.90 89.44 90.57 90.95 90.78 90.11 89.88

Table 2: 10-fold cross validation mean accuracies using only bigrams on the Fisher corpus. Bigrams are ranked
according to K Lw;w; 1. Standard deviations are in the range 0.2-0.4

1K 5K 10K 20K 50K 100K 150K 230K
NB 85.69 89.00 89.91 90.63 90.71 89.61 87.35 73.60
SVM 80.01 88.25 89.75 90.42 91.02 90.19 90.11 90.23
0.81. methods. Key to the new representation is that the

In Table 7 a summary of the results is shown. The
highest classification accuracies using each one of the
three feature construction methods are shown. It should
be noted that in practice a scheme to automatically
estimate the number of features should be applied.
Table 7 shows that 5 out of 6 times the augmented
space is better than the bag-of-words space and 5 out
of 6 times better than the bigrams-only space. In no
occasion was the augmented space worse than either of
the representations on all three corpora and learning
methods and for the SVM method (which gave the
best results) the augmented space is always better than
either individual space.

4 Discussion

In this work, we have shown that incorporating selected
bigrams offers improvements over the bag-of-words rep-
resentation, across a variety of corpora and learning

13

added bigrams are compensated for redundancy. A bi-
gram is added according to how much more information
it brings compared to its unigrams. Therefore, bigrams
such as a holiday, the holiday will not be preferred given
that holiday is already in the feature set. This work
may help dismiss the myth that more complex repre-
sentations do not help text classification. The implicit
assumption was that the bag-of-words representation
captures enough of topic information and more complex
representations are hard to model, since they consider-
ably increase the dimensionality of the feature space.
Moreover, previous attempts to use more complex fea-
tures were not successful. As a result of this fallacy, re-
search in text classification has mostly focused on learn-
ing methods and not on vector representations. The
suggested method, although suboptimal since it does
not check for redundancy for all pairs of bigrams and
unigrams, offers some evidence that design of feature

Table 3: 10-fold cross validation mean accuracies using a mix of unigrams and bigrams on the 20Newsgroups
corpus. Bigrams are selected according to (2.3). Standard deviations are in 0.2-0.4 range. Horizontal axis is

bigrams, vertical unigrams.

0 05K 1K 5K 10K 20K 50K

34658 NB 89.16 89.20 89.14 89.31 89.52 89.41 89.52
SVM 90.13 90.84 90.93 90.86 91.02 91.13 91.08

30K NB 89.72 88.98 89.36 89.70 89.70 89.34 89.52
SVM 90.73 90.81 91.14 91.06 91.24 91.27 90.84

25K NB 89.34 89.40 89.47 89.41 89.67 89.42 89.39
SVM 91.04 90.93 91.08 91.05 91.50 91.26 91.21

20K NB 89.02 88.85 89.08 89.38 89.92 89.67 89.50
SVM 90.49 91.02 91.02 91.20 91.51 91.38 90.95

15K NB 88.66 88.25 88.41 89.06 89.54 89.30 89.05
SVM 90.35 90.37 90.73 90.63 91.42 90.87 90.81

10K NB 87.73 8744 88.01 88.45 89.15 88.86 89.11
SVM 89.23 89.96 90.13 9040 90.66 90.55 90.34

5K NB 85.67 85.96 85.98 87.04 87.72 87.58 88.11
SVM 8230 83.05 86.77 89.13 89.79 89.81 89.77

Table 4: 10-fold cross validation mean accuracies using only bigrams on the 20Newsgroups corpus. Bigrams are
ranked according to K Lw;w;1. Standard deviations are in the range 0.2-0.4.

5K 10K 15K 20K 30K 50K 100K 135K
NB 80.14 82.08 83.39 84.23 8542 86.64 87.14 86.14
SVM N/A N/A 7560 81.17 85.03 86.66 87.30 86.75

spaces can be more important than previously consid-
ered.

It would be interesting to connect the suggested cri-
terion with the model selection literature. In our work
we used an ad-hoc way for identifying non-redundant
bigrams. Is there an “optimal” compensation term that
could be added when considering the redundancy of a
bigram, as in the Bayesian Information Criterion (BIC)
or Akaike Information Criterion (AIC)? This formula-
tion may help extend this criterion in a natural way to
higher order n-grams.

References

[1] C. Cieri, D. Miller, and K. Walker. The Fisher corpus:
a resource for the next generations of speech-to-text.
In Proceedings of the jth Language Resources and
Evaluation Conference (LREC), pages 69-71, 2004.
M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. Learning to ex-
tract symbolic knowledge from the World Wide Web.
In Proceedings of the 15th meeting of the American As-
sociation for Artificial Intelligence (AAAI-98), 1998.

2]

14

[3] G.Forman. An extensive empirical study of feature se-
lection metrics for text classification. Machine Learn-
ing Research, 3:1289-1305, 2003.

J. Frunkranz, T. Mitchell, and E. Riloff. A case study
in using linguistic phrases for text categorization on
the WWW. In Working Notes of the AAAI/ICML
Workshop on Learning for Text Categorization, 1998.

I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. Machine Learning Research,
3:1157-1182, 2003.

T. Joachims. Learning to Classify Text Using Support
Vector Machines. PhD thesis, University of Dortmund,
2002.

G.H. John, R. Kohavi, and K. Pfleger. Irrelevant fea-
tures and the subset selection problem. In Proceed-
ings of the 11th International Conference on Machine
Learning (ICML), pages 121-129, 1994.

R. Kohavi and G.H. John. Wrappers for feature subset
selection. Artificial Intelligence, 97(1-2):273-324, 1997.
D. Koller and M. Sahami. Toward optimal feature
selection. In Proceedings of 16th International Con-
ference on Machine Learning (ICML), pages 284-292,
1996.

K. Lang. Newsweeder: Learning to filter netnews. In
Proceedings of the 12th International Conference on
Machine Learning (ICML), pages 331-339, 1995.

(4]

(9]

(10]

Table 5: 10-fold cross validation mean accuracies using a mix of unigrams and bigrams on the WebKB corpus.
Bigrams are selected according to (2.3). Standard deviations are in the 0.6-1.2 range. Horizontal axis is bigrams,
vertical unigrams.

0 05K 1K 2K 5K 10K 20K 50K

26087 NB 85.44 86.02 86.50 87.37 88.01 87.53 8797 87.70
SVM 90.12 91.51 91.33 91.10 90.89 91.03 91.26 90.60
20K NB 85.21 86.90 87.47 87.88 87.52 87.95 88.09 87.44
SVM 90.51 92.00 91.37 90.79 90.75 91.25 90.82 90.58
15K NB 85.61 86.70 86.64 87.47 88.10 87.69 88.53 88.00
SVM 90.45 91.75 91.31 91.42 91.52 91.18 91.17 91.24
10K NB 84.98 86.57 87.70 87.66 88.12 87.90 88.37 87.72
SVM 9091 9156 9149 9161 91.51 92.08 91.74 91.00
5K NB 86.78 89.22 88.65 89.17 88.52 88.59 88.40 88.08
SVM 91.35 91.71 91.26 91.86 91.68 91.85 91.37 91.21
2K NB 87.25 89.16 89.64 89.47 89.67 89.28 88.64 89.21
SVM 91.41 9191 92.08 92.07 9247 9228 92.59 91.77
1K NB 87.01 89.61 90.28 90.06 89.77 89.59 89.35 88.67
SVM 89.79 92.23 9261 9284 93.02 93.00 92.06 91.75
0.5K NB 81.75 88.33 89.36 90.10 89.78 89.26 88.69 88.84
SVM N/A N/A 9095 91.25 91.78 92.17 91.74 91.11

Table 6: 10-fold cross validation mean accuracies using only bigrams on the WebKB corpus. Bigrams are ranked
according to K Lw;w;11. Standard deviations are in the range 0.6-1.2

(11]

(12]

(13]

(14]

(15]

1K 2K 3K 5K 10K 20K 50K 70K 110K
NB 89.22 89.96 90.39 89.95 90.06 90.12 89.51 89.40 88.31
SVM 33.73 6527 90.70 91.51 91.62 9141 91.11 91.38 89.14

C. Lee and G.G. Lee. MMR-based feature selec-
tion for text categorization. In Proceedings of the
Human Language Technologies/North American Chap-
ter of the Association for Computational Linguis-
tics(HLT/NAACL):short papers, pages 5-8, 2004.

D. Lewis. An evaluation of phrasal and clustered
representations on a text categorization task. In
Proceedings of the 15th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, 1992.

A. McCallum and K. Nigam. A comparison of event
models for naive bayes text classification. In Proceed-
ings of AAAI-98 Workshop on Learning for Text Cat-
egorization, 1998.

A. Moschitti and R. Basili. Complex linguistic features
for text classification: A comprehensive study. In Pro-
ceedings of the 26th Furopean Conference on Informa-
tion Retrieval (ECIR), 2004.

F. Peng, D. Schuurmans, and S. Wang. Language
and task independent text categorization with sim-
ple language models. In Proceedings of the Human
Language Technologies/North American Chapter of
the Association for Computational Linguistics confer-

15

[16]

(17]

18]

(19]

[20]

21]

ence(HLT/NAACL), 2003.

B. Raskutti, H. Ferra, and A. Kowalczyk. Second order
features for maximizing text classification performance.
In Proceedings of the 12th European Conference on
Machine Learning (ECML), 2001.

K.M. Schneider. A new feature selection score for
multinomial naive bayes text classification based on
KL-divergence. In Proceedings of the 42nd Meeting of
the Association of Computational Linguistics (ACL),
pages 186-189, 2004.

S. Schwarm, I. Bulyko, and M. Ostendorf. Adaptive
language modeling with varied sources to cover new
vocabulary items. IEEE Trans. on Speech and Audio
Processing, 12:334-342, May 2004.

A. Stolcke. Speech-to-text research at SRI-ICSI-UW.
In Proceedings of the NIST Rich Transcription Work-
shop, 2004.

C.-M. Tan, Y.-F. Wang, and C.-D. Lee. The use of
bigrams to enhance text categorization. Information
Processing and Management, 38:529-546, 2002.

L. Yu and H. Liu. Efficient feature selection via anal-
ysis of relevance and redundancy. Machine Learning
Research, 5:1205-1224, 2004.

Table 7: Summary results from all corpora. The best accuracies for each feature construction method are shown.
Student’s t-test is performed to assess the significance of difference. The last two symbols show if the performance
of the augmented representation is statistically different than the unigrams-only and bigrams-only representation
respectively at the confidence level of 0.95. A (4) symbol means that the augmented representation is better and
a (=) symbol means that the difference is not significant.

Only Only Mix of
l-grams 2-grams 1-grams, 2-grams
Fisher NB 89.67 90.71 91.88 (+) +)
SVM 91.07 91.02 92.18 (+) (+)
20Newsgroups NB 89.72 87.14 89.92 (=) (+)
SVM 91.04 87.30 91.51 () (+)
WebKB NB 87.25 90.39 90.28 (+) (=)
SVM 91.42 91.62 93.02 (+) (+)

16

Comparing and Combining Dimension Reduction Techniques for Efficient Text
Clustering

Bin Tang! Michael Shepherd, Evangelos Milios, Malcolm I. Heywood
{btang, shepherd, eem, mheywood}@cs.dal.ca
Faculty of Computer Science, Dalhousie University, Halifax, Canada, BSH 1W5

Abstract

A great challenge of text mining arises from the increasingly
large text datasets and the high dimensionality associated
with natural language. In this research, a systematic
study is conducted of six Dimension Reduction Techniques
(DRT) in the context of the text clustering problem
using three standard benchmark datasets. The methods
considered include three feature transformation techiques,
Independent Component Analysis (ICA), Latent Semantic
Indexing (LSI), Random Projection (RP), and three feature
selection techniques based on Document Frequency (DF),
mean TfIdf (TI) and Term Frequency Variance (TfV).
Experiments with the k-means clustering algorithm show
that ICA and LSI are clearly superior to RP on all three
datasets. Furthermore, it is shown that 7' and TfV
outperform DF for text clustering. Finally, experiments
where a selection technique is followed by a transformation
technique show that this combination can help substantially
reduce the computational cost associated with the best
transformation methods (ICA and LSI) while preserving
clustering performance.

Keywords: dimension reduction techniques, ICA,

LSI, term frequency variance, mean T{Idf

1 Introduction

Document clustering is the fundamental enabling tool
for efficient document organization, summarization,
navigation and retrieval for very large datasets. The
most critical problem for text clustering is the high di-
mensionality of the natural language text. The focus of
this research is to investigate the relative effectiveness of
various dimension reduction techniques (DRT) for text
clustering.

There are two major types of DRTs, feature trans-
formation and feature selection [17]. In feature trans-
formation, the original high dimensional space is pro-
jected onto a lower dimensional space, in which each
dimension in the lower dimensional space is some linear
or non-linear combination of the original high dimen-
sional space. Widely used examples include, Principal
Components Analysis (PCA), Factor Analysis, Projec-
tion Pursuit, Latent Semantic Indexing (LSI), Indepen-
dent Component Analysis (ICA), and Random Projec-

*corresponding author

17

tion (RP) [8]. Feature selection methods only select a
subset of ”meaningful or useful” dimensions (specific for
the application) from the original set of dimensions. For
text applications, some feature selection methods for
text applications include, Document Frequency (DF),
mean TFIDF (T1), Term Frequency Variance (T fV).

Although many research projects are actively en-
gaged in furthering DRTs as a whole, so far, there is
a lack of experimental work comparing them in a sys-
tematic manner especially for text clustering task. In
our previous work [18], we compared four of the above-
mentioned methods (including ICA, LSI, RP, DF) on
five benchmark datasets. Considering both the effec-
tiveness and robustness of all the methods, in general,
we can rank the four DRT's in the order of ICA > LSI >
DF > RP. ICA demonstrates good performance and su-
perior stability compared to LSI. Both ICA and LSI can
effectively reduce the dimensionality from a few thou-
sands to the range of 100 to 200 or even less. Though
providing superior performance, the computation cost
of ICA is much higher compared to DF. In [18], we
pointed out the need to find proper feature selection
methods to pre-screen dimensions before the ICA com-
putation to reduce the computational cost of ICA with-
out sacrificing performance.

In this work, we investigate the relative effectiveness
and robustness of six dimension reduction techniques
when used for text clustering using three benchmark
datasets. The DRTs are Document Frequency (DF),
mean TFIDF (TI), Term Frequency Variance (T'fV),
Latent Semantic Indexing (LSI), Random Projection
(RP) and Independent Component Analysis (ICA). We
also demonstrate the effectiveness of combining T'1 or
T fV with ICA as a computationally cheaper alternative
to the default ICA with full dimensions.

This paper is organized as follows. Section 2 pro-
vides more details for the DRTs used in this research.
Section 3 describes our experimental procedure, evalua-
tion methods and dataset issues. Section 4 presents our
experimental results and appropriate discussion notes.
Finally, conclusions are drawn and future research di-

rections identified in Section 5.

2 Dimension Reduction Techniques for Text
Clustering

In the discussion, we will use the following nota-
tion. A document collection is represented by its term-
document matrix Xof dimension m by n, where m is
the number of terms and n the number of documents.

2.1 Feature Selection Methods Feature Selection
methods sort terms on the basis of a numerical mea-
sure computed from the document collection to be clus-
tered, and select a subset of the terms by threshold-
ing that measure. In this section, we will describe the
mathematic details of three feature selection methods,
including Document Frequency (DF') in Section 2.1.1,
Mean TFIDF (7T'I) in Section 2.1.2 and Term Frequency
Variance (T'fV) in Section 2.1.3.

2.1.1 Document Frequency (DF) Document Fre-
quency (DF') may itself be used as the basis for feature
selection. That is, only those dimensions with high DF'
values appear in the feature vector. DF can be formally
defined as follows. For a document collection X of m
terms by n documents, the DF value of term ¢, DFy, is
defined as the number of documents in which ¢ occurs
at least once among the n documents. To reduce the
dimensionality of X from m to k (k < m), we choose to
use the k& dimensions (terms) with the top k& DF values.
It is obvious that the DF takes O(mn) to evaluate. In
spite of its simplicity, it has been demonstrated to be
as effective as more advanced techniques in text catego-
rization [19].

2.1.2 Mean TFIDF (7]) In information retrieval
(IR), we value a term with high term frequency but low
document frequency as a good indexing term. In IR,
we generate a vector representation for each document
d;, where the weight for each term ¢ in document d; is
its tfidf value, defined as:

, ||
tfidf; = tf;log DF,
where
o, = [1Hlogty ift; >0
7 0 otherwise

and T, is the total number of documents in collection
X, DF; is the document frequency of term ¢, t; is the
frequency of term ¢ in document d;. In this work, we
propose to use the mean value of tfidf over all the
documents (hereafter referred to as T'I) for each term
as a measure of the quality of the term. The higher the
T value, the better the term to be ranked.

18

2.1.3 Term Frequency Variance (T fV) The T fV
method for ranking term quality was demonstrated to
successfully reduce the dimension to only 15% of the
original dimension [6, 13]. The basic idea is to rank
the quality of a term based on the variance of its term
frequency. This is similar in spirit to the intuition of T'T
method. The term frequency of term ¢ in document d;,
tfj, is defined the same way as in Section 2.1.2. The
quality of term ¢ is calculated by

2

- |

J J

where n is the total number of documents.

2.2 Feature Transformation Methods Feature
transformation methods perform a transformation of
the vector space representation of the document collec-
tion into a lower dimensional subspace, where the new
dimensions can be viewed as linear combinations of the
original dimensions. In this section, we will introduce
some mathematic details of the three feature transfor-
mation methods, i.e., Latent Semantic Indexing (LST)
in Section 2.2.1, Random Projection (RP) in Section
2.2.2 and Independent Component Analysis (ICA) in
Section 2.2.3.

2.2.1 Latent Semantic Indexing (LSI) LSI, as
one of the standard dimension reduction techniques in
information retrieval, has enjoyed long-lasting attention
[2,5, 7,10, 15, 16]. By detecting the high-order semantic
structure (term-document relationship), it aims to ad-
dress the ambiguity problem of natural language, i.e.,
the use of synonymous, and polysemous words, there-
fore, a potentially excellent tool for automatic indexing
and retrieval.

LST uses Singular Value Decomposition (SV D) to
embed the original high dimensional space into a lower
dimensional space with minimal distance distortion,
in which the dimensions in this space are orthogonal
(statistically uncorrelated). During the SV D process,
the newly generated dimensions are ordered by their
”importance”. Using the full rank SV D, the term-
document matrix X is decomposed as X = USV7T,
where S is the diagonal matrix containing singular val-
ues of X. U and V are orthogonal matrices contain-
ing left and right singular values of X, often referred
to as term projection matrix and document projection
matrix respectively. Using truncated SV D, the best
rank-k approximation (in least-squares sense) of X is
X = UkSkaT, in which X is projected from m dimen-
sional space to k dimensional space (m > k). In the
new k-dimension, each original document d can be re-

represented as d = UySypd?. The truncated SV D not
only captures the most important associations between
terms and documents, but also effectively removes noise
and redundancy and word ambiguity within the dataset
[5]. One major drawback of LST is its high computa-
tional cost. For a data matrix, X, of dimension m x n,
the time complexity to compute LSI using the most
commonly used svd packages is in the order of O(m?n)
[15]. For a sparse matrix, the computation can be re-
duced to the order of O(e¢mn), where ¢ is the average
number of terms in each document [16].

2.2.2 Random Projection (RP) As a computa-
tionally cheaper alternative to LST for dimension reduc-
tion with bounded distance distortion error, the method
of Random Projection (RP) has recently received atten-
tion from the machine learning and information retrieval
communities [1, 4, 9, 12, 15]. Uunlike LSI, the new di-
mensions in RP are generated randomly (random linear
combinations of original terms) with no ordering of ”im-
portance”. The new dimensions are only approximately
orthogonal. However, researchers don’t seem to agree on
the effectiveness and computational efficiency of RP as
a good alternative for LSI-like techniques [4, 9, 12, 15].
So far, the effectiveness of RP is still not clear, espe-
cially in the context of text clustering.

Similar to LSI, RP projects the columns of term-
document matrix X from the original high dimensional
space (with m dimensions) onto a lower k-dimensional
space using a randomly generated projection matrix Ry,
of shape k x m, where the columns of R are unit length
vectors following a Gaussian distribution. Under the
new k dimension space, X is approximated as X =
R X.

2.2.3 Independent component analysis (ICA)
A recent method of feature transformation called Inde-
pendent Component Analysis (ICA) has gained wide-
spread attention in signal processing [11]. It is a general-
purpose statistical technique, which tries to linearly
transform the original data into components that are
maximally independent from each other in a statisti-
cal sense. Unlike LSI, the independent components
are not necessarily orthogonal to each other, but are
statistically independent. This is a stronger condition
than statistical uncorrelateness, as used in PC'A or LST
[11]. In most of applications of IC' A, PC'A is used as
a preprocessing step, in which the newly generated di-
mensions are ordered by their importance. Based on the
PC A transformed data matrix, IC A further transforms
the data into independent components. Therefore, us-
ing PCA as a preprocessing step, IC'A can be used as
a dimension reduction technique. Until very recently,

19

there were only a few experimental works in which 1C'A
is applied to text data [3, 14].

IC A assumes each observed data item (a document)
z to have been generated by a mixing process of
statistically independent components (latent variables
s;). Formally, for the term-document matrix X, xn,
the noise-free mixing model can be written as X,,xn =
Ak Skxn, where A is referred to as the mixing matrix
and Sgxp, is the matrix of independent components. The
inverse of A, A™!, is referred as the unmixing matrix,
W. The independent components can be expressed as
Skxn = WisxmXmxn. Here, W is functionally similar to
the projection matrix R in RP that project X from the
m dimensional space to a lower k dimensional space.

In this research, we used the most commonly used
FastICA implementation [11]. FastICA is known
to be robust and efficient in detecting the underlying
independent components in the data for a wide range of
underlying distributions [8]. The mathematical details
of FastIC A can be found in [11].

In practical applications of FastIC A, there are two
pre-processing steps. The first is centering, i.e., making
x into zero-mean variables. The second is whitening,
which means that we linearly transform the observed
vector x into x™°", such that its components are un-
correlated and their variance equals unity. Whitening
is done through PCA. In practice, the most time con-
suming part of FlastIC A is the whitening, which can be
computed by the svds MATLABT™ function.

3 Evaluation

In this section, we present the evaluation methods
and experimental setups in Section 3.1, followed by
the description of the datasets used in Section 3.2,
and ended with the description of the preprocessing
procedure in Section 3.3.

3.1 Evaluation Methods and Experimental
Setup The judgment of the relative effectiveness of the
DRTs for text clustering is based on the final cluster-
ing results after different DRTs are applied. The final
ranking of DRTs depends on both the absolute cluster-
ing results and the robustness of the DRT. Here, good
robustness implies that when using a certain DRT, rea-
sonably good clustering results remain relatively stable
across a relatively wide range of reduced dimensions.
The quality of text clustering is measured by micro-
average of classification accuracy (hereafter referred to
as C'A) over all the clusters, a similar measure to Purity
as introduced in [20]. To avoid the bias from the training
set, CA is only computed based on the test data in
the following fashion. The clustering process is only
based on the training set. After clustering, each cluster

1 is assigned a class label T; based on the majority
vote from its members’ classes using only training data.
Then, assign each point in test set to its closest cluster.
The CA; for cluster ¢ is defined as the proportion of
points assigned as members of cluster ¢ in the test set
whose class labels agree with T;. The total C' A is micro-
averaged over all the clusters. The comparison between
two methods is usually based on student t-test.

Since k-means or its variants are the most com-
monly used clustering algorithms used in text cluster-
ing, we choose to use k-means with our modification to
do text clustering. A well-known problem for k-means
is that poor choices of initialization often lead to poor
convergence to sub optimal solutions. To ameliorate the
negative impact of poor initialization, we devised a sim-
ple procedure, Init K Means, to pre-select ”good” seeds
for k-means clustering. It has been proved very effec-
tive in our previous work [18]. Our experiments for all
the DRTs follow the same general procedure. A sketch
of our procedure is as follows, details of our experimen-
tal procedure including Init K Means can be found else-
where [18].

1. Each dataset is split randomly into training and
testing set of ratio 3:1 proportionally to their
category distribution.
2. For each DRT, run a series of reduced dimensions
For each desired dimension k,
Apply DRT only to the training data,
producing proper projection matrix PR
(in feature transformation), or, subset of
selected dimensions SD (feature selection);
Apply PR/SD to both training and test set;
Clustering on the reduced training set;
Assign T; to each cluster in reduced
training set;
Compute C'A using reduced test set;

End For

3.2 Dataset Characteristics In our experiments,
we used a variety of datasets of different genres,
which include WWW-pages (WebKB!), newswire sto-
ries (Reuters-215782), and technical reports (CSTR?).
These datasets are widely used in information retrieval
and text mining research. The number of classes ranges
from 4 to 50 and the number of documents ranges be-
tween 4 and 3807 per class. Table 1 summarizes the
characteristics of the datasets.

Thttp://www2.cs.cum.edu/afs/cs/project/theo-

11/www/wwkb
2http://www.cs.cmu.edu/TextLearning/datasets.html
Shttp://www.cs.rochester.edu/trs

20

Reuters-2, a subset of Reuters-21578 dataset, is a
collection of documents each document with a single
topic label. The version of Reuters-2 that we used elim-
inates categories with less than 4 documents, leaving
only 50 categories. WebKB4 is a subset of WebKB
dataset, which is limited to the four most common cate-
gories: student, faculty, course, and project. The CSTR
dataset contains 505 abstracts of technical reports, di-
vided into four research areas: AI, Robotics and Vision,
Systems, and Theory.

3.3 Preprocessing The pre-processing of the
datasets follows the standard procedures, including
removal of the tags and non-textual data, stop word
removal?, and stemming®. Then we further remove
the words with low document frequency. For example,
for the Reuters-2 dataset we only selected words that
occurred in at least 4 documents. The word-weighting
scheme we used is the ltc variant of the tfidf function,
defined in Section 2.1.2.

4 Experimental Results

For each given dataset, we applied six DRTs for a
complete comparative study. First, we concentrate on
comparing the feature selection methods. The results
are described in detail in Section 4.1. The comparison
results of feature transformation methods are mainly
extracted from our previous work [18], which will be
summarized in Section 4.2. Based on the results from
both DRT method groups, we choose to use T and
TfV as thresholding methods to pre-select subset of
dimensions to be further processed by ICA. We
focus on comparing the results of ICA with TI/TfV
thresholding at different threshold levels against the
default version of IC'A without TI/T fV thresholding.
Here, the threshold levels are defined as the top 2% of
selected dimensions using 71 or T fV. In this set of
experiments, we use T'1 (or T'fV) to pre-select the top
2% of dimensions and pass on the dataset with reduced
dimensions to the IC'A computation. The results are
described in detail in Section 4.2. For completeness,
we compile all the comparison results in one figure 1-3
for each dataset. In each figure, there are four sub-
figures, describing the results of feature transformation
methods, results of feature selection methods, results
of IC'A with T'I thresholding, and results of IC'A with
T fV thresholding respectively.

The comparison of any two methods is based on
Student paired t-test comparing the performance of the

Thttp://www.dcs.gla.ac.uk/idom/ir_resources/
linguistic_utils/stop_words

Shttp://www.tartarus.org/~martin/PorterStemmer/

Datasets Dataset size #classes | Class Size Type
[terms| x |docs]| range
Reuters 2 7315 x 8771 50 [4, 3807] News
WebKB4 | 9870 x 4199 4 (504, 1641] | University Web pages
CSTR 2335 x 505 4 [76, 191] Technical Reports

Table 1: Summary of the datasets

two methods over a dimension range. The dimension
range, denoted as [k1, k2], is usually hand-picked, such
that, within such a range, the two methods cannot be
clearly differentiated visually, and beyond this range,
the performance of the two comparing methods are too
poor to be of interest.

4.1 Comparing Feature Selection Methods We
performed mutual comparison among DF, TI and
TfV for all the three datasets using paired Student
t-test. The p values are reported in In Table 2.
For the paired Student ¢-test, the null hypothesis,
Hy, assumes px_y 0. Here X represents the
methods listed in rows in Table 2, while Y represent
methods listed in columns in Table 2. The alternative
hypothesis, H,, assumes pux_y > 0. For Reuters-2,
the comparisons are performed over the the dimension
range of [70,1095]. Based on the p values of the paired
t-test, the null hypothesis, ppr_7; = 0 is weakly
rejected, and ppr_rpy = 0 is strongly rejected and
pri—ryv = 0 holds. Therefore, for Reuters-2, we can
say that DF systematically performs worse than 71 and
T fV, and there is no statistical difference between T'T
and T fV. For WebKB4, the comparisons are performed
over the dimension range of [80,1980]. The resulting
p values indicate that there is no significant different
among DF, TI and T fV, even though TI and TfV
provide better C'A results than DF. For CSTR, the
comparisons are performed over the range of dimensions
[115,989]. The resulting p values indicate that there
is no significant difference between DF and T fV and
between 11 and T fV, while DF is worse than T'I with
slight significance.

Considering all the comparison results, 71 and T fV
are better feature selection methods than DF for text
applications. Therefore, we choose to use T and
TfV as pre-screening methods for ICA in subsequent
experiments.

4.2 Results of Feature Transformation Meth-
ods and Thresholded ICA In the following, we will
describe the results by the order of dataset. For each
dataset, we will remark on the comparison results for
feature transformation methods based on our previous
work [18] for completeness. We will focus on the com-

21

parisons between the performance of default IC'A and
ICA preceded by TI/T fV thresholding. The compari-
son results are reported based on the p values in separate
Tables 3,4,5.

Reuters-2 Results Based on the results of our
previous work [18], comparing ICA, LSI and RP,
we observed that both ICA and LSI achieve superior
results with low dimensionalities ([30,93]) comparing to
RP. Within the dimension range of [30,93], IC A not
only shows a superior performance over LST in terms
of classification accuracy but also demonstrates better
stability than LST.

The results of comparing the plain ICA (with no
pre-selection of dimensions) with that of IC' A with pre-
selection of dimensions by TI/TfV are reported in Ta-
ble 3. The null hypothesis, Hy, assumes pux_y = 0.
Here, X refers to plain IC A, while Y represents IC' A
with different TI/T fV thresholding levels. The alter-
native hypothesis, H,, assumes pux_y > 0. Another
alternative hypothesis, Hp, assumes py_y < 0. ¢ The
comparisons are performed over that dimension range of
[10,153]. In Table 3, the p values clearly indicate that
the plain IC'A performs significantly better than IC' A
with T'I-thresholding levels of 5-15%. But there are no
significant differences between the plain ICA and IC A
with T'I-thresholding levels of 20-25% . Similarly, the
plain IC A performs significantly better than IC'A with
T fV-thresholding levels of 5-20%. Interestingly, p value
indicates that the IC'A with T fV-thresholding level of
25% performs significantly better than the basic IC A.

WebKB4 Results Based on our previous work,
we observe that the best performance of IC' A is slightly
worse than that of LSI [18]. But IC'A shows much stable
performance over longer range of dimensions than LST.
Both LSI and IC A are better than RP.

In Table 4, we reported the results of combining
ICA with TI/TfV thresholding. The comparisons
between the plain IC'A and those IC' As with TI/T fV
thresholding are performed over the range of [7,90].
The p values indicate clearly that the plain ICA is
significantly better than ICAs with T I-thresholding
levels of 5% and 20%. But there is no significant

6We used the same hypothesis tests for Table 4, 5,therefore,
not stated explicitly later.

Reuters-2 WebKB4 CSTR
DF TI TV DF TI TV DF TI TV
DF NJ/A 007 00l | DF NJ/A 016 016 | DF NJ/A 004 013
TI 093 NJ/A 032 | TI 084 N/A N/A| TI 096 N/A 031
TfV 099 068 N/A|TfV 08 N/A N/A|TfV 087 069 N/A

Table 2: P Values of Student Paired t-test for Comparing Feature Selection Methods

a. Feature Transformation Methods

b. Feature Selection Methods

09 09
0.8 0.85
0.8
07 b
0.75¢1
06 ‘.;
07
—— ICA iy —— DF
05 — Lsl 0.65 1 — T
— RP — TV
04
0 200 400 600 800 0 200 400 600 800 1000 1200
¢. IGA with Tl-thresholds d. ICA with TIV-thresholds
0.88 0.88

0.86
0.84 f‘"‘
0.82

0.8

0.78

0.86

0.8

0.78

0.76 -
0 50

Figure 1: Comparison results of Reuters-2. In all the sub-figures, the x-axis denotes the dimensionality, and the
y-axis represents classification accuracy (CA). (a) results of feature transformation method. '+’ denotes ICA, .
denotes LSI, -’ denotes RP. (b) results of feature selection methods. '+’ denotes DF',’.” denotes T'I, -’ denotes
TfV. (c) results of ICA with different level of T'I thresholding.
15%, * 20%,¢” 25%, and with *." for plain TC'A with full dimensions. (d) results of IC A with different levels
of TfV thresholding, 0’ denotes thresholding level 5%, 'x’ 10%, > 15%, '*’ 20%, ¢’ 25%, and with ’. for basic

ICA

100 150 200 250

0.84 4

0.82

0.76
0

50 100 150 200 250

ICA with T thresholding ICA with T fV thresholding
5% 10% 15% 20% 25% | 5% 10% 15% 20% 25%
H, | p-value | 0.00 0.00 0.00 0.44 0.63 | 0.00 0.00 0.00 0.01 0.96
Hy | p-value | 1.00 1.00 1.00 0.56 0.37 | 1.00 1.00 1.00 0.99 0.04

Table 3: P-values of the results of IC A combined with TI/TfV thresholding (Reuters-2)

22

'0” denote thresholding level 5%, 'x’ 10%, -’

difference between the plain ICA and ICAs with T'I-
thresholding level of 10%, 15% and 25%. For TfV
thresholding, the plain ICA is better than IC' A with
TfV thresholding level of 5 % with significance and
better than 10% with slight significance. But there is no
significant difference between the plain IC' A and IC As
with T fV-thresholding level of 15-25%.

CSTR Results From our previous work, we ob-
served no significant difference between ICA and LST
for the dimension range of [5,33]. ICA and LSI are
better than RP [18].

The results of combining ICA with TI/TfV
thresholding are reported in Table 5. We compared
the performance of the plain IC'A with those of IC As
with TT/TfV thresholdings over the dimension range
of [5,43]. Based on the p values, we conclude that the
plain ICA is significantly better than IC'As with T'1
thresholding levels of 5-15% , and there is no significant
difference between the plain IC'A and ICAs with T'1
thresholding levels of 20-25%. For TfV thresholding,
the plain ICA is better than ICAs with T fV thresh-
olding levels of 5-15%, and there is no significant dif-
ference between the plain ICA and ICAs with TfV
thresholding levels of 20-25% .

5 Conclusion and Future Work

In this research, we compared the performance of six
DRT methods when applied to text clustering prob-
lem using three benchmark datasets of distinct genres.
Based on all the results, we have observed the following.
For feature transformation methods, we can rank IC' A
> LSI > RP considering classification accuracy and
stability. Both IC'A and LSI reach their best perfor-
mance with very low dimensionality, often less than 100
and occasionally lower than 10. IC A and LST maintain
their best performances over a wide range dimensions.
IC' A appears more stable than LSI. For feature se-
lection methods, DF' is inferior comparing to 71 and
T fV. The best results of TI and T fV can match those
of ICA and LSI but at much higher dimensions. The
results of combining /C A with T'I or T' fV thresholding
are most interesting. For most of the cases, it is safe
to say that ICA with TI or TfV thresholding level
20% performs at least the same as the basic IC' A if not
better occasionally. This is interesting, since the bottle-
neck of computing IC'A is its preprocessing PC' A step
(takes O(m?n) to compute, where m is the dimensional-
ity, and n is the number of points). With pre-screening
the dimensions by 77 or T fV methods, theoretically,
we reduce the computational cost of PCA to 1/25 of
the original cost without sacrificing performance.

From our previous and current research, we iden-
tify the ”ideal” dimension reduction technique for text

23

clustering to be IC'A. Though we have achieved moder-
ate success in reducing the computational cost of IC'A,
we believe that further research should be focused on
this issue. Different sampling techniques should be able
to provide even more fruitful success in reducing the
computational cost of IC'A without sacrificing its per-
formance.

References

[1] D. Achlioptas. Database-friendly random projections.
In Proceedings of PODS, pages 274-281, 2001.

[2] M.W. Berry, S.T. Dumais, and G.W. O’Brien. Us-
ing linear algebra for intelligent information retrieval.
SIAM Review, 37(4):573-595, 1995.

[3] E. Bingham, A. Kabdn, and M. Girolami. Topic
identification in dynamical text by complexity pursuit.
Neural Processing Letters, 17(1):69-83, 2003.

[4] E. Bingham and H. Mannila. Random projection in
dimensionality reduction: applications to image and
text data. In Proc. SIGKDD, pages 245-250, 2001.

[5] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Lan-
dauer, and R. Harshman. Indexing by latent semantic
analysis. Journal of the American Society for Informa-
tion Science, 41(6):391-407, 1990.

[6] 1. S. Dhillon, J. Kogan, , and M. Nicholas. Feature se-
lection and document clustering. In M.W. Berry, edi-
tor, A Comprehensive Survey of Text mining. Springer-
Verlag, 2003.

[7] C. H. Ding. A probabilistic model for dimension-
ality reduction in information retrieval and filtering.
In Proc. of 1st SIAM Computational Information Re-
trieval Workshop, 2000.

[8] I.K. Fodor. A survey of dimension reduction tech-
niques. Technical report UCRL-ID-148494, LLNL,
2002.

[9] D.Fradkin and D. Madigan. Experiments with random

projection for machine learning. In Proc. SIGKDD,

pages 517-522, 2003.

T. Hofmann. Probabilistic latent semantic indexing.

In Proc. SIGIR, pages 50-57, 1999.

A. Hyvarinen and E. Oja. Independent compo-

nent analysis: Algorithms and applications. Neural

Networks, 13(4-5):411-430, 2000. FastICA package:

http://www.cis.hut.fi/~xaapo/.

S. Kaski. Dimensionality reduction by random map-

ping. In Proc. Int. Joint Conf. on Neural Networks,

volume 1, pages 413-418, 1998.

J. Kogan, C. Nicholas, and V. Volkovich. Text mining

with information-theoretical clustering. Computing in

Science and Engineering, accepted May 2003.

T. Kolenda, L. K. Hansen, and S. Sigurdsson. Indepen-

dent components in text. In Advances in Independent

Component Analysis, pages 229-250. Springer-Verlag,

2000.

[15] J. Lin and D. Gunopulos. Dimensionality reduction by

(10]

(11]

[12]

(13]

[14]

a. Feature Transformation Methods

0.8

0.6

0.4

—— ICA
—— LS|
— RP

02
0

100 200 300 400 500

c. IGA with Tl-thresholds

Figure 2: Comparison results of WebKB4. In all the sub-figures, the x-axis denotes the dimensionality, and the
y-axis represents classification accuracy (CA). (a) results of feature transformation method. '+’ denotes ICA, *.’
denotes LSI, -’ denotes RP. (b) results of feature selection methods. '+’ denotes DF', ’.” denotes T'I, -’ denotes
TfV. (c) results of ICA with different level of T thresholding.
15%, * 20%,’¢” 25%, and with ’.” for plain IC' A with full dimensions. (d) results of IC' A with different levels
of TfV thresholding, o’ denotes thresholding level 5%, x* 10%, -’ 15%, "’ 20%, ¢’ 25%, and with ’.” for basic

ICA

b. Feature Selection Methods

08
. @/‘ﬁ@
06
i —— DF
S T
— TV
0.4 ; ‘ ‘ ‘
0 500 1000 1500 2000
d. ICA with TfV-thresholds
0.8
0.751 /&
071
0.65
06 ‘
0 20 40 60 S0 100 120

ICA with T'I thresholding ICA with T fV thresholding

5% 10% 15% 20%

25% | 5% 10% 15% 20% 25%

H, | p-value

0.00 0.10 0.24 0.00 0.56 | 0.00 0.06 0.22 0.47 0.80

Hy | p-value

0.99 090 0.76 1.00 0.44 | 1.00 094 0.78 0.53 0.2

Table 4: P-values of the results of ICA combined with TI/TfV thresholding (WebKB4)

ICA with TI thresholding ICA with T fV thresholding

5% 10% 15% 20%

25% | 5% 10% 15% 20% 25%

H, | p-value

0.00 0.03 0.00 0.08

0.80 | 0.00 0.01 0.05 0.06 0.93

Hy | p-value

1.00 097 1.00 0.92

0.20 | 1.00 1.00 0.95 0.94 0.07

Table 5: P-values of the results of IC'A combined with T1/T fV thresholding (CSTR)

24

'0’ denote thresholding level 5%, x’ 10%, -’

a. Feature Transformation Methods

—— ICA
—— L8l
08 —__ RP

06

0.4

02 : :
0 100 200

c. ICA with Tl-thresholds

0.9

0.85

0.8

0.75

0.7

0.65

300

Figure 3: Comparison results of CSTR dataset. In all the sub-figures, the x-axis denotes the dimensionality, and
the y-axis represents classification accuracy (CA). (a) results of feature transformation method. '+’ denotes IC' A,
" denotes LSI, ’-’ denotes RP. (b) results of feature selection methods. '+’ denotes DF, ’. denotes T1I, -’
denotes TfV. (c) results of ICA with different level of TT thresholding.
10%, ’-’ 15%, *’ 20%,’¢’ 25%, and with *. for plain 7C'A with full dimensions. (d) results of IC'A with different
levels of T'fV thresholding, ’o’ denotes thresholding level 5%, x’ 10%, -’ 15%, '*’ 20%, ¢’ 25%, and with . for

basic IC A

25

0.4

b. Feature Selection Methods

—— DF
— T
— TV
02 : : : ‘ :
0 200 400 600 800 1000

0.85

08

0.75

07

0.65

06

d. ICA with TfV-thresholds

’0’ denote thresholding level 5%, ’x’

(16]

(17]

(18]

(19]

[20]

random projection and latent semantic indexing. In
Proc. SDM’03 Conf., Text Mining Workshop, 2003.
C.H. Papadimitriou, P. Raghavan, H. Tamaki, and
S. Vempala. Latent semantic indexing: A probabilistic
analysis. In Proc. ACM SIGPODS, pages 159-168,
1998.

L. Parsons, E. Hague, and H. Liu. Subspace clustering
for high dimensional data: a review. ACM SIGKDD
Ezplorations Newsletter, Special issue on learning from
imbalanced datasets, 6(1):90-105, 2004.

B. Tang, X. Luo, M.. Heywood, and M. Shep-
herd. A comparative study of dimension re-
duction techniques for document clustering.
Technical Report CS-2004-14, Faculty of Com-
puter Science, Dalhousie University, 2004.
http://www.cs.dal.ca/research/techreports/2004/CS-
2004-14.shtml.

Y. Yang and J.O. Pedersen. A comparative study on
feature selection in text categorization. In Proc. ICML,
pages 412-420, 1997.

Y Zhao and G. Karypis. Criterion functions
for document clustering: Experiments and analy-
sis. Technical Report 01-40, Department of
Computer Science, University of Minnesota, 2001.
http://cs.umn.edu/karypis/publications.

26

Near-Optimal Feature Selection

Jaekyung Yang
IT Services Research Division
Electronics and Telecommunications Research Institute
Daejon, 305-350 Korea

Sigurdur Olafsson
Department of Industrial and Manufacturing Systems Engineering
Iowa State University
Ames, IA 50011

Abstract

We analyze a new optimization-based approach for
feature selection that uses the nested partitions
method for combinatorial optimization as a heuristic
search procedure to identify near-optimal feature
subsets. In particular, we show how to improve the
performance of the nested partitions method using
random sampling of instances. The new approach
uses a two-stage sampling scheme that determines the
required sample size to guarantee convergence to a
near-optimal solution. This approach therefore has
attractive theoretical characteristics. In particular,
when the algorithm terminates in finite time, rigorous
statements can be made concerning the quality of the
final feature subset. Numerical results are reported to
illustrate the key results, and show that the new
approach is considerably faster than the original
nested partitions method.

Key words: Feature selection, combinatorial

optimization, metaheuristics
1 INTRODUCTION

Feature selection can be used to improve the
simplicity of a data mining system, while maintaining
acceptable accuracy for the learning algorithm to be
used. It is also known that feature selection can
improve the scalability of a data mining system as the
learning process is usually faster with fewer features.
In this paper, we are interested in improving the
scalability of the feature selection process itself with
respect to large number of instances. Our approach is
based on an optimization-based feature selection
method that uses the nested partitions (NP)
metaheuristic [8], which has been shown to perform
well when compared with other feature selection
methods [5]. The NP method uses random search to
explore the entire space of possible feature subsets,
and is thus similar to methods such as genetic
algorithms [12] and evolutionary search [7].

27

However, the search strategies themselves are quite
different.

We show that using random sampling of instances
can considerably reduce the computational time of
the NP based feature selection algorithm. Since the
random sampling may add noise to the evaluation of
each feature subset, we propose using a two-stage
variant of the algorithm that can be used to control
this noise and is guaranteed to converge to a near-
optimal feature subset in finite time. Using sampling
of instances to improve scalability has been
investigated intensely in the literature, and perhaps
the most important, but yet difficult issue, is
determining the appropriate sample size to maintain
an acceptable accuracy. Some of the related research
includes determining the sufficient sample sizes for
finding association rules [9], progressive sampling
methods [6], finding best sample sizes using a tuple
relational calculus [3], and investigating the effect of
class distribution on scalable learning [10].

2 NP-BASED FEATURE SELECTION

The feature selection problem involves identifying a

subset A of the set A" of all n features that
performs well given the training set 7 of m instances.
The performance is measured according to some
measure f, and the objective is to find the optimal

subset A* < A where

£ =f(a")= min r(a).
A;A(AII)
The NP method uses partitioning to divide the space
of all possible feature subsets into regions that can be
analyzed individually and then aggregates the results
from each region to determine how to continue the
search, that is, how to concentrate the computational
effort. In other words, the NP method adaptively
takes random samples of feature subsets from the
entire space of possible feature subsets and

concentrates the sampling effort by systematic
partitioning of this space. A key component in
formulating the feature selection problem is selecting
a performance measure. Depending on how this is
done, feature selection methods may be divided into
two categories: wrappers and filters. Wrappers use
the accuracy of the resulting classification. Thus, to
evaluate a subset of features, a predictive model is
induced based on these features. Filters, on the other
hand, select features before any other learning
algorithm is applied. A different performance
measure must therefore be specified. When choosing
a wrapper or filter, the general consideration is that
wrappers will give better performance when used
with a supervised learning method, whereas filters
are usually much faster. The NP optimization method
can be implemented as either a wrapper or filter for
feature selection [5]. Here, we focus on a filter
employing the following correlation based measure

[2]:

_ kp., M
Jk+k(k=Dp,,

where k is the number of features in the set A, p_ is

f correlation (A)

the average correlation between the features in this
set and the classification feature, and p is the

average correlation between features in the set A.

The NP method searches through the space of feature
subsets by evaluating the entire subsets. On the other
hand, it also incorporates methods that evaluate
individual features into the partitioning to impose a
structure that speeds the search. When it is done in
such a way that good solution as clustered together in
the same subsets, then those subsets are selected by
the algorithm with relatively little effort. We now
discuss an intelligent partitioning strategy when
solving feature selection problems [5]. Given a

current set A(k) of potential feature subsets, partition
the set into two disjoint subsets

A (k)={Aec Ak):ae A},)
A,(k)={Ae Ak):ag A}. 3)

The surrounding region is simply As(k) = A\A(k).
Each of these three regions is then sampled and based
on these samples the next most promising region is
selected. The selected region is partitioned into
smaller subregions in the next iteration. If the
surrounding region contains the best solution this is
taken as an indication that the last move might not
have been the best move, so the algorithm backtracks
to what was the most promising region in the
previous iteration. In theory, the features can be
selected in an arbitrary order, but an intelligent

28

partitioning where features are ordered according to
their information gain performs significantly better,
and this partitioning is used in all of the numerical
experiments below.

This partitioning creates a tree of subsets that we
refer to as the partitioning tree. The distance of the
current promising region from the top of the tree,
which corresponds to the minimum number of
iterations it takes to get to this region, we refer to as
the depth of the region. Once a maximum depth
region is reached, that is a region that will not be
partitioned further, the algorithm terminates. In the
context of feature selection problem, this maximum
depth will be equal to the number of features that are
considered for either inclusion or exclusion from the
selected set.

The key to the convergence of the NP method is the
probability by which a region is selected correctly in
each iteration. A sufficient condition for asymptotic
convergence 1is that this probability of correct
selection is bigger than one half, and to guarantee
that a minimum probability is obtained, Olafsson [4]
proposed using a two-stage sampling procedure that
determines how much random sampling effort

N(w,9) is needed from each region to guarantee
correct selection with probability ¥ within an

indifference zone & > 0. If this sampling effort is
used, the probability of having found sufficiently
good solution the first time maximum depth is
reached, that is, when the search space has been
reduced to a single feature subset, is bounded as
follows:

Prll f(A () - £ 1< 82w, €
where
y" (5)
A=)y

Here ¥/ is the user selected minimum probability by

which a correct selection is made in each iteration,
and 7 is as before the total number of features.

We call the NP method applied to feature selection
using the filter evaluation the NP-Filter, and if it also
uses the two-stage sampling approach the Two-Stage
NP-Filter (TSNP-Filter). A pseudo-code for the
TSNP-Filter is shown in Appendix A, and used the
following notation. We let N; denote the number of

sample sets in Ay(k), j = 1, 2, 3., j-th subregion in the
k-th iteration and X, = f(A7), where A/ and
f(-) are defined as the sample performance of i-th
set in the j-th region. The two-stage ranking-and-

3000 4

2500 -

n
o
o
IS]

Predicted best point

v

o
o
IS]

Computation Time
=
8

500 A

Number of Backtrackings

100 -
90 4
80 1
70 -
60 -
50 4
40 4
30 4
20 4
10 -

P ° ° . e

100% 80% 40%

Instance Sampling Rates

20% 10% 5%

100% 80% 40% 20% 10% 5% 2%

Instance Sampling Rates

Figure 1. Computational time and number of backtrackings for sampling rates (data set ‘vote’).

selection procedure takes ng samples in the first stage,
and then determines the total number N; samples
required from the j-th region using based on the
sample variance of the performance estimates.

3 INSTANCE SAMLING IN THE NP-
FILTER

In this section, we consider improving the scalability
of the feature selection method in terms of its ability
to handle increasing number of instances. The NP
method was originally conceived for simulation-
based optimization and is therefore naturally
consistent with using performance estimates that are
noisy due to sampling. Indeed, in the NP-Filter, a
new set A(k) of instances is sampled in each iteration
in such a way that this set is independent of the
previous sets: A(0), A(1), ..., A(k - 1). Thus, if the
new instances indicate an erroneous decision has
been made, the backtracking feature of the NP
method enables the algorithm to make corrections,
thus correcting the potential bias. The question still
remains as of how large of a portion of the database
is needed by the NP method. In particular, as the
proportion is decreased and more backtracking is
required. Then at some point the computational
inefficiencies of backtracking will outweigh the
savings obtained by using fewer instances. To
evaluate these questions empirically, we apply the
NP-Filter. We used four small data sets from the UCI
repository of machine learning databases [1]. The

characteristics of these data sets are shown in Table 1.

As the NP-Filter is randomized algorithms, we run
five replications for each experiment and report the
average.

29

Table 1. Characteristics of the test datasets

Data Set Instances Features
Cancer 148 18
Vote 435 16
Audiology 226 69
kr-vs-kp 3196 36

Figure 1 illustrates the computation time needed by
the NP-Filter for different sampling rates used. We
note from the left hand graph of that figure that at
first the computational decreases, but if the sampling
rate becomes less than approximately 10% of the
instances, the computational time actually increases.
The intuitive explanation of this is shown in the right
hand graph. It is clear that number of backtrackings
abruptly increases when less than 10% of the
instances are used. This means that even though each
iteration may take less computation time, the number
of iterations until maximum depth is reached
increases dramatically, hence increasing the overall
computation time. There is therefore some optimal
sample rate R*, where the NP-Filter would perform
best.

To find this optimal rate, we must consider the cause
of backtracking. The NP-Filter backtracks when it
discovers that the surrounding region is actually more
promising than the current most promising region. It
thus corrects mistakes made due to noisy
performance estimates by backtracking when the
error is discovered, so we would expect to see more
backtracking when fewer instances are used. In
particular, when too few instances are used, the noise
is excessive and backtracking must hence increase
dramatically to compensate for the noise.

Table 2. Performance variances for sampling rates of instances.

Sample Rates 100% 80% 60% 40% 20% 10% 5% 2%

votel 0.0 1.4 40 50 8.1 17.3 27.5 N/A
vote2 0.0 6.6 9.1 164 280 383 41.9 N/A
audiology1 0.0 1.5 42 6.1 16.9 334 48.8 94.3
audiology2 0.0 1.2 1.9 53 149 256 58.7 91.1
audiology3 0.0 09 24 49 10.8 28.7 582 185.4
cancerl 0.0 0.7 2.1 43 192 49.1 109.7 N/A
cancer?2 00 05 1.8 45 147 527 104.7 N/A
cancer3 00 0.6 14 3.0 139 53.4 150.8 N/A
Kr-vs-kpl 00 02 04 09 2.8 59 8.9 14.9
Kr-vs-kp2 0.0 0.1 0.1 0.2 0.5 1.2 2.7 6.3
Kr-vs-kp3 0.0 0.1 0.1 0.2 0.5 1.2 2.7 9.5

In order to get a better feel for how the noise in the
performance increases as a function of decreasing
sample rate, we consider the datasets in Table 1. To
calculate the true amount of noise, we must calculate
the sample variance given all the feature subsets in a
particular region, for all possible levels of the tree.
Since the total number of non-empty feature subsets
is 2"-1, where n is the number of features, this
quickly becomes infeasible, so instead of working
with the datasets directly, we work with subsets of
the dataset, each containing 7 randomly selected
features. Even for such small datasets, 127 feature
subsets must be evaluated for each experiment. The
results are shown in Table 2.

From Table 2 it is clear that the performance variance
increases rapidly as the instance sampling rate
decreases. Indeed, all of the test datasets exhibit
exponential pattern. We also note that although all of
the datasets illustrate exponential growth, the rate is
different for each dataset. We infer that the sample
variance increases exponentially as the sample rate
decreases, but that the rate of increase the exponential
increase is application dependent and must be
estimated from the data.

4 DETERMINING THE SAMPLING
RATE FOR THE TSNP-FILTER

As for other methods that employ instance sampling
to improve performance, finding the optimal
sampling rate R" is the biggest challenge when using
the NP-Filter. As seen in Section 3, this sampling rate
is related to the backtracking, which is in turn related
to the variance of the performance. Intuitively,
decreasing the sampling rate will always decrease the
computation time for each iteration, but very small
samples may cause a large variance of performances
and cause excessive backtracking. This will in turn
increase the number of iterations and eventually the
overall computation time.

30

The trade-off is therefore between the computation
time within each iteration, and the number of
iterations needed until convergence is achieved. In
the TSNP-Filter, the expected computation time
within an iteration is a function of the performance
variance, and the expected number of iterations is a
function of the probability of selecting the correct
region. Thus, analytical expression can be obtained
for both these quantities, and the optimal trade-off
achieved.

4.1 Formulation

In this section, we formulate the trade-off between
minimizing the computation time within an iteration
and minimizing the number of iterations for the
TSNP-Filter as an optimization problem and find the
optimal instance sampling rate R* by solving this
problem. We use the following notation. The total
computation time is 7= T, + T, + ... + Ty, where T;
is the computation time in the jth iteration and K is

the total number of iterations. As before N = N, (k)

denotes the number of sample feature sets at each
iteration k, and 7 is the number of sample instances.
The sampling rate is therefore given by R =1/ m.

We are interested in minimizing the expected time of
iteration k that can be affected by the performance
variability and sampling rate of instance. We may
therefore find a solution using the trade-off between

E[N, | K] and E[T,IN,] . Since from the

previous section it is known that the variability can
be represented as the number of instances and

E[N, | K] would increase as the number of
E[T, IN,]

decrease. Therefore, we formulate the trade-off as the
following optimization problem.

min A- E[N, | K1+(1—-2A)- E[T, IN,]

instances decreases while would

(6)

It is clear that as functions of the sampling rate R,
E[N, K] is decreasing and E[T, IN,] is
increasing. Furthermore, their scale can be different,

so we weight them together using an weight A that
should be determined by the experimenter. From
equation (10) in Appendix A, we know that

E[N, | K] can be written in terms of the expected

performance variance. However, the expected
performance variance depends both on the
application and the manner in which partitioning is
done, so an analytical form cannot be obtain. The

same is true for E[T, | N,], but our empirical
results strongly indicate certain patterns for these
expected values, and we state those as assumptions.

Assumption 1. The expected calculation time of each
feature sample is directly proportional to the number
of instances.

Assumption 2. The relationship between
performance variance and instance sampling rate is
exponentially distributed. E[S*(k)] = c,e " for
Ccp > 0, Cr > 0.

As noted before, these is no theoretical justification
for Assumptions 1-2, but they are both intuitively
appealing and supported by our empirical results.

Now, given those assumption, the optimal instances
sampling rate is found in the following key theorem.

Theorem 1. Let Assumptions 1-2 hold. By using
uniform sampling rate of instances and selecting the
initial number of sample feature subsets sufficiently
small so that it is smaller than then required number
of samples, the optimal instance sampling rate is
given by

AP (N
e L [a=D-c-82m
A-h*c e,

)
Proof. By Assumption 1, the expected computation
time in each iteration, given the number of samples is
directly proportional to the number of instances, that
is,

E[T,IN,]=c,-ElI1=c, -1
From the fact that if the number of instance samples
decreases, the performance variability of feature
sample sets increases exponentially as stated in the
previous section. The expected number of feature
sample sets in each iteration can be stated as follows:

31

E[N, K] =Z—22E[S2)]

Based on equation (6) and the assumptions, the
restated problem is as follows.

2

min h e, R
R ﬂ-y-cle +(1-A)-¢c,-m-R

subjectto 0<A<1
O<R<I.

This problem can be solved by taking the derivative
of the objective function and identifying the
minimum point that satisfies the constraints. In
particular, since

dzCost_/l-h2 2

R gr G >0,
any solution to
d h’
Ozﬁ{ﬁ-y-cleﬁ” +(1-A)-¢c,-m-R

h? :
=—Rcl-y-cle7‘2"€ +(1-A)-¢c,-m

is a minimum. It follows that R" is given by equation
(7). o

The value of A can be chosen by users according to
their preference. The indifference zone, J and
selection probability, P" that determines the value of
h should be also determined by user preferences. If
O is small and P’ is large, the sampling rate would
be large and vice versa.

4.2 Numerical Results

The NP method guarantees a correct selection with
probability ¥ within an indifference zone 0 >0 .

However, since the TSNP-Filter incorporates a
heuristic approach, the robustness of this must be
evaluated empirically. The constants cg, ¢;, and ¢, are
calculated empirically for each of the datasets in
Table 1, and R calculated according to equation (12).
To evaluate if the TSNP-Filter solution is within the
indifference zone, the true optimum must be known.
Since this is computationally intractable except for
small datasets, we again use modified data sets that
now contain 8 randomly selected features in addition
to the class feature. First we find the optimal solution
for each dataset using an enumerative approach and

Table 3. Accuracy of the TSNP-Filter on the reduced datasets.

4
0.75 0.85 0.95
Sampling Sampling Sampling

Dataset o Rate (%) Accuracy Rate (%) Accuracy Rate (%) Accuracy
Vote 5 16 95.57+0.27 21 95.57+0.26 23 95.58+0.25
1 32 95.59+0.25 37 95.58+0.26 39 95.61+0.11
. 5 27 42.62+0.03 30 43.61+£0.02 35 43.63+0.01

Audiology

1 44 43.63+0.02 47 43.63+0.02 51 43.64+0.02
Cancer 5 24 70.32+0.24 28 70.34+0.11 31 70.35+£0.06
1 40 70.35+0.17 45 70.34+0.09 47 70.36+0.03
Kr-vs-kp 5 8 65.55+0.48 13 65.57+£0.32 15 65.55+0.41
1 25 65.51+0.21 29 65.59+0.15 32 65.61+0.07

then calculate how many solutions of the TSNP -
Filter out of 100 replications are within the
indifference zone O . For the other parameters, we set
A=0.5, 8 =1 and 5 percentage points, and ¥/ =
0.75, 0.85 and 0.95. The results are reported in Table
3.

From Table 3, we note that as expected the sample
rate is smaller for & = 5 than & = 1, and smaller
when ¥/ is smaller. Thus, by adjusting the instance

sampling rate appropriately, the quality of the
solutions found by the TSNP-Filter remains constant.
This is supported by the results in Table 3, which
shows that for each problem there is no significant
difference in the accuracy obtained. The percentage
of time that this accuracy is within the indifference
zone is reported in Table 4. We note that for
indifference zone of J = 5, the estimated probability
of being within the indifference zone is actually
significantly higher that the minimum probability ¥/
of correct selection. The intuitive explanation for this
is that when the indifference zone is selected this
large then it is relatively easy to find feature subsets
with accuracy within the indifference zone, and
hence this will happen most of the time, even if ¥/ =
0.75 is selected. When the indifference zone is
smaller, 0 = 5, then the estimated probabilities
closely follow the prescribed minimum ¥ , but
except for the ‘vote’ dataset, the minimum is not met
exactly.

32

Table 4. Probabilities that a solution is within the
indifference zone.

Dataset o 4
0.75 0.85 0.95
Vote 5 0.96 0.98 0.98
1 0.78 0.88 0.96
Audiology 5 0.98 0.98 1.00
1 0.72 0.83 0.89
5 0.83 0.88 0.97

Cancer

1 0.65 0.72 0.81
Kr-vs-kp 5 0.90 0.94 0.95
1 0.63 0.74 0.87

The results reported above provide some insights into
how the TSNP-Filter works. However, we are
primarily interested in how the new two-stage
sampling approach improves the performance of the
NP-Filter. We thus make a three-fold comparison
between the TSNP-Filter, the original NP-Filter, and
the NP-Filter with a constant sampling rate found by
experiments with sampling rates of R =
{100,80,60,40,20,10,5,2} and selecting the best rate.
The results are reported in Table 5.

Table 5. Comparison of three different scalability methods.

Sample

Dataset Approach Rate Accuracy Speed Backtracks
TSNP-Filter 16 93.2+1.3 786%113 0.2+0.4
Vote NP-Filter w/sampling 10 92.4+1.0 816+167 1.6£2.2
NP-Filter 100 93.5+04 2820493 0.0+0.0
TSNP-Filter 27 70.2+£1.6 27722+6804 128.8+24.8
Audilogy NP-Filter w/sampling 10 69.2+2.4 35839+14563 371.0+182.0
NP-Filter 100 69.7+#1.9 41105+3255 0.0+0.0
TSNP-Filter 24 73.540.5 418+£10 2.4+2.8
Cancer NP-Filter w/sampling 10 72.6x1.2 486+89 7.4+3.4
NP-Filter 100 73.240.6 795483 0.0+0.0
TSNP-Filter 3 89.0+0.4 51894492 0.0+0.0
Kr-vs-kp NP-Filter w/sampling 5 89.0£1.2 7246+809 1.84£3.0
NP-Filter 100 87.94+5.7 107467+8287 1.8+3.0

As indicated by Table 5, the TSNP-Filter generally
provides the better performance in terms of
computation time for four data sets without
sacrificing accuracy. On the other hand, original NP-
Filter shows the worse performance. A more
interesting result is that the TSNP-Filter even
performs better than the NP-Filter with sampling
where the sampling rate is determined experimentally
as the best sample rate. The intuitive reason for this is
that this approach uses the same sample rate in every
iteration without consideration of the size of the
regions begin compared in that iteration. This means
that it tends to oversample in certain situations when
the decision is relatively easy. The TSNP-Filter, on
the other hand, automatically determines the best
sampling rate and does this very effectively.

S CONCLUSION

The NP method for combinatorial optimization has
previously been shown to be an effective approach
for feature selection, and compare favorably to other
methods [5]. In this paper, we have shown that by
using random sampling of instances, the speed of the
NP-based feature selection method can be improved
significantly. The key issue in using sampling is to
determine the sample size. For the NP-based
approach, using too small of a sample rate causes too
much noise in the performance evaluation that causes
the algorithm to make incorrect moves that must be
corrected through backtracking. Hence, the number
of iterations increases and the overall computation
time does as well. The optimal sampling rate will
depend on both the size and structure of the particular
dataset, so it cannot be easily determined a priori.
However, we proposed a two-stage sampling
approach that determines the necessary sampling
effort based on the estimated variance. The numerical

33

results reported show that sampling works well in
general, and that the two-stage approach finds very
good sample rates in an automated manner.

REFERENCES

[1] Blake, C.L. and Merz, CJ., 1998, UCI
Repository of machine learning databases
<http://www.ics.uci.edu/mlearn/MLRepositor
y.html>, University of California, Irvine, CA
(Date Accessed: October 31, 2003).

Hall, M.A., 1998, “Correlation-based feature
selection for discrete and numeric class
machine learning”, in Proceedings of the
Seventeenth International Conference on
Machine Learning, Stanford University, CA.
Morgan Kaufmann.

Kivinen, J. and Mannila, H., 1994, “The
power of sampling in knowledge discovery”,
in ACM Symposium on Principles of Database
Theory, 77-85.

Olafsson, S., 2004, “Two-stage nested
partitions method for stochastic optimization,”
Methodology and Computing in Applied
Probability, 6, 5-27.

Olafsson, S. and Yang, J., 2005, “Intelligent
partitioning for feature selection”, INFORMS
Journal on Computing, in print.

Provost, F., Jensen, D. and Oates, T., 1999,
“Efficient = progressive sampling”, in
Proceedings of the fifth International
Conference on Knowledge Discovery and
Data Mining, 23-32.

Shi, L. and Olafsson, S., 2000, “Nested
partitions method for global optimization”,
Operations Research, 48, 390-407.

(2]

(3]

(4]

(5]

(6]

(7]

[8] Toivonen, H., 1996, “Sampling large
databases for association rules”, in
Proceedings of the 22" International
Conference on Very Large Databases, 134-
145.

[9] Weiss, G. M. and Provost, F., 2001, “The
effect of class distribution on classifier
learning: an empirical study”, Technical
Report ML-TR-44, Department of Computer
Science, Rutgers University August 2, 2001.

[10] Yang, J. and Honavar, V., 1998, “Feature
subset selection using a genetic algorithm” In
H. Motada and H. Liu (eds), Feature
Selection, Construction, and Subset Selection:
A Data Mining Perspective, Kluwer, New
York.

APPENDIX A: TSNP-FILTER

Given K > 1, ny, d,,, (n), O, ¥ and an order apy, apys

stop
..., apy of features
Initialize A(0) ¢— A,k ¢— 0, A" ={}and f =oo
loop

As(k) €<— A\A(k),

for every set Aj(k)

A}Zesr (k) <« {}’

e () €= o0,
i1
Obtain n(sample sets

Calculate the first-stage sample means and
variance for j=1,2,3:

X0W) « L3 x, k). ®)
Ny i=1
"X, () -X (o]
S?(k)<—Zi:‘[iR X)])
! n, —1

Compute the total sample size
hS%(k)
10
Nj(k)emax{n(ﬁl,{ 5{2 (10)

where O is the indifference zone and h is a
constant that is determined by n, and the
minimum selection probability P* of correct
selection [7].
Obtain Nj(k) — ny more samples in each region
loop

A ji (k) €— Randomly select a feature subset

if f;(k) < f,.,(k) then
fi (k) = fi (k).

34

Ajes () €= A (0)
i+l
until enough feature subset samples

j* < argmin;; fb{m(k)

if j =3then Atk + 1) < A(k-1)
else Ak + 1) <— Au(k)
k—k+1
end
until d(A(K)) = dyy,p(n)

Boosted Lasso *

Peng Zhao'

Abstract

In this paper, we propose a Boosted Lasso (BLasso) al-
gorithm which is able to produce the complete regular-
ization path for general Lasso problems. BLasso works
in a similar fashion like Boosting and Forward Stage-
wise Fitting with an additional “backward” step which
works by shrinking the model complexity of an ensem-
ble learner. Both theoretical and experimental results
are shown for the BLasso algorithm. In addition, we
generalize BLasso to deal with problems with general
convex loss with general convex penalty.

Keywords: Regularization Path; Boosting; Lasso; Back-
ward Step; Steepest Descent

1 Introduction

An important idea that recently comes from the statis-
tics community is the Lasso [16]. Lasso is a shrink-
age method that regularizes fitted models using a L,
penalty. Its popularity can be explained in several ways.
Since nonparametric models that fit training data well
often have low bias but large variances, prediction accu-
racy can sometimes be improved by shrinking a model
or making a model more sparse. The regularization re-
sulting from the L; penalty leads to sparse solutions
where there are few basis functions with nonzero weights
(among all possible choices). This Statement is proved
rigorously in recent works [4] in the specialized set-
ting of over-complete representation and large under-
determined systems of linear equations. Furthermore,
the sparse models induced by Lasso are more inter-
pretable and often preferred in areas such as Biostatistic
and Social Sciences.

Another vastly popular idea, Boosting, is a method
for iteratively building an additive model. Since its
inception in 1990 [6] [7] [15], it has become one of the
most successful machine learning ideas.

While it is a natural idea to combine boosting and
Lasso to have a regularized boosting procedure, it is
also intriguing that boosting, without any additional

" *This research is partially supported by NSF grants CCR-
0106656, FD01-12731 and ARO grant DAAD19-01-1-0643. Yu
was also partially supported by a Miller Ressearch Professorship
from Miller Institue at UC Berkeley in spring, 2004.

TUniversity of California, Berkeley

$University of California, Berkeley

35

Bin Yuf

regularization, has its own resistance to overfitting. For
specific cases, e.g. LoBoost [9], this resistance is under-
stood to some extent [3]. However, it is not until later
when Forward Stagewise Fitting (FSF) was introduced
and connected with a boosting procedure with much
more cautious steps that a shocking similarity between
FSF and Lasso was observed [11] [5].

This link between Lasso and FSF is formally de-
scribed in linear regression case through LARS (Least
Angle Regression, [5]). It is also known that for spe-
cial cases (e.g. orthogonal designs) FSF can approxi-
mate Lasso path infinitely close, but in general, they
are different from each other despite of their similar-
ity. However, FSF is still used as an approximation to
Lasso for different regularization parameters because it
is computationally prohibitive to solve Lasso for many
regularization parameters.

In this paper, we propose a new algorithm Boosted
Lasso (BLasso) that approximates the Lasso path
in all cases. The motivation comes from a critical
observation that both Forward Stagewise Fitting and
Boosting work in a forward fashion (so is Forward
Stagewise Fitting named). The model complexity,
measured by the L; norm of model parameters, holds
a dominating upward trend for both methods. This is
often proven too greedy — the algorithms are not able
to correct mistakes made in early stages. We introduce
an innovative “backward” step which utilizes the same
minimization rule as the forward step to define each
fitting stage but utilizes an additional rule to force the
model complexity to decrease. As a combination of
backward and forward step, Boosted Lasso is able to
go back and forth and tracks the Lasso path correctly.

BLasso has the same order of computational com-
plexity as FSF. But unlike FSF, BLasso can be proven
to converge to the Lasso solutions as step size of the al-
gorithm goes to zero. The fact that BLasso can also be
generalized to give regularized path for other penalized
loss functions with general convex penalties also comes
as a pleasant surprise.

After a brief overview of Boosting, Forward Stage-
wise Fitting in Section 2.1 and the Lasso in Section 2.2,
Section 3 introduces BLasso and its properties. Section
4 discusses the backward step which gives the intuition
behind BLasso and explains how FSF fails to give the

Lasso path. Section 5 covers the least square problem
in details as an example for BLasso. In section 6, we
support the theory and algorithms by experiments us-
ing simulated and real data sets which demonstrate the
attractiveness of Boosted Lasso. Finally, Section 7 con-
tains a discussion on choice of step sizes and application
of BLasso in online learning with a summary of the pa-
per.

2 Boosting, Forward Stagewise Fitting and the
Lasso

Boosting utilizes an iterative fitting procedure that
builds up model stage by stage. Forward Stagewise
Fitting uses more fitting stages by limiting the step size
at each stage to a small fixed constant and produces
solutions that are strikingly similar to the Lasso. We
first give a brief overview of these two algorithms
followed by an overview of the Lasso.

2.1 Boosting and Forward Stagewise Fitting
The boosting algorithms can be seen as functional
gradient descent techniques. The task is to estimate
the function F' : R — R that minimizes an expected
loss

(2.1) E[C(Y,F(X))], C(,):RxR— R"

based on data Z; = (V;, X;)(i = 1,...,n). The univari-
ate Y can be continuous (regression problem) or discrete
(classification problem). The most prominent examples
for the loss function C(-,-) include Classification Mar-
gin, Logit Loss and Lo Loss functions.

The family of F(-) being considered is the set of
ensembles of “base learners”

(22)D = {F: F(z) = Zﬁjhj(x),x € R, 3; € R}.

Let 8 = (B1,...Bm)T, we can reparametrize the
problem using

(2.3) L(Z,8) = C(Y, F(X)),
where the specification of F' is hidden by L which makes
our notation simpler. .

The parameter estimate ¢ can be found by mini-
mizing the empirical loss

(2.4) g = argmﬁiniL(Zi;ﬂ).

i=1

Despite the fact that the empirical loss function is
often convex in (3, this is usually a formidable optimiza-
tion problem for a moderately rich function family, and
we often settle for approximating suboptimal solutions

36

by a progressive procedure that iteratively builds up the
solution:

n
arg min L(Z;; 3+ g1,
gj,g; (Zi; 8"+ 91;)

B +41;

where 1; is the jth standard basis for R™ and g € R is
a stepsize parameter, i.e. the vector with all Os except
for a 1 in the jth coordinate.

FSF is a similar method for approximating the min-
imization problem described by (2.5) with additional
regularization. It disregards the stepsize g in (2.6) and
instead update Bt by a fixed stepsize e:

BT =+ € - sign(g)1;

When FSF was introduced [11] [5], it was only de-
scribed for the Lo regression setting. For general loss
functions, it can be defined by removing the minimiza-
tion over g in (2.5):

(25) (,9) =

(26) B =

n
2. 7.5 = i L(Z;: 3" + s1;
2.7) (4,3 argjgl:li; (Zi; Bt + s1;),
(28) B = B+,

Notice that this is only a change of form, underlying
mechanic of the algorithm remains unchanged in the
Lo regression setting from [5] as can be seen later in
Section 5. Initially all coefficients are zero. At each
successive step, a coefficient is selected that best fits
the empirical loss. Its corresponding coefficient 65 is
then incremented or decremented by a small amount,
while all other coefficients 3;, j +£ j are left unchanged.

By taking small steps, Forward Stagewise Fitting
imposes some implicit regularization. After applying it
with T < oo iterations, many of the coefficients will be
zero, namely those that have yet to be incremented. The
others will tend to have absolute values smaller than
the unregularized solutions. This shrinkage and sparsity
property is observed in the striking similarity between
the solutions given by Forward Stagewise Fitting and
the Lasso which we give a brief overview next.

2.2 Lasso Let T(f) denote the L; penalty of § =
(ﬁh -"7ﬁm)T7

T(B) =181 =>_ 18]
i=1

and let T'(8; \) denote the Lasso loss function

n

T(3;N) =Y L(Zi; B) + AT(B).

i=1

(2.9)

The Lasso estimate 3 = (Bl, ey Bm)T is defined by
B = minT(85)

The parameter A > 0 controls the amount of
regularization applied to the estimate. Setting A = 0
reverses the Lasso problem to minimizing unregularized
empirical loss. On the other hand, a very large A will
completely shrink B to 0 thus leads to an empty model.
In general, moderate values of A will cause shrinkage of
the solutions towards 0, and some coefficients may be
exactly equal to 0. This sparsity in Lasso solutions has
been studied extensively, e.g. [4].

Computation of the solution of the Lasso problem
for a fixed A\ has been studied for special cases. Specif-
ically, for least square regression, it is a quadratic pro-
gramming problem with linear inequality constraints;
for 1-norm SVM, it can be transformed into a linear
programming problem. But to get a good fitted model
that performs well on future data, we need to select an
appropriate value for the tuning parameter \. Practical
algorithms have been proposed for square loss function
(LARS, [5]) and SVM (1-norm SVM, [17]) to give the
entire regularization path.

But how to give the entire regularization path of the
Lasso problem for general convex loss function remained
open. Next, we propose a Boosted Lasso (BLasso)
algorithm which works in a computationally efficient
fashion as FSF and is able to approximate the Lasso
path infinitely close.

3 Boosted Lasso
We first describe the algorithm.

Boosted Lasso (BLasso)

Step 1 (initialization). Given data Z; = (Yi, X,),
t = 1,...,n and a small stepsize constant ¢ > 0, take
an initial forward step

J,s==T€”

n
arg 4miri Z; L(Z;;s1;),

20 _ a1,
ﬁ - Sj1j7

Then calculate the initial regularization parameter

n n

A0 = %(Z L(Zi;0) = > L(Z:;)

i=1 i=1

Set the active index set I = {j}. Set t = 0.
Step 2 (Backward and Forward steps). Find the “back-
ward” step that leads to the minimal empirical loss

n

j = arg min L(Z; Bt+5j1j) where s; = —Sign(ﬁA;)E.

min
A Y

37

Take the step if it leads to a decrease in the Lasso
loss, otherwise force a forward step and relax A if

necessary: X
If T'(5t + §515; A < T(5%, M), then
At+1 At | oaq. \t+L
g =04+ 8515, AT =)\
Otherwise,

. . At)
arg].gl:liZ;L(Zi,ﬂ + s515),

gt = s,

ML = min|\, l(Z L(Z;; Bt) - ZL(Zii BH_I))]’
€
=1 =1

It = rhu{zt

Step 3 (iteration). Increase t by one and repeat Step 2
and 3. Stop when ' < 0.

We defer formal definition of forward and backward
steps till the next section. Immediately BLasso has the
following properties:

LEMMA 3.1. The following statements hold:

1. For ¥\ s.t. 37,|s| = € T'(s1;; A) < T(0; \), we have
A0 >\

2. For Wt where N*1 = X, we have T(F!1;\) <
L(B%AY).

3. For ¥t where NT1 < X, we have T(8%) <
L(B" £ elyN), Vi and |54 = || +e.

According to the Lemma, Boosted Lasso starts with
an initial A\g which is the largest \ that would allow
an € step away from 0. For each value of A, BLasso
performs coordinate descent until there is no descent
step. Then the value of X is reduced and a forward step
is forced. Since the minimizers correspond to adjacent
As are usually close, this procedure proceeds from one
solution to the next within a few steps and effectively
approximates the Lasso path. In general, we have the
following result:

THEOREM 3.1. If L(Z; () is strictly convex and con-
tinuously differentiable in 3, then as € — 0, the BLasso
path converges to the Lasso path.

Many popular loss functions, e.g. L2, logistic and
likelihood functions of exponential family, are convex
and continuously differentiable. Other functions like
the hinge loss (SVM) is continuous and convex but not

strictly convex or differentiable. It is theoretically possi-
ble that BLasso’s coordinate descent strategy gets stuck
at nonstationary points for these functions. However,
as we illustrate in the second experiment, BLasso works
well for 1-norm SVM problem empirically.

4 the Backward Boosting Step

We now explain the motivation and working mechanic
of BLasso. One observation is that FSF uses only
“forward” steps. It only takes steps that lead to
direct reduction of the empirical loss. Comparing to
classical model selection methods like Forward Selection
and Backward Elimination, Growing and Pruning of a
classification tree, a “backward” counterpart is missing.
Without the backward step, FSF can be too greedy and
does not reproduce the Lasso path in general. For a
given 5 # 0 and A > 0, consider the impact of a small
€ > 0 change of §; to the Lasso loss I'(5; A). For an
s = ¢

n

A = (ZL(Zi;ﬁ—i—slj) —ZL(Zi;ﬁ))
+ MNT(B+sl;)—T(P))
@10) = A B 6) AT,

Since T'(B) is simply the L; norm of £, AT(3)
reduces to a simple form:

A;T(B) 18+ 515l — [18]11
185 + s| — 1851

sign™ (Bj,s) - €

(4.11) =

where sign®(3;,s) = 1 if s8; > 0 or B; = 0,
sign™(3;,s) = —1 if s8; < 0 and sign™(B;,s) = 0 if
s =0.

Equation (4.11) shows that an e step’s impact on
penalty is a fixed e for different j. Only the sign
of the impact may vary. Suppose given a (3, the
“forward” steps for different j have impacts on the
penalty of the same sign, then A;T is a constant
in (4.10) for all j. Thus, minimizing the Lasso loss
using fixed-size steps is equivalent to minimizing the
empirical loss directly. At the early stages of Forward
Stagewise Fitting, all forward steps are parting from
zero, therefore all the signs of the “forward” steps’
impact on penalty are positive. As the algorithm
proceeds into later stages, some of the signs may change
into negative and minimizing the empirical loss is no
longer equivalent to minimizing the Lasso loss. Thus,
in the beginning, Forward Stagewise Fitting carries out
a steepest descent algorithm that minimizes the Lasso

38

loss and follows Lasso’s regularization path, but as it
goes into later stages, the equivalence is broken and they
part ways.

In fact, except for special cases like orthogonal de-
signed covariates, the signs of the forward steps’ impacts
on penalty can change from positive to negative. These
steps then reduce the empirical loss and penalty simul-
taneously therefore they should be preferred over other
forward steps. Moreover, there can also be occasions
where a step goes “backward” to reduce the penalty
with a small sacrifice in empirical loss. In general, to
minimize the Lasso loss, one need to go “back and forth”
to trade-off the penalty with empirical loss basing on
different regularization parameters. We call a direction
that leads to reduction of the penalty a “backward” di-
rection and define a backward step as the following:

For a given B, a backward step is such that:

AB = Sj]-j;

for some j, subject to Bj # 0, sign(s) = —sign(Bj) and
|s| = e. Making such a step will reduce the penalty by a
fixed amount X - €, but its impact on the empirical loss
may vary, therefore we also want:

n
j = argmjinZL(Zi;ﬁ—i— s515)

i=1
subject to [3]- #0and s; = —Sign(ﬁj)e’

i.e. j is picked such that the empirical loss after making
the step is as small as possible.

While forward steps try to reduce the Lasso loss
through minimizing the empirical loss, the backward
steps try to reduce the Lasso loss through minimizing
the Lasso penalty. During a fitting process, although
rarely happen, it is possible to have a step reduce both
the empirical loss and the Lasso penalty thus it is both
forward and backward. We do not distinguish such steps
as they do not create any confusions.

By identifying the backward steps, we are able
to work with the penalized Lasso loss directly and
take backward steps to correct previous steps that are
seen too greedy in later stages. This new concept
both motivated the Boosted Lasso algorithm and is the
underlying mechanic that BLasso utilizes to follow the
Lasso path.

5 Least Square Problem

For the most common special case — least square re-
gression, the forward steps, backward steps and BLasso
all become simpler and more intuitive. To see this, we
write out the empirical loss function L(Z;;3) in its Lo
form,

n n n

SNLZip) =) (Vi-XiB? =D (Vi-Vi)*=> nk
i=1 i=1 i=1 i=1
where ¥ = (Yl,...,Yn)T are the “fitted values” and
n=n1,....,0,)T are the “residuals”.

Recall that in a penalized regression setup
X; = (Xi,..., Xim) where every covariates X7 =
(X1j, ...y Xnj)T is normalized, ie. || X7|? =30 ij =
lLand Y | X;; = 0. For a given 8 = (B1,...0m)7,
the impact of a step s of size |s| = € along §; on the
empirical loss function can be written as:

n

A L(Zi; 8))

i=1
= D (Vi = Xi(B+51)) — (Vi — X:8)°]
i=1
=) [— sX15)* = 7]
i=1
= i(*ZSThX” + S2X12])
i=1

= —2s(n- X7)+ 5%

The last line of these equations delivers a strong mes-
sage — in least square regression, given the step size,
the impact on the empirical loss function is solely de-
termined by the correlation between the fitted residuals
and the coordinate. Specifically, it is proportional to the
negative correlation between the fitted residuals and the
covariate plus the step size squared. Therefore, steep-
est descent with a fixed step size on the empirical loss
function is equivalent to finding the covariate that has
the maximum size of correlation with the fitted residu-
als, then proceed along the same direction. This is in
principle same as Forward Stagewise Fitting.

Translate this for the forward step where originally

n
(j:8;) = arg min 3 L(Z; B+ s1;),
Y

we get

j=argmax|n-X7| and §=sign(n- X’)e,
J

which coincides exactly with the stagewise procedure
described in [5] and is in general the same principle
as Ly Boosting, i.e. recursively refitting the regression
residuals along the most correlated direction except the
difference in step size choice [9] [3]. Also, under this
simplification, a backward step becomes

j = argmin(—s(n - X))
J

39

subject to 3; # 0 and s; = —sign(3;)e.

Ultimately, since both forward and back steps are
based solely on the correlations between fitted residuals
and the covariates, therefore in the L, case, BLasso
reduces to finding the best directions in both forward
and backward directions by examining the correlations,
then decide whether to go forward or backward based
on the regularization parameter.

6 Generalized Boosted Lasso

As stated earlier, BLasso not only works for general con-
vex loss functions, it can also be generalized for convex
penalties other than L; penalty. For the Lasso problem,
BLasso algorithm does a fixed step size coordinate de-
scent to minimize the penalized loss. Since the penalty
has the special L1 norm and (4.11) holds, therefore the
coordinate descent takes form of “backward” and “for-
ward” steps. For general convex penalties, this nice fea-
ture is lost but the algorithm still works.

Assume T'(8): R™ — R is a penalty function and is
convex in 3, now we describe the Generalized Boosted
Lasso algorithm:

Generalized Boosted Lasso

Step 1 (initialization). Given data Z; = (Yi, X,),
t = 1,...,n and a small stepsize constant ¢ > 0, take
an initial forward step

(j.8;) = arg min Y L(Zssl)),
=1

J,s==xe”
i

0 .o
G8Y = sjlj.

Then calculate the corresponding regularization param-
eter

2\ — 22;1 L(Zi§ Q) - 2?21 L(Zi§ BO)
T(p°) —1(0)

Set t = 0.
Step 2 (steepest descent on Lasso loss). Find the
steepest coordinate descent direction on Lasso loss

(, §5) = argjmin F(Bt + 5155 0.

,s==*e
~ Update B if it reduces Lasso loss; otherwise force
[to minimize the empirical loss and recalculate the
regularization parameter :

IF T(B" + 8155 M) < D(B, \'), then

B = B4 5515, A = 0\

Otherwise,

argmin > L(Zi; B + sign(B)) - €1),

Jj =
i=1
B =+ sign(Bh)L;,
n LAty _ 3T At
)\t—i-l _ min[)\t, Zi:l L(Zhﬂ) Zz:l L(Zz,ﬂ)]

T(p+) — T(5")

Step 3 (iteration). Increase t by one and repeat Step 2
and 3. Stop when ' < 0.

In the Generalized Boosted Lasso algorithm, ex-
plicit “forward” or “backward” steps are no longer seen.
However, the mechanic remains the same — minimize the
penalized loss function for each A, relax the regulariza-
tion by reducing A when the minimal is reached.

Another algorithm of a similar fashion is developed
independently in [14]. There, starting from A\ = 0,
a solution is generated by taking a small Newton-
Raphson step for each A, then A is increased by a fixed
amount. The algorithm assumes twice-differentiability
of both loss function and penalty function and involves
calculation of the Hessian matrix. A step size parameter
is used for increasing the .

In comparison, BLasso only assumes convexity of
the functions and uses much simpler and computation-
ally less intensive operations for each A. The stepsize
is defined in the original parameter space which makes
the solutions evenly spreaded in parameter space rather
than in A. In fact, since A\ is approximately the re-
ciprocal of size of the penalty, as fitted model grows
larger and penalty becomes bigger, changing A by a
fixed amount makes the algorithm in [14] stepping too
fast in the parameter space. On the other hand, when
the model is close to empty and the penalty function is
very small, A is very large, but the algorithm still uses
same small steps thus computation time is wasted to
generate solutions that are too close from each other.
And since A — oo as the model shrinks to empty, to
stop the algorithm, a A™@X needs to be selected in ad-
vance. BLasso suffers none of these problems. Also, for
situations like boosting trees where the number of basic
learners is huge and at each step the minimization of
empirical loss can only be done through approximation
tricks, BLasso can be easily adapted by replacing exact
minimization with approximate minimization.

7 Experiment

Tow experiments are carried out to illustrate BLasso
with both simulated and real datasets. We first run
BLasso on a diabetes dataset [5] under the classical
Lasso setting, i.e. Lo regression with an L; penalty.
Then, switching from regression to classification, we use

40

- s
- \
600 - \ 4
- \
.- .
\
400 “ 1
N
200 /)\/_/ R
e A]
2001
4001
600
.
o 500 1000 1500 2000 2500 3000 3500
+ = NN
2. 161

Figure 1: Lasso estimates of regression coefficients as a
function of t = ||8]|1-

T T
-,
PRI
600 .- \
e \
\
400 K
P _
\
T X
200 // \ 4
o S
hY 1
200
-a00
600}
o 500 1000 1500 2000 2500 3000 3500
= —
t =216l

Figure 2: BLasso solutions, which can be seen identical
to the Lasso solutions.

simulated data to illustrate BLasso solving regularized
classification problem under the 1-norm SVM setting.

7.1 L, Regression with L; Penalty (Classical
Lasso) The dataset used in this and the following
experiment is from a Diabetes study where diabetes
patients were measured on 10 baseline variables. A
prediction model was desired for the response variable,
a quantitative measure of disease progression one year
after baseline. One additional variable, X1 = — X7 +
Xg+5Xy, is added to make the difference between FSF
and Lasso solutions more visible.

The classical Lasso — Lo regression with L1 penalty
is used for this purpose. Let X' X2 .., X™ be
n—vectors representing the covariates and Y the vec-
tor of responses for the n cases, m = 11 and n = 442 in
this study. Location and scale transformations are done

800

eof =TT

4001

200 /

-200F

400

-600

800 L L L L L L
0 500 1000 1500 2000 2500 3000 3500

t=316 —

Figure 3: Forward Stagewise Fitting solutions, which
are different from Lasso solutions.

so that all covariates are standardized to have mean 0
and unit length, and that the response has mean zero.
The penalized loss function has the form:

n

D(B;A) = > (Yi— XiB)? + N5l

i=1

(7.12)

Figure 2 shows the coefficient plot for BLasso ap-
plied to the diabetes data. Figure 1 (Lasso) and 2
(BLasso) are indistinguishable from each other. Both
FSF and BLasso pick up X;; (the dashed line) in the
earlier stages, but due to the greedy nature of FSF,
it is not not able to correct the mistake and remove
X711 in the later stages thus every parameter estimate is
affected which leads to significantly different solutions
from Lasso.

The BLasso solutions were built up in 8700 steps
(making the step size ¢ = 0.5 small enough so that the
plots are smooth enough) which consist 840 backward
steps. In comparison, Forward Stagewise Fitting took
7300 pure forward steps. BLasso’s backward steps
mainly concentrate around the spots where Forward
Stagewise Fitting and BLasso tend to differ.

7.2 Classification with 1-norm SVM (Hinge
Loss) In addition to the regression experiment in the
previous section, we also look at binary classification.
We generate 50 training data in each of two classes. The
first class has two standard normal independent inputs
X' and X? and class label Y = —1. The second class
also has two standard normal independent inputs, but
conditioned on 4.5 < (X1)2 + (X?)? < 8 and has class
label Y = 1. We wish to find a classification rule from
the training data. so that when given a new input, we
can assign a class Y from {1, -1} to it.

41

3 !
° 5 °
o © o
o + +o0
2t o
& o
&
+ + ot ©
Iy
] ++ N N o
+ o
1 ° 5 i o
e} i
R S
R
° +F o+ 0o
ol o + ++ +
o+
o © ++ R
o o L F ©
N o
-1F 5
o
o o ©
o
+ + - o
+
b o
2 o)
+ o S o
o ¥t o ©
° o
o
3 .
=3 -2 -1 0 1 2 3

Figure 4: Scatterplot of the data points with labels: '+’
for y = —1; ’0" for y = 1.

Generalized BLasso

0.8

/
07
06f e / a
o5t / 1
S
04t e
e
— Y
03f / A
w /)
N
/ /,w‘ - —
0 — —
-0.1) \\\/ .
02 05 1 15
5 ~
t=3 j=1 1Bi| —

Figure 5: Estimates of 1-norm SVM coefficients Bj,
j=1,2,...5, for the simulated two-class classification
data. BLasso solutions are plotted as functions of

t= 25:1 |BJ|

To handle this problem, 1-norm SVM [17] is consid-
ered:

(Bo. 8) = argmin > (1=Yi(Bo+3_ ks (X)) " +AI8]1
=1 j=1

(7.13)
where h; are basis functions and X is the regularization
parameter. The dictionary of basis functions considered
here is D = {V2X!v2X2 V2X1X2 (X1)2,(X?)?}.
The fitted model is

A A m A

f@) =50+ Bihi(x).

j=1

The classification rule is given by sign(f(z)).

Since neither the hinge loss function nor the penalty
function is differentiable, Theorom 3.1 does not hold.
However Generalized BLasso ran without a problem. It
takes Generalized BLasso 490 iterations to generate the
solutions. The covariates enter the regression equation
sequentially as ¢ increase, in the following order: the two

quadratic terms first, followed by the interaction term
then the two linear terms.

8 Discussion and Concluding Remarks

As seen from the experiments, BLasso is effective for
solving the Lasso problem and general convex penalized
loss minimization problems. One practical issue left
undiscussed is the choice of stepsize. In general, BLasso
take O(1/€) steps to produce the whole path. For simple
L, regression with m covariates, each step uses O(m-n)
basic operations. Depend on the actual loss function,
base learners and minimization trick used in each step,
the actual computation complexity varies. Although
choice of smaller step size gives smoother solution path
and more accurate estimates, we observe that the the
actual coefficient estimates are pretty accurate even for
relatively large step sizes.

As can be seen from Figure 6, for small step size
€ = 0.05, the solution path can not be distinguished
from the exact regularization path. However, even when
the step size is as large as ¢ = 10 and € = 50, the
solutions are still good approximations.

BLasso has only one step size parameter. This pa-
rameter controls both how close BLasso approximates
the minimization coefficients for each A and how close
two adjacent A on the regularization path are placed.
As can be seen from Figure 6, a smaller stepsize leads
to a closer approximation to the solutions and also finer
grids for A\. We argue that, if A is sampled on a coarse
grid there is no point of wasting computational power
on finding a much more accurate approximation of the
coefficients for each A. Instead, the available computa-
tional power spent on these two coupled tasks should

Y3

Figure 6: Estimates of regression coefficients (3 for the
diabetes data. Solutions are plotted as functions of A.
Dotted Line — Estimates using step size € = 0.05. Solid
Line — Estimates using step size € = 10. Dash-dot Line
— Estimates using step size € = 50.

be balanced. BLasso’s 1-parameter setup automatically
balances these two aspects of the approximation which
is graphically expressed by the staircase shape of the
solution paths.

One of our current research topics is to apply
BLasso in an online setting. Since BLasso has both
forward and backward steps, it should be able to trans-
form into an adaptive online learning algorithm where
it goes back and forth to track the best regularization
parameter and the corresponding model.

In this paper, we introduced the Boosted Lasso al-
gorithms is able to produce the complete regulariza-
tion path for general convex loss function with convex
penalty. To summarize, we showed that

1. As a combination of both forward and backward
steps, a Boosted Lasso (BLasso) algorithm can be
constructed to efficiently produce the Lasso solu-
tions for general loss functions which can be proven
rigorously under the assumption that the loss func-
tion is convex and continuously differentiable.

2. Backward steps are critical for producing the Lasso
path. Without them, the Forward Stagewise Fit-
ting algorithm can be too greedy and in general
does not produce with Lasso solutions.

3. When the loss function is square loss, BLasso takes
a simpler and more intuitive form.

4. BLasso can be generalized to deal with general
convex loss function with convex penalty.

A Appendix: Proofs Theorem 3.1 claims “the BLasso path converges to

First, we offer a proof for Lemma 3.1. the Lasso path”, by which we mean:

Proof. (Lemma 3.1) 1. As e — 0, for V¢ s.t. AH1 < Xt 3t — 3*(\!) where
B*(\Y) is the Lasso solution for A = At
1. Suppose 3\, j,|s| = e s.t. T(elj;A) < T(0;N). We

have 2. For each € > 0, it takes finite steps to run BLasso.

Y - P . (Th 3.1
ST L(Zi:0) = Y L(Zis s15) > NI(s15) — AT(0), roof. (Theorem 3.1)
- = 1. Since L(Z;3) is strictly convex in 3, so T'(3;) is

therefore strictly convex in 8 for VA. So I'(8; A) has unique
Lo n minimum and has no stationary point except at the
A< _{Z L(Z;;0) — ZL(ZiE s1;)} minimum. Lemma 3..1 says Blasso floes steepest
€ 1 coordinate descent with fixed step size e. So we
1 & n only need to check if BLasso can get stuck around
< —{Z L(Z;;0) — rln‘m L(Z;;s15)} nonstationary points.
€ “ _e ~
; ’ =1 Consider at 3%, we look for the steepest descent on
1 . 0 the surface of a polytope defined by 3 = 3¢ + A
- Z{Z;L(Z“O Z;L Z::8°) where [|AB||1 = ¢, i.e.
= % (1.14) min AT(5' + A: \)
2. Since a backward step is only taken when subject to ||AB||1 = .
C(B D) < T(BE M), so we only need to consider
the forward step. When a forward step is forced, if Here
T(BH1; M) > (B AY), then AT = AL + M\AT.
n n . Since L is continuously differentiable w.r.t. 3, we
N2 A=Y L(Zs B < NT(BH)-NT(B), have
i=1 i=1 oL
(1.15) AL = ——AB; + o(e).
therefore ; 96;

n

1 _1 LAty - LAt
N = O B) - S Es) < X

i=1

And since T(8) = >_, |3;|, we have

(1.16) AT = sign™ (5", AB;)[| AB;].
J

which contradicts the assumption.

3. Since A*'! < A and X can not be relaxed by a Therefore as € — 0, (1.14) becomes a linear
bafckward step, we immediately have [|5't1]); = programming problem, for which the solution is
[3*|l1 + €. Then from always achieved on the edges where AS = s1; for

n n some j and |s| = e. Thus, to do steepest descent on
AL — l{z L(Zs 8" — Z L(Zs B)Y |AB||1, one only need to look on the coordinates.
€ . .
J J This indicates that, if T(8% Af) < T(B" + s1;;\F),
we get K X Vj, s where |s| = ¢, then T'(5%; \) < T(81 +AB; \Y),
F(ﬁt;)\t'H) = F(ﬁt+1;)\t+1). VAB where ||ASB|l1 = e. Now since T is strictly
Plus both sides by A —A**! times the penalty term, convex With_ u.nique -m-ini.mum 87(A), this must
and recall T(BtJrl) _ HBtJrlHl > |Bt||1 _ T(Bt% we means the minimum is inside the polytope:
get (1.17) 18 = Bl < e,

INCEPURESIS TSP

which gives the proof.
= min F(ﬁt + 5155 A")

J:lsl=e 2. First, suppose we have Ait1 < X, X'+ < A and
< (ﬂt + el A t < t'. Immediately, we have A' > A\t then
for Vj. This completes the proof. F(ﬂt';)\t’) < T(p")\t’) <T(p") < I‘(ﬂt/; AD).

43

Therefore
(5" N) = D875 0%) > D(8%) = D(5% A7),
from which we get
T(5") > T(5").

So the BLasso solution before each time A\ gets
relaxed strictly increases in L; norm. Then since
the L1 norm can only change on an e-grid, so A can
only be relaxed finite times till BLasso reaches the
unregularized solution.

Now for each value of A, since BLasso is always
strictly descending, the BLasso solutions never
repeat. By the same e-grid argument, BLasso can
only take finite steps before A has to be relaxed.

Combining the two arguments, we conclude that
for each € > 0 it can only take finite steps to run
BLasso.

References

(1]

Breiman, L. (1998). “Arcing Classifiers”, Ann. Statist.
26, 801-824.

Breiman, L. (1999). “Prediction Games and Arcing
Algorithms”, Neural Computation 11, 1493-1517.
Buhlmann, P. and Yu, B. (2001). “Boosting with the
L2 Loss: Regression and Classification”, J. Am. Statist.
Ass. 98, 324-340.

Donoho, D. and Elad, M. (2004). “Optimally sparse
representation in general(non-orthogonal) dictionaries
vy l1 minimization”, Technical reports, Statistics De-
partment, Stanford University.

Efron, B., Hastie,T., Johnstone, I. and Tibshirani,
R. (2002). “Least Angle Regression”, Ann. Statist. 32
(2004), no. 2, 407-499.

Freund, Y. (1995). “Boosting a weak learning algo-
rithm by majority”, Information and Computation
121, 256-285.

Freund, Y. and Schapire, R.E. (1996). “Experiments
with a new boosting algorithm”, Machine Learning:
Proc. Thirteenth International Conference, pp. 148-
156. Morgan Kauffman, San Francisco.

Friedman, J.H., Hastie, T. and Tibshirani, R. (2000).
“Additive Logistic Regression: a Statistical View of
Boosting”, Ann. Statist. 28, 337-407.

Friedman, J.H. (2001). “Greedy Function Approxima-
tion: a Gradient Boosting Machine”, Ann. Statist. 29,
1189-1232.

Hansen, M. and Yu, B. (2001). “Model Selection and
the Principle of Minimum Description Length”, J. Am.
Statist. Ass. Vol. 96, 746-774.

44

(11]

(14]
(15]

(16]

(17]

Hastie, T., Tibshirani, R. and Friedman, J.H.
(2001).The Elements of Statistical Learning: Data
Mining, Inference and Prediction, Springer Verlag,
New York

Li, S. and Zhang, Z. (2004). “FloatBoost Learning
and Statistical Face Detection”, IEEE Transactions
on Pattern Analysis and Machine Intelligence Vol 26,
1112-1128

Mason, L., Baxter, J., Bartlett, P. and Frean, M.
(1999). “Functional Gradient Techniques for Combin-
ing Hypotheses”, In Advance in Large Margin Classi-
fiers. MIT Press.

Rosset, S. (2004). “Tracking Curved Regularized Opti-
mization Solution Paths”, NIPS 2004, to appear.
Schapire, R.E. (1990). “The Strength of Weak Learn-
ability”. Machine Learning 5(2), 1997-227.
Tibshirani, R. (1996). “Regression shrinkage and selec-
tion via the lasso”, J. R. Statist. Soc. B, Vol. 58, No.
1., pp. 267-288.

Zhu, J. Rosset, S., Hastie, T. and Tibshirani, R.(2003)
“l-norm Support Vector Machines”, Advances in Neu-
ral Information Processing Systems 16. MIT Press.

Feature Selection with a General Hybrid Algorithm

Jerffeson Souza*

Abstract

Feature subset selection algorithms can be classified into
three broad categories: filters, wrappers and hybrid algo-
rithms. In this paper, we develop a framework to help us
classify and study hybrid solutions for the feature selection
problem. In addition, we propose a new general hybrid
solution named FortalF'S. This algorithm uses results from
another feature selection system as a starting point in the
search through subsets of features that are evaluated by a
machine learning algorithm. The search is performed in a
stochastically guided fashion. FortalFS is empirically shown
to outperform several well-known filter and wrapper feature
selection algorithms.

Keywords: FortalF'S, Hybrid Feature Selection, Ma-

chine Learning.

1 Introduction

Classification is a key problem in machine learning.
Algorithms for classification have the ability to predict
the outcome of a new situation after having been
trained on data representing past experience. A number
of factors influence the performance of classification
algorithms, including the number and quality of features
provided to describe the data, the training and testing
data distribution, and others. The factor we focus on
in this paper is the number and quality of features
present in the sample data. The Feature Selection
problem involves discovering a subset of features such
that a classifier built only with this subset would have
better predictive accuracy than a classifier built from
the entire set of features. Other benefits of feature
selection include a reduction in the amount of training
data needed to induce an accurate classifier, that is
consequently simpler and easier to understand, and a
reduced execution time. In practice, feature selection
algorithms will discover and select features of the data
that are relevant to the task to be learned.

Feature subset selection algorithms can be classified
into three broad categories based on whether or not fea-
ture selection is done independently of the learning algo-
rithm used to construct the classifier. If feature selection

~ *Computer Science Department, Federal University of Cear4,
Fortaleza, Ceara, 60.455-760, Brazil.

fSchool of Information Technology and Engineering, Univer-
sity of Ottawa, Ottawa, Ontario, KIN 6N5, Canada.

£School of Information Technology and Engineering, Univer-
sity of Ottawa, Ottawa, Ontario, KIN 6N5, Canada.

45

Nathalie Japkowicz

Stan Matwin®

is performed independently of the learning algorithm,
the technique is said to follow a filter approach. Other-
wise, it is said to follow a wrapper approach. While the
filter approach is generally computationally more effi-
cient than the wrapper approach, its major drawback
is that an optimal selection of features may not be in-
dependent of the inductive and representational biases
of the learning algorithm that is used to construct the
classifier. The wrapper approach on the other hand,
involves the computational overhead of evaluating can-
didate feature subsets by executing a selected learning
algorithm on the dataset represented using each feature
subset under consideration. A combination of these two
approaches, that is, the use of two evaluation methods
(a filter-type evaluation function and a classifier) creates
a hybrid solution. Hybrid solutions attempt to combine
the good characteristics of both filters and wrappers.
For a more detailed overview of previous work in fea-
ture selection research on filters and wrappers please
see [4].

The remainder of this paper is composed of five
sections. Section 2 presents a framework for hybrid
feature selection algorithms. Section 3 presents our
general hybrid approach for feature selection, FortalF'S.
In Section 4, we discuss how FortalF'S relates to the
framework. Section 5 presents an empirical evaluation
of our method. Finally, Section 6 concludes the paper
by summarizing its contributions.

2 A Framework for Hybrid Feature Selection

2.1 Introduction Only a few hybrid solutions for
feature selection have been proposed thus far. By tak-
ing into consideration both the type of filter evaluation
measure and the classifier used by hybrid feature se-
lection algorithms, we are able to introduce a frame-
work to help us organize and study hybrid methods.
The filter evaluation methods used in our framework
are based on Distance, Information Gain, Dependency
and Consistency. These classes of evaluation functions
have been described previously in [6]. The classifiers are
Decision Tree, k-Nearest Neighbour, Gaussian classifier
and “Others”. The “Others” class is used to indicate
that the algorithms may employ any other learning al-
gorithm.

2.2 The Framework Table 1 presents the frame-
work for hybrid feature selection algorithms. In the
table, a plus sign () next to a particular method in
a certain category indicates that such a method can
be adapted to fall under this category, even though no
practical attempt has been made to do so.

In [12], the authors start by proposing a new crite-
rion to estimate the relevance of features called Relative
Certainty Gain (RCG)!. The RCG evaluation method
assumes that the leaner’s ability to correctly classify la-
bel instances depends on the existence of wide geomet-
rical structures (characterized using a Minimum Span-
ning Tree built on the learning data) of identical la-
bel points. Next, a new filter for feature selection is
proposed, where subsets are generated by a greedy for-
ward selection algorithm and evaluated according to the
RCG measure. The authors then address the similar-
ities between the Minimum Spanning Tree (MST) and
the 1-Nearest Neighbour (1-NN) graph, which allows
for the replacement of the MST by the 1-NN graph.
The 1-NN graph besides being less expensive to com-
pute also helps shifting the behaviour of the proposed
feature selection algorithm toward wrapper approaches,
even though classification accuracy is not used.

The filter component of Xing, Jordan and Karp’s
hybrid algorithm [15] is build in three phases. Ini-
tially, unconditional univariate mizture modeling is used
mainly to discretize the measurements for a given fea-
ture. Next, the algorithm ranks all features according
to an information gain measure which is used as initial
filter. The remaining features are then passed to the
more computationally expensive third phase. In this fi-
nal filter step, the authors propose the use of markov
blanket filtering to select subsets of features for each
subset cardinality. Finally, each subset is evaluated via
cross validation and the best one is returned.

Bala and others [2] propose a feature selection
hybrid strategy that integrates genetic algorithms and
decision tree learning. In their algorithm, a genetic
system drives the search for subsets of features. The
fitness value for each subset F' to be maximized is
expressed as: Fitness(F) = Inf(F) — Cost(F) +
Acc(F). Inf(F) is a value based on a technique
that estimates the discriminatory power of each feature
calculated using an entropy measure. Cost(F) is a
simple measure of cost which is directly proportional
of the cardinality of subset F. Finally, Acc(F) is a
measure of the classification accuracy of feature subset
F obtained by inducing a decision tree.

TSince this new evaluation method is similar to the Information

Gain criterion used by several filter feature selection algorithms,
we have considered this feature selection method to fall under the
Information Gain category.

46

The BBHF'S (Boosting Based Hybrid Feature Selec-
tion) algorithm [5] is an extension of the filter BDSF'S-
2. The BDSFS (Boosted Decision Stump Feature Se-
lection) algorithm [5] applies a forward selection search
strategy. The selection of the next feature to be consid-
ered is based on the information gain criterion and takes
into consideration the weight of each dataset instance.
This selected feature is then added to the set that will
be returned and used to create a decision stump (used
as the weak learner), which updates the weights of the
dataset examples by assigning higher weights to exam-
ples that have often been misclassified in this round.
The process repeats until a pre-specified number of fea-
tures has been selected, in a process very similar to
boosting. A variant of this algorithm, referred to as
BDSFS-2, avoids the pre-specification of the number of
features to be returned. To achieve that, new features
should be added to the final subset as long as this addi-
tion results in increased training accuracy. In BBHFS,
a learning algorithm is used to drive the search. For
that matter, the reweight process is changed so that
the weak hypothese used in each round of the boosting
process are the concepts the learning algorithm would
learn from the unweighted training set when using just
the features in the set thus far. However, both the se-
lection of the next feature to be added, performed on
the basis of weighted information gain, and stopping
criterion remain the same as in BDSFS-2.

The hybrid algorithm ADHOC [11] comprises two
main steps, namely the Data Reduction step and the
Feature Selection step. In the first step an iterative
process is applied to explore dependencies between data
and to partition the set of observed features into a
small number of clusters (factors). The search for true
association between the data is based on the concept
of feature profile, that denotes which other features one
is related to. In the feature selection step, ADHOC
selects at most one feature from each of the factors
(data dimension) that has been discovered in the data
reduction step by using a wrapper approach. Several
heuristics were investigated in this phase, with genetic
algorithms (GA) having excellent results. In addition
to its selection capabilities, ADHOC is able to rank the
features by analyzing the distribution of features in the
final population generated by the genetic algorithm.

2.3 Discussion We can make a few remarks about
the framework for hybrid feature selection algorithms
described above. First, it is clear that the number of
hybrid solutions proposed to this date is still very small.
Second, one can verify that there is a concentration of
methods based on only a few learning systems. Finally,
we can confirm that there is a considerable number

Filter Classifier
Evaluation Decision k-Nearest Gaussian Others
Measure Tree Neighbour Classifier
Distance
Information Bala96 BBHFS | Sebban02 Xing01 Xing01+
Gain Xing01™ Xing01
Dependency ADHOC ADHOC™ ADHOC™ ADHOC™
Consistency

Table 1: A Framework for Hybrid Feature Selection.

of combinations of evaluation methods that have not
been tried. In addition, even though Xing0l and
ADHOC allow for the use of any classifier, no practical
attempt has been made to use the bias of other learning
algorithms such as Naive Bayes, Neural Nets, SVM, and
others.

As a conclusion, it is reasonable to assume that
the feature selection field could benefit from a general
hybrid algorithm that could assume any position in
the framework just by “plugging” different evaluation
methods. That flexibility would allow for such an
algorithm to have its behaviour shifted when required.

3 The FortalFS Algorithm

The idea behind FortalF'S is to extract and combine the
best characteristics of filters and wrappers into one al-
gorithm, namely, an efficient heuristic used to search
through subsets of features and a precise evaluation cri-
terion, respectively. Thus, the FortalF'S algorithm uses
results from another feature selection system as a start-
ing point in the search through subsets of features that
are evaluated by a machine learning algorithm. There-
fore, with an efficient heuristic, we can decrease the
number of subsets of features to be evaluated by the
learning algorithm, consequently decreasing computa-
tional effort (the major advantage of filters) and still
be able to select an accurate final subset (the major
advantage of wrappers).

Initially, the k best subsets returned by a single run
of a feature selection system (or the single results of k
different runs, if such an algorithm returns only one best
subset per execution) are stored into a two-dimensional
array, see Figure 1. This array will then be condensed
into a new array, called Adam, that will simply store
the number of times each feature appeared in the k
best subsets. Next, FortalF'S will iteratively generate
new subsets of features in a stochastically guided fashion
using Adam as a seed and evaluate them with a learning
system. The generation of a new subset is such that
features with high value in Adam have a better chance

47

of being selected than those with a low one at each
iteration. At the end, the subset with best accuracy
will be returned. If subsets tie it terms of accuracy, the
one with the lowest cardinality is returned.

FortalFS(D, Numlter)

O = FeatureSelector(D)
Adam = CalculateAdam(O)
for i =1 to Numlter
S = GenerateSubset(Adam)
if ErrorRate(S, D) < ErrorRate(Spest, D) then
Sbest =S
else
if ErrorRate(S, D) = ErrorRate(Spest, D) and
Card(S) < Card(Spest) then
Sbest =S
return Spest

where:
D - dataset.
Numlter - number of iterations.

Figure 1: The FortalF'S Algorithm.

We describe next, in detail, each of the methods
used by FortalFS.

FeatureSelector(D) runs a feature selection system
getting the k best subsets generated and storing
them into the two-dimensional vector O.

There are a few characteristics that make a feature
selection algorithm suitable to be used as under-
lying algorithm in FortalF'S. First, the algorithm
must be non-deterministic, otherwise, the k best
subsets would be the same and FortalF'S would con-
sequently select this same subset all the time. For
instance, the Focus algorithm [1] is not a good can-
didate because of its deterministic behaviour. Sec-
ond, it should be ideally an anytime algorithm, that
is, being able to output several partial results dur-
ing processing. This way, one can obtain the k best

results in one single run of the algorithm. LVF [9]
is an example of such algorithms. Finally, the algo-
rithm should in fact be a selection algorithm, not a
weighting algorithm such as the original Relief al-
gorithm [8]. However, FortalF'S can be modified to
work with feature weights directly. We present and
evaluate this modification later on.

CalculateAdam(O) uses the following equation:
Adam = {a;,1 <i<n}

where: a; =) 05, with1 <j<kand1<i<n.

to create the Adam vector, which stores the number
of occurrences of each feature in O.

GenerateSubset(Adam) generates a new subset of
features S in a stochastically guided fashion using
Adam as a seed. The generation process works as
described below. Let ¢ denote a particular feature
in Adam. Let S be a vector of n elements where
n is the total number of features in O. Element
S; (of §) = 1 if feature 4 is included in the subset
of features represented by S. S; = 0, otherwise.
Vector S is computed as follows:

S; =1, if a; > random(k) and S; = 0 otherwise,

where random(k) returns a random number be-
tween 0 and k.

This procedure is such that features with high
frequency have a better chance of being selected
than those with a low one at each iteration.

ErrorRate(S, D) makes use of a learning algorithm,
inputting the subset S to generate a prediction
model and receiving the error rate calculated for
this model over dataset D.

4 FortalFS in the Hybrid Feature Selection
Framework

Some research in the feature selection field have focused
on the development of hybrid solutions. Researchers
have been trying to combine different evaluation func-
tions and learning algorithm biases in order to find a
good match that will improve selection, as exempli-
fied in the framework for hybrid features selection al-
gorithms described previously.

The FortalF'S algorithm, as described in the previ-
ous section, allows the use of any evaluation criterion as
well as any learning system in a way that different com-
binations can be applied. This flexibility permits us to
shift the FortalF'S behaviour toward different categories
under the hybrid feature selection framework. In fact,

48

FortalF'S is a general hybrid solution that can be con-
figured to assume any position in the framework just by
attaching different evaluation methods.

5 Empirical Evaluation

In this section, we first describe our experimental setting
and then present and discuss our results.

5.1 Methodology In order to evaluate FortalF'S,
several feature selection algorithms were implemented
and their performances compared to our new hybrid
algorithm. The algorithms used are Best-First Search
[16], Genetic Search (GA) [14], LVF [9], Relief* [g],
Focus [1], Forward Wrapper [7], Backward Wrapper [7]
and a Random Wrapper®. We performed then a series
of experiments using three different classifiers (C4.5,
Naive Bayes and k-Nearest Neighbour) and 13 datasets
from the UCT Repository [3]: Credit (15 features, 690
instances), Labor (16, 57), Vote (16, 435), Primary
Tumor (17, 339), Lymph (18, 148), Mushroom (22,
8124), Colic (23, 368), Autos (25, 205), Ionosphere (34,
351), Soybean (35, 683), Splice (60, 3190), Sonar (60,
208), Audiology (69, 226).

Performance measures such as the accuracy of the
selected subset, the time used for selection and the
number of features selected were obtained in each
experiment. The accuracy for each selected subset was
obtained as follows: the original dataset was randomly
and equally split into a selection set and a testing
set. The feature selection in all cases was performed
considering only the selection set. For the wrappers
we evaluated the subsets of features with 5-fold cross
validation on the selection set. Finally, the selected
subset was then evaluated using 5-fold cross validation
on the testing set. All methods are compared using this
independent evaluation to avoid the overfitting problem
discussed in [10].

5.2 Experimental Settings The following configu-
rations were used in the experiments: for the BestFirst
algorithm the number of non-improving expansions be-
fore termination was set to 5. For the Genetic algo-
rithm maximum number of populations is 200, the size
of each population was set to 50, the mutation proba-
bility is 0.001 and crossover probability is 0.6. For LVF
the inconsistency threshold is initial inconsistency of the
dataset and the number of iterations is 77 - N°, where

2The Relief version we use in our experiments is a “selection”

version of the original “weighting” Relief algorithm.

31n this random wrapper, adapted from [7], subsets of features
are iteratively and randomly generated and evaluated with the
help of a machine learning algorithm. At the end, the subset with
best accuracy is returned.

24

FFS FS10 FS8 Rel BWR FS6

FWR

NFS

B-F Gen Foc WI1ON NN2 LVF

algorithm

Figure 2: Overall performance of all algorithms in terms of accuracy. Number of experiments which each algorithm

performed the best or tied with the best.

N is the number of features in the original dataset. The
number of iterations in Relief is number of instances in
the dataset, the number of Near Hits and NearMisses
considered was set to 10 and the selection threshold to
0.01. For the Random Wrappers the number of itera-
tions is 10- N and N2. Finally, for FortalF'S the number
of iterations tried are 6 - N, 8 - N and 10 - N, the un-
derlying selection algorithm is LVF and k was set to
10.

5.3 Experimental Results and Analysis In the
next section, we will present and discuss the results*
obtained in our experiments with FortalF'S and other
feature selection algorithms in a general manner.

5.3.1 Overall Results and Analysis As shown
in Figure 2, the three FortalFS settings (FS10, FS8
and FS6) are among the best algorithms in terms of
accuracy. FortalFS(10- N) had the best performance in
12 cases, FortalF'S(8 - N') and Relief in 7, the Backward
Wrapper in 6, and FortalFS(6 - N) and the Forward
Wrapper in 5. When considering the best FortalFS
result in each case (FFS), FortalF'S performs at least
as well as all other algorithms in 24 out of the 39
experiments.

As expected, the FortalF'S performance was pro-
portional to the number of subsets considered, that is,
FortalF'S(10 - N) performed better than FortalF'S(8- V)
that was better than FortalF'S(6 - N).

The Random Wrappers did worse than FortalF'S,

ZThe following acronyms will be used on the tables/figures to
refer to each algorithm: NFS (No feature Selection - C4.5, Naive
Bayes or k-Nearest Neighbour with original dataset), FFS (best
FortalF'S result among the three settings), FS10 (FortalFS(10 -
N)), FS8 (FortalFS(8 - N)), FS6 (FortalFS(6 - N)), FWR (For-
ward Wrapper), BWR (Backward Wrapper), W10N (Random
Wrapper(10-N)), WN2 (Random Wrapper(N?)), B-F (Best-First
Search), Gen (Genetic Search), LVF (LVF), Rel (Relief), Foc (Fo-
cus).

49

Forward and Backward Wrappers in most cases. An im-
portant and expected conclusion that can be extracted
from this result is that the strength of FortalF'S, For-
ward and Backward Wrappers come also from the search
heuristic they apply and not only from their strong eval-
uation method.

In terms of time consumption (Figure 3), as ex-
pected, the wrappers and FortalFS are down in the list,
which shows the impact of the evaluation method. How-
ever, the three FortalF'S settings were faster than all
wrappers.

Figure 4 shows the percentage of the features se-
lected by each algorithm. The Forward Wrapper, Best-
First and Genetic algorithms selected the smallest num-
ber of features overall choosing respectively 16.91%,
19.76% and 21.95% of all features. FortalF'S was able to
achieve a dimensionality reduction of over 60% and still
select very accurate subsets. The Backward Wrapper,
with 1072 features selected (87.15%), is on the top of
the list.

5.3.2 Pairwise Comparisons In this section, we
examine with more details the differences in terms of
accuracy obtained in the experiments between FortalF'S
and the three filters (LVF, Focus and Relief) along with
the wrappers (Forward, Backward and Random). Table
2 summarizes the results of these pairwise comparisons.

By comparing the results obtained with FortalF'S
versus LVF, we can get a good measure of the ability
of the first algorithm to improve the performance of the
second (since we used LVF in our FortalF'S implemen-
tation as underlying feature selector). Table 2 shows us
that FortalFS significantly (at least within the 0.1 sig-
nificance level) outperformed LVF in 27 out of the 39
experiments and it is significantly outperformed only
once.

Specifically compared to Focus, FortalF'S outper-
formed this algorithm in 30 cases (significantly in 25 of
them) and it is outperformed only in 6.

4983

2300
695 849
1 1 11 22 35 318 M7 515
. . . . s T e B o
B.F Gen LVF Foc Rel FS6 FS8 FS10 FWR WION BWR WN2
algorithm

Figure 3: Overall time consumption (in minutes)

for each algorithm considering all experiments.

36.34 37.8 38.21

19.76 21.95

76.59 87.15

48.21 48.72

38.37 38.62

FWR B-F Gen LVF Foc FS6 FS8 FS10 WN2 WION Rel BWR
algorithm

Figure 4: Percentage of the features selected by each algorithm in all experiments from a total number of 1230

features.

<0.001 | <0.005 | <0.01 | >0.01
FortalF'S vs LVF 19x0 4x0 4x1 6 x 3
FortalF'S vs Focus 21x1 4x2 O0x1 5x2
FortalF'S vs Relief 14 x4 5x2 0x0 7x6
FortalFS vs Forward Wrapper 14 x 2 1x1 4x1 9x3
FortalF'S vs Backward Wrapper 14 x 3 2x0 2x0 8x9
FortalFS vs Random Wrapper (N?) 10 x 2 3x1 3x1 | 11x4

Table 2: Score of the number of experiments (out of 39) each algorithm performed better within each significance
level (calculated with the student’s t-test). A score “A x B” for a certain algorithm f and significance level s
means that the best FortalFS setting performed better than f within s A times. Similarly, it also means that
algorithm f outperformed the best FortalF'S setting B times within s.

Relief was the filter algorithm that performed the
best in terms of accuracy overall. It was able to
perform as well as FortalFS(8 - N'). However, when one
considers the best FortalF'S result, Relief is significantly
outperformed in about half of the time.

The importance of the comparison between Fort-
alFS and both Forward and Backward Wrappers relies
on the fact that all these algorithms take advantage of
the same evaluation method. Such a fact give us a com-
mon background to analyse exclusively the performance
differences between the search heuristics. With that in
mind one can conclude that the FortalF'S search method
performs better in most cases. In fact, FortalF'S outper-
formed the Forward Wrapper algorithm within the 0.01
significance level in 14 experiments (out of 39), and in
other 5 within 0.1. On the other hand, the wrapper did
significantly better in 4 cases. When we compare the

50

performance of FortalF'S with the Backward Wrapper,
we find somehow similar results to what was found with
the Forward Wrapper. Indeed, FortalF'S outperformed
significantly the Backward Wrapper 18 times and it is
outperformed only 3.

By comparing FortalF'S and a Random Wrapper,
we are able to analyse the relative effect of the search
heuristic applied by FortalF'S in the selection process.
Here, we decided to study the performance differences
between FortalF'S and our best random wrapper, that
uses N? iterations. From Table 2 we can see that
even when using a much smaller number of iterations,
FortalFS(10 - N) outperforms the Random Wrapper in
27 out of the 39 cases and is outperformed in 8 others.

For detailed results and analyses of the results,
including pairwise comparisons between FortalF'S and
all other feature selection algorithms used in these

experiments regarding the number of features selected
by each algorithm and the time required for selection,
please see [13].

5.4 Final Remarks The results presented here show
that FortalF'S significantly outperformed well-known fil-
ters in our study, namely LVF, Focus and Relief. In
addition, since the FortalF'S, Forward, Backward and
Random Wrapper algorithms share the same evaluation
technique, the experiments give us a good background
to compare the different search heuristics. The experi-
mental results allow us to conclude, first, that the ab-
sence of a non-random search heuristic hurts the selec-
tion process. In addition, we could find a clear difference
in terms of performance between the FortalF'S search
strategy and the forward and backward searches in fa-
vor of FortalF'S. The most relevant conceptual difference
between the FortalF'S and forward and backward search
strategies is the fact that the last two are greedy meth-
ods. As such, both sequential methods result in nested
feature subsets in a way that features included to the
final subset to be returned cannot be removed later on
the process, which can cause performance problems.

6 Conclusion

In this paper, we have first developed a framework for
classifying hybrid feature selection algorithms by taking
into consideration both the type of filter evaluation
measure and the classifier used by such methods. From
the study of this framework a few facts may come to
one’s attention in what refers to hybrid solutions. First,
one can conclude that more research in this area could
bring benefits. Furthermore, it could be useful to have a
general algorithm that could assume any position in the
framework by employing different evaluation methods
at different times.

With that in mind, we designed FortalF'S, a new
general hybrid solution for the feature selection problem
in machine learning. The results obtained in our
experiments demonstrated the power of FortalFS in
selecting relevant features. The fact that FortalF'S
selected more accurate subsets than any other algorithm
and it achieves that faster than all wrappers proves
the potential of this new hybrid solution for feature
selection.

References

[1] H. Almuallim and T.G. Dietterich. Learning with
many irrelevant features. In Proceedings of the
Ninth National Conference on Artificial Intelligence
(AAAT’91), volume 2, pages 547-552, Anaheim, CA,
1991. AAAT Press.

51

[2] J. Bala, K. DeJong, J. Huang, H. Vafaie, and H. Wech-
sler. Using learning to facilitate the evolution of fea-

tures for recognizing visual concepts. FEwvolutionary
Computation, 4(3):297-311, 1996.

[3] C.L. Blake and C.J. Merz. UCI reposi-
tory of machine learning databases, 1998.

http://www.ics.uci.edu/~mlearn/MLRepository.html.

[4] A. Blum and P. Langley. Selection of relevant features
and examples in machine learning. Artificial Intelli-
gence, 97(1-2):245-271, 1997.

[5] S. Das. Filters, wrappers and a boosting-based hybrid
for feature selection. In Proceedings of the Fighteenth
International Conference on Machine Learning, 2001.

[6] M. Dash and H. Liu. Feature selection for classifi-
cation. Intelligent Data Analysis - An International
Journal, 1(3):131-156, 1997.

[7] G.H. John, R. Kohavi, and K. Pfleger. Irrelevant fea-
tures and the subset selection problem. In Proceedings
of the Eleventh International Conference on Machine
Learning (ICML’94), pages 121-129, 1994.

[8] K. Kira and L.A. Rendell. A practical approach to
feature selection. In Proceedings of the Ninth Interna-
tional Workshop on Machine Learning, pages 249-256,
Aberdeen, Scotland, 1992. Morgan-Kaufmann.

[9] H. Liu and R. Setiono. A probabilistic approach to
feature selection - a filter solution. In Proceedings of
the Thirteenth International Conference on Machine
Learning (ICML’96), pages 319-327, 1996.

[10] J. Reunanen. Overfitting in making comparisons be-
tween variable selection methods. Journal of Machine
Learning Research, 3:1371-1382, 2003. Special Issue
on Variable and Feature Selection.

[11] M. Richeldi and P. Lanzi. ADHOC: A tool for per-
forming effective feature selection. In Proceedings of
the International Conference on Tools with Artificial
Intelligence, pages 102—-105, 1996.

[12] M. Sebban and R. Nock. A hybrid filter/wrapper
approach of feature selection using information theory.
Pattern Recognition, (35):835 846, 2002.

[13] J.T. Souza, S. Matwin, and N. Japkowicz. Feature
Selection with a General Hybrid Algorithm. PhD
thesis, University of Ottawa, School of Information
Technology and Engineering (SITE), Ottawa, ON,
2004.

[14] H. Vafaie and K. De Jong. Genetic algorithms as
a tool for feature selection in machine learning. In
Proceedings of the Fourth International Conference
on Tools with Artificial Intelligence, pages 200-204,
Arlington, VA, 1992.

[15] E.P. Xing, M.I. Jordan, and R.M. Karp. Feature se-
lection for high-dimensional genomic microarray data.
In 18th International Conference on Machine Learn-
ing, pages 601-608, San Francisco, CA, 2001. Morgan
Kaufmann.

[16] L. Xu, P. Yan, and T. Chang. Best first strategy for
feature selection. In Proceedings of the Ninth Interna-
tional Conference on Pattern Recognition, pages 7T06—
708. IEEE Computer Society Press, 1989.

Minimum Redundancy and Maximum Relevance Feature
Selection and Recent Advances in Cancer Classification

Hanchuan Peng *? and ChrisDing *

! Genomics Division, 2Life Sciences Division, and 3 Computational Research Division,
Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, USA

Abstract

In many biomedical and pattern recognition applica-
tions, it is often important to consider the vari-
able/feature selection problem, for instance, how to
select a small subset out of the thousands of genes in
microarray data is a key to accurate classification of
phenotypes. This technique is especially useful for
cancer diagnosis/classification/prediction. Widely used
methods typically rank genes according to their differ-
ential expressions among phenotypes and pick the top-
ranked genes. We observe that feature sets so obtained
have certain redundancy and study methods to mini-
mize it. We have proposed a minimum redundancy —
maximum relevance (MRMR) feature selection frame-
work. Genes selected via MRMR provide a more bal-
anced coverage of the space and capture broader char-
acteristics of phenotypes. They lead to significantly
improved class predictions in extensive experiments on
6 cancer gene expression data sets: NCI, Lymphoma,
Lung, Child Leukemia, Leukemia, and Colon. Im-
provements are observed consistently among 4 classifi-
cation methods: Naive Bayes, Linear discriminant
analysis, Logistic regression and Support vector ma-
chines.

Keywords: Cancer classification, Gene selection, Gene
expression analysis, Redundancy, Relevance, Depend-
ency

1. MRMR Feature Selection Methods

For cancer diagnosis based on DNA microarray
gene expression profiles, feature selection or gene
marker selection is especially useful. Instead of using
all available variables (features or attributes) in the
data, one selectively chooses a subset of features to be
used in the discriminant system. Typically, of the tens
of thousands of genes in experiments, only a smaller
number of them show strong correlation with the tar-
geted phenotypes. For example, for a two-class cancer
subtype classification problem, 50 informative genes
are usually sufficient [13]. There are studies suggesting

52

that only a few genes are sufficient [22][32]. Thus,
computation is reduced while prediction accuracy is
increased via effective feature selection. When a small
number of genes are selected, their biological relation-
ship with the target diseases is more easily identified.
These "marker" genes thus provide additional scientific
understanding of the problem.

Many possible feature selection methods can be
roughly categorized as two general approaches: filters
and wrappers [17][19]. Filter type methods select fea-
tures based on the intrinsic data characteristics, which
determine the relevance or discriminant powers of the
selected features with regard to the target classes. Sim-
ple methods based on mutual information [4], statisti-
cal tests (t-test, F-test) have been shown to be effective
[13][7][10][23]. More sophisticated methods are also
developed [18][3]. Filter methods can be computed
easily and very efficiently. The characteristics in the
feature selection are uncorrelated to that of classifiers.
Therefore they have better generalization property. In
wrapper type methods, feature selection is "wrapped"
around a classifier: the usefulness of a feature is di-
rectly judged by the estimated classification accuracy
of specific classifier. One can often obtain a compact
set of features [17][5][22][32], which give high predic-
tion accuracy, because these features match well with
the characteristics of the classification method. Wrap-
per methods typically require extensive computation to
search the best features.

One simple way to use filters is to simply select
the top-ranked genes, say the top 50 [13]. A deficiency
of this approach is that the features could be correlated
among themselves. For example, if gene g; is ranked
high for the classification task, other genes highly cor-
related with g are also likely to be selected. It is fre-
quently observed [22][32] that simply combining a
"very effective" gene with another "very effective"
gene does not form a better feature set. One reason is
that these two genes could be highly correlated. This
suggests "redundancy" of feature set is one critical is-
sue to consider. For a long time, people already real-
ized the "n best features are not the best n features" [6],
and used many implicit methods (e.g. wrappers or

floating searching of filters) to remove the redundancy.
Recently, there appear a few specific models
[28][8][9][34][16] to minimize the redundancy in the
selected features and improve the prediction perform-
ance.

One framework proposed in our earlier work is
called minimum redundancy — maximum relevance
(MRMR) feature selection [8]. The idea is to select
features which are maximally dissimilar to each other
(for example, their Euclidean distances are maximized,
or they have correlation close to 0). These minimum
redundancy criteria are supplemented by the usual
maximum relevance criteria such as maximal mutual
information with the target phenotypes (classification
variable). The benefits of MRMR are two-fold. (1)
With the same number of features, we expect the
MRMR feature set to be more representative of the
target phenotypes, therefore leading to better generali-
zation property. (2) Equivalently, we can use a smaller
MRMR feature set to effectively cover the same space
as a larger conventional feature set does.

The MRMR principle is easy to implement in a va-
riety of forms, as shown in [8]. For example, one way
is to consider the mutual information of variables as the
quantity of both relevance and redundancy. The mutual
information | of two variables X and y is defined based
on their joint probabilistic distribution p(Xy) and the
respective marginal probabilities p(X) and p(y):

p(Xi ’ yj)
P(X) pCY;)
the target classification variable, and @; denote the ith

selected feature. We define the redundancy and rele-
vance as:

(X, y) = Z p(X,Y;)log Let h be
Y]

_ 1 ..
V\/I _\S\zi,jzeSI(I’J)’ (1)
V=% Z1(hi), @)

where for simplicity we have used I(i,j) to represent
1(9,,9), I(h,i) for I(h,g). |§ (= m) is the number of fea-
tures in S

The MRMR feature set is obtained by optimizing
the conditions in Egs.(1) and (2) simultaneously. Opti-
mization of both conditions requires combining them
into a single criterion function. The simplest combina-
tions are Mutual Information Difference (MID) in Eq.
(3) and Mutual Information Quotient (MIQ) in Eq. (4).
The simple linear incremental search can be used to
produce the expected number of features.

max(V, —W,),
max(V, /W,).

(€)
4)

53

We note that another feature selection model in
[34] which considers the information gain is similar to
our MRMR approach. One difference is that our
MRMR is a more general framework which can be
implemented in many different ways [8] including but
not being limited to mutual information or information
gain. Particularly, in [28], for mutual information, we
have also reformulated the feature selection problem as
the Max-Dependency problem, which searches a subset
of variables/features so that their joint distribution has
the maximum statistical dependency on the target clas-
sification variable. Using information theory, we have
proved that MRMR is an optimal first-order approxi-
mation for the generic Max-Dependency feature selec-
tion criterion, which is combinatorial in nature and
often less robust/efficient than MRMR. In [28], we
have also proposed and discussed different combina-
tions of the MRMR method with other feature selection
schemes like wrappers in forward, backward and float-
ing search schemes. In addition, the MRMR scheme
can also be used to learn the Bayesian networks
[27][29][14] and applied to other model selection prob-
lems (unpublished data).

2. MRMR for Cancer Classification

Cancer classification is one typical application of
feature/gene selection. In the following, we present a
comprehensive investigation to answer a few questions
in subsections §2.1 ~ 2.5. We consider 4 most used
classifiers and 6 microarray gene expression datasets
for cancer classification.

The 4 classifiers include

= Naive Bayes (NB),

= Support Vector Machine (SVM),

= Linear Discriminant Analysis (LDA), and
= Logistic Regression (LR).

These 6 datasets are summarized in Tables 1 and
2, including

= 2 two-class datasets (Leukemia [13] and colon
cancer [2]) and

= 4 multi-class datasets (NCI [30][31], Lung
cancer [12], Lymphoma [1] and child leuke-
mia [21][33]).

For the first 5 datasets, we assessed classification
performance using the "Leave-One-Out Cross Valida-
tion" (LOOCYV). CV accuracy provides a realistic as-
sessment of classifiers which generalize well to unseen
data. For the child leukemia data, we selected features
using only the training data, and show the testing errors
on the testing set in Table 3. This gives an example
where the testing samples have never been met in fea-
ture selection process.

Table 1. Two-class datasets used in our experiments

DATASET LEUKEMIA COLON CANCER
SOURCE Golub et al (1999) Alon et al (1999)
GENE 7070 2000
SAMPLE 72 62
CLASS | CLASS NAME | # SAMPLE | CLASS NAME |# SAMPLE
Cl ALL 47 Tumor 40
C2 AML 25 Normal 22

Table 2. Multi-class datasets used in our experiments (#Sisthe number of samples)

DATASET NCI LUNG CANCER LYMPHOMA CHILD LEUKEMIA
Ross et al (2000) . Yoeh et al (2002)

SOURCE Scherf et al (2000) Garber et al (2001)| Alizadeh et al (2000) Li et al (2003)

GENE 9703 918 4026 4026
#S 60 73 96 96

CLASS 9 7 9 9

CLASS |CLASSNAME [#S |CLASSNAME |#S CLASSNAME |#S| CLASSNAME #S
Cl | NSCLC |9 | AC-group1 |21 | Diffuselaree gl pep apr | o6
B cell lymphoma
2 Renal | 9 | Squamous |16 | ChromicLympho- 1y} pyp ppyy | 189
leukemia
C3 Breast 8 | AC-group-3 | 13 | Activated blood B | 10 | Hyperdiploid>50 | 42/22
C4 Melanoma | 8 | AC-group-2 | 7 Follicular 9 MLL 14/6
lymphoma
cs Colon | 7| Nommal |6 | Restng/ ¢ T-ALL | 28/15
activated T
C6 | Leukemia | 6 | Small-cell | 5 | Transformed o ppp anvpr o | 5227
cell lines

C7 Ovarian 6 Large-cell 5 | Restingblood B | 4 Others 52/27
C8 CNS 5 Germinal center B | 2
C9 Prostate 2 Lymph node/tonsil | 2

The original gene expression data are continuous
values. We can directly classify them using some clas-
sifiers. However, a more effective way as used in prac-
tice is to pre-process the data so that each gene has a
few categorical/discrete states. Usually, this reduces
the noise in the data and improves the robustness of the
classification. For most experiments in the following,
we discretized the observations of each gene expres-
sion variable using the respective ¢ (standard devia-
tion) and u (mean) for this gene's samples: any data
larger than p+o/2 were transformed to state 1; any data
between u—oc/2 and pto/2 were transformed to state 0;
any data smaller than p—c/2 were transformed to state -
1. These three states correspond to the over-expression,
baseline, and under-expression of genes. In §2.4, we
also compared different discretization schemes; partial
results are summarized in Table 4.

54

In the following, we only show results using the
mutual information based MRMR methods. For results
obtained by other MRMR schemes like correlation, F-
statistics, t-statistics, etc, the interested readers can
refer to [9][8].

2.1 What isthe Role of Redundancy Reduction?

To demonstrate the effectiveness of the MRMR
approach, for the first 60 features selected using differ-
ent methods, we calculated the average relevance V,
and average redundancy W, (see Egs.(2) and (1)) and
the LOOCYV error, as plotted in Fig. 1 (a)~(c). In Fig.1
(a), the relevance of MID is close to the baseline
method which considers only the relevance term V, in
feature selection. The relevance of MIQ features is
rather low, which seemingly suggests these MIQ fea-

tures were not good. However, in Fig. 1 (b), we see that on the redundancy term. In Fig. 1 (c), the fact that the
both the MID and MIQ features have low redundancy. MIQ feature set leads to the least amount of LOOCV

Compared to the baseline features, the MIQ features errors indicates that explicitly reducing redundancy is
have much lower redundancy, mainly because the quo- critical in improving the discriminative strength of the
tient combination in Eq. (4) has a considerable penalty features.

"Nel 0.25 b NCI a0 c NCI
0.85 ()
08! 0.2 Baseline %
e
0.75 | 0.15 E
Kb Baseline = MID Y 20
07y 0.1 o Baseline
MiQ
085} 005 10
osl : MID
it MiQ
. : ; 0 0
0 20 30 40 50 60 1 20 30 40 50 &0 10 20 30 40 50 60
feature # feature # feature

Figure 1. (a) Relevance V, and (b) redundancy W, for MRMR features on discretized NCI dataset. (c) The respec-
tive LOOCYV errors obtained using the Naive Bayes classifier.

2.2 Do MRMR Features Better Cover the Data Distri- cantly lower errors, no matter which classifier or data-
bution Space? set is used. Besides the three plots in Fig.2, this phe-
nomenon has been constantly observed for all other
datasets we have tested. The generic improvement of
the classification accuracy independent of the classifi-
ers indicates that the MRMR features better cover the
data distribution space and better characterize the most
critical classification information.

It is often difficult to quantitatively measure how
the "data distribution space" is covered by the selected
features. However, a convenient way is to test if the
selected features consistently lead to improved classifi-
cation accuracy using multiple different classifiers,
which have different mechanisms to classify samples in
the data distribution space. In Fig. 2, we plot the aver- Another way to address this question is to consider
age LOOCYV errors of both the baseline features and combination of MRMR and other feature selection
MIQ features, using NB, SVM, and LDA. It is evi- methods like wrappers. The detailed discussion in [28]
dently that the MRMR scheme always leads to signifi- has led to the same conclusion as above.

20

T
baseline

et

: : C [baseline
LUNG (?ANCER . ave MIQ

error
errar

#

2:0 3:0 4:0 5:0 60 2:D 3:0 4:0 S:D 60 Q:D 3:0 4:0 S:D 60
#feature #feature # feature
(a) (b) (c)

Figure 2. Average LOOCV errors of three different classifiers, NB, SYM, and LDA on three multi-class datasets.

number of samples is small. Another way to test is to
2.3 Do MRMR Features Generalize Well on Unseen select features using a training set and predict the class
Data? labels using a separate testing set. We considered the
Child Leukemia data, where there are 215 training

L N f y 1 samples and 112 testing samples. The results are shown
2 indicate t at MRMR catures generalize well on un- in Table 3. MRMR methods lead to evidently lower
seen data. This is appropriate for datasets where the

The very low cross validation errors in Figs. 1 and

errors than the baseline method. This suggests that

55

MRMR is largely independent of the set of data (i.e.
the whole set of data or the training set only) used to
select features.

2.4 What is the Relationship of MRMR Features and
Various Data Discretization Schemes?

How the discretization method affects the feature
selection results? We tested many different discretiza-
tion parameters to transform the original continuous
gene expression data to either 2-state or 3-state cate-
gorical variables. The features consequently selected
via MRMR always outperform the respective features
selected using baseline method. For simplicity, we only
show two exemplary results for the NCI and Lym-

phoma data sets using the SVM classifier. The data
were binarized using the mean value of each gene as
the threshold of that gene's samples. As illustrated in
Table 4, we see that MRMR features always lead to
better prediction accuracy than the baseline features.
For example, for NCI data, 48 baseline features lead to
13 errors, whereas MIQ features lead to only 2 errors
(3% error rate). For lymphoma data, the baseline error
is never less than 10, whereas the MIQ features in most
cases lead to only 1 or 2 errors (1~2% error rate).
These results are consistent with those shown above.
This demonstrates that under different discretization
schemes the superiority of MRMR over conventional
feature selection schemes is prominent.

Table 3. Child Leukemia data (7 classes, 215 training samples, 112 testing samples) testing errors. M is the number

of features used in classification.

Classifier M 3 6 9 12 15 18 24 30 40 50 60 70 80 90 100
Metho

Baseline | 55 47 46 38 34 27 19 28 22 19 15 14 11 8 8

LDA MID 50 43 32 29 30 29 22 15 13 10 10 9 7 8 9

MIQ 43 43 34 27 23 21 18 16 11 11 6 4 6 6 4

Baseline | 56 55 49 37 33 33 27 35 29 30 23 20 18 14 13

SVM MID 45 42 33 33 25 25 29 25 26 22 20 13 10 12 9

MIQ 38 30 34 33 27 26 24 21 14 15 17 10 7 11 9

Table 4. LOOCV testing results (#error) for binarized NCI and Lymphoma data using SVM classifier.

M
Data Sets | =% 306 9 12 15 18 21 24 27 30 36 42 48 54 60

NCI Baseline 34 25 23 25 19 17 18 15 14 12 12 12 13 12 10
MRMRMIQ) |35 22 22 16 12 11 10 8 5 3 4 4 2 2 3

Lymphoma | __Baseline 58 52 44 39 44 17 17 14 16 13 11 10 13 10 12
MRMRMIQ) [24 17 7 8 4 2 1 2 4 3 2 2 2 2 2

2.5 Comparison with Other Work

Results of similar class prediction on microarray
gene expression data obtained by others are listed in
Table 5. For NCI, our result of LOOCV error rate is
1.67% using NB, whereas Ooi & Tan [26] obtained
14.6% error rate. On the 5-class subset of NCI, Nguyen
& Rocke [25] obtained 0% rate, which is the same as
our NB results on the same 5-class subset.

For Lymphoma data, our result is LOOCV error
rate of 1%. Using 3 classes only, Nguyen & Rocke [25]
obtained 2.4%; on the same 3 classes, our LDA result
is 0% error rate.

56

For child leukemia data, Li et al [21] obtained
5.36% error rate using collective likelihood. In our best
case, the MRMR features lead to the 2.68% error rate.

The Leukemia data” is a most widely studied
dataset. Using MRMR feature selection, we achieve
100% LOOCYV accuracy for every classification meth-
ods. Furey et al [11] obtained 100% accuracy using
SVM, and Lee & Lee [20] obtained 1.39% error rate.

For Colon data’, our result is 6.45% error rate,
which is the same as Nguyen & Rocke [25] using PLS.
The SVM result of [11] is 9.68%.

: Many classification studies have used Leukemia and Colon data-
sets. For simplicity, we only list two for each dataset in Table 5.

Table 5. Comparison of the best results (lowest error rates in percentage) of the baseline and MRMR features. Also
listed are results in literature (the best results in each paper). ® Ooi & Tan, using the genetic algorithm [26]. °
Nguyen and Rocke [25] used a 5-class subset of NCI dataset and obtained 0% error rate; using the same 5-class
subset, our NB achieves also 0% error rate. © Nguyen & Rocke used 3-class subset in lymphoma dataset and obtain
2.4% error rate. Using the same 3 classes, our NB led to zero errors. ¢ Li et al, using prediction by collective likeli-
hood [21]. ®Furey et al, using SYM [11]. Lee & Lee, using SYM [20]. ¢ Nguyen & Rocke, using PLS[24] .

Data Method | NB |LDA|SVM| LR Literature
NCI Baseline|18.33(26.67|25.00| -- 14.63 : "
MRMR | 1.67 |13.33[11.67| -- | 5-class: 0°,0
Baseline|17.71{11.46(521 | --
Lymphoma MRMR | 3.13 | 1.04 | 104 | — 3-class: 2.4, 0°
Lung Baseline|10.96{10.96/10.96| -- _
MRMR [2.74|548 | 548 | --
. . |Baseline(29.46| 7.14 |11.61| -- d
Child Leukemia /o ViR [13.39] 2,68 | 6.25 | - 336
Leukemia Baseline| 0 |[1.39(1.39|1.39 0 ef
MRMR| 0 0 0 0 1.39
Colon Baseline|11.29|11.29{11.29(11.29 9.68 €
MRMR | 6.45 | 8.06 | 9.68 | 9.68 6.45°9

3. Discussions

In this paper we emphasize the redundancy issue
in feature selection. Our feature selection framework,
the minimum redundancy — maximum relevance
(MRMR) optimization approach, literally minimizes
the redundancy in the selected features. Our experi-
ments on 6 gene expression datasets using Naive
Bayes, Linear discriminant analysis, Logistic regres-
sion and SVM class prediction methods, show that
MRMR feature sets consistently outperform the base-
line feature sets based solely on maximum relevance.

The main benefit of MRMR feature set is that by
reducing mutual redundancy within the feature set,
these features capture the class characteristics in a
broader scope. Features selected within the MRMR
framework are independent of class prediction meth-
ods, and thus do not directly aim at producing the best
results for any prediction method. The fact that MRMR
features improve prediction for all four methods we
tested confirms that these features have better generali-
zation property. This also implies that with fewer fea-
tures the MRMR feature set can effectively cover the
same class characteristic space as more features in the
baseline approach.

For biologists, sometimes the redundant features
might also be important. A Bayesian clustering method
can be developed to identify the highly correlated gene
clusters. Then, representative genes from these clusters
can be combined to produce good prediction results.

57

We find that our MRMR approach is also consistent
with the Bayesian network learning and variable selec-
tion method in [14][27][29] using the conditionally
independence constraints.

Acknowledgements

This work is partly supported by US Department of
Energy, Office of Science (MICS office and LBNL
LDRD) under the contract DE-AC03-76SF00098.
Hanchuan Peng is also supported by National Institutes
of Health (NIH), under contract No. RO1 GM70444-01.

References

[1] Alizadeh, A.A., et al. (2000). Distinct types of
diffuse large B-cell lymphoma identified by gene
expression profiling, Nature, 403, 503-511.

Alon, U., Barkai, N., Notterman, D.A., et al.
(1999). Broad patterns of gene expression re-
vealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays,
PNAS 96, 6745-6750.

Ben-Dor, A., Bruhn, L., Friedman, N., Nachman,
I., Schummer, M., & Yakhini, Z. (2000), Tissue
classification with gene expression profiles, J
Comput Biol, 7, 559--584.

Cheng, J., & Greiner, R. (1999). Comparing
Bayesian network classifiers, UAI'99.

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Cherkauer, K.J., & J. W. Shavlik, JW. (1993).
Protein structure prediction: selecting salient fea-
tures from large candidate pools, ISVIB 1993, 74-
82.

Cover, T.M., "The best two independent meas-
urements are not the two best," IEEE Trans. Sys-
tems, Man, and Cybernetics, vol. 4, pp. 116-117,
1974.

Ding, C. (2002). Analysis of gene expression pro-
files: class discovery and leaf ordering, RECOMB
2002, 127-136.

Ding, C., and Peng, H.C., "Minimum redundancy
feature selection from microarray gene expression
data," Proc. 2nd IEEE Computational Systems
Bioinformatics Conference, pp.523-528, Stanford,
CA, Aug, 2003.

Ding, C., and Peng, H.C., "Minimum redundancy
feature selection from microarray gene expression
data,"

Journal of Bioinformatics and Computational Bi-
ology, Vol. 3, No. 1, 2005. (In press)

Dudoit, S., Fridlyand, J., & Speed, T. (2000).
Comparison of discrimination methods fro the
classification of tumors using gene expression
data, Tech Report 576, Dept of Statistics, UC
Berkeley.

Furey,T.S., Cristianini,N., Duffy, N., Bednarski,
D., Schummer, M., and Haussler, D. (2000). Sup-
port vector machine classification and validation
of cancer tissue samples using microarray expres-
sion data, Bioinformatics,16, 906-914.

Garber, M.E., Troyanskaya, O.G., et al. (2001).
Diversity of gene expression in adenocarcinoma
of the lung, PNASUSA, 98(24), 13784-13789.
Golub, T.R., Slonim, D.K. et al, (1999). Molecu-
lar classification of cancer: class discovery and
class prediction by gene expression monitoring,
Science, 286, 531-537.

Herskovits, E., Peng, H.C., and Davatzikos, C.,
"A Bayesian morphometry algorithm," IEEE
Transactions on Medical Imaging, 24(6), pp.723-
737, 2004.

Jaakkola, T., Diekhans, M., & Haussler, D.
(1999). Using the Fisher kernel method to detect
remote protein homologies, ISVB'99, 149-158.
Jaeger,J., Sengupta,R., Ruzzo,W.L. (2003) Im-
proved Gene Selection for Classification of Mi-
croarrays, PSB'2003, 53-64.

Kohavi, R., & John, G. (1997). Wrapper for fea-
ture subset selection, Artificial Intelligence, 97(1-
2),273-324.

Koller D., & Sahami, M. (1996). Toward optimal
feature selection, ICML'96, 284-292.

58

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]

Langley, P. (1994). Selection of relevant features
in machine learning, AAAl Fall Symposium on
Relevance.

Lee, Y., and Lee, C.K. (2003). Classification of
multiple cancer types by multicategory support
vector machines using gene expression data, Bio-
informatics, 19, 1132-1139.

Li, J., Liu, H., Downing, JR, Yeoh, A, and Wong,
L. (2003) "Simple rules underlying gene expres-
sion profiles of more than six subtypes of acute
lymphoblastic leukemia (ALL) patients," Bioin-
formatics. 19, pp.71-78.

Li,W., & Yang,Y. (2000). How many genes are
needed for a discriminant microarray data analy-
sis?, Critical Assessment of Techniques for Mi-
croarray Data Mining Workshop, 137-150.
Model, F., Adorjan, P., Olek, A., & Piepenbrock,
C. (2001). Feature selection for DNA methylation
based cancer classification, Bioinformatics, 17,
S157-S164.

Nguyen, D.V., & Rocke, D. M. (2002). Tumor
classification by partial least squares using mi-
croarray gene expression data, Bioinformatics, 18,
39-50.

Nguyen, D.V., & Rocke, D.M. (2002). Multi-
class cancer classification via partial least squares
with gene expression profiles, Bioinformatics, 18,
1216-1226.

Ooi, C. H., and Tan, P. (2003). Genetic algo-
rithms applied to multi-class prediction for the
analysis of gene expression data, Bioinformatics,
19, 37-44.

Peng, H.C., and Long, F.H., "A Bayesian learning
algorithm of discrete variables for automatically
mining irregular features of pattern images," Proc
of Second International Workshop on Multimedia
Data Mining (MDM/KDD'2001) in conjunction
with ACM SIG/KDD2001, pp.87-93, San Fran-
cisco, CA, USA, 2001.

Peng, H.C., and Long, F.H., "An efficient max-
dependency algorithm for gene selection," 36th
Symposium on the Interface: Computational Bi-
ology and Bioinformatics, Baltimore, Maryland,
May 26-29, 2004.

Peng, H.C., Herskovits, E, and Davatzikos, C.,
"Bayesian clustering methods for morphological
analysis of MR images," Proc. of 2002 IEEE Int.
Symposium on Biomedical Imaging: From Nano
to Macro, pp.485-488, Washington, D.C., USA,
July, 2002.

Ross, D.T., Scherf, U., et al. (2000). Systematic
variation in gene expression patterns in human

[31]

[32]

cancer cell lines, Nature Genetics, 24(3), 227-
234,

Scherf, U., Ross, D.T., et al. (2000). A cDNA
microarray gene expression database for the mo-
lecular pharmacology of cancer, Nature Genetics,
24(3), 236-244.

Xiong, M., Fang, Z., & Zhao, J. (2001). Bio-
marker identification by feature wrappers, Ge-
nome Research, 11, 1878-1887.

59

[33]

[34]

Yeoh, A., ..., Wong, L., and Downing, J., (2002),
"Classification, subtype discovery, and prediction
of outcome in pediatric acute lymphoblastic leu-
kemia by gene expression profiling," Cancer Cell,
1, pp.133-143.

Yu, L., and Liu, H., "Redundancy Based Feature
Selection for Microarry Data", SIGKDD, KDD
2004, August, 22 - 25, 2004. Seattle, Washington.

Gene Expression Analysis of HIV-1 Linked
p24-specific CD4+ T-Cell Responses for
Identifying Genetic Markers

Sanjeev Raman and Carlotta Domeniconi
Information and Software Engineering Department
George Mason University

sraman@gmu.edu

carlotta@ise.gmu.edu

Abstract

The Human Immunodeficiency Virus (HIV) presents
a complex knot for scientists to unravel. After initial
contact and attachment to a cell of the immune
system (e.g. lymphocytes, monocytes), there is a
cascade of intracellular events. The endproduct of
these events is the production of massive numbers of
new viral particles, death of the infected cells, and
ultimate devastation of the immune system. HIV is an
epidemic and a crisis in many continents [1]. Since
there are many variations of the virus and differences
in people’s genetic make-up, rapid diagnosis and
monitoring of tailored treatments are essential for
future medicine. To combat this problem, microarray
technology can perform a single scan on thousands of
genes. However, without a proper research design
and data mining techniques, the results from such a
technology can be very skewed. Thus, using a
normalized, clean dataset (time-series) from the
CD4+ T-cell line CEM-CCRF, we designed and
implemented hierarchical clustering and pattern-
based clustering algorithms to identify specific
cellular genes influenced by the HIV-1 viral
infection. This research can contribute to the HIV
Pharmacogenomics field by confirming HIV genetic
markers, which would lead to rapid diagnosis and
customized treatments.

Keywords: pattern-based clustering, hierarchical
clustering, HIV, gene expression analysis, genetic
markers.

1. Introduction

Since viruses (i.e. human immunodeficiency virus
type 1 - HIV-1) can impact a diverse set of host cell’s
biochemical processes, many of these interactions
can be characterized by changes in cellular mRNA
levels that could depend on both the stage of
infection and the biological stage state of the infected
cell [2]. For example, viral infection induces the
interferon antiviral response, modulates the cell’s
transcriptional, translational, and trafficking
machinery. Thus, the recent emergence of high-
density DNA arrays (microarrays and oligonucleotide
chips) has revolutionized gene expression studies by
providing a means to measure mRNA levels for
thousands of genes simultaneously [3].

In this paper we conducted a gene expression
analysis, which is a novel approach to identifying and
profiling genes related to the pathology and
responsiveness of a potential treatment. In the case of
HIV-1, where the infection is worldwide and the
subtypes are many, measuring the efficacy of a
potential treatment in distinct populations from a
molecular level is essential. Since people can have
different responses to treatments based on their
genetic make-up, the Food and Drug Administration
is going to mandate pharmacogenomic studies to be
submitted with drug submission research [4].

Thus, we focused on two main objectives:

1. Researching and discussing the various
techniques and approaches for gene
expression analysis.

2. ldentifying and confirming global genetic
markers for HIV-1 by designing and
implementing data mining algorithms.

Our approach utilized two proven computational
techniques: hierarchical clustering and pattern-based

clustering. All the data analysis will be based on time
series data and genes from the CD4+ T-cell line
CEM-CCRF in order to identify specific cellular
genes influenced by HIV-1 viral infection. The
details of the research design are discussed in
subsequent sections. Prior research has been
conducted in this field, however, the research was
done when the technology to do the data analysis was
very new to the market (1998 and 1999) and thus, the
analysis was very broad. This is because the focus
was on classes of genes. In contrast, in this work our
objective is the identification of potential global
genetic markers [5].

1.1 Motivation and Contribution

The results from this study can give great insight of
how to quickly measure the effectiveness of a
treatment according to a person’s genetic make-up
and what specific genes are important in the
regulation of HIV/AIDS. This study will help to
confirm previous results from a molecular level and
contribute to the overall knowledge domain of
pharmacogenomic-HIV research [6], which will
eventually lead to customized diagnosis and
treatment of the disease.

2. Background and Related Work

HIV is a retrovirus and thus, contains a genome
composed of two copies of single stranded RNA
housed in a cone-shaped core surrounded by a
membrane envelope. A transfer RNA is located near
the 5' end of each RNA and serves as an initiation site
for reverse transcription. Viral enzymes housed in the
core include reverse transcriptase, protease, and
integrase. The envelope proteins consist of a
transmembrane portion (gp4l) and a surface
molecule (gp120), which is the attachment site to the
receptor on the host cell. Like all retroviruses, HIV-1
genome encodes for gag, pol, and env. However,
HIV-1 also contains six accessory gene products that
are somewhat essential for HIV replication and
reproduction (tat, rev, vif, vpu, vpr, and nef) [7].

Microarray expression analysis has become one of
the most widely used functional genomics tools.
Efficient application of this technique requires the
development of robust and reproducible protocols.
This process involves several aspects of optimization
such as Polymearse Chain Reaction amplification of
target cDNA clones, microarray printing, probe
labeling and hybridization, and developed strategies
for data normalization and analysis [8].

Efficient expression analysis using microarrays
requires the development and successful
implementation of a variety of laboratory protocols

61

and strategies for fluorescence intensity
normalization. The process of expression analysis can
be broadly divided into three stages [9]: (1) Array
Fabrication; (2) Probe Preparation and Hybridization;
and (3) Data Collection, Normalization and Analysis.

The genome of an organism is the genetic code that
regulates the expression of various features and
functions of the organism. This regulation is brought
about by the co-ordination of various genes in the
genome. These genes communicate with each other
to trigger or suppress the expression of each other. A
typical experiment on the gene expression would
therefore have to take into account the simultaneous
observation of these genes.

2.1 Hierarchical Clustering

Hierarchical clustering is by far the most popular
method to cluster microarray data. There are two
types of hierarchical clustering — agglomerative and
divisive. Agglomerative clustering takes an entity
(i.e. a gene) as a single cluster to start off with and
then builds bigger and bigger clusters by grouping
similar entities together until the entire dataset is
encapsulated into one final cluster. Divisive
hierarchical clustering works the opposite way
around — the entire dataset is first considered to be
one cluster and is then broken down into smaller and
smaller subsets until each subset consists of one
single entity. The sequence of clustering results is
represented by a hierarchical tree, called a
dendogram, which can be cut at any level to yield a
specific number of clusters [10].

The agglomerative approach is most commonly used
in microarray analyses. The reason is that divisive
clustering is more computationally expensive when it
comes to making decisions in dividing a cluster in
two, given all possible choices. However, the divisive
approach retains the “super structure” of the data.
This means that one can confidently say that the root
or “upper levels” of the dendogram are highly
representative of the original structure of the data.
Although, this does not mean that the agglomerative
approach is not just as robust [10]. We focused on the
agglomerative approach.

The basic rules for agglomerative hierarchical
clustering are as follows [11]:

1. Derive a vector representation for each entity (i.e.
gene expression values for each experiment make up
the vector elements for a specific gene);

2. Compare every entity with all other entities by
calculating a distance. Input that distance into a
matrix. Calculation of the distance depends on:

a. the linkage method (distance between clusters)
being implemented,;
b. the actual distance measure used;

3. Group closest two entities (or clusters) together
(which makes a new cluster) and go back to step 2,
considering the new cluster as a single entity,
recalculate distances between entities and cluster
closest entities together. Step 2 should be repeated
until all entities are contained within one big cluster.

The distance between clusters is usually computed in
one of three different ways: Single linkage is the
minimum distance between a point in one cluster and
a point in the other cluster; average linkage is the
average of the distances between points in one cluster
and points in the other cluster; complete linkage is the
largest distance between a point in one cluster and a
point in the other cluster. Thus, an agglomerative
hierarchical clustering approach can be implemented
using, for example, the Euclidean distance measure
and the average linkage method.

2.2 Pattern Based Clustering

Pattern-based clustering (or p-clustering) groups a set
of objects based on their coherent trend in a subset of
dimensions. This differs slightly from subspace
clustering as subspace uses global distance/similarity
measures, which may not be able to detect coherent
trends. There are two distinct features of pattern-
based clustering: there is no global defined
similarity/distance measure, and clusters may not be
exclusive. When using pattern-based analysis, subsets
of genes whose expression levels change coherently
under a subset of conditions are identified. This
analysis can be critical in revealing the significant
connections in gene regulatory networks.

There are two issues to be concerned with when
performing pattern-based clustering. Issue one is that
there can be many pattern-based clusters, thus
maximal pattern-based clusters must be determined.
Second, the methodology to mine maximal pattern-
based clusters must be efficient [12]. Traditionally, a
pattern score is used to calculate the similarity
between two objects. For example, [12] defines the

pattern score of two objects I, r, on two attributes

a,,a, asfollows:

62

(rx.au -r.a,)— (rx.av —-r .av]

oscord rea, nea, ||
r,a, r,a,

Also, a threshold is established. For example, for any
objects I,,I, € R and any attributesa,,a, € D,

in [12] it is required:

r.a, r.a,
pScore([D <5 (5>0)
r,a, r,.a,

In regards to maximal pClusters, if (R, D) isa O-
pCuster (that is, all pairwise objects in R have a
pScore < & with respect to attributes in D), then

every cluster (R',D'), where R R and

D cD, is a & -pCuster (anti-monotonic
property). That is, a large pCluster is accompanied
with many small clusters. Therefore, the idea is to
mine only the maximal pClusters. A o -pCuster is
maximal if there exists no proper super cluster that is
a o0 -pCuster [12].

3. Research Design and Methodology

As mentioned in the previous section, gene
expression analysis can be divided into sequential
stages: array fabrication, probe preparation and
hybridization, data collection, normalization, and
analysis. In this section, we explain and describe in
detail the specific design and techniques needed to
perform the gene expression analysis of HIV-1 linked
p24-specific CD4+ T-cell responses for identifying
genetic markers.

The human immunodeficiency virus type 1 (HIV-1)
infection alters the expression of host cell genes at
both the mRNA and protein levels. To obtain a more
comprehensive view of the global effects of HIV
infection of CD4-positive T-cells at the mRNA level,
we analyze a ¢cDNA microarray dataset generated
from the University of California, San Diego [5]. We
perform p-clustering and hierarchical clustering
analysis on mRNA expressions of approximately
6800 genes. These mMRNA expressions were
monitored at eight time points [0.5h, 2h, 4h, 8h, 16h,
24h, 48h, 72h] from a CD4+ T-cell line (CEM-GFP)
during HIV-1 infection. The CEM-GFP cells were
inoculated with HIV-1 at a multiplicity of infection
of 0.5, an inoculum sufficient to ensure that every
cell is contracted by virus particles. Aliquots of cells
were obtained as described above. A mock infection

served as a control at each time point, essentially
replacing the volume of viral input by an equivalent
volume of culture medium from uninfected cells.
Each sample was tested on two chips and the average
was taken. Normalization for this dataset was done
using global normalization and scaling. The objective
is to identify a specific set of universal genes that can
be used as genetic markers for measuring the
effectiveness of a potential treatment based on time
series patterns and levels consistently changing more
than 1.5-fold. A fold is defined mathematically as

IogZ(CySICyB) , where typically, Cy5
represents treated/infected samples and Cy3

represents untreated/uninfected samples. Thus, for
example, if the log ratio is 2.0 for a given condition,
then this means the gene is over-expressed by 2 fold,
and is usually represented with a red light indicator in
the visual output for that spot from the microarray
chip. Vise versa, if the log ratio is -2.0, then this
means the gene is under-expressed by 2 fold, and is
usually represented with a green light indicator in the
visual output for that spot from the microarray chip.
Therefore, the expression values will be clustered by
trends over a period of time and by fold regulation
[13].

3.1 Data Normalization and Tools

We implemented a normalization technique based on
fluorescence intensities. This is a popular method
based on total intensity normalization, where each
fluorescent intensity value is divided by the sum of
all the fluorescent intensities [14].

The normalization, cleaning, and analysis of the data
take place in Oracle 10i. Oraclel0i Data Mining
simplifies the process of normalizing and extracting
intelligence from large amounts of data. It eliminates
off-loading vast quantities of data to external special-
purpose analytic servers for data mining and scoring.
With Oracle 10i Data Mining, all the data mining
functionality is embedded in Oracle10i Database, so
the data, data preparation, model building, and model
scoring activities remain in the database. Because
Oracle 10i Data Mining performs all phases of data
mining within the database, each data mining phase
results in significant improvements in productivity,
automation, and integration. Significant productivity
enhancements are achieved by eliminating the
extraction of data from the database to special
purpose data mining tools and the importing of the
data mining results back into the database. These
improvements are notable in data preparation, which
often can constitute as much as 80% of the data
mining process. With Oracle 10i Data Mining, all the
data preparation can be performed using standard

63

SQL manipulation and data mining utilities within
Oracle9i Data Mining [15].

3.2 Preprocessing

We performed hierarchical clustering, p-clustering,
and plotting analysis on mRNA expressions of
approximately 6800 genes using the CcDNA
microarray dataset generated from the University of
California, San Diego [5]. It is important to note the
difference between p-clustering and subspace
clustering. These mMRNA expressions were monitored
at eight time points [0.5h, 2h, 4h, 8h, 16h, 24h, 48h,
72h] from a CD4+ T-cell line (CEM-GFP) during
HIV-1 infection. The CEM-GFP cells were
inoculated with HIV-1 at a multiplicity of infection
of 0.5, an inoculum sufficient to ensure that every
cell is contracted by virus particles. Aliquots of cells
were obtained as described above. A mock infection
served as a control at each time point, essentially
replacing the volume of viral input by an equivalent
volume of culture medium from uninfected cells.
Each sample was tested on two chips and the average
was taken. Normalization for this dataset was done
using global normalization and scaling. Other
cleaning techniques were applied to the dataset, as
described below:

1. % Present >= X. This removes all genes that
have missing values in greater than (100 - X)
percent of the columns. In our case, X was 90.

2. SD (Gene Vector) >= X. This removed all genes
that have standard deviations of observed values
less than X. In our case, X was 2.0.

3. At least X Observations abs(Val) >= Y. This
removes all genes that do not have at least X
observations with absolute values greater than Y .
We require at least 8 observations with absolute
value greater than 2.0.

4. MaxVal-MinVal >= X. This removes all genes
whose maximum minus minimum values are less
than X. In our case, X was 2.0.

For cleaning technique 1, we set X = 90 because if a
gene had a missing value for just one column, this
would be very significant since there are only eight
time points. So, by setting 90 as a threshold, we
select only the genes with values for all columns,
which leads to more accurate data analysis.

For cleaning technique 2, X=2.0 because in order to
do fairly accurate data analysis, the gene expression
values should not be too small. Otherwise, results
could be skewed. Thus, 2.0 would serve as a fair
standard deviation tolerance to delete genes that
could potentially affect the final results.

For cleaning technique 3, again, to avoid skewing of
the results because of the gene expression values

being too small, we made sure every gene included in
the analysis had values greater than 2 for each and
every time point.

For cleaning technique 4, it was more efficient to
delete genes that would be of no significance for the
analysis. Setting X=2 as the difference between the
maximum and minimum values was an easy way to
dismiss genes (less than or equal to X) that were of
no significance.

After normalization and cleaning of the data, 167
genes out of 6823 genes (2.5%) were deleted from
the dataset. Then, the data was organized into two
smaller datasets for analysis. The first dataset was the
mock infection and the second dataset was the actual
infection.

3.3 Analysis and Results

Discovering co-expressed genes and coherent
expression patterns in gene expression data is an
important data analysis task in bioinformatics
research and biomedical applications. It is often an
important task to identify the co-expressed genes and
the coherent expression patterns from the gene
expression data. A group of co-expressed genes are
the ones with similar expression profiles, while a
coherent expression pattern characterizes the
common trend of expression levels for a group of co-
expressed genes. In practice, co-expressed genes may
belong to the same or similar functional categories

and indicate co-regulated families. Coherent
expression patterns may characterize important
cellular processes and suggest the regulating

mechanism in the cells [16].

To find co-expressed genes and discover coherent
expression patterns, many gene clustering methods
have been proposed [12]. In our case, each cluster
was considered as a group of co-expressed genes.
The coherent expression pattern was identified via a
comparative analysis of the percentage
increase/decrease of each gene. Finally, the mean (or
centroid) of the expression profiles of the genes in the
resulting sub-clusters gives the corresponding
coherent expression pattern. While clustering
algorithms have been shown useful to identify co-
expressed gene groups and discover coherent
expression patterns, due to the specific characteristics
of gene expression data and the special requirements
from the biology domain, several great challenges for
clustering gene expression data remain [17].

An interesting phenomenon in gene expression data
sets is that groups of co-expressed genes may be
highly connected by a large amount of

“intermediate” genes. Technically, two genes g,

64

and g, that have very different expression profiles

in a data set may be bridged by a series of
intermediate genes such that each two consecutive
genes on the bridge have similar profiles. An
empirical study has shown that such “bridges” are
common in gene expression data sets. The high
connectivity in the gene expression data raises a
challenge: It is often hard to find the (clear) borders
among the clusters. Many existing clustering
methods use one of the following two strategies. On
the one hand, the data set is decomposed into
numerous small clusters. While some clusters consist
of groups of biologically meaningful co-expressed
genes, many clusters may consist of only
intermediate genes. Since there is no biologically
meaningful criteria (e.g., size, compactness) to rank
the resulted clusters, it may take a lot of effort to
examine which clusters are meaningful groups of co-
expressed genes. On the other hand, an algorithm
may form several large clusters. Each cluster contains
both the co-expressed genes and a large amount of
intermediate genes. However, those intermediate
genes may mislead the centroids of the clusters into
going astray. The centroids then no longer represent
the true coherent patterns in the groups of co-
expressed genes [17].

In a gene expression data set, there are usually
multiple groups of co-expressed genes as well as the
corresponding coherent patterns. Moreover, there is
typically a hierarchy of co-expressed genes and
coherent patterns in a gene expression data set. At the
high levels of the hierarchy, large groups of genes
approximately follow some “rough” coherent
expression patterns. At the low levels of the hierarchy,
the large groups of genes break into smaller
subgroups. Those smaller groups of co-expressed
genes follow some “fine” coherent expression
patterns, which inherit some characteristics from the
“rough” patterns, and add some distinct
characteristics [17].

In our analysis, after cleaning the data, we proceeded
to use an agglomerative hierarchical clustering
approach based on average linkage [16] to
hierarchically cluster the genes. Then we examined
the clustered results and identified a cross-sectional
point to start the coherent analysis. The cross-
sectional point was three levels in from the root level.
This level was chosen because it was the last level
that had sibling nodes that covered all the genes
analyzed from the microarray. This approach proved
to be more effective and accurate than just simply
taking the mean of each hierarchical cluster because

not every gene which displays a similar pattern is
necessary similar in function.

At that point, we developed and implemented an
algorithm similar to the p-clustering concept. When
examining all the sibling nodes (starting at 3 levels
in), we computed the percentage increase/decrease
between adjacent time points for each gene in each of
the sibling nodes, and computationally compared
such percentage variations for all the genes in that
cluster. Using a 10% dis-similarity tolerance between
the percentages, we were able to computationally
reclassify the genes into sub-clusters based on pattern
similarity. More formally, we can represent a gene as
a eight dimensional vector. Let

9, = (90,90 9, =(9,0,+,9,5) be such
two gene vectors. We define the pSiminarity between
the ith and (i+1)th components of two genes ¢, and

g, as follows:
pSimilarity(g,, g,.i)=

‘(((gxnl - gxi)/ gxi)xloo)_ (((gyi+1 - gyi)/ gyl)xloo)
The above equation computes the (absolute value of
the) difference between the percentage
decrease/increase between the corresponding

sequential time points of two genes ¢, and g, -

Genes that are under or equal to a 10 percent
dissimilarity for all 7 (8 time points) percentages are
clustered in the same sub-group. That is:

g, 9, €same cluster
if pSimilarity(g,, g,,i)<10 Vi=1---7

In the example below, g, is constant through out the
loop and g, represents the gene that is being

compared to g, from the same hierarchical cluster at
level 3. Thus, the loop continues until all genes from
that cluster is computationally compared to gene g, .

loopcount =1
While (loopcount <= X) //X = the number of genes
in the given hierarchical cluster at level 3

{

if
(‘(((gxnl - gxi)/ gxi)XlOO)— (((g yi+l gyi)/ gyi)xloo] = 10)
Vi=1---,7

then cluster=true;

else cluster=false;

65

loopcount = loopcount + 1;

}

After g, was compared, and all similar genes were
clustered with g, , the next non-clustered gene

replaced ¢, and was compared to all other non-

clustered genes. The loopcount was also modified to
the number of non-cluster genes left. This cycle
continued until all genes belonged to disjoint clusters.
For clusters that visually displayed ‘rough’ patterns
(i.e., when the majority of genes in the cluster were
close to the 10% dissimilarity threshold), we re-ran
the algorithm to generate more ‘fine’ sub-clusters
using a higher degree for the tolerance (i.e. 5%).
Once all the ‘rough’ patterns were refined, we took
the average for each time point for all the genes in
each cluster to represent the pattern trend for that
cluster. Thus, when each cluster was plotted, it was
very easy to decipher which clusters had potential
genetic markers for HIV-1/AIDS because they
exhibited sharp pattern trends.

After identifying a set of genes as potential genetic
markers from the lower level clusters, we traced them
back to the original dendogram to see if they were
similar based on expression profiles, which would
indicate similar functionality of these genes as well.
We also used the public genome database to help
confirm the results, which are discussed below.

From the analysis, we were able to single out
individual genes that would serve as potential genetic
markers by breaking down the clusters into smaller
sub-clusters using the algorithm described. The
reason is that we were strictly looking for genetic
markers as in genes that show a significant, constant
change in their expression profile when exposed to
the virus. Whether this behavior was triggered by
other genes is irrelevant because we are not looking
for a deep understanding of the gene other than
knowing at a basic level why the gene could have
been affected. The use of the public genome database
is a sure way of confirming the results. The accession
number for the first gene is J04423. Because this
gene was of high interest during the microarray
experiment, six different probe sets were used with
each resulting in a significant fold regulation by 72
hours. The probe that yielded the highest fold
increase had an upfold regulation of 1.85 (log,
(25448.1/7187.9)) at 72 hours. The next gene -
accession number XO3453 - was analyzed with two
different probe sets. The probe that yielded the
highest fold regulation had an upfold regulation of
1.55 (log, (65440.2/22487.1)) at 72 hours. The other

four genes (accession numbers stated below) of
interest were only analyzed using one probe set and
yielded the following results:

U14573: upfold regulation of 1.5
(log, (95340.6/34555.2)) at 72 hours
AB000905: upfold regulation of 1.5
(log, (210.2.9/76)) at 72 hours
D43951: upfold regulation of 2.45
(log, (111.6/20.7)) at 72 hours
M21388: upfold regulation of 1.5
(log, (28749.2/10162.9)) at 72 hours

In Figures 1-6, the pink line represents infected
CEM-GFP cells, while the blue line represents non-
infected CEM-GFP cells. The graphs show the
expression value for each time point and the over all
pattern for all the time points for the given gene.

FOLD REGULATION

30000

26000

20000

0
3

= —+— AFFX-BioDn-_at
> 15000 -
B e AFFXBioDn S at

10000

5000

3min 2hr 4hr Bhr 16hr 24hr 48hr T2he

Figure 1: J04423

66

pr Value

=
w

Expr Value

Expr Value

70000

60000

50000

40000

30000

20000

10000

120000

100000

30min

30min

30min

2hr

2hr

2hr

FOLD REGULATION

L 8hr 16hr 2Uhr

Figure2: X0O3453

FOLD REGULATION

4hr ghr 16hr 24hr
TIME

Figure 3: U14573

FOLD REGULATION

4hr 8hr 18hr 24hr
TIME

Figure 4: AB000905

48hr

46hr

4shr

T2hr

The

72

—+—AFFX-CreX-5_at
—a— AFFX-CreX 4 at

——hum_alu_at
—a— hum_alu_at|

——AB000905_at
—a—AB000905_at

FOLD REGULATION

Expr Value

——D43951_3
/ —sD43951_3

30min 2hr 4hr 8hr 18hr 24hr 48hr 72h

TIME

Figure 5: D43951

FOLD REGUATION

33000

30000

25000 /
20000 /
15000

10000 5

Expr Value

—+— 1121338 _r_af
—a— 121388 _r_al

5000

30min 2nr 4nr 8hr 18hr 24hr 4ahr 72nr
TINE

Figure 6: M21388

Thus, using 1.5 increase or decrease fold regulation
as the cut-off between 48 hours and 72 hours, we
obtain 6 different genes that we can use as potential
genetic markers. We choose to pay close attention to
Day 2 and Day 3 because previous published
research has indicated that drastic changes in gene
expression profiles for infected HIV genes occur after
48 hours [8]. Thus, the accession numbers for these
genes are:

J04423 with AFFX-BioDn-5_at as the probe set
X03453 with AFFX-CreX-5_at as the probe set
U14573 with hum_alu_at as the probe set
AB000905 with AB000905_at as the probe set
D43951 with D43951_at as the probe set
M21388 with M21388 r_at as the probe set

oL E

67

From looking up the 6 different genes in the
GenBank and NCBI databases, we were able to
confirm the results as shown in Table 1 [17]:

Accession Gene Gene Gene
Number Type Product
J04423 bioD Protein enzyme

Coding called
dethiobiotin
synthetase
X03453 cre Protein Enzyme
Coding called
cyclization
recombinase
U14573 Alu Protein actively
Coding | transcribed
by pol 111,
altered
protein
sequences
ABO000905 | HIST1H4I1 | Protein histone 1,
Coding H4i
D43951 PUM1 Protein Assist in
Coding RNA
binding and
mRNA
metabolism
M21388 GLA Protein Enzyme
Coding called
alpha-
galactosidase

Table 1: Potential genetic HIV-1 markers and their
confirmed functionality

Although some of these genes belong to different
chromosomes, we can infer that they are affected in a
similar fashion when exposed to HIV-1 virus after 3
days. Therefore, we can see why it is important to not
only look for co-expressed genes, but also for
coherent genes in order to obtain a full snap shot of
the gene’s profile.

4. Conclusions

All of the gene products listed in the given table are
highly affected by the HIV-1 virus. However, to
really confirm whether these genes can be used as
genetic markers in real life, in-vivo samples should be
tested as well to help confirm these results. This is
because in-vivo samples come directly from the
individual and not post-infected outside the body. In-
vivo samples from the different stages of HIV/AIDS
should also be used.

Overall, the results presented in this paper are
promising, and provide a good starting point for
further research in this area. This research can
contribute to the HIV Pharmacogenomics field by
confirming HIV genetic markers, which would lead
to rapid diagnosis and customized treatments. In fact,
doctors can easily use these markers, along with other
markers for other diseases, to rapidly diagnose a
patient’s profile in one genetic scan. At the same
time, these markers can be used to monitor the
progression or treatment of the disease.

Acknowledgements
C. Domeniconi is supported in part by the NSF
CAREER Award 11S-0447814.

References

1. AIDS Epidemic Update,
December 2000.

2. Holodniy, M., Kuritzkes, D.R., Byer, D, Murray,
P. “HIV viral load markers in clinical practice.”
Nature Medicine. Volume 2, pp.625-629, 1996.

3. Bumgarner, E., Geiss, G.K., V’houte, D., Haglin,
J. “Large scale Monitoring of Host Cell Gene
Expression during HIV-1 infection Using cDNA
Microarrays.” Acedemic Press. December 1999.

4. Conrad, J. Impact of Pharmacogenomics on
FDA’s Drug Review Process, SACGHS
Meeting, Washington, DC, October 22, 2003.

5. Corbeil, J., Genini, D., Sheeter,D. “Temporal
Gene Regulation During HIV-1 Infection of
Human CD4+ T Cells.” Genome Research. 2
April, 2001.

5. Weiner, M.P., Hudson, T.J. “Introduction to
SNPs: Discovery of Markers for Disease.”
Biotechniques. Volume 32, pp. s5-s32, 2002.

6. Gary K. Geiss, G.K., Hammand, D.
“Pathogenesis (HIV): Virus can alter the way
genes function within days of exposure.”
Virology. Volume 46, pp. 23-27, 2000.

7. University of Tokyo Japan Laboratory of DNA
Information Analysis of Human Genome Center,
Institute of Medical Science. Distance/Similarity
measures, 2002.

8. Fugen, L., Stormo, G. “Selection of optimal
DNA oligos for gene expression arrays.”
Bioinformatics. Volume 17(11), pp. 1067-1079,
2001.

9. Eisen, M.B., Spellman, P.T., Brown, P.O.,
Botstein, D., "Cluster analysis and display of
genome-wide expression patterns”. Proceedings
of the National Academy of Science USA, 95
14863-14868, December 1998

report, UN AIDS,

68

10.

11.

12.

13.

14,

15.

16.

17.

Luo, F., Khan, L. “Hierarchical Clustering of
Gene Expression Data”, Department of
Computer Science, University of Texas, Dallas.
March 2003.

Yeung, K.Y., Jung, L. "Model-Based Clustering
and Data Transformations for Gene Expression

Data". The Third Georgia Tech-Emory
International Conference on Bioinformatics.
2001.

Jiang, D., Zhang, X., Pei, J. “Interactive

exploration of coherent patterns in time-series
gene expression data.” In proceedings of the
ninth ACM SIGKDD International Conference
of Knowledge Discovery and Data Mining
(KDD ’03), Washington, DC, USA, August 24-
27, 2003.

Kano, M., Kashima, H., Slyder, E. “A method
for Normalization of Gene Expression Data.”
Genome Informatics. Volume 14, pp. 336-337,
2003.

Oracle Data Mining Technical White Paper.
Oracle Corporation. December 2002.

Tavazoie S., Hughes D., Campbell M., Cho R.J.
Church G. Systematic determination of genetic
network architecture. Nature Genet, pages 281-
285, 1999.

Jiang, D., Pei, J., Zhang, A. Towards Interactive
Exploration of Gene Expression Patterns. State
University of New York at Buffalo, 2002.
Rahmann, S. Rapid Large-scale oligonucleotide
selection for microarrays. WABI, 2002.

Feature Filtering with Ensembles
Using Artificial Contrasts

Eugene Tuv*and Kari Torkkolaf

Keywords: Feature ranking cut-off, Ensemble
methods, Artificial contrast variables

Abstract

In contrast to typical variable selection methods such
as CFS, tree-based ensemble methods can produce
numerical importances of input variables considering
all variable interactions, not just one or two variables
at a time. However, they do not indicate a cut-off
point: how to set a threshold to the importance. This
paper presents a straightforward approach to doing this
using artificial contrast variables. The result is a truly
autonomous variable selection method that considers
all variable interactions, and does not require a pre-set
number of important variables.

1 Ensemble Methods in Feature Ranking

In this paper we try to address a problem of feature
filtering, or removal of irrelevant inputs in very gen-
eral supervised settings: target variable could be nu-
meric or categorical, input space could have variables of
mixed type with non-randomly missing values, under-
lying X — Y relationship could be very complex and
multivariate, and data could be massive in both di-
mensions (tens of thousands of variables, and millions
of observations). Ensembles of unstable but very fast
and flexible base learners such as trees (with embedded
feature weighting) can address most of the listed chal-
lenges. They have proved to be very effective in variable
ranking in problems with up to a hundred thousand pre-
dictors [2, 7].

Relative feature ranking provided by such ensem-
bles, however, does not separate relevant features from
noise. Only a list of importance values is produced with-
out a clear indication which variables to include, which
to discard. The main idea in this work relies on the fol-
lowing reasonable assumption: a stable feature ranking
method, such as an ensemble of trees, that measures rel-

" *Intel, Analysis and Control Technology, Chandler, AZ, USA,
eugene.tuv@intel.com

fMotorola, Intelligent Systems Lab, Tempe,
Kari.Torkkola@motorola.com

AZ, USA,

69

ative relevance of an input to a target variable Y would
assign a significantly (in statistical sense) higher rank
to a legitimate variable X; than to a artificial variable
created from the same distribution as X;, independently
of Y.

2 The Algorithm: Artificial Contrasts with
Ensembles

In order to determine a cut-off point for importances,
there needs to be a contrast variable that is known to
be truly independent of the target. By comparing the
derived importances to this contrast (or several), one
can then use a statistical rank test to determine which
variables are truly important.

We propose to obtain these artificial contrast vari-
ables by randomly permuting values of original N vari-
ables across the K examples. Generating just random
variables from some simple distribution, such as Gaus-
sian or uniform, is not sufficient, because the values of
original variables may exhibit some special structure.

Importances and their ranks are then computed for
all variables, including the artificial contrasts. To gain
statistical significance, this is repeated T times, record-
ing the rankings of all variables including contrasts. The
quantile (which can be minimum or median) over the
N contrasts of the ranks of the contrasts is evaluated.
A statistical rank test (Wilcoxon test) is performed to
compare the ranks of the original variables to the quan-
tile ranks of the contrasts. Variables with significantly
better rank than contrasts are set aside and included in
important variables.

The target is now predicted using only these im-
portant variables, and a residual of the target is com-
puted. The process is repeated until no variables remain
whose rank would be significantly higher than that of
the contrasts. Algorithm 1 lists all these steps using the
notation in Table 1.

An important part of the algorithm is Step 10, in
which the target is estimated using only important vari-
ables found in the current iteration, and this estimate is
subtracted from the current target variable. This step
removes the effect of these important variables from the
target and leaves only the residual for the next iteration,
to be explained by the residual variables.

As the function g(.,.) we have used ensembles of
trees. Any classifier/regressor function can be used,
from which variable importances from all variable in-
teractions can be derived. To our knowledge, only en-
sembles of trees can provide this conveniently.

To account for possible biases in the learning engine
(for example, multilevel categorical vs. numeric), in
step 6, one can compare variable rank only to the
rank(s) of permuted version(s) of itself instead of to the

quantile over all permuted variables.

ALGORITHM 1. Artificial Contrasts with Ensembles

set ® — {};set F— {X1,...,Xn}
fori=1,...,T do
{Z1,....,ZN} < permute{ Xy, ..., Xn}
set Fp «— F U {Zl, ey ZN}
Mi. = g[(FP, Y),R,L :ranks(Mi')
endfor
ry, = quantile;cry 7 3 R,
Set ® to those {Xk} for which R < r,,
with rank test significance 0.05
If & is empty, then quit.
P —PUP;F=F\d
Y =Y - gy(d,Y)
Go to 2.

S o=

>

10.
11.

Table 1: Notation used in Algorithm 1.

set of original variables

target variable

permuted versions of X

current working set of variables

set of important variables

tth row of matrix M

jth column of matrix M

function that trains an ensemble based
on variables F' and target Y, and
returns a row vector of importances
for each variable in F'

function that trains an ensemble based
on variables F' and target Y, and
returns a prediction of Y

function that returns a row vector of
ranks given an input vector m

of real-valued importances.

228N

3 Experiments

As advocated by [5], an experimental study must have
relevance and it must produce insight. The former is
achieved by using real data sets. However, such studies
often lack the latter component failing to show exactly
why and under which conditions one method excels
another. The latter component can be achieved by
using synthetic data sets, because they let one vary
systematically domain characteristics of interest, such
as the number of relevant and irrelevant attributes,
the amount of noise, and the complexity of the target
concept.

We describe now preliminary experiments with the
proposed method using synthetic data sets. The final

70

version of the paper will report experimentation with
real data sets.

A very useful data generator is described by [3].
This generator produces data sets with multiple non-
linear interactions between input variables. Any greedy
method that evaluates importance of a single variable
only at a time is bound to fail with these data sets.

Figure 1 presents average results with 50 generated
datasets, 500 samples each. For each, twenty N(0,1)
distributed input variables were generated. The target
is a multivariate function of ten of those, thus ten are
pure noise. The target function is generated as a sum
of twenty multidimensional Gaussians, each Gaussian
involving about four randomly drawn input variables at
a time. Thus all of the ”important” ten input variables
are involved in the target, to a varying degree. Figure 1
illustrates how well they can be detected as important
variables. We used Gradient Boosting Trees (GBT) [4]
as the ensemble of 500 trees.

1 T T

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Fraction detected (missed)

0.2

0.1

ll&l Ll

Fraction of times variable was used

0

0 0.2 0.8

Figure 1: Experiment with Friedman’s data generator.
Horizontal axis: The fraction of the Gaussians the vari-
able was involved in, when generating the multivariate
relationship to the target in one dataset. Vertical axis:
The fraction of times such a variable was detected as an
important variable. Darker bars denote false rejections.

Figure demonstrates several things. First, it shows
that multivariate interactions between variables are
discovered by an ensemble of trees. Second, as long
as the variable is involved in at least 20% of the
interactions, is can be detected with a rate higher than
70%. These numbers are naturally a function of the size
of the data set. The final paper will present a larger
array of experiments.

Regarding false acceptance rates (not illustrated),

only 1.5% of the true noise variables were falsely ac-
cepted as important variables. One must emphasize
that typical filter methods based on evaluating any pair-
wise relevance criterion will fail with these data sets be-
cause of the underlying multivariate relationships.

We also experimented using data with linear rela-
tionships, where the target is a simple linear combina-
tion of a number of input variables plus noise. This
would be a simple problem for stagewise linear regres-
sion, but typically linear problems are harder for trees.
However, with data sets of 500 samples, we detected
100% of the important variables, as long as their vari-
ance was larger than 1.5 times the variance of additive
noise. False acceptance rate remained at 1.5%. Using
a smaller data set, just 200 samples, decreases the de-
tection rate of a variable with variance 1.5 times the
variance of additive noise to 65%.

4 Discussion

Stagewise tree regression itself is not a novel idea. In
fact, this is the basis of GBT [4]. Stagewise linear
regression in feature selection has been used earlier
by [6]. However, this method operates greedily on
one variable at a time, it applies only to numerical
variables by projecting the data on the null space of
earlier discovered variable. Furthermore, it applies only
to classification problems.

The idea of adding random ”probe variables” to the
data for feature selection purposes has been used by [1].
Adding permuted original variables as random ”probes”
has been used by [8] in the context of comparing gene
expression differences across two conditions. Statistical
tests have not been used to compare ranks of artificial
probes to real variables in the context of variable
selection.

The presented method retains all good features
of ensembles of trees: mixed type data can be used,
missing variables can be tolerated, and variables are
not considered in isolation. The method is applicable
to both classification and regression. For correlated
variables the method can work in one of two modes:
either report correlated variables or ignore them by the
virtue of computing the residual of the target.

References

[1] J. Bi, K.P. Bennett, M. Embrects, C.M. Breneman,
and M. Song. Dimensionality reduction via sparse
support vector machines. Journal of Machine Learning
Research, 3:1229-1243, March 2003.

A. Borisov, V. Eruhimov, and E. Tuv. Dynamic soft
feature selection for tree-based ensembles. In I. Guyon,
S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature

71

3]

Ezxtraction, Foundations and Applications. Springer,
New York, 2005.

J.H. Friedman. Greedy function approximation: a
gradient boosting machine. Technical report, Dept. of
Statistics, Stanford University, 1999.

J.H. Friedman. Stochastic gradient boosting. Tech-
nical report, Dept. of Statistics, Stanford University,
1999.

P. Langley. Relevance and insight in experimental
studies. IEEE Ezpert, 11:11-12, October 1996.

H. Stoppiglia, G. Dreyfus, R.Dubois, and Y. Oussar.
Ranking a random feature for variable and feature
selection. Journal of Machine Learning Research,
3:1399-1414, March 2003.

Kari Torkkola and Eugene Tuv. Ensembles of reg-
ularized least squares classifiers for high-dimensional
problems. In Isabelle Guyon, Steve Gunn, Masoud
Nikravesh, and Lofti Zadeh, editors, Feature Extrac-
tion, Foundations and Applications. Springer, 2005.
V.G. Tusher, R. Tibshirani, and G. Chu. Significance
analysis of microarrays applied to the ionizing radiation
response. PNAS, 98(9):5116-5121, April 24 2001.

Speeding Up Multi-class SVM Evaluation by PCA and Feature Selection

Hansheng Lei, Venu Govindaraju
CUBS, Center for Unified Biometrics and Sensors
State University of New York at Buffalo
Ambherst, NY 14260
Email: {hlei,govind@cse.buffalo.edu}

Abstract

Support Vector Machine (SVM) is the state-of-the-art learn-
ing machine that has been very fruitful not only in pattern
recognition, but also in data mining areas. E.g., SVM has
been extensively and successfully applied in feature selection
for genetic diagnosis. In this paper, we do the contrary,i.e.,
we use the fruits achieved in the applications of SVM in
feature selection to improve SVM itself. We propose com-
bining Principal Component Analysis (PCA) and Recursive
Feature Elimination (RFE) into multi-class SVM. We found
that SVM is invariant under PCA transform, which qual-
ifies PCA to be a desirable dimension reduction method
for SVM. On the other hand, RFE is a suitable feature
selection method for binary SVM. However, RFE requires
many iterations and each iteration needs to train SVM once.
This makes RFE infeasible for multi-class SVM if without
PCA dimension reduction, especially when the training set is
large. Our experiments on the benchmark database MNIST
and other commonly-used datasets show that PCA and RFE
can speed up the evaluation of SVM by an order of 10 while
maintaining comparable accuracy.

Keywords: Support Vector Machine, Principle
Component Analysis, Recursive Feature Elimination,
Multi-class Classification

1 Introduction

The Support Vector Machine (SVM) was originally de-
signed for binary classification problem [1]. It separates
two classes with maximum margin. The margin is de-
scribed by Support Vectors (SV) which are determined
by solving a Quadratic Programming(QP) optimization
problem. The training of SVM, dominated by the QP
optimization, used to be very slow and lack of scalabil-
ity. A lot of efforts have been done to crack the QP
problem and enhance its scalability [13]. The bottle-
neck lies in the kernel matrix. Suppose we have N data
points for training, then the size of the kernel matrix
will be N x N. When N is more than thousands (say,
N = 5000), the kernel matrix is too big to stay in the
memory of a common personal computer. This had been

72

a challenge for SVM until the Sequential Minimum Op-
timization (SMO) was invented by [13]. The space com-
plexity of SVM training is dramatically brought down
to O(1) by SMO. Thus, the training problem was almost
solved, although there might be lurking more powerful
solutions. With the support of SMO, the great scalabil-
ity of SVM has demonstrated its promising potentials
in data mining areas [17].

In the past decade, SVM has been widely applied
in pattern recognition as well as data mining with
fruitful results. However, the SVM itself also needs
improvement in both training and testing (evaluation).
A lot of work have been done to improve the SVM
training and the SMO can be considered as the state-
of-the-art solution for that. Comparatively, only a few
efforts have been put at the evaluation side of SVM][2, 4].

In this paper, we propose a method for SVM eval-
uation enhancement via Principle Component Analy-
sis (PCA) and Recursive Feature Elimination (RFE).
PCA is an orthogonal transformation of coordinate sys-
tem that preserves the Euclidean distance of original
points (each point is considered as a vector of features or
components). By PCA transform, the energy of points
are concentrated into the first few components. This
leads to dimension reduction. Feature selection has been
heavily studied, especially for the purpose of gene selec-
tion on microarray data. The common situation in the
gene related classification problem is: there are thou-
sands of genes but only no more than hundreds of sam-
ples, i.e., the number of dimensions is much more than
the number of samples. In this condition, the prob-
lem of overfitting arises. Among those genes, which of
them are discriminative? Finding the minimum subset
of genes that interact can help cancer diagnosis. RFE
in the context of SVM has achieved excellent results
on feature selection [5]. Here, we do the contrary, i.e.,
we use the fruits of the application of SVM in feature
selection to improve SVM itself.

The rest of this paper is organized as follows. After
the introduction, we briefly discuss the background of

SVM, PCA and RFE as well as some related works in
§2. Then, we prove SVM is invariant under PCA and
describe how to incorporate PCA and RFE into SVM to
speed up SVM evaluation in §3. Experimental results
on benchmark datasets are reported in §4. Finally,
conclusion is drawn in §5.

2 Background and Related Works

In this section, we discuss the basic concepts of SVM
and how RFE is incorporated into SVM for feature
selection on gene expressions. In addition, PCA is also
introduced. We prove that SVM is invariant under PCA
transformation and the propose combining PCA and
RFE safely to improve SVM evaluation.

2.1 Support Vector Machines (SVM) The basic
form of a SVM classifier can be expressed as:

(2.1) 9(x) = w - ¢(x) +b,

where input vector x € R, w is a normal vector of
a separating hyper-plane in the feature space produced
from the mapping of a function ¢(x) : " — R (p(x)
can be linear or non-linear, n’ can be finite or infinite),
and b is a bias. Since SVM was originally designed for
two-class classification, the sign of g(x) tells vector x
belongs to class 1 or class -1.

Given a set of training samples x; € R", i =
1,---, N and corresponding labels y; € {—1,+1}, the
separating hyper-plane (described by w) is determined
by minimizing the structure risk instead of the empirical
error. Minimizing the structure risk is equivalent to
seeking the optimal margin between two classes. The
width of the margin is Plus some

ww Twil?~
trade-off between structure risk and generalization, the
training of SVM is defined as a constrained optimization
problem:

min
w,b

1 N
§W'W+CZ§i

i=1

(2.2)
subject to

yi(w-o(x;) +b) > 1§,
& > 0,Vi,

where parameter C' is the trade-off.
The solution to (2.2) is reduced to a QP optimiza-

73

tion problem:

1
(2.3) max a’a—-a’Ha
a 2
subject to
0 < (677 < 07 Vi,
N
Zyiai =0,
i=1
where a = [aq, - ,ay]T, and H is a N x N matrix,

called the kernel matriz, with each element H(i, j) =
Yy o(xi) - P(x;)-
Solving the QP problem yields:

N
(2.4) W= Zaiyi¢(xi)v

N
(2.5) b= od(xi) - $(x;) + i, Vi.
j=1

Each training sample x; is associated with a La-
grange coefficient «;. Those samples whose coefficient
«; is nonzero are called Support Vectors (SV). Ouly a
small portion of training samples become SVs (say, 3%).

Substituting eq. (2.4) to (2.1), we have the formal
expression of SVM classifier:

N
(2.6) g(x) = Zaiyi¢(xi) “p(x) +b
i=1

N
= Z a1y K (x4,%) + b,
i=1

where the K is a kernel function: K(x;,x;) = ¢(x;) -
¢(x;). By the kernel functions, we do not have to
explicitly know ¢(x). The most commonly-used kernel
functions are: 1)Linear kernel, i.e., ¢(x;) = x;, thus,
K(x;,xj) = x; - X; = x¢ x;; 2) Polynomial kernel, i.e.,
K(x,%;j) = (x;-x;+c)?, where ¢ and d are some positive
constants. 3)Gaussian Radial Basis (RBF) kernel, i.e.,

s |2
K(x;,%x;) = e(_” e). If the used kernel is linear,
then the SVM is called linear SVM, otherwise, non-
linear SVM.

The QP problem (2.3) involves a matrix H that has
a number of elements equal to the square of the number
of training samples. If there are more than 5000 training
samples, H will not be able to fit into a 128-Megabyte
memory (assume each element is 8-byte double). Thus,
the QP problem will become intractable via standard
QP techniques. There were a lot of efforts to meet his
challenge and finally the SMO gave a perfect solution
[13] in 1999. SMO breaks the large QP problem into a

series of smallest possible QP problems. Solving those
small QP optimizations analytically only needs O(1)
memory. In this way, the scalability of SVM is enhanced
dramatically. Since the training problem was cracked
by SMO, the focus of efforts has been transferred to the
evaluation of SVM [2]: improve accuracy and evaluation
speed. Increasing accuracy is quite challenging, while
the evaluation speed has much margin to work on. To
enhance the SVM evaluation speed, we should refer
back to eq. (2.6), from which we can imagine there
are following possible ways to achieve speedup:

1. Reduce the number of SVs directly. w is described
by a linear combination of SVs and to obtain g(x),
x needs to do inner product with all SVs. Thus,
reducing the total number of SVs can directly
reduce the computational time of SVM in test
phase. Burges et al. proposed such a method[2].
It tries to find a w’ that approximates w as close
as possible in the feature space. Similarly as w,
w’ is expressed by a list of vectors (called reduced
set) associated with corresponding coefficients (o).
However, the method for determining the reduced
set is computationally very expensive. Exploring in
this direction further, Downs et al. found a method
to identify and discard unnecessary SVs (those SVs
who linearly depend on other SVs) while leaving the
SVM decision unchanged [4]. A reduction in SVs
as high as 40.96% was reported therein.

2. Reduce the size of quadratic program and thus
reduce the number of SVs indirectly. A method
called RSVM (Reduced Support Vector Machines)
was proposed by Lee et al.[10]. It preselects a
subset of training samples as SVs and solves a
smaller QP. The authors reported that RSVM
needs much less computational time and memory
usage than standard SVM. A comparative study
on RSVM and SVM by Lin et al.[11] showed
that standard SVM possesses higher generalization
ability, while RSVM may be suitable in very large
training problems or those that have a large portion
of training samples becoming SVs.

3. Reduce the number of vector components. Sup-
pose the length of vector is originally n, can we
reduce the length to p < n by removing non-
discriminative components or features? To the best
of our knowledge, there are very few efforts,if any,
have been done in this direction. Since there are
mature fruits in dimension reduction and feature
selection, we propose to make use of successful tech-
niques gained by the applications of SVM in fea-
ture selection to improve SVM, especially multi-
class SVM.

74

2.2 Recursive Feature Elimination (RFE) RFE
is an iterative procedure to remove non-discriminative
features [6] in binary classification problem. The frame-
work of RFE consists of three steps: 1)Train the classi-
fier; 2) Compute the ranking of all features with a certain
criterion in term of their contribution to classification;
3)Remove the feature with lowest ranking. Goto step
1) until no more features.

Note that in step 3), only one feature is eliminated
each time. It may be more efficient to remove several
features at a time, but at expense of possible perfor-
mance degradation. There are many feature selection
methods besides RFE. However, in the context of SVM,
RFE has been proved to be one of the most suitable
feature selection methods by extensive experiments [6].
The outline of RFE in SVM is as follows:

Algorithm.1 SVM-RFE

Inputs: Training samples Xo = [x1,X2,- - ,Xy] and
class labels Y = [y1,¥y2, -+, yn]-

Outputs: feature ranked list r.

1 s=[1,2,---,n]; /*surviving features*/

2: 1 =[[; /*feature ranking list*/

3: while s #[] do

4: X = Xg(s,:); /*only use surviving features of

every sample*/

Train linear SVM on X and Y and obtain w;

c; = w?,Vi [*weight of the ith feature in s */

f = argmin;(c;); /*index of the lowest ranking*/
r = [s(f),r]; /*update list*/
s=s(1:f—1,f+1:length(s)); /Feliminate the
lowest ranked feature*/

10: end while. /*end of algorithm*/

Note that the ranking criterion for the discrim-
inability of features is based on w, the normal vector of
the separating hyper-plane, as shown in line 6. The idea
here is that one may consider a feature is discriminative
if it significantly influences the width of the margin of
the SVM. Recall that SVM tries to seek the maximum
width of margin and the width is W =2/%" w?.So,
if a feature with large w? is removed, the change of the
margin is also large, thus, this feature is very important.

Also note that in line 5, linear SVM is usually
used in gene selection applications. According to our
experience, linear SVM works better than non-linear
SVM in gene selection because the gene expression
samples tend to be linear separable. However, in
regular domains, like handwritten character or facial
classification using images as samples, non-linear SVM
is usually better.

RFE requires many iterations. If we have n features

in total and want to choose the top p features, the num-
ber of iterations is n — p if only one feature is eliminated
at a time. More than one features can be removed a time
by modifying line 7-9 in the algorithm above, at the ex-
pense of possible degradation of performance. Usually
half features can be eliminated at a time on mircoarray
gene data until the number of features come down to no
more than 100 (then features should be eliminated with
caution).

2.3 Principal Component Analysis (PCA) It is
well known that the training of SVM is very slow
compared to other classifiers. RFE works smoothly
in gene selection problems, because there are usually
no more than hundreds of training samples of gene
expressions in that situation. When we come back
to conventional classification problem, the training set
usually has large size (say, tens of thousands of samples).
In this case, it is desirable to reduce the computational
time of each training as well as the total number of
iterations. We use PCA to preprocess the data and
perform dimension reduction before RFE.

Given a set of centered vectors x; € R", k =
1,---,N, Zfil x; = 0, PCA diagonalizes the scatter
matrix:

| X
_ ~T
(2.7) S = E_l XiX; -

To do this, the eigen problem has to be solved:
(2.8) Sv = Av,

where eigenvalues A > 0 and eigenvectors v € R™.
Those eigenvectors v;,© = 1,--- ,n, are called the
Principal Components. Arbitrary pair of principle
components are orthogonal to each other, i.e., v,;fvj =
0(i # 7). And, the eigenvectors are normal, i.e., vl v; =
1. Those components span a new orthogonal coordinate
system with each component as an axis. The original
vector x; has its new coordinates in the new system by
projecting it to every axis (suppose V = [vy,---,vy,],
the projection of x; to the new coordinate system is x; =
VTx;). The projected vector x, has the same dimension
n as X;, since there are n eigenvectors together.

The benefit of projecting x; into the PCA space is:
those eigenvectors associated with large eigenvalues are
more principle, i.e., the projecting values to those v; are
larger and thus more important. Those less important
components can be removed and thus the dimension
of the space is safely reduced. How many components
should be eliminated depends on the applications. PCA
is a suitable dimension reduction method for SVM clas-
sifiers because SVM is invariant under PCA transform.
We will give proof in next section.

75

3 Speeding Up SVM by PCA and RFE

We speed up SVM evaluation via PCA for dimension
reduction and RFE for feature selection. RFE has
been combined with linear SVM in the applications of
gene selection. Here, we incorporate RFE into stan-
dard SVM (linear or non-linear) to eliminate the non-
discriminative features and thus enhance SVM in test
phase. A motivation here is for the conventional clas-
sification problems, like handwriting recognition, face
detection, the input vectors of features are the pixels
of images (if we do not use predefined features). For a
28 x 28 image, the vector will be 784 long. Reducing the
length of every vector while maintaining the accuracy is
of practical interests. Another motivation is that not
all feature are discriminative, especially in multi-class
problem. For example, in the handwritten digit recog-
nition, when we try to distinguish ’4’ and ’9’,usually
only the upper part (closed or open) is necessary to tell
them apart. The other parts or features are actually
of little use here. An efficient implementation method
of multi-class SVM is ’One-vs-One’ (OVO) [8]. OVO
is constructed by training binary SVMs between pair-
wise classes. Thus, OVO model consists of W bi-
nary SVMs for M-class problem. Each of the binary
SVM classifier casts one vote for its favored class, and
finally the class with maximum votes wins. There all
other multi-class SVM implementation methods besides
OVO, such ”One-vs-All” [16, 15] and DAG SVM [14].
None of them outperforms OVO significantly, if compa-
rable. But most of them are to decompose multi-class
problem to a series of binary problems. Therefore, the
concept of RFE originally for two-class is also applica-
ble in multi-class. Some features are discriminative for
this pair of classes, but may be not useful for another
pair. We do not have to use a fixed number of features
for every binary SVM classifier. Using PCA and RFE,
we propose the following Feature Reduced Support Vec-
tor Machines (FR-SVM) algorithms in the framework of
OVO.

Algorithm.2 Training of FR-SVM
Inputs: Training samples Xo = [x1,X2, -, Xn]; class
labels Y = [y1,y2, - ,yn]; M(number of classes); P(
number of chosen most principal components); and
F(number of chosen top ranked features).
Outputs: Trained multi-class SVM classifier OVO;
[V,D,P](the parameters for PCA transformation).

1. [V, D] = PCA(Xy); /*Eigen vectors & values */

2: X = PCA Transform(V,D,Xq, P); /*dimension

reduction by PCA to P components */
3: for i=1 to M do
4. for j=i+1 to M do

Cy = X(:, find(Y ==1)); /*data of class i*/

Cy = X(:, find(Y == j)); /*data of class j*/

r = SVM-RFE(C1, C2); /*ranking list*/

Fc «— F top ranked features from r;

C{ = C1(Fe,:); /*only the F' components*/

10: Ch = Cy(Fey:);

11: Binary SVM model « Train SVM on C & C%;

12: OVO{i}{j} <« {Binary SVM Model, Fc};
/*save the model and selected features*/

13: end for

14: end for/*end of algorithm*/

Algorithm.3 Evaluation of FR-SVM
Inputs: Evaluation samples Xo = [x1,X2, " ,XnN];
Trained multi-class SVM classifier OVO; M (number of
classes); [V, D, P](the parameters for PCA transforma-
tion).
Outputs: Labels Y = [y1,y2, , yn]-
1. X = PCA Transform(V, D, Xy, P);
2: for k=1 to N do
x = X(:,k); /*one test sample*/
Votes=zeros(1,M); /*votes for each class*/
for i=1 to M do
for j=i+1 to M do
{Binary SVM, Fc} « OVO{i}{j};
x' = x(Fc); /*only the selected compo-
nents*/
9: Label «— SVM(x’); /*binary SVM evalua-
tion*/
10: Votes(Label)=Votes(Label)+1;
11: end for
12: end for
13: Y (k) = find(Votes == max(Votes)); /*the one
with max votes wins*/

14: end for/*end of algorithm*/

Algorithm.2 and 3 are the training and evaluation of
FR-SVM respectively. Note that for every binary SVM,
we apply RFE to obtain the top F' most discriminative
features(components). Then, in evaluation, we only
use those selected features. The F' features may be
different across different pair of classes. Instead of
predefining the number of features F' , one might wants
to determine such an optimal F' automatically by cross
validation. This is a choice but too time-consuming
when the training set or the number of classes is large.
To make the FR-SVM more feasible, we let F' be user-
defined. Similarly, FR-SVM leaves P (number of chosen
principal components) to the users.

We use PCA for dimension reduction because SVM
is invariant under PCA transformation. We state it as
a theorem and prove it.

76

THEOREM 3.1. The evaluation result of SVM with lin-
ear, polynomial and RBF kernels is invariant if input
vector is transformed by PCA.

Proof. Suppose V' = [vy,va, - ,v,], where v; is an
eigenvector. The PCA transformation of vector x is
VTx. Recall the optimization problem (2.3). If ker-
nel matrix H does not change, then the optimization
does not change (under the same constraints). Since
H(i,j) = vyiy; K(x:,%;), all we need for proof of in-
variance is K (V7'x;,VTx;) = K(x;,x;). Note that all
eigenvectors are normali.e., vIv; = 1,Vi and mutually
orthogonal, i.e., vIv; = 0(i # j). Therefore, we have
VTV = I, where I is a n x n unit matrix.

Now, for linear case, K(VTx;,VTx;) = VTx; -
VIix;, = (VIx)TVTx; = xI'(VvT)x; = xI'Ix; =
xI'x; = K(xi,x;). Similarly, we can prove the poly-
nomial case.

For RBF kernel, it is enough to show |[VTx; —

VTx;||? = ||x; — x,;||>. Expanding the Euclidean norm,
we have [|[VTx; — VTx;||? = (VTx;)? + (VTx;)? —
2(VTx) T (VTx;) = x%—l—x?—Qxixj = |lx; —x;|%. A

Backed up by the theorem above, we can safely
utilize PCA to preprocess the training samples and
reduce their dimensions. Of course, this preprocessing
is optional, if the original dimension of samples is not
high (say, like below 50), we do not have to carry PCA
transformation. Our recommendation to use PCA to
reduce dimension before RFE is due to two concerns:
one is that the RFE needs many iterations. The number
of iterations is directly related to the dimension (i.e., the
number of original features). Thus, dimension reduction
leads to reduction of RFE iterations; another is that
SVM training is quite slow, dimension reduction saves
the computational time of each iteration of training. We
will see how PCA and RFE contribute to the speedup
of SVM by experiments in the next section.

4 Experiments

The main tasks of the experiments are to: 1)test the
accuracy of FR-SVM. For every classifier, one of the
most important measures is its accuracy. Since our
goal is to enhance the SVM evaluation speed, we should
be careful not to jeopardize the performance of SVM.
2)observe how much speedup we can achieve without
negative influence on the performance of SVM.

Three datasets were used in our experiments. The
description of them are summarized in table 1. The
Iris is one of the most classical datasets for testing
classification, available form [7]. It has 150 samples
with 50 in each of the three classes. We used the first
35 samples from every class for training and the left 15
for testing. The MNIST database [9] contains 10 classes

Table 1: Description of the multi-class datasets used in
the experiments.

Table 2: The results of FR-SVM on the Iris(without
RFE feature selection). P is the number of principal

Name # of # of # of # of components chosen. The line with () is the results of
Training | Testing | Classes | Attributes | QVO SVM. C = 500 and o = 200 for both OVO SVM
Samples | Samples and FR-SVM.
Tris 105 45 3 4 P Accuracy | PCA | Training | Testing
MNIST | 60000 10000 10 784 (F=P) (secs) (secs) (secs)
Isolet 6238 1559 26 617 1] 100% NA 0 0
4 100% 0.016 0 0
3 100% 0.015 0 0
of handwritten digits (0-9). There are 60,000 samples 2 97.78% | 0.015 0 0
for training and 10,000 samples for testing. The digits ! 97.78% | 0.015 0 0

have been size-normalized and centered in a fixed-size
image (28 x28). It is a benchmark database for machine
learning techniques and pattern recognition methods.
The third dataset Isolet were generated from spoken
letters [7]. We chose it because it has 26 classes, which
is reasonably high among publicly available datasets.
The number of the three class varies from 3 to 26. The
number of samples varies from hundreds (Iris) to tens
of thousand (MNIST). We hope the typicality of the
datasets makes the experimental results convincing.

The software package we used was the OSU SVM
Classifier Matlab Toolbox [12], which is based on
the software LIBSVM [3]. On each dataset, we
trained multi-class OVO SVM. The kernel we chose
was the RBF _kernel, since it has been widely observed
RBF kernel usually outperforms other kernels, such as
linear and polynomial ones. The regularizing parame-
ters C and o were determined via cross validation on the
training set. The validation performance was measured
by training on 70% of the training set and testing on
the left 30%. The C and o that lead to best accuracy
were selected. We did not scale the original samples
to range [-1,1], because we found that doing so did not
help much. Our FR-SVM were also trained with exactly
the same parameters (C' and o) and conditions as OVO
SVM except that we varied additional two parameters
P (the number of principal components) and F (the
number of top ranked features) to see the performance.
We compared the performance of OVO SVM and FR-
SVM basically in three aspects: classification accuracy,
training and testing speed.

4.1 PCA Dimension Reduction First experiment
we did is: vary P and let F' = P, which means PCA
is applied alone without feature selection. Since PCA
reduces dimensions before SVM training and testing,
thus PCA is able the enhance both the training and
testing speed. Table 2 summarizes the results on the
Iris dataset. The first line with () means without PCA
transformation, i.e., it shows the results of standard
OVO SVM. The execution time of PCA is separated

71

from the regular SVM training time. The former is
shown in the second column and latter in the third
column. Therefore, the total training time of FR-SVM
is actually the sum of PCA and SVM training.

Since the Iris is very small, the contribution of PCA
on training and testing time is not obvious (all 0). Only
PCA transformation itself costs some time. However,
the interesting observation is that the accuracy remains
perfect with dimension reduction as 0 (P = 4) or 1
(P = 3) and even only 1 component (P = 1) can issue
a 97.78% accuracy.

The results on the MNIST and Isolet are shown
in Table 3 and 4 respectively. It is surprising that
the PCA dimension reduction enhances the accuracy
of SVM on the MNIST dataset with a proper value of
P. When P = 50, the accuracy of FR-SVM is 98.30%,
while that of OVO SVM is 97.90%. Although the
enhancement is not significant, it is still encouraging.
When P = 25, a speedup of 11.5 (278.9/24.3) in
testing and 6.8 (4471.6/(228.64+441.4)) in training is
achieved. The speedups are in our expectation, since
the dimensions of samples are reduced before SVM
training and testing. The results on the Isolet are
similar, as shown in table 4. The difference from
MNIST is that the accuracy of FR-SVM decreases as
P decreases, but not significantly before P = 100.
The computational time of training and testing is
saved dramatically by PCA dimension reduction. The
interesting observation on Isolet is that training time
is reduced from 249.4(secs) to 86.5(secs) with only
PCA transformation but no dimension reduction (when
P = 617). The reason is unknown and maybe can be
traced into the implementation of the SVM optimization
toolbox. From all table 2, 3 and 4, we can see
that the accuracy of SVM remains the same by PCA
transformation but without dimension reduction (when
P =the number of original dimensions). This confirms
our theorem 3.1.

Table 3: The results of FR-SVM on the MNIST (without
RFE feature selection). P is the number of principal
components chosen. The line with @) is the results of
OVO SVM. C =5 and ¢ = 20 for both OVO SVM and
FR—SVI})/[.

Accuracy | PCA | Training | Testing

(F=P) (secs) (secs) (secs)
0 97.90% NA 4471.6 278.9
784 97.90% 258.6 4467.4 275.7
500 97.84% 255.8 4230.7 250.1
300 97.58% 252.4 3800.8 237.2
200 97.92% 243.6 3650.2 231.9
150 97.96% 237.5 2499.2 175.7
100 98.20% 234.3 1529.6 102.2
50 98.30% 230.1 628.8 48.8
25 97.94% 228.6 441.4 24.3
10 92.76% 228.0 128.7 12.8

Table 4: The results of FR-SVM on the Isolet(without
RFE feature selection). P is the number of principal

components chosen. The line with @ is the results of
OVO SVM. C = 10 and ¢ = 200 for both OVO SVM

and FR-SVM.
P Accuracy | PCA | Training | Testing
(F=P) (secs) (secs) (secs)
0 96.92% NA 249.4 36.7
617 96.92% 21.2 86.5 36.6
400 96.86% 19.7 66.1 24.5
300 96.86% 19.3 57.9 18.4
200 96.60% 18.6 43.5 12.7
150 96.54% 18.3 38.3 9.3
100 96.28% 18.0 33.4 6.4
50 95.51% 18.0 24.7 3.6
25 93.39% 18.0 20.3 2.3
10 81.21% 17.4 12.1 2.0

4.2 RFE Feature Selection The second experi-
ment we did is to vary F without PCA transformation.
Since the feature elimination procedure requires many
iterations, we fixed the number of features eliminated
each time as 1 on Iris, and 20 on MNIST and Isolet
empirically. The accuracy, time of RFE, training time
and testing time were reported, as shown in table 5,
6 and 7 on the three datasets respectively. The first
line shows the results of OVO SVM actually, because
no feature is eliminated. Like the previous experiment,
the execution time of RFE is also separated from the
regular SVM training time. The total training time of
FR-SVM here is actually the sum of RFE (the second
column) and SVM training (the third column).

On the Iris, only RFE requires some time, since the
size of dataset is very small. The interesting thing is
that only one feature is enough to distinguish a pair of

78

Table 5: The results of FR-SVM on the Iris(without
PCA dimension reduction). F is the number of top
ranked features chosen for each pair of classes. C' = 500
and o = 200 for both OVO SVM and FR-SVM.

F | Accuracy | RFE | Training | Testing
(secs) (secs) (secs)

4 100% 0 0 0

3 100% 0.016 0 0

2 100% 0.016 0 0

1 100% 0.016 0 0

Table 6: The results of FR-SVM on the MNIST (without
PCA dimension reduction). F' is the number of top
ranked features chosen for each pair of classes. C =5
and ¢ = 20 for both OVO SVM and FR-SVM.

F Accuracy RFE Training | Testing

(secs) (secs) (secs)
784 97.90% 0 4471.6 278.9
500 97.87% 35306 3179.7 251.1
300 97.82% 45120 2535.3 243.6
200 97.74% 47280 1094.4 221.0
150 97.40% 49344 648.0 114.1
100 96.62% 49432 398.7 110.6
50 94.56% 49440 286.2 47.1
25 89.86% 49446 208.8 25.5
10 75.60% 52126 171.9 13.5

Iris classes (When F' = 1, the accuracy is still 100%),
as shown in table 5.

On the MNIST, the accuracy steadily decreases as
F decreases, but not significantly. Compared to PCA (as
shown in table 3), the RFE seems not as reliable as
PCA on MNIST in term of accuracy, while the speedup
gained in testing is quite close. In addition, we can see
that RFE is very computationally expensive because of
its recursive iterations. To eliminate 684 features (let
F = 100), the number of iterations is 34 (284/20, 20
features eliminated at a time), which takes 13.7 hours
(49432 secs). Without PCA, the procedure of RFE is
painfully long. From the results on the Isolet as shown
in table 7, we have the similar observations.

4.3 Combination of PCA and RFE The third
experiment was to see how the combination of PCA
and RFE contributes to multi-class SVM classification.
We chose the minimum P in the first experiment which
guarantees the accuracy is as high as that of the
standard SVM. Then we chose F' as small as possible
that also issues a comparable accuracy. The parameters
C and o remained the same as previous experiments.

Table 8 summarizes the results. Training speedup is

. Training time of OVO SVM
calculated as Training time of FR.SVM - Note that the

Table 7: The results of FR-SVM on the Isolet(without
PCA dimension reduction). F' is the number of top
ranked features chosen for each pair of classes. C'= 10
and ¢ = 200 for both OVO SVM and FR-SVM.

F Accuracy RFE Training | Testing
(secs) (secs) (secs)
617 96.92% 0 249.4 36.7
400 96.98% 758.4 80.2 22.3
300 96.86% 868.6 50.0 15.7
200 96.60% 981.1 30.0 12.4
150 | 96.73 % | 1065.3 23.6 11.5
100 96.28 % 1164.0 12.8 5.3
50 96.09 % 1284.8 4.6 3.1
25 95.2 % 1301.8 3.9 3.0
10 93.14 % 1314.7 2.6 2.8

Table 8: Combination of PCA and RFE. P is the
number of principal components chosen. F' is the
number of top ranked features chosen for each pair of
classes. Speedup is FR-SVM vs. OVO SVM.

Dataset P F | Accuracy | Training | Testing
Speedup | Speedup
Iris 3 3 100% 1 1.3
MNIST | 50 | 40 | 98.14% 3.90 10.9
Isolet 200 | 60 | 96.28% 0.98 11.1

training time of FR-SVM is actually the sum of PCA,
RFE, and SVM training. Similarly, the evaluation
speedup is T,Ezzit?fgtE‘:ﬁeoéfoF\%O_ssv\{v[M. On the Iris dataset,
the training speedup of FR-SVM over OVO SVM is
1 because both execution time are negligible. On the
MNIST, FR-SVM achieved a speedup in both training
and testing. The gain in training is due to the dimension
reduction by PCA. The gain in testing is due to the
combinatorial contribution of PCA and RFE. On the
Isolet, the training of FR-SVM is slightly slower than
OVO SVM because of RFE (with training speedup as
0.98). However, in testing, we can also see a significant
enhancement by an order of over 10 while the accuracy
is still comparable. When P = 50 and F' = 40, the
accuracy of FR-SVM on MNIST is 98.14%, higher than
that of OVO SVM (97.90%). When P = 200 and
F = 60, the accuracy of FR-SVM on Isolet is 96.28%,
slightly lower than that of OVO SVM (96.92%). To
sum up, PCA and RFE can significantly enhance the
evaluation speed of standard SVM with proper settings
of P and F while maintaining comparable accuracy.

5 Conclusion

Incorporating both PCA and RFE into standard SVM,
we propose FR-SVM for efficient multi-class classifica-
tion. PCA and RFE reduce dimensions and select the

79

most discriminative features. Choosing a proper num-
ber of principle components and a number of top ranked
features for each pairwise classes, a significant enhance-
ment in evaluation can be achieved while comparable
accuracy is maintained.

References

[1] B. Boser, I.Guyon, and V. Vapnik. A training algo-
rithm for optimal margin classifiers. In D. Haussler,
editor, 5th Annual ACM Workshop on COLT, pages

144-152, 1992.) ,
[2] C. Burges and B. Scholkopf. Improving speed and ac-

curacy of support vector learning machines. In Ad-
vances in Kernel Methods: Support Vector Learnings,

a%es 375-381, Cambridge, MA, 1997. MIT Press.
%. hang and C. Lin. Libsvm: a library for support

vector machines.

2001.
[4] T. Downs, K. Gates, and A. Masters. Exact simplifi-

cation of support vector solutions. Journal of Machine

Learning Research, vol. 2:293-297, 2001, .
[5] I. Guyon and A. Elisseeff. An introduction to variable

and feature selection. Journal of Machine Learning

Research, vol. 3:1157-1182, 2003.)
[6] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene

selection for cancer classification using support vector

machines. Machine Learning, vol. 46:389-422, 2002.
[7] S. Hettich and S. Bay. The UCI KDD archive.

http://kdd.ics.uci.edu, 1999.
U. Kreflel. Pairwise classification and support vector

machines. In Advances in Kernel Methods: Support
Vector Learnings, pages 255-268, Cambridge, MA,

1999. MIT Press.)
[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.

Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, vol. 86:2278-2324, Nov

8]
http://www.kernel-machines.org/,

8]

1998.
Y. Lee and O. Mangasarian. Rsvm: Reduced support
vector machines. In The First SIAM International

Conference on Data Mining, 2001.
[11] K.-M. Lin and C.-J. Lin. Lin a study on reduced sup-

port vector machines. IEEE Transactions on Neural

Networks, vol. 14:1449-1559, 2003. .
[12] J. Ma, Y. Zhao, and S. Ahalt. Osu svm classifier mat-

lab_toolbox. hitp://www.kernel-machines.org/, 2002.
[13] J. Platt. Fast training of support vector machines

using sequential minimal optimization. In Advances
in Kernel Methods - Support Vector Learning, pages

185-208, Cambridge, MA, 1999. MIT Press.
J. Platt, N. Cristianini, and J. Shawe-Taylor. Large

margin DAGs for multiclass classification. In Advances
in Neural Information Processing Systems, volume 12,

ages 547-553, 2000.
}1?{. Rifin and A. Klautau. In defense of one vs-all-

classification. Journal of Machine Learning Research,

vol. 5:101-141, 2004.
V. Vapnik. Statistical Learning Theory. Wiley, New

York, 1998.
H. Yu. Data Mining via Support Vector Machines:

Scalability, Applicability, and Interpretability. PhD
thesis, Univeristy of Illinois at Urbana-Champaign,
May 2004.

(10]

(14]

(15]

(16]
(17]

Approach

Ji Zhang

Detecting Outlying Subspaces for High-Dimensional Data: A Heuristic Search

Department of Computer Science,
University of Toronto, Canada
jzhang@cs.toronto.edu

Abstract

In this paper, we identify a new task for studying the out-
lying degree of high-dimensional data, i.e. finding the sub-
spaces (subset of features) in which given points are out-
liers, and propose a novel detection algorithm, called High-
D Outlying subspace Detection (HighDOD). We measure
the outlying degree of the point using the sum of distances
between this point and its k£ nearest neighbors. Heuristic
pruning strategies are proposed to realize fast pruning in
the subspace search and an efficient dynamic subspace search

outliers are detected by searching for sparse subspaces.
Points in these sparse subspaces are assumed to be
the outliers. While knowing which data points are the
outliers can be useful, in many applications, it is more
important to identify the subspaces in which a given
point is an outlier, which motivates the proposal of a
new technique in this paper to handle this new task.

X

x

X
method with a sample-based learning process has been im- X XXX X XX . X XX%({)(N
plemented. Experimental results show that HighDOD is ef- X XX X P < X X

ficient and outperforms other searching alternatives such as p X X N

the naive top-down, bottom-up and random search meth-
ods.

Keywords: Outlying Subspaces, High-dimensional Data,
Heuristic Search, Sample-based Learning.

1 Introduction

Outlier detection is a classic problem in data mining
that enjoys a wide range of applications such as the
detection of credit card frauds, criminal activities and
exceptional patterns in databases. Outlier detection
problem can be formulated as follows: Given a set
of data points or objects, find a specific number of
objects that are considerably dissimilar, exceptional and
inconsistent with respect to the remaining data [5].

Numerous research works in outlier detection have
been proposed to deal with the outlier detection prob-
lem defined above. They can broadly be divided into
distance-based methods [7], [8], [11] and local density-
based methods [4], [6], [10]. However, many of these out-
lier detection algorithms are unable to deal with high-
dimensional datasets efficiently as many of them only
consider outliers in the entire space. This implies that
they will miss out the important information about the
subspaces in which these outliers exist.

A recent trend in high-dimensional outlier detection
is to use the evolutionary search method [2] where

80

Figure 1: 2-dimensional views of the high-dimensional
data

To better demonstrate the motivation of exploring
outlying subspace detection, let us consider the example
in Figure 1, in which three 2-dimensional views of the
high-dimensional data are presented. Note that point p
exhibits different outlying degrees in these three views.
In the leftmost view, p is clearly an outlier. However,
this is not so in the other two views. Finding the correct
subspaces so that outliers can be detected is informative
and useful in many practical applications. For example,
in the case of designing a training program for an
athlete, it is critical to identify the specific subspace(s)
in which an athlete deviates from his or her teammates
in the daily training performances. Knowing the specific
weakness (subspace) allows a more targeted training
program to be designed. In a medical system, it is useful
for the Doctors to identify from voluminous medical
data the subspaces in which a particular patient is
found abnormal and therefore a corresponding medical
treatment can be provided in a timely manner.

The major contribution of this paper is the proposal
of a dynamic subspace search algorithm, called High-
DOD, that utilizes a sample-based learning process to

efficiently identify the subspaces in which a given point
is an outlier. Note that, instead of detecting outliers in
specific subspaces, our method searches from the space
lattice for the associated subspaces whereby the given
data points exhibit abnormal deviations. To our best
knowledge, this is the first such work in the literature
so far. The main features of HighDOD include:

1. The outlying measure, OD, is based on the sum of
distances between a data and its k nearest neigh-
bors [1]. This measure is simple and independent
of any underlying statistical and distribution char-
acteristics of the data points;

. Heuristic pruning strategies are proposed to aid in
the search for outlying subspaces;

. A fast dynamic subspace search algorithm with a
sample-based learning process is proposed;

. The heuristic on the minimum sample size based
on the hypothesis testing method is also presented.

The reminder of this paper is organized as follows.
Section 2 discusses the basic notions and problem to
be solved. In Section 3, we present our outlying sub-
space detection technique, called HighDOD, for high-
dimensional data. Experimental results are reported in
Section 4. Section 5 concludes this paper.

2 Outlying Degree Measure and Problem
Formulation

Before we formally discuss our outlying subspace detec-
tion technique, we start with introduction of the outly-
ing degree measure that will be used in this paper and
formulation of the new problem of outlying subspace
detection we identify.

2.1 Outlying Degree OD. For each point, we de-
fine the degree to which the point differs from the ma-
jority of the other points in the same space, termed the
Outlying Degree (OD in short). OD is defined as the
sum of the distances between a point and its k nearest
neighbors in a data space [1]. Mathematically speaking,
the OD of a point p in space s is computed as:

k
OD,(p) = >_ Dist(p,p:)|p; € KNNSet(p, s)
=1

where K NN Set(p, s) denotes the set composed by the
k nearest neighbors of p in s. Note that the outlying
degree measure is applicable to both numeric and nom-
inal data: for numeric data we use Euclidean distance
while for nominal data we use the simple match method.

81

Mathematically, the Euclidean distance between two
numeric points p; and py is defined as Dist(p1,p2) =
> ((p1i — p2i)/(Maz; — Min;))?]*/2, where Max; and
Min; denote the maximum and minimum data value of
the i*" dimension. The simple match method measures
the distance between two nominal points p; and po as
Dist(p1,p2) = > |p1i — p2il/t, where |p1; — pa;| is 0 if py;
equals to pg; and is 1 otherwise. t is the total number
of attributes.

2.2 Problem Formulation. We now formulate the
new problem of outlying subspace detection for high-
dimensional data as follows: given a data point or ob-
ject, find the subspaces in which this data is consider-
ably dissimilar, exceptional or inconsistent with respect
to the remaining points or objects. These points under
study are called query points, which are usually the data
that users are interested in or concerned with.

A distance threshold T is utilized to decide whether
or not a data point deviates significantly from its
neighboring points. We call a subspace s is an outlying
subspace of data point p if OD4(p) > T.

2.3 Applicability of Existing High-dimensional
Outlier Detection Techniques. The existing high-
dimensional outlier detection techniques, i.e. find out-
liers in given subspaces, are theoretically applicable to
solve the new problem identified in this paper. To do
this, we have to detect outliers in all subspaces and a
searching in all these subspaces is needed to find the set
of outlying subspaces of p, which are those subspaces in
which p is in their respective set of outliers. Obviously,
the computational and space costs are both in an expo-
nential order of d, where d is the number of dimensions
of the data point. Such an exhaustive space searching
is rather expensive in high-dimensional scenario. In ad-
dition, they usually only return the top-k outliers in a
given subspace, thus it is impossible to check whether
or not p is an outlier in this subspace if p is not in this
top-k list. This analysis provides an insight into the in-
herent difficulty of using the existing high-dimensional
outlier detection techniques to solve the new outlying
subspace detection problem.

3 HighDOD

In this section, we present an overview of our High-
Dimension Outlying subspace Detection (HighDOD)
method (shown in Figure 2). It mainly consists of three
modules. The X-tree Indexing module performs X-tree
[3] indexing of the high-dimensional dataset to facilitate
ENN search in every subspace. Sample-based Learning
module randomly samples the dataset and performs
dynamic subspace search to estimate the downward and

Random
Sampling

Dynamic Subspace
Searching

X-tree
Indexing

Downward and
upward pruning
possibilities

High-
dimensional
Dataset

Indexed High-
dimensional data

Query Data Dynamic Subspace Detected
Searching Subspaces
[of Query Data
Users

Figure 2: The overview of HighDoD

upward pruning probabilities of subspaces from 1 to d
dimensions. Outlying Subspace Detection module uses
the probabilities obtained in the Learning module to
carry out a dynamic subspace search to find the outlying
subspaces of the given query data point.

3.1 Subspace Pruning. To find the outlying sub-
spaces of a query point, we make use of the heuristics we
devise to quickly detect the subspaces in which the point
is not an outlier or the subspaces in which the point is
an outlier. All these subspaces can be removed from
further consideration in the later stage of the search
process.

In our work, we utilize a distance threshold T is
used for delimiting outlying and non-outlying subspaces
in the space lattice for a query data point.

OD maintains two interesting monotonic properties
that allow the design of an efficient outlying subspace
search algorithm.

Property 1: If a point p is not an outlier in a subspace
s, then it cannot be an outlier in any subspace that is a
subset of s.

Property 2: If a point p is an outlier in a subspace s,
then it will be an outlier in any subspace that is a superset
of s.

The above properties are based on the fact that

the OD value of a point in a subspace cannot be less
than that in its subset spaces. Mathematically, we have
ODq, (p) > ODs,(p) if 51 2 sa.
Proof: Let aj and by, be the k" nearest neighbors of p
in the an m-dimensional subspace s; and n-dimensional
subspaces so, respectively (1 <n <m < dand s1 2D s3).
MazxDistg(p) is the maximum distance between p and
a;, 1 <1 <k, in the subspace ss.

We have Distg(p,ax) > Dists1(p, a;)|1<i<k. Since
s1 is a superset of sa, we thus know Distg(p,a;) >
Distso(p, a;)|1<i<k. This implies Dists (p, ax) >

82

Distso(p, a;)|i<i<k, By definition of MaxDists, we
have Dists, (p,ar) > MaxDistsa(p) > Distsa(p,by).
In other words, Distsi(p,ar) > Distsa(p,br). Like-
wise, it is hold that Dists1(p, a;) > Distsa(p,bi)|1<i<k,
Since ODg(p) = E’f Dists1(p,a;) and ODgs(p)
lec Distso(p,b;). We therefore conclude: ODg(p) >
O-Ds2(p) u

We make use of Property 1 of OD to quickly prune
away those subspaces in which the point cannot be
an outlier. This is because if ODy(p) < T, then
ODgs(p) < T, where s; 2 s and T is the distance
threshold. In the upward pruning strategy, Property
2 of OD is utilized to detect those subspaces in which
the point is definitely an outlier. The reason is that if
ODg2(p) > T, then ODg1(p) > T.

The distance threshold T is specified as follows:

d
T=C Z ODsiQ,where dim(s;) =1

=1

where OD;, denotes the averaged OD value of points
in the 1-dimensional subspace s; and C' is a constant
factor (C' > 1). This specification stipulates that, in
any subspace, only those points whose OD values are
significantly larger than the average level in the full
space are regarded as outliers. The average OD level

in the full space is approximated by 1/ 2?21 ODSi2 and
the significance of deviation is specified by the constant
factor C, normally we set C'=2 or 3.

3.2 Saving Factors of Subspaces Pruning. Now,
we will compute the savings obtained by applying the
pruning strategies during the search process quantita-
tively. Before that, let us first give three definitions.

Definition 1: Downward Saving Factor (DSF) of a
Subspace

The Downward Saving Factor of a m-dimensional
subspace s is defined as the savings obtained by pruning
all the subspaces that are subsets of s. In other words,
the Downward Saving Factor of s, denoted as DSF(s),
is computed as DSF(s) = Y"1 C % i, where C?,
denotes the combinatorial number of choosing i items
out of a total of m items.

Definition 2: Upward Saving Factor (USF) of a
Subspace

The Upward Saving Factor of an m-dimensional
subspace s, denoted as USF(s), is defined as the savings
obtained by pruning all the subspaces that are supersets
of s. It is computed as USF(s) = Zf:_lm[o k(mAd)].
Definition 3: Total Saving Factor (TSF) of a Sub-
space

The Total Saving Factor of a m-dimensional sub-
space, in terms of a query point p, denoted as T'SF(m,
p), is defined as the combined savings obtained by ap-
plying the two pruning strategies during the search pro-
cess. It is computed as follows:

TSF(m,p) = prup(m,p) * fup(m) * USF(m), when m = 1;
TSF(m,p) = praown(m,p) * faown(m) * DSF(m)

+ prup(m, p) * fup(m) x USF(m), when 1 < m < d;
TSF(m,p) = prdown(m,p) * faown(m) x DSF(m), when
m=d.

where

(1) faown(m) and f,p(m) are the percentages of the
remaining subspaces to be searched. specifically,
fdown (m) = Cdown,left (m)/cdown(m) and fup(m) =
Cup_ieft(m)/Cup(m)

Let dim(s) denote the number of dimensions for
subspace 5. Caown_icft(m) and Cuypcfe(m) are com-
puted as: Cyown_tese(m) = > dim(s), where s is an
unpruned or unevaluated subspace and dim(s) < m.
Cupieft(m) = Y dim(s), where s is an unpruned or
unevaluated subspace and dim(s) > m.

Caown(m) and C,,(m) are the total subspace search

workload in the subspaces whose dimensions are lower
and higher than m, respectively. Intuitively, faown(m)
and f,,(m) approximate the fraction of DSF and USF of
an m-dimensional subspace that are potentially achiev-
able in each step of the search process.
(2) prup(m,p) and praewn(m,p) are the probabilities
that upward and downward pruning can be performed
in the m-dimensional subspace, respectively. In other
words, for a m-dimensional subspace s, pry,(m,p) =
Pr(ODs(p) > T) and praown(m,p) = Pr(OD4(p) < T).
A difficulty in computing the two prior probabilities, i.e.
Prup(m, p) and praewn (M, p), is that their values are un-
known if there lacks any prior knowledge of the dataset.
To overcome this difficulty, we first perform a sample-
based learning process to obtain some knowledge about
the dataset and then apply this knowledge in the later
subspace search for each query point.

3.3 Sampling-based Learning. We adopt a
sample-based learning process to obtain some knowl-
edge about the dataset before subspace search of the
query points are performed. This is desirable when
the dataset is large so that learning the whole dataset
becomes prohibitive. The task of performing this
sampling-based learning is two-fold: first, we will have
to estimate OD,, which will be used in specifying the
distance threshold. Secondly, we will have to compute
the two priors pry,(m,p) and praewn(m,p). In this
learning process, a small number of points are randomly
sampled from the dataset.

At first, the subspace searches are performed in the

83

d 1-dimensional subspaces s; on all the sampling data
and ODy, is computed as the average OD values of all
sampling points in subspace s;, i.e.

1
D, = —
0D, = ¢

S
Z ODSi (Spj)
j=1

where S is the number of sampling points and sp;
denotes the i** sampling point.

Secondly, the subspace searches are performed in
the lattice of data space on the sampling data. For
each sampling point sp, we have the following initial
specifications regarding the two priors pry,(m,p) and
prdown(mvp):

prul)(m7 Sp) = pTdown(ma SP) =05,1<m<d
pTuP(m7 SP) =1 andprdown(m7 SP) = O7 m=1
pTuP(m’ Sp) =0 and p’rdown(m, Sp) = 1,m =d

This initialization implies that we assume equal
probabilities for upward and downward pruning in the
subspaces of any dimension, except 1 and d, for each
sampling point at the beginning. After all the m
dimensional subspaces have been evaluated for sp, the
Prup(m, sp) and praewn(m, sp) are computed as the
percentages of m-dimensional subspaces s in which
ODg(sp) > T and ODs(sp) < T, respectively. The
average pryp, and pryown values of subspaces from 1 to
d dimensions can be obtained as follows:

RN S

prup(m) = % Zi:l prup(ma Spi)
N S
PTrdown (m) % Zizl Prdown (m7 sz')

where we have pryown (1) = prup(d) = 0.

For each query point p, we set pry,(m, p) = pry,(m)
and praown(m,p) = Praown(m) in the computation of
TSF(m, p) of the query point p.

Remarks: There might be a misunderstanding that the
sampling technique will fail here because the outliers are
rare in the dataset. Recall that we are trying to detect
outlying subspaces of query points, not outliers. Every
point can become query point and every query point
will have its outlying subspaces, if its set of outlying
subspaces is not empty. Hence, the outlying subspaces
can be regarded as a global property for all the points
and a sample of sufficient size will make sense in the
learning process.

3.4 Dynamic Subspace Search. In HighDOD, we
use a dynamic subspace search method to find the
subspaces in which the sampling points and the query
points are outliers. The basic idea of the dynamic
subspace search method is to commence search on

those subspaces with the same dimension that has the
highest TSF value. As the search proceeds, the TSF
of subspaces with different dimensions will be updated
and the set of subspaces with the highest TSF values are
selected for exploration in each subsequent step. The
search process terminates when all the subspaces have
been evaluated or pruned. Note that the only difference
between the dynamic subspace search method used on
the sample points and query points lies in the decision
of values of pry,(m,p) and pryewn(m,p): For sample
points, we assume an equal probability of upward and
downward pruning while for query points we use the
averaged probabilities obtained in the learning process.

3.5 Minimum Sampling Size for Training
Dataset. Recall that the sampling method is utilized
to obtain a training dataset that can be used to pre-
compute the prior probabilities of upward and down-
ward pruning, namely pr,,(m) and priewn(m) (1 <
m < d). As such, samples of different sizes will only
affect the pruning efficiency of the algorithm. They will
not change the number of subspaces found.

With this in mind, we now wish to determine the
minimum sample size to accurately predict pr,,(m) and
Prdown(m) with certain degree of confidence. We denote
X as the sample point that can be expressed as an S-
dimensional vector as X = [z1,%2,...,2g] where S is
the size of the sample. Each data in the sample is a
d-dimensional vector as x; = [z;1,%;2,...,2;4]] where
z; ; denote the value of j* dimension of i** data in
the sample. Applying dynamic subspace searching on
sampling points, for each dimension m, we obtain

Ydown (m) = [prdown(ma Spl)vprdown (ma SpQ)a sy

prdown(ma SPS)] (]- S m S d)
We use the S measurements, pryown(m,sp;)(1 <
i < S) as the training data to estimate the mean of
Driown(m). We estimate the sample size by construct-
ing the confidence interval of the mean of prgown(m).
Specifically, to obtain a (1 — «)-confidence interval, the
minimum size of a random sample is given as follows [9]:

t 9 * O'/

Smin(m) = [of 5 m]2

where a;n denotes the estimated standard deviation of
Prdown in the m!" dimension using the training points
that is defined as:

‘ (prdown(mv sz) - prdown(ma sp))Q/(S -]-)

S
i=1

84

¢0* denotes the half-width of the confidence interval.
Note that the value of o,,, varies for different m. Let

7 !’ . .
Omax = maz(o,,)(1 < m < d), the minimum sample
size Sp,in that satisfies respective minimum sample size

requirement of each dimension is computed as:
!’
S . toc/Q * O'max 9

Similarly reasoning applies to pry,(m) since

p""up(m): 1- praown (m)

4 Experimental Results

In this section, we will carry out extensive experiments
to test the efficiency of outlying subspace detection
and the effectiveness of outlying subspace compression
in HighDOD. Synthetic datasets are generated using
a high-dimensional dataset generator and four real-
life high-dimensional datasets from the UCI machine
learning repository, which have been used in [2] for
performance evaluation of their high-dimensional outlier
detection technique, are also used.

Since the existing high-dimensional outlier detec-
tion techniques fail to handle the new outlying sub-
space detection problem, we thus choose to compare
the efficiency of several subspace search methods, i.e.
top-down, bottom-up, random and dynamic subspace
search, instead.

These searching methods aim to find the outlying
subspaces of the given query data using various search-
ing strategies. The top-down search method only em-
ploys a downward pruning strategy while the bottom-
up search method only uses an upward pruning strat-
egy. The random search method, the ”headless chicken”
search alternative, randomly selects the layer in the lat-
tice for search without replacement in each step. The
dynamic search method, a hybrid of upward and down-
ward search, computes the T'SF of all subspaces of differ-
ent dimensions and selects the best layer of subspaces for
search. To evaluate the efficiency of the sample-based
learning process , we run the dynamic search algorithm
with and without incorporating the sample-based learn-
ing process. Note that the execution times shown in this
section are the average time spent in processing each
point in the learning and query process.

Effect of Dimensionality. First, we investigate the
effect of dimensions on the average execution time of
HighDOD (see Figure 3) . We can see that the execution
time of all the five methods increase at an exponential
rate since the number of subspaces increases exponen-
tially as the number of dimension goes up, regardless of
which searching and pruning strategy is utilized. On
a closer examination, we see that (1) The execution

450

—+— Top-down

—e— Bottom-up

—— Dynamic

—— Sample-based dynamic

400K

350

300

250

200

150

100

Average CPU execution time (Sec.)

50

20 30 40 50 60 70 80

Number of dimensions (N=100k, Ng=200)

90 100

Figure 3: Execution time when varying di-
mension of data

120 T T T T

—+— Top-down

—e— Bottom-up

—+— Dynamic

—— Sample-based dynamic

50

Average CPU execution time (Sec.)

100 150 200 250 360 350 460 45;0
Number of query points (N=100,000, d=50)

500

Figure 5: Execution time when varying the
number of query points

time of top-down and bottom-up search methods in-
crease much faster than the dynamic search method; (2)
When using the sample-based learning process, the dy-
namic search method performs better than the method
without using the sample-based learning process.

Effect of Dataset Size. Second, we fix the number of
dimensions at 50 and vary the size of datasets from 100k
to 1,000k. Figure 4 shows that the average execution
times using the five methods to process each query
point are approximately linear with respect to the size
of the dataset. Similar to results of the first experiment,
the dynamic search method with sample-based learning
process gives the best performance.

Effect of Number of Query Points. Next, we vary
the number of query points N,. Figure 5 shows the
results of the five searching methods. It is interesting
to note that when N, is large, dynamic search method
with sample-based learning process gives the best per-

&5

800

—+— Top-down

—6— Bottom-up

—— Dynamic

—— Sample—based dynamic

700

600

Average CPU execution time (Sec.)

300 400 500 600 700 800 900 1000

Size of dataset (k) (d=50, Ng=200)

200

Figure 4: Execution time when varying size
of dataset

120

—e— Dynamic
—— Sample-based dynamic

-
oy
5]

.
o
=]

©
=3

@
S

~
S

Average CPU execution time (Sec.)
3

50 L L L L L L L L
20 40 80 100 120 140 160 180

60
Number of sampling points (N=100,000, d=50, Ng=200)

200

Figure 6: Execution time when varying the
size of sample

formance. However, when N, is small, it is better to
use dynamic search without sample-based learning. The
reason is because when the number of query points is
small, the saving in computation by using the learning
process is not sufficient to justify the cost of the learning
process itself.

Effect of Sample Size. We also investigate the
effect of the number of sampling points, S, used in
the learning process. A large S gives a more accurate
estimation of the possibilities of upward and downward
pruning in subspaces, which in turn, helps to speedup
the search process. However, a large S also implies
an increase in the computation during the learning
process, which may increase the average time spent in
the whole detection process. As shown in Figure 6, the
execution time is first decreased when the number of
sampling points is small, this is because the prediction
of possibility is not accurate enough, which cannot

Datasets(dimensions) | Top-down | Bottom-up | Random | Dynamic | Sample+ Dynamic
Machine(8) 56 49 58 41 32
Breast Cancer (14) 165 176 150 121 110
Segmentation (19) 251 237 256 222 197
Tonosphere (34) 472 477 456 414 387
Musk (160) 5203 4860 5002 4389 3904

Table 1: Results of running five methods on real-life datasets (average CPU time in seconds for each query point)

greatly speedup the later searching process. When the
sample size increases, the prediction of the possibilities
are sufficiently accurate, therefore any larger size of
sample will no longer contribute to the speedup of the
search process, but only increase the execution time as a
whole. The horizontal dot-line in Figure 6 indicates the
execution time when dynamic subspace search without
sample-based learning is employed.

Results on Real-life Datasets. Finally like [2], we
evaluate the practical relevance of HighDOD by running
experiments on five real-life high-dimensional datasets
in the UCL machine learning repository. The datasets
range from 8 to 160 dimensions. Table 1 shows the
results of the five search methods. It is obvious that
dynamic search with sampling-based learning process
works best in all the real-life datasets. Furthermore,
using dynamic subspace search alone is faster than
top-down bottom-up or random search methods by
approximately 20% while incorporating sample-based
learning process into dynamic subspace search further
reduces the execution time by about 30%.

5 Conclusions

In this paper, we propose a novel algorithm, called High-
DOD, to address the new problem of detecting outly-
ing subspaces for high-dimensional data. In HighDOD,
heuristics for fast pruning in the subspace search and a
dynamic subspace search method with a sample-based
learning process are used. Experimental results justify
the efficiency of outlying subspace searching in High-
DOD. We believe that HighDOD is useful in revealing
interesting and new knowledge in outlying analysis of
high-dimensional data and can be potentially used in
many practical applications.

References

[1] F. Angiulli and C. Pizzuti. Fast Outlier Detection
in High Dimensional Spaces. Proc. PKDD’02,Helsinki,
Finland, 2002.

[2] C. C Aggarwal and P.S. Yu. Outlier Detection in High
Dimensional Data. Proc. ACM SIGMOD’00, Santa
Barbara, California, 2001.

86

8l

(8]

(9]

(10]

(11]

S. Berchtold, D. A. Keim and H. Kriegel. The X-tree:
An Index Structure for High-Dimensional Data. Proc.
VLDB’96, Mumbai, India, 1996.

M. Breuning, H-P, Kriegel, R. Ng, and J. Sander. LOF:
Identifying Density-Based Local Outliers. Proc. ACM
SIGMOD’00, Dallas, Texas, 2000.

J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufman Publishers, 2000.

W. Jin, A. K. H. Tung, J. Han. Finding Top n Local
Outliers in Large Database. Proc. SIGKDD’01, San
Francisco, CA, August, 2001.

E. M. Knorr and R. T. Ng. Algorithms for Min-
ing Distance-based Outliers in Large Dataset. Proc.
VLDB’98, pages 392-403, New York, NY, August 1998.
E. M. Knorr and R. T. Ng. Finding Intentional Knowl-
edge of Distance-based Outliers. Proc. VLDB’99, pages
211-222, Edinburgh, Scotland, 1999.

A. E. Mace. Sample-size Determination. Reinhold Pub-
lishing Corporation, New York, 1964.

S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and
C. Faloutsos: LOCI: Fast Outlier Detection Using the
Local Correlation Integral. Proc. ICDE’03, pages 315,
Bangalore, India, 2003.

S. Ramaswamy, R. Rastogi, and S. Kyuseok. Efficient
Algorithms for Mining Outliers from Large Data Sets.
Proc. ACM SIGMOD’00, Dallas, Texas, 2000.

An Optimal Binning Transformation for Use
in Predictive Modeling

Talbot Michael Katz,
TopKatz@msn.com

Abstract: A new transformation of a
continuous-valued predictor for a binary-valued
target partitions the range of the predictor
variable into separate bins, and assigns to each
bin the mean target value of a sample within that
bin. The bins are chosen to minimize the sum of
squared differences between the actual target
values of the sample points (0 or 1) and their
assigned values. This transformation is most
useful in cases where the variation of the target
is non-monotonic (and non-random) with respect
to the predictor. The methodology can be used
to create a new predictor based on combinations
of two or more predictors, and it has extensions
to multiple-valued targets, and even continuous-
valued targets.

Keywords: Optimal, Binning,
Transformation, Predictor, Target

Introduction

A continuous variable may be a good predictor
of an outcome, but in cases where its direct
correlation with the outcome is low, the
predictive ability is obtained only after
performing a transformation of the original
continuous variable. Modelers typically run their
continuous variables through a whole suite of
transforms (square, cube, exponential,
logarithm, cosine, inverse cosine, Box-Cox, etc.)
and test them all separately, looking for a fit.

Sometimes a discretization is the best way to
pick up essential nonlinearities and exploit the
full predictive power of a variable. One simple
discretization for classification, as described in
[1], breaks the range of the continuous variable
into deciles, and assigns to each decile the
mean value of the target, or dependent variable,
within that decile. This is an example of the
practice of binning. A typical definition of
binning can be found on the World Wide Web in

2],

87

“A data preparation activity that converts
continuous data to discrete data by replacing a
value from a continuous range with a bin
identifier, where each bin represents a range of
values. For example, age could be converted to
bins such as 20 or under, 21-40, 41-65 and over
65.”

Two of the most common methods of binning
are, from [3]:

e Equal Width, dividing the range of the
predictor into contiguous bins of
approximately equal distance
between endpoints (like the age
binning example in the definition
above), and

e Equal Depth, dividing the range of the
predictor into contiguous bins of
approximately equal numbers of
sample points (like the deciling
described above)

However, there is no guarantee that deciles or
uniform intervals pick up the best sub-groupings
of the data. For example, imagine a binary
outcome and a variable for which the odd
demideciles all have outcome zero and the even
demideciles all have outcome one. This variable
will have low correlation with the outcome, and
the deciled average responses will all be 0.5,
making the variable appear to be a non-
predictor, although it may be a perfect predictor.

Although several data mining software
packages, such as KXEN and Oracle9i Data
Mining, require binning for some of their
modeling algorithms, many standard texts
[4],[5],[6] devote little or no discussion to the
methods and merits of binning. However, more
sophisticated binning transformations than
equal-width and equal-depth already exist. SAS
Enterprise Miner ® [7], which offers the deciling
transform described above (and its extension to
more general quantiles), has an algorithm that
splits intervals into two pieces at the point where
the maximum chi-square is attained, and
recursively applies this splitting technique to the
subintervals. As with any sequential “greedy”
algorithm, there is no guarantee that the final
outcome has the highest possible chi-square.
Powerhouse ™ analytics software [8] offers three
information / entropy based methods, including
Signal-to-Noise Ratio maximization, Least
Information Loss, and Equal Entropy. Some of

the theory behind these methods can be found
in [9].

Optimal Transformation for Binary Target
Variable

The new proposed binning transformation picks
out sub-segments of the range of a predictor
that have the "most uniform density," i.e., those
for which the sum of within group mean square
residuals is minimized; then each of these sub-
segments is assigned a value equal to the mean
value of the target on that sub-segment. This
criterion is similar to the chi-square splitting, but
allows for a true optimum to be achieved via
binary linear integer programming, as follows.

Choose a sample of N points, sorted by
ascending order of the continuous predictor
variable under investigation. Let x]i] be the
value of the predictor variable and yJ[i] be the
corresponding value of the target variable for 1
<=i<=N. Our goal will be to partition the N
points into disjoint subsets such that each
subset contains a contiguous sequence of all
points k with i <= k <= j for some pairiand j, i.e.,
sub-segments or subintervals. Let m[i,j] be the
mean of the y[k] values for i <= k <=, and let
s[i,j] be the sum of squares of the residuals (y[k]
- m[i,j]) for i <= k <=j. Define the binary
optimization variables vl[i,j] for each pair of points
1 <=i<=j<=N;V],j] = 1 will mean that the sub-
segment determined by i and j has been chosen,
otherwise V[i,j] = 0. The objective will be to
minimize the function c[i,j] * vI[i,j], where c[i,j] =
s[i,j] + C for some constant C. The choice of C
will be critical. If C = 0, the optimization will want
to put each point in its own sub-segment,
because s]i,i] = 0 (at least, when x]i] is unique,
which is likely for continuous variables); if C is
very large, the single segment containing all N
points will be preferred.

The V[i,j] variables are subject to the following
conditions / constraints :

(required) This says that every point must
be in exactly one sub-segment. For each point
k, the sum of v[i,j] over all sub-segments
containing k (i <= k <=) is equal to 1.

(optional) If there is a lower bound, LG, on
the number of sub-segments, then the sum of
Vv[i,j] over all pairs of points i and j (including i = j)
is >=LG.

88

(optional) If there is a hard upper bound,
UG, on the number of sub-segments, then the
sum of v[i,j] over all pairs of points i and j
(including i =) is <= UG.

(optional) If there is a lower bound, LP, on
the number of points per sub-segment, then
eliminate variables V[i,j] with j+1-i < LP.
(optional) If there is an upper bound, UP,
on the number of points per sub-segment, then
eliminate variables V[i,j] with j+1-i > UP.

If the sample data is unevenly distributed, it may
also be desirable to add constraints to
guarantee that the difference between sub-
segment endpoint values is bounded below and
/ or above. Like the bounds on the number of
points per sub-segment, bounds on the
differences between endpoints serve to
eliminate variables.

The choice of the constant C creates a soft
upper bound of 1 + (s[1,N]/C) on the number of
sub-segments. (The optimization will pick some
number of sub-segments no larger than that
value.) The “default” value of C = s[1,N]/ (N - 1)
makes the single sub-segment solution and the
solution consisting of all individual point sub-
segments equally likely.

Optimization Considerations

Because the number of variables and
constraints grows with the sample size, the
number of points that can be used in a sample is
limited by the power of the solver. This method
works readily using the SAS ® PROC LP solver
with a sample of 100 to 200 points, which should
be adequate to pick up the essential behavior of
most continuous variables for modeling
purposes. From an optimization standpoint, the
key feature is that the integer solution is the
same as the LP-relaxation.

Comparison Test of “Oscillating” Predictor
with Binary Target

The transformation described above has its
greatest effect when the target and predictor
variables have a non-monotonic relationship. A
sample of 101 data points was generated with
the following SAS code:

%let twopi = %sysevalf(4*%sysfunc(arcos(0)));
%* 2 * pi;
%let ranseed = 59137; %* seed for pseudo
random number generation;
data & TRA;
do x =0 to 2 by 0.02; * 100 data points;
y = cos(&twopi.*x)**2;
d=(yge 0.8)+((0.2<y<0.8)*
round(ranuni(&ranseed.),1)); * binary target;
* b is the result of running the optimization
with d as the target and x as the predictor;
if x <0.17 then b = 0.77778;
else if 0.17 <= x < 0.34889 then b = 0;
else if 0.34889 <= x < 0.56909 then b =
0.90909;
else if 0.56909 <= x < 0.82960 then b = 0;
else if 0.82960 <= x < 1.10963 then b =
0.85714;
else if 1.10963 <= x < 1.41077 then b =
0.06667;
else if 1.41077 <= x < 1.67263 then b =
0.84615;
else if 1.67263 <= x < 1.82933 then b = 0;
else if 1.82933 <= x then b = 0.88889;
output;
end;
stop;
run;

The target variable, d, oscillates between 0 and
1 in a not entirely deterministic fashion governed
by the square of cos(2*pi*x) as x increases from
0to 2. dtakes on the value zero 52 times, and
one 49 times. Logistic regressions were run for
d against x, y, b, and c, the chi-square binning
transformation of x with respect to d. Here are
the log likelihood and confusion matrix results
for each case:

d=0, d=0,
Predictor -2*log(L) pred=0 pred=1
X 139.643 38 14
c 115.398 52 0
y 74.828 39 13
b 54219 44 8
d=1, d=1,
Predictor pred=0 pred=1
X 29 20
c 37 12
y 9 40
b 1 48

89

Of course, the regression on x is nearly useless,
since the relationship between d and x is clearly
nonlinear. The other three all have some
desirable properties, but the regression on b, the
variable created by the new optimal
transformation, compares favorably with all of
them. In this case, the regression on b even
appears to outperform the regression ony, the
“true” model variable. This could indicate a
possible instance of over-fitting, which is the
main “danger” of the method.

Over-fitting

The optimization procedure custom tailors the
transformation to the sample it is based on. As
noted above, if the objective function constant
multiplier, C, is set equal to 0, the optimization
will attempt to make each sample point its own
sub-segment. The easiest way to fight this is to
do two things. First, set the value of C to a
reasonable level, such as the default, which was
chosen to be “equidistant” from the single-point-
groups and entire-range-group solutions.
Second, make sure that each sub-segment has
sufficient support by choosing a lower bound on
the number of points in each sub-segment. It
would be hard to feel comfortable with intervals
supported by fewer than ten points.
Unfortunately, even ten points is rather small,
but it's difficult to guarantee 25 or 30 points,
because the overall sample needs to be kept
from growing too big for the optimizer to deal
with. So, the next level of protection would be to
generate several samples, run the optimization
procedure on each of them, and determine a
solution based on the combination of all the
sample runs; one way to do this would be to
compute the objective functions for each
solution on each of the samples, and choose the
solution which has the lowest sum of objective
values for all the samples.

Extension to Multi-valued Discrete Target
Variable

This transformation can be extended beyond
binary classification to handle multiple outcomes
in several ways. Suppose there are S target
states. One way to extend the transformation
would be to break the target into S-1 separate
binary variables, e.qg., if there were three states,

A, B, C, then there would be two target
variables, such as A or not A, and B or not B; C
or not C is uniquely determined by the first two,
S0 it is not necessary to define it separately.
(Naturally, there are two other equivalent
formulations for the three-state case.) Then, the
optimization procedure for a predictor variable
would be run against both the “A or not A,” and
the “B or not B” variables.

Another way to run the procedure to produce
one single transformation begins by using a
vector representation of the states; for S states,
use vectors of length S to denote the states, as
follows: {1,0,...,0}, {0,1,...,0}, ..., {0,0,...,1}.
Then compute a mean vector for each possible
sub-segment, and the associated sum of
squared residuals of the state vectors from the
mean vectors in some appropriate norm (e.g.,
Euclidean). Once the residuals have been
computed, the optimization proceeds as above
to choose the best set of sub-segments. If the
target values are ordinal, then the transformation
could assign to each sub-segment the weighted
average of its mean vector components. (Note
that the components of the mean vector will add
up to 1.) For example, if the mean vector for a
segment is {0.2,0.7,0.1}, and the components
correspond to state values of 1, 2, 3,
respectively, then the segment’s assigned value
is(0.2*1)+(0.7*2)+ (0.1 *3)=1.9. Fornon-
ordinal targets, the segment’s mode value would
have to be assigned.

Extension to Continuous-valued Target
Variable

This transformation also can be adapted for
continuous-valued target variables. In this case,
instead of using the sum of squared residuals
around the sub-segment mean of the target
variable for each sub-segment as the
optimization criterion, use the sum of squared
residuals around the sub-segment regression
line on each sub-segment. Once the
optimization picks the sub-segments, the
transformation could be discrete or continuous.
For a discrete version, assign to each point of a
sub-segment the slope of the regression line
within that sub-segment. For a continuous
version, assign to each point in a sub-segment
the value it would take in that sub-segment’s
regression line.

90

Interactions Between Predictor Variables

Another advantage of the new transformation is
the ease with which it handles variable
interactions in a non-parametric manner (i.e., no
assumption of functional form). Consider a pair
of predictor variables, p and g, and a sample of
N points. Now, instead of carving up the range
of each single variable into arbitrary
subintervals, the goal is to partition the p-q plane
into arbitrary rectangles. The trick is to notice
that p-q rectangles can all be obtained from p (or
q) intervals, because every pair of points in the
sample determines a unique rectangle in the p-q
plane; some of the points in the interval may
have to be removed from the set because they
don't fit into the rectangle. It takes some
computational work to find which points to keep
for each sub-segment, and some of the intervals
may get too small to be used. This actually
makes the optimization part easier (fewer
variables), although the trade-off is that you can
employ larger samples. Note that this can be
extended to interactions between more than two
predictors.

Further Notes

Optimization using mathematical programming
is computationally expensive, and, as previously
noted, limits the sample sizes that can be used
to create the transformation. There are ways to
implement a slightly smoothed, semi-continuous
version of the transform, rather than a fully
discrete transform, which do not require the
expense of mathematical programming. For
example, instead of choosing sub-segments,
make point-by-point assignments by giving each
point the mean value of the sub-segment
containing that point that has the lowest residual
sum of squares among all sufficiently large sub-
segments containing that point. These numbers
should vary slowly, with occasional large breaks,
mimicking the choice of subintervals.

Finally, note that other metrics besides squares
of standard residuals (e.g., absolute values of
residuals, residuals with respect to medians
rather than means, etc.) can be used without
affecting computational difficulty.

References:

[1] Data Mining Cookbook, Olivia Parr Rud,
2001, Wiley Computer Publishing, New York,
ISBN 0-471-38564-6

2] http://www.twocrows.com/glossary.htm

[3] Data Mining: Concepts and Techniques,
Han, Jiawei and Kamber, Micheline, 2001
http://www.ir.iit.edu/~dagr/DataMiningCourse/Sp
ring2001/BookNotes/3prep.pdf

[4] Solving Data Mining Problems Through
Pattern Recognition, Ruby L. Kennedy, Yuchun
Lee, Benjamin Van Roy, Christopher D. Reed,
Dr. Richard P. Lippman, 1998, Prentice-Hall,
New Jersey, ISBN 0-13-095083-1

[5] The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Trevor
Hastie, Robert Tibshirani, Jerome Friedman,
2001, Springer, New York, ISBN 0-387-95284-5

[6] Data Mining Using SAS Applications,
George Fernandez, 2003, Chapman & Hall,
Boca Raton, ISBN 1-58488-345-6

[7] http://support.sas.com
[8] http://www.powerhouse-inc.com/faq.htm
[9] Data Preparation for Data Mining,

Dorian Pyle, 1999, Morgan Kaufmann, San
Francisco, ISBN 1-55860-529-0

91

A Supervised Feature Subset Sele

ction Technique for Multivariate

Time Series

Kiyoung Yang* Hyunjin

Abstract

Feature subset selection (FSS) is a known technique to
pre-process the data before performing any data mining
tasks, e.g., classification and clustering. FSS provides
both cost-effective predictors and a better understand-
ing of the underlying process that generated data. We
propose Corona, a simple yet effective supervised fea-
ture subset selection technique for Multivariate Time
Series (MTS). Traditional FSS techniques, such as Re-
cursive Feature Elimination (RFE) and Fisher Criterion
(FC), have been applied to MTS datasets, e.g., Brain
Computer Interface (BCI) datasets. However, these
techniques may lose the correlation information among
MTS variables, since each variable is considered sepa-
rately when an MTS item is vectorized before applying
RFE and FC. Corona maintains the correlation infor-
mation by utilizing the correlation coefficient matrix of
each MTS item as features to be employed for SVM.
Our exhaustive sets of experiments show that Corona
consistently outperforms RFE and FC by up to 100%
in terms of classification accuracy, and takes more than
one order of magnitude less time than RFE and FC in
terms of the overall processing time.

Keywords

multivariate time series, feature subset selection, sup-
port vector machine, recursive feature elimination, cor-
relation coefficient matrix

1 Introduction

Feature subset selection (FSS) is one of the techniques
to pre-precess the data before we perform any data
mining tasks, e.g., classification and clustering. FSS is
to identify a subset of original features from a given
dataset while removing irrelevant and/or redundant
features [1]. The objectives of FSS are [2]:

~ *Computer Science Department, University of Southern Cali-
fornia, Los Angeles, CA 90089, U.S.A., kiyoungy@usc.edu
tComputer Science Department, University of Southern Cali-
fornia, Los Angeles, CA 90089, U.S.A., hjyQusc.edu
fComputer Science Department, University of Southern Cali-
fornia, Los Angeles, CA 90089, U.S.A., shahabiQusc.edu

92

Yoonf Cyrus Shahabi*

e to improve the prediction performance of the pre-
dictors

e to provide faster and more cost-effective predictors

e to provide a better understanding of the underlying
process that generated the data

The FSS methods choose a subset of the original
features to be used for the subsequent processes. Hence,
only the data generated from those features need to be
collected. The differences between feature extraction
and FSS are:

e Feature subset selection maintains information on
the original features while this information is usu-
ally lost when feature extraction is used.

e After identifying the subset of original features,
only those features can be measured and collected
ignoring all the other features. However, feature
extraction in general requires measuring all the
original features.

A time series is a series of observations, x;(t);[i =
1,---,n;t=1,--- m|, made sequentially through time
where 7 indexes the measurements made at each time
point ¢ [3]. It is called a univariate time series when n is
equal to 1, and a multivariate time series (MTS) when
n is equal to, or greater than 2.

MTS datasets are common in various fields, such
as in multimedia and medicine. For example, in multi-
media, Cybergloves used in the Human and Computer
Interface applications have around 20 sensors, each of
which generates 50~100 values in a second [4, 5]. In [6],
22 markers are spread over the human body to mea-
sure the movements of human parts while walking. The
dataset collected is then used to recognize and identify
the person at a distance by how he or she walks. In the
Neuro-rehabilitation domain, kinematics datasets gen-
erated from sensors are collected and analyzed to evalu-
ate the functional behavior (i.e., the movement of upper
extremity) of post-stroke patients [7]. In medicine, Elec-
tro Encephalogram (EEG) from 64 electrodes placed on

the scalp are measured to examine the correlation of ge-
netic predisposition to alcoholism [8]. Functional Mag-
netic Resonance Imaging (fMRI) from 696 voxels out of
4391 has been used to detect similarities in activation
between voxels in [9].

The size of an MTS dataset can become very
large quickly. For example, the EEG dataset in [10]
utilizes tens of electrodes and the sampling rate is
256Hz. In order to process MTS datasets efficiently,
it is therefore inevitable to preprocess the datasets to
obtain the relevant subset of features which will be
subsequently employed for further processing. In the
field of Brain Computer Interfaces (BClIs), the selection
of relevant features is considered absolutely necessary
for the EEG dataset, since the neural correlates are not
known in such detail [10]. Identifying optimal and valid
features that differentiate the post-stroke patients from
the healthy subjects is also challenging in the Neuro-
rehabilitation applications.

An MTS item is naturally represented as an m x n
matrix, where m is the number of observations and
n is the number of wvariables, e.g., sensors. However,
the state of the art feature subset selection techniques,
such as Recursive Feature elimination (RFE) [2], require
each item to be represented in one row. Consequently,
to utilize these techniques on MTS datasets, each
MTS item needs to be first transformed into one row
or column vector, which we call wvectorization. For
example, in [10] where an EEG dataset with 39 channels
is used, an autoregressive (AR) model of order 3 is
utilized to represent each channel. Hence, each 39
channel EEG time series is transformed into a 117
dimensional vector. However, if each channel of EEG
is considered separately, we will lose the correlation
information among the variables.

Information theory (IT) based feature subset selec-
tion methods, such as information gain and informa-
tion gain ratio, have been extensively studied and em-
ployed in the data mining and machine learning commu-
nity [11, 12]. However, IT based feature subset selection
methods are also not directly applicable to MTS items,
because, again, an MTS item is not a vector, and also
each value of an MTS item is continuous, not discrete.
Hence, each MTS item should first be transformed into
a vector and also be discretized, which usually results
in loss of important information.

In this paper, we propose a simple yet quite effec-
tive subset selection method for multivariate time se-
ries (MTS)!, termed Corona (Correlation as Features).

TFor multivariate time series, each variable is regarded as

a feature [10]. Hence, the terms feature and wvariable are
interchangeably used throughout this paper, when there is no
ambiguity.

93

Corona is based on RFE. Recall that RFE, which uti-
lizes SVM, requires each item to be represented as a vec-
tor. The performance of RFE will therefore heavily rely
on how the MTS dataset is fed into SVM, i.e., how each
MTS item is transformed to be utilized by SVM. Corona
employs the correlation coefficients of an MTS item as
features for SVM and hence for RFE. The intuition is
based on our previous work [13] which has shown that
the correlation information among the variables plays
an important role in obtaining the similarity between
two MTS items. Hence, Corona first computes the pair-
wise correlation coefficients of all the variables, i.e., the
correlation coefficient matrix, of each MTS item. Since
the correlation coefficient matrix is symmetric and its
diagonal values are all 1s, only the upper triangle of the
correlation coefficient matrix except the diagonal val-
ues is utilized to vectorize an MTS item. Consequently,
an MTS dataset is transformed into a matrix, which
we call a feature matriz, where each row represents an
MTS item. Corona subsequently trains SVM on the
feature matrix, which will produce the weights of each
feature. Note that each feature in the feature matrix
is the correlation coefficient of two variables. Corona
then aggregates the weights for each variable and ranks
the variables based on the aggregated weights. Subse-
quently, Corona eliminates the variable with the lowest
rank. This process is repeated until the required num-
ber of variables is obtained. Our experiments show that
the classification performance of the variable subsets se-
lected by Corona is up to about 100% better than those
selected by other feature subset selection methods, such
as Recursive Feature Elimination (RFE) and Fisher Cri-
terion (FC). Moreover, Corona takes more than one or-
der of magnitude less time than RFE and FC in terms
of the overall processing time which includes the time
to vectorize an MTS dataset.

The remainder of this paper is organized as follows.
Section 2 discusses the background. Our proposed
method is described in Section 3, which is followed by
the experiments and results in Section 4. Related work
is presented in Section 5 followed by conclusions and
future work in Section 6.

2 Background

Corona utilizes the correlation coefficient matrix and
RFE for feature subset selection of MTS datasets. In
this section, we briefly describe the correlation coeffi-
cient matrix, Support Vector Machine and Recursive
Feature Elimination.

2.1 Correlation Coeflicient Matrix The correla-
tion represents how strongly one variable implies the
other, based on the available data [14]. Assume that

a and b are two vectors of length n. The correlation

between a and b is then defined as follows [14]:

i1 (ai —a)(b; — b)
(n—1)o,0p

(2.1) Corr(a,b) = 2

where @ and b are the averages of vector a and b,
respectively; o, and o3, are the standard deviations of
a and b, respectively. The correlation value ranges
from -1 to 1. A value greater than 0 means that there
is a positive correlation. That is, if the values of a
increase, then the values of b would also increase. If
the correlation is 0, then there is no correlation between
a and b meaning that they are independent. The
negative correlation value means that there is a negative
correlation between a and b. That is, if the values of
a increase, then the values of b would decrease, or vice
versa.

A correlation coefficient matrix is a symmetric ma-
trix, where the (4, 7)th entry in the matrix represents
the correlation between the ith and jth variables. Our
proposed supervised feature subset selection technique,
Corona, utilizes the correlation coefficient matrix of
each MTS item as features for SVM to obtain the
weights of each variable, which is described in Sec-
tion 3.

2.2 Support Vector Machine Support Vector Ma-
chine (SVM) is a classification technique by Vapnik [15].
SVM performs classification by obtaining and utilizing
the optimal separating hyperplane that separates two
classes and maximizes the distance to the closest point
from either class, called margin [15, 16]. Figure 1 repre-
sents the training result of an SVM model for a simple
two class dataset?.

The hyperplane that separates the two classes
shown in Figure 1 can be described as follows [18]:
(2.2) g(x) = w'x +wp
where w is the norm vector of the hyperplane g(x)
and wo/||w|| is the distance from the origin to the
hyperplane. Given new data x;, the sign of g(x;)
determines the class of x;. For simplicity, we described
only the case where the classes are linearly separable.
For more details, please refer to [18, 16].

2.3 Recursive Feature Elimination Based on
SVM, Guyon et al [19] proposed a feature subset se-
lection method called Recursive Feature Elimination
(RFE). RFE is a stepwise backward feature elimination

ZSVM and Kernel Methods Matlab Toolbox [17] is utilized to
generate the figure.

94

Figure 1: Two classes are linearly separable.

method [14]. That is, RFE starts with all the features
and removes features based on a ranking criterion until
the required number of features are obtained. The pro-
cedure can be briefly described as in Algorithm 1 [19]:

Algorithm 1 Recursive Feature Elimination
1: Train SVM;
2: Rank the features;
3: Eliminate the feature with the lowest rank;
4: Repeat until the required number of features are
retained;

In order to rank the features, RFE utilizes the
sensitivity analysis based on the weight vector w in
Equation 2.2. That is, at each iteration, RFE eliminates
one feature with the minimum weight. The intuition is
that the feature with the minimum weight would least
influence the weight vector norm [20], and is therefore
to be removed.

RFE, however, cannot be used with MTS datasets
as s, since an MTS item is represented as a matrix,
while RFE requires each item to be represented as a
vector. In [10], for example, each variable, i.e., channel,
is transformed separately using the autoregressive fit
coefficients of order 3. By doing so, however, the
correlation information among the variables would be
lost. In the following section, we propose an extension
of RFE to MTS datasets, called Corona.

3 Proposed Method

In this section, we describe Corona, which is a simple
yet effective feature subset selection technique for MTS
datasets based on RFE. Recall that SVM, hence RFE,
requires each MTS item to be represented as a vector.

Corona utilizes the correlation coefficients as features
for an MTS item to be used for SVM. The intuition us-
ing the correlation coefficients as features for MTS items
to be used for SVM comes from our previous work [13]
which has shown that the correlation information of an
MTS item plays a significant role in computing the sim-
ilarity between two MTS items.

Hence, Corona first computes the correlation coef-
ficient matrix for each MTS item. A correlation coeffi-
cient matrix is symmetric and its diagonal values, which
represent the autocorrelations of all the variables, are all
1s. Hence, as features for an MTS item, the correlation
coefficients in the upper triangle of the correlation co-
efficient matrix except the diagonal values are utilized,
which are then vectorized as in Algorithm 2. For an n-
variate MTS item, the number of features to be used for
SVM is Z?;lli =n x (n—1)/2. For example, for the
HumanGait dataset where n is 66, the number of fea-
tures is 66 x 65/2 = 2145. For an MTS dataset which
has N items, this transformation results in an N X p ma-
trix, where p = n x (n — 1)/2. We denote this matrix a
feature matriz.

Corona subsequently trains SVM using the feature
matrix. Utilizing the model resulted from the SVM
training, we obtain the weight vector w for the fea-
tures that have been employed in the SVM training.
Note that each feature utilized for SVM training is a
correlation of two variables. In order to determine the
ranks of the variables, we construct a symmetric ma-
trix using the weights obtained by SVM, which we call
a weight matriz (Lines 1-10 in Algorithm 4). This is
similar to un-vectorizing the vectorized correlation co-
efficient matrix except that the weights obtained from
SVM are used, not the correlation coefficients. Hence,
the ith column in the weight matrix represents all the
weights of the features, i.e., the correlation coefficients,
with which the ith variable is associated. After obtain-
ing the weight matrix, Corona aggregates all the weights
of each variable and obtains one value per variable. Fi-
nally, based on the aggregated values, Corona decides
which variable to eliminate. In our experiments, we took
the greedy approach, and identified a variable whose
maximum weight is the minimum among the maximum
weights of all the variables (Lines 11-12 in Algorithm 4).
The variable whose maximum weight is the minimum is
then to be removed. The intuition behind using the maz
aggregate function is to retain the variables that are
associated with the correlation coefficients which con-
tribute most to the SVM training result.

Algorithm 3 describes the overall process of Corona.
Given an MTS dataset, Corona first computes the
feature matrix T by vectorizing the upper triangle of the
correlation coefficient matrix of each MTS item (Lines

95

1-4 of Algorithm 3, and Algorithm 2). Subsequently, it
performs SVM on the feature matrix. Using the feature
weights obtained from SVM, Corona ranks the variables
as in Algorithm 4. The entire process is repeated until
the required number of variables are identified.

Algorithm 2 Vectorize a correlation coefficient matrix
using the upper triangle

Require: C {a correlation coefficient matrix of an n-
variate MTS item};

Cvectorized — []7

for i =1 ton do
Cvectorized — [Cvectorized 0[717 (7’ + 1) : TL]],

end for

Algorithm 3 Corona
Require: MTS dataset, N {the number of items in the
dataset}, k {the required number of variables};
1: fori=1to N do
2: (' « correlation coefficient matrix of the iTtH
MTS item;
Ti,:] « vectorize C' using the upper triangle of
C;
end for
[ranksv ar, weightsgyar] < Train SVM on T
Rank variables using wetghtssy r;
Remove one variable with the lowest rank;
Repeat until k variables remain;

o

4 Performance Evaluation

In order to evaluate the effectiveness of Corona in
terms of classification performance and overall process-
ing time, we conducted several experiments on three
real-world datasets. After obtaining a subset of vari-
ables using Corona, we performed classification using
SVM with linear kernel as in [10]. Subsequently, we
compared the performance of Corona with those of
RFE [2, 10], Fisher Criterion (FC), Exhaustive Search
Selection (ESS) when possible, and using all the avail-
able variables (ALL). The algorithm of Corona for the
experiments is implemented in Matlab and in® R using*
€1071 and® RFE packages.

4.1 Datasets The HumanGait dataset [6] has
been used for identifying a person by recognizing his/her
gait at a distance. In order to capture the gait data, a

Shttp://www.r-project.org/
4http://cran.r-project.org/src/contrib/Descriptions /e1071.html

Shttp://www.hds.utc.fr/~ambroise/softwares/RFE/

Algorithm 4 Rank variables using weightsgy s

| HumanGait | BCAR | BCI MPI |

Require: weightssy p {weights obtained by SVM}, n
{the number of variables for an MTS item};

of variables 66 11 39
average length 133 454 1280

of labels 15 2 2
of items per label 36 22/17 1000
total # of items 540 39 2000

1. W~ [],

2: count «— 1;

3: fori =1tondo

40 WIi, (i + 1) : n] < weightssva[count : (count +
n—i—1)}

5. count < count +n — 1;

6: end for

7. W — W + transpose(W);

8: for i =1 ton do

9. Wi, i)« 1;

10: end for

11: weightscorona «— Aggregate W in column-wise;

12: rankcorona < sort(weightscorona);

twelve-camera VICON system was utilized with 22 re-
flective markers attached to each subject. For each re-
flective marker, 3D position, i.e., x, y and z, are acquired
at 120Hz, generating 66 values at each timestamp. 15
subjects, which are the labels assigned to the dataset,
participated in the experiments and were required to
walk at four different speeds, nine times for each speed.
The total number of data items is 540 (15 x 4 x 9) and
the average length is 133.

Motor Behavior and Rehabilitation Laboratory,
University of Southern California collected Brain
and Behavior Correlates of Arm Rehabilitation
(BCAR) kinematics dataset to study the effect of
Constraint-Induced (CI) physical therapy on the post-
stroke patients’ control of upper extremity [7]. The
functional specific task performed by subjects was a
continuous 3 phase reach-grasp-place action; a subject
sits on a chair pressing down the starting switch with
his or her impaired forearm. She or he is then sup-
posed to reach for a target object, either a cylinder or
a card, grasp it, place it into a designated hole, release
it, and finally bring her or his hand back to the start-
ing switch. This specific task is repeated five times
per subject under four different conditions, i.e., for 2
different objects (Cylinder/Card) by posing 2 different
forearm postures (pronation/supination). The perfor-
mance is traced by six miniBIRD trackers attached on
the index nail, thumb nail, dorsal hand, distal dorsal
forearm, lateral mid upper arm and shoulder, respec-
tively. Then, 11 dependent variables are measured from
the raw data, sampled at 120Hz and filtered using a
0-lag Butterworth low-pass filter with a 20Hz cut-off
frequency. Unlike other datasets, BCAR dataset kept
the record of 11 dependent features rather than 36 raw
variables at each timestamp. They were defined by ex-

96

Table 1: Summary of datasets used in the experiments

perts in advance and calculated from the raw variables
by the device software provided with the trackers; some
of them were just raw variables (e.g., wrist tracker X, Y,
and Z coordinates) while others were synthesized from
raw variables (e.g., aperture was computed as tangential
displacement of two trackers on thumb and index nail).
Note that these 11 variables were considered as origi-
nal variables throughout the experiments. Four control
(i.e., healthy) subjects and three post-stroke subjects
experiencing a different level of impairment participated
in the experiments. For each of the 4 conditions, the to-
tal number of data items is 39, and their average length
is about 454 (i.e., about 3.78 seconds).

The Brain Computer interface (BCI) dataset
at the Max Planck Institute (MPI) [10] was col-
lected to examine the relationship between the brain
activity and the motor imagery, i.e., the imagination of
limb movements. Eight right handed male subjects par-
ticipated in the experiments, out of which three subjects
were filtered out after pre-analysis [10]. 39 electrodes
were placed on the scalp to record the EEG signals at
the rate of 256Hz. The total number of items is 2000,
i.e., 400 items per subject.

Table 1 summarizes the datasets used in the exper-
iments.

4.2 Classification Performance We evaluated the
effectiveness of Corona in terms of classification accu-
racy. Support Vector Machine (SVM) with linear kernel
was adopted as the classifier. Using SVM, we performed
leave-one-out cross validation for the BCAR dataset and
10 fold cross validation [14] for the rest since they have
too large number of items to conduct leave-one-out cross
validation.

For RFE and FC, we vectorized each MTS item
as in [10]. That is, each variable is represented as the
autoregressive (AR) fit coefficients of order 3 using the
forward backward linear prediction [21]. Therefore, each
MTS item with n variables is represented in a vector of
size n x 3. The Spider [22] implementation of FC is
subsequently employed. For small datasets, i.e., BCAR
and HumanGait, RFE in The Spider [22] was employed,
while for large dataset, i.e., BCI MPI, RFE package for
R is utilized. Note that Exhaustive Search Selection

110

100

90

80

70

Precision (%)

10f ——FC

—*— RFE

—<— Corona

® [ANK=1;
LBHD =2;
LBWT =3
& LEE=4
LFHD =5
& LAWT=5
®LHEE=7;
SLMNE=§;
*LMT5 =9
LSHO=10;
®LWRA =11;
RAMK =12
REHD =13;
RBWT =14;
RELB =15;
RFHD =16;
RPWT =17,
RHEE=18;
RKNE =19
RMTS =20;
RSHO =21;

Rk =22,

30 40 50
of selected variables

(a)

10 20 60

70

(b)

Figure 2: (a) HumanGait dataset, Classification Evaluation (b) 22 markers for the HumanGait dataset. The
markers with a filled circle represent 16 markers from which the 27 variables are selected by Corona, which yields
better performance accuracy than using all the 66 variables.

(ESS) method was performed only on BCAR dataset
due to the intractability of ESS for the large datasets.
The ESS methods simply searches exhaustively among
all possible combinations of variables and selects the
best combination. Obviously, this is an impractical
approach due to its high complexity and we only used
it here (when possible) to generate the ground truth.

Figure 2(a) presents the generalization perfor-
mances on the HumanGait dataset. It shows that a sub-
set of 11 variables selected by Corona out of 66 performs
the same as the one using all the variables (99.0741% ac-
curacy), which is represented as a solid horizontal line.
Moreover, a subset of 27 variables yields 100% accuracy.
The 27 variables selected by Corona are from only 16
markers (marked with a filled circle in Figure 2(b)) out
of 22, which would mean that the values generated by
the remaining 6 markers does not contribute much to
the identification of the person. From this information
we may be able to better understand the characteristics
of the human walking.

The performances by RFE and FC for the Human-
Gait dataset is much worse than Corona. Even when
using all the variables, the classification accuracy is
around 55%. Considering the fact that RFE on 3 AR
coefficients performed well in [10], this may indicate
that for the HumanGait dataset the correlation infor-
mation among variables is more important than for the
BCI MPI dataset. Hence, each variable should not be
taken out separately to compute the autoregressive co-
efficients, by which the correlation information would

97

be lost. Note that in [10], the order 3 for the autore-
gressive fit is identified after proper model selection ex-
periments, which would mean that for the HumanGait
dataset, the order of the autoregressive fit should be de-
termined, again, after comparing different order models.
Hence, it is not a trivial task to transform an MTS item
into a vector, after which the traditional machine learn-
ing techniques, such as Support Vector Machine (SVM),
can be applied.

Figure 3 shows the classification performance of the
selected variables on the BCAR dataset for 4 different
conditions. For example, Figure 3(c) represents that
a card was used as a target object and the pronated
forearm posture was taken by a subject to perform the
continuous reach-grasp-place task in [7].

The BCAR is the simplest dataset with 11 origi-
nal variables and the number of MTS items for each
condition is just 39. Hence, we applied the Exhaustive
Search Selection (ESS) method to find all the possible
variable subset combinations, for each of which we per-
formed leave-one-out cross validation. It took about 87
minutes to complete the whole ESS experiments. The
result of ESS shows that 100% classification accuracy
can be achieved by either 4 or 5 variables out of 11.
The dotted lines represent the best, the average, and
the worst performance obtained by ESS, respectively,
given the number of selected variables.

Figure 3 again shows that Corona consistently out-
performs RFE and FC methods. The figure also de-
picts that the 5 variables selected by Corona produce

110

Precision (%)

401

30

20} TMING —%— Corona
—%— RFE
—+—FC

ESS

10

6 7 8
of selected variables

5 10 11

(a) Cylinder/Pronation

[ALL
L MAX

| Ave

Precision (%)

CMIN

—<— Corona | q

—*%— RFE

—+—FC
ESS
T

6 7 8
of selected variables

5 10 11

(c¢) Card/Pronation
Figure 3: BCAR dataset,

100% classification accuracy for Cylinder/Pronation
and Card/Pronation conditions. Besides, Corona out-
performs or performs the same as the one using all
the variables, which is represented as a horizontal
solid line. This implies that Corona never eliminates
useful information in its variable selection. For the
Cylinder/Pronation condition, for example, Figure 3(a)
shows that only the 4 variables selected by Corona pro-
duce about 98% classification accuracy, which is the
same as using all the 11 variables. Moreover, the overall
performance of Corona is close to the best performance
of ESS, which is far from the average performance.

As illustrated in the figure, FC method never beats
the Corona for 3 conditions, and for the Card/Pronation
condition, Corona by far outperforms FC when more
than 3 variables are selected. As compared to RFE,

98

110

| ALL
MAXA

100

90
801 . AVG |
. W

60
50

Precision (%)

40
MIN
30}

20 —<— Corona | 1
—+—RFE
—+—FC

ESS

10

6 7 8
of selected variables

5 10 11

(b) Cylinder/Supination

-
|
o

ALL

=
o
=)

©
=)

F max ’ 1
80 AVG . . R
70k " : g
= 60l g
2 ki
Q
g 50
O
40
30 MIN
20 —<— Corona | 1
—*%—RFE
10 —+—FC
ESS

o

6 7 8
of selected variables

5

N

10 11

(d) Card/Supination
Classification Evaluation

Corona again shows consistently better classification
performance almost always.

Figure 4 represents the performance comparison us-
ing the BCI MPI dataset. Note that unlike in [10] where
they applied the feature subset selection per subject, the
whole items from the 5 subjects were utilized in our ex-
periments, which would make the subset of variables se-
lected by Corona more applicable for subsequent data
mining tasks. Moreover, the regularization parameter
Cs for SVM was estimated via 10 fold cross validation
from the training datasets in [10], while we used the de-
fault value, which is 1. The figure again depicts that
Corona performs far better than RFE and FC.

For the BCI MPI dataset, it is intractable to try
all the combinations of the 39 channels to identify the
best combination. Therefore, to find the ground-truth,

100

90

80

0r

60 -

50

Precision (%)

40t

301

208 —— Corona | |

—+—FC
—*— RFE
- - -MIC17

101

15 20 25 30
of selected variables

10 35 40

Figure 4: BCI MPI dataset, Classification Evaluation

in [10], the 17 channels located over or close to the mo-
tor cortex were manually identified as the best com-
bination of channels using the domain knowledge. In
Figure 4, the classification performance using those 17
motor imagery channels (termed MIC 17) is presented
in dashed lines, while the performance using all the vari-
ables is shown in a solid horizontal line. Using the 17
variables selected by Corona, the classification accuracy
is 75.45%, which is even better than the expert-selected
channels of MIC 17 whose accuracy is 73.65%.

4.3 Processing Time Corona in fact utilizes a lot
more number of features than RFE to vectorize an MTS
item. For example, for the HumanGait dataset where
there are 66 variables, each MTS item is represented
with 66 x 65/2 2145 features by Corona, while
RFE represents each MTS item with 66 x 3 198
features. Obviously, this would result in more training
time for SVM on which both Corona and RFE are
based. However, RFE takes a considerable amount
of time to compute and obtain the AR coefficients of
order 3. Hence, the overall processing time of Corona,
including the time to transform the MTS dataset, is one
order of magnitude less than that of RFE.

For the BCI MPI dataset, for example, it takes
only 4.562 seconds to compute all the 2000 correlation
coefficient matrices for Corona, while it takes about
7600 seconds to compute the AR coefficients of order
3 for RFE, both using Matlab. The total processing
time including the transformation for Corona of the
BCI MPI dataset is less than 480 seconds, while that
of RFE is more than 7800 seconds. Table 2 summarizes
the processing time of the 3 feature selection methods
employed for the experiments.

99

Table 2: Comparison of processing time in seconds
for different feature selection methods on 3 different
datasets

HumanGait | BCAR | BCI MPI

Corona 422.688 0.191 472.953
RFE 962.063 9.039 | 7886.844
FC 113.907 6.469 | 7594.941

5 Related Work

In the field of Brain Computer Interfaces (BClIs), exten-
sive research has been conducted on Electroencephalo-
gram (EEG) datasets. The EEG dataset is collected
using multiple electrodes placed on the scalp. The sam-
pling rate is hundreds of Hertz. The selection of relevant
features is considered absolutely necessary for the EEG
dataset, since the neural correlates are not known in
such detail [10].

In [10], feature selection is performed on the 39
channel EEG dataset. Each EEG item is broken into 39
separate channels, and for each channel, autoregressive
(AR) fit of order 3 is computed. Subsequently, each
channel is represented by 3 autoregressive coefficients.
Feature selection using Recursive Feature Elimination
(RFE) is then performed on these transformed dataset.
As shown in Section 4.2, by considering the channels
separately, they lose the correlation information among
channels.

n [23], EEG dataset from UCI KDD Archive [24]
has been used for the experiments. EEG-1 dataset
contains only 20 measurements for two subjects from
two arbitrary electrodes (F4 and P8). EEG-2 dataset
contains 20 measurements from the same 2 electrodes
for each subject. It is not clear how the two subjects
out of 122 subjects and the two electrodes out of 64 are
chosen. The best accuracies obtained are 90.0 + 0.0%
using DCHMM-exact, 90.5 + 5.6% using Multivariate
HMM for the EEG-1 dataset. 78.5 + 8.0% using
Multivariate HMM.

In [25], a subset of the HumanGait dataset, a total
of 45 items of 15 subjects, was used for an HMM-
based clustering. They, however, achieved only 75%
classification accuracy, which could have been achieved
by Corona using only 9 variables out of 66 as shown in
Figure 2(a).

In [26], Genetic Algorithm (GA) and Support Vec-
tor Machine (SVM) are used for feature subset selection.
Two EEG datasets are used, TTD and NIPS 2001. The
TTD (Thought Translation Device) EEG dataset were
generated with 6 channels, and the other EEG dataset
which was submitted to Neural Information Processing
Systems (NIPS) Conference in 2001, were collected with

27 channels. For the EEG dataset with 6 channels, they
also performed the exhaustive search to find out the best
channels. The advantage of GA is that the optimal sub-
set of variables is produced as output, and hence, one
does not have to specify how many variables she would
like to select. However, GA is known to be very time
consuming.

In [27], features are firstly extracted from the
original dataset, and then feature subset selection are
performed using mutual information. The accuracy
from training set is less than 70% and from test set is
less than 85%. The EEG data used was obtained from
Graz University of Technology, Austria, and Artificial
Neural Network (ANN) is used for classification. Note
that this approach, i.e., performing feature extraction
and then feature selection, may work well in terms of
classification accuracy. However, we cannot reduce the
amount of data to be collected, if the features are global
features for which all the raw data would be required.

6 Conclusion and Future Work

In this paper, we proposed a simple yet quite effec-
tive feature subset selection method for multivariate
time series (MTS), termed Corona. Corona first vec-
torizes the correlation coefficient matrix of each MTS
item to be used as features for SVM, and yields a fea-
ture matriz. After training SVM on the feature ma-
trix, Corona computes the weight matriz, from which
the ranks for the variables are identified. Based on the
ranks, Corona eliminates one variable with the lowest
rank, and repeats itself until the required number of
variables are retained. Our experiments on the three
real-world datasets show that Corona consistently out-
performs other feature selection methods, such as Re-
cursive Feature Elimination (RFE) and Fisher Criterion
(FC) in terms of classification performance by up to
100%. Moreover, Corona takes more than one order of
magnitude less time than RFE in terms of the overall
processing time.

We intend to extend this technique to the stream
of data where the feature subset selection can be per-
formed incrementally adjusting itself based on the ob-
servations collected thus far.

Acknowledgements

This research has been funded in part by NSF grants
EEC-9529152 (IMSC ERC), 11S-0238560 (PECASE)
and ITS-0307908, and unrestricted cash gifts from Mi-
crosoft. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
the National Science Foundation. The authors would
like to thank Dr. Carolee Winstein and Jarugool

Tretiluxana for providing us the BCAR dataset and
valuable feedbacks, and Thomas Navin Lal for provid-
ing us the BCI MPI dataset. The authors would also
like to thank the anonymous reviewers for their valuable
comments.

References

[1] Liu, H., Yu, L., Dash, M., Motoda, H.: Active feature
selection using classes. In: Pacific-Asia Conference on
Knowledge Discovery and Data Mining. (2003)

[2] Guyon, I., Elisseeff, A.: An introduction to variable
and feature selection. Journal of Machine Learning
Research 3 (2003) 1157-1182

[3] Tucker, A., Swift, S., Liu, X.: Variable grouping in
multivariate time series via correlation. IEEE Trans.
on Systems, Man, and Cybernetics, Part B 31 (2001)

[4] Kadous, M.W.: Temporal Classification: Extending
the Classification Paradigm to Multivariate Time Se-
ries. PhD thesis, University of New South Wales (2002)

[6] Shahabi, C.: AIMS: An immersidata management
system. In: VLDB Biennial Conference on Innovative
Data Systems Research. (2003)

[6] Tanawongsuwan, Bobick: Performance analysis of
time-distance gait parameters under different speeds.
In: 4th International Conference on Audio- and Video
Based Biometric Person Authentication, Guildford,
UK (2003)

[7] Winstein, C., Tretriluxana, J.: Motor skill learning
after rehabilitative therapy: Kinematics of a reach-
grasp task. In: the Society For Neuroscience, San
Diego, USA (2004)

[8] Zhang, X.L., Begleiter, H., Porjesz, B., Wang, W.,
Litke, A.: Event related potentials during object
recognition tasks. Brain Research Bulletin 38 (1995)

[9] Goutte, C., Toft, P., Rostrup, E., Nielsen, F.A.,

Hansen, L.K.: On clustering fmri time series. Neu-

rolmage 9 (1999)

Lal, T.N., Schréder, M., Hinterberger, T., Weston, J.,

Bogdan, M., Birbaumer, N., Schélkopf, B.: Support

vector channel selection in BCI. IEEE Trans. on

Biomedical Engineering 51 (2004)

Mitchel, T.M.: Machine Learning.

(1997)

Witten, I.H., Frank, E.: 7. In: Data Mining: Practical

Machine Learning Tools and Techniques with Java

Implementations. Morgan Kaufmann (1999)

Yang, K., Shahabi, C.: A PCA-based similarity

measure for multivariate time series. In: The Second

ACM MMDB. (2004)

Han, J., Kamber, M.: 3. In: Data Mining: Concepts

and Techniques. Morgan Kaufmann (2000) 121

Vapnik, V.N.: Statistical Learning Theory. Wiley

(1998)

Hastie, T., Tibshirani, R., Friedman, J.: The Elements

of Statistical Learning. Springer (2001)

McGraw Hill

100

[17] Canu, S., Grandvalet, Y., Rakotomamonjy, A.: Svm
and kernel methods matlab toolbox. Perception
Systmes et Information, INSA de Rouen, Rouen,
France (2003)

[18] Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classifi-
cation. Second edn. Wiley Interscience (2001)

[19] Guyon, L., Weston, J., Barnhill, S., Vapnik, V.: Gene
selection for cancer classification using support vector
machines. Mach. Learn. 46 (2002) 389422

[20] Rakotomamonjy, A.: Variable selection using svm-
based criteria. Journal of Machine Learning Research
3 (2003) 1357 — 1370

[21] Moon, T.K., Stirling, W.C.: Mathematical Methods
and Algorithms for Signal Processing. Prentice Hall
(2000)

[22] Weston, J., Elisseeff, A., Baklr, G., Sinz, F.: Spi-
der: object-orientated machine learning library.
http://www.kyb.tuebingen.mpg.de/bs/people/spider/
(2004)

[23] Zhong, S., Ghosh, J.. HMMs and coupled HMMs
for multi-channel EEG classification. In: International
Joint Conference on Neural Networks. (2002)

[24] Hettich, S., Bay, S.D.: The UCI KDD Archive.
http://kdd.ics.uci.edu (1999)

[25] Alon, J., Sclaroff, S., Kollios, G., Pavlovic, V.: Dis-
covering clusters in motion time-series data. In: IEEE
CVPR. (2003)

[26] Schroder, M., Bogdan, M., Hinterberger, T., Bir-
baumer, N.: Automated EEG feature selection for
brain computer interfaces. In: IEEE EMBS Interna-
tional Conference on Neural Engineering. (2003)

[27] Deriche, M., Al-Ani, A.: A new algorithm for EEG
feature selection using mutual information. In: IEEE
International Conference on Acoustics, Speech, and
Signal Processing. (2001)

101

A Hybrid Cluster Tree for Variable Selection

Zhigian Fu
Shandong University
27 Shanda Nanlu
Jinan, Shandong, P.R.China 250100
and
Zhiwei Fu, Isa Sarac
Virginia International University
3957 Pender Drive, Fairfax, VA 22030 USA

ABSTRACT

Contemporary business have been pursuing a variety
of approaches to analyze large quantities of data. The
artificial intelligence and statistics community have
provided sophisticated, effective methods thus far,
but improvements still need to be made to better
understand the variables of data while reducing its
size. This paper introduces a simple hybrid tree
approach for variable selection that integrates
heuristic statistical cluster analysis methods with
tree-structured learning system C4.5 to select the best
set of variables. Experimental results have shown
improved performance of the proposed approach as
compared with standard data reduction methods.

Keywords: Variable selection,
cluster analysis, decision tree

hybrid learning,

1. INTRODUCTION
Contemporary business has gathered more and more
amount of data. It has been challenging to analyze
these data due to their sheer size and complexity. An
effective variable selection approach needs to be
developed such that the reduced subset could retain
sufficient information of the original data set. In this
paper, we proposed a hybrid cluster tree approach
(HCT) based on the statistical clustering methods,
C4.5[6], and fine-tuning heuristics. We conduct
experiemnts, and study performance of the developed
decision trees on unseen data, conduct statistical
comparisons using t-test with other data reduction
approaches, and make some recommendations.

2. DATA REDUCTION TECHNIQUE
The literature on variable selection exists in statistics
and artificial intelligence, and numerous algorithms
and approaches have been developed to reduce the
complexity of wvariables. In statistical analyses,
stepwise multiple regression, multidimensional
scaling, principal component analysis, factor analysis
and cluster analysis are the most common techniques,
and forward/backward stepwise multiple regression
are widely used trial-and-error procedures [4].
Through effective, these statistical methods have

102

been widely used in reducing the number of variables
in the original data sets, but could not preserve the
identity of the original variables by transforming the
original variables into new attributes [3].

In artificial intelligence, some heuristics have been
well developed to deal with the variable complexity
in neural network [7] and genetic algorithms
[11[2][5][8]. C4.5 is a tree-structured classification
learning system that uses decision trees as a model
representation to find the best decision tree model
that describes the structure of the data set by using
heuristics based on the information theory.

3. HYBRID CLUSTER TREE (HCT)

In HCT, an initial full set of variables is provided
along with a training set extracted from the original
data. The cluster analysis is implemented on the
training set for clustering the most similar
observations in the original data set, such that the
entire data set could be learned integrally and near-
equally. First, we cluster the entire training data set
of N into n = ny groups by statistical criterion, e.g.,
Ward’s minimum variance. Second, in each group,
we average the values of the target observations and
the input observations for each variable. Therefore, a
pair of average values consists of one new pattern.
Then, we build up the cluster model and run C4.5 on
the new patterns. Finally, we cluster the whole data
into more groups, generating corresponding new
patterns, and repeat C4.5 on newly created patterns.
The process proceeds until each clustered group
contains only some number of original patterns as
specified. In HCT, we implement C4.5 iteratively on
the induced new training sets, and study the
performance of the induced decision trees thereafter,
specifically in terms of generalizability as measured
by classification accuracy on unseen data. By HCT,
we intend to obtain the near-optimal representative of
the original variables, i.e., a set of variables with
much reduced complexity but still good
computational performance.

4. COMPUTATIONAL EXPERIMENTS

We use the data from 1996 Summer Olympic Games
in Atlanta, and other socio-economic information in
our experiments. The typical variables included in
the experiments are Area size, Population, Population
growth rate, Death rate, Infant mortality rate, Life
expectancy, Railroads, Highway mileage, Electric
capacity, Imports, Exports, etc.

We first preprocess the data by randomly spliting the
entire data set into a training set and a test set. Since
the variables are on significantly different scales,

e.g., Population and Death Rate, we then normalize
all the variables with the mean of zero and standard
deviation of one. Based on the preprocessed data, we
conduct four experiments to test the robustness of
HCT. In Experiment 1, we run C4.5 on training set
and then teobtain its performance accuracy on the
test set directly without any heuristics in relation to
variable selection. In Experiment 2, we run stepwise
regression on training set and then obtain the
accuracy on the test set. In Experiment 3, we first run
stepwise multiple regression on the data to filter the
variables, then followed by running C4.5 on the
induced data set to further select the variables. In
Experiment 4, we first run cluster algorithm to reduce
the record size, and then run C4.5 algorithm on the
induced data set to choose the best variable selection.
In cluster analysis, we use Ward's minimum variance
clustering criterion with only training set as inputs.
We then compute the classification accuracy of the
final models on unseen data.

Table. Computational results (the p-values of
variable reduction are 0.0000 at o = 0.05 level)

Variable
Reduction

(%) Variable selected
Highways, Railroad,
Birth rate, Death Rate,
Population growth rate,
National product per
capita, Area

Classification
Experimental Design Accuracy (%)

C45 70.8 59%

Highways, Railroad,
Birth rate, Death Rate,
Life expectancy,
National product per
capita, Area, Imports,
infant mortality rate
Railroad, Airports,
Death rate, National
product per capita, Life
expectancy, Imports,
Area, infant mortality
rate

Stepwise Regression 70 47%

Stepwise Regression

0
+Ca5 84.6 38%

Population growth rate,
Railroad, Birth rate,
Area, Death rate,
Airports.

Fine-tuned

0,
Clustering + C4 .5 87.7 50%

The computational results of our exeriments are
shown in the table. We see that in Experiment 1, out
of seventeen variables in the original full set of
variables, seven variables are selected and the
classification accuracy is 70.8%., We have nine
variables selected In Experiment 2 by stepwise
regression with the accuracy of 70.0%. In
Experiment 3, after conducting stepwise regression,
eight are filtered initially, and three more variables
are eliminated after C4.5 was conducted. The bolded
variables in the last column are the ones filtered out

103

by C4.5. The accuracy in Experiment 3 is 84.6%. We
point out that it is reasonable since there are a lot of
noisy information in the studied data set, after
eliminating them through efficient variable selection,
the resulting model is more effective to generalize
and classify the unseen data. In Experiment 4, after
six variables are selected from the fine-tuned
clustering algorithm, three more variables are filtered
by C4.5. We now have a significantly smaller model
regarding the variable complexity in Experiment 4 by
HCT with only three variables instead of the original
seventeen variables. However, we achieve the best
classification accuracy of 87.7% on the test data in
Experiment 4. Additional statistical t-test has shown
that the p-values are 0.0000 and inidcates that the
performance improvments are statisticaly significant
at o =0.05 level .

5. CONCLUSIONS

It has been challenging to work with large quantities
of all varieties of business data due to their large,
complex dimensionality. This paper introduces a
hybrid variable selection that integrates statistical
cluster analysis, C4.5, and heuristics for best variable
selection. Experimental results have shown that HCT
outperforms traditional statistical methods. However,
HCT shall go through extended tests on other data
set. There may be some architectural issues worth
exploring to improve the robustness and efficiency.

REFERENCES

[1] Bala, J., Huang, J., Vafaie, H., DeJong, K., and
Wechsler, H. (1995) Hybrid Learning Using
Genetic Algorithms and Decision Trees for
Pattern Classification. IJCAI Conference.

[2] DeJong, K. (1988) Learning with Genetic
Algorithms: an Overview. Machine Learning
Vol. 3.

[3] Kumar, A. (1998) New Techniques for Data
Reduction in a Database System for Knowledge
Discovery Applications. Journal of Intelligent
Information Systems,10,31-48.

[4] Marcoulides, G.A., and Hershberger,
(1997) Multivariate Statistical Methods.

[5] Piatetsky-Shapiro, G. and Frawley, W. (1991)
Knowledge Discovery in Databases.

[6] Quinlan, J. R. (1993) C4.5: Programming for
Machine Learning.

[7]1 Riply, B. D. (1996) Pattern Recognition and
Neural Networks.

[8] Vafaie, H. and DelJong, K. (1992) Genetic
Algorithms as a Tool for Variable Selection in
Machine Learning. Proceedings of the 4th
International Conference on Tools with Artificial
Intelligence.

S.L.

Parallelizing Feature Selection

Jerffeson Souza*

Extended Abstract

The Feature Selection problem involves discovering a
subset of features such that a classifier built only with
this subset would attain predictive accuracy no worse
than a classifier built from the entire set of features.
Several algorithms have been proposed to solve this
problem. For a detailed description of feature selection
algorithms, please see [1]. In the last several years, we
have witnessed a continuous and fast increase in the
size and number of databases. This fact has stimulated
data mining/machine learning researchers to seek more
cost-effective approaches, since scalability with respect
to large databases has become a more urgent issue. The
main problem is that most machine learning tasks are
inherently complex and almost always non-polynomial
in the number of features of a dataset. In this scenario,
parallelism is a pragmatic and promising approach to
cope with the problem of cost-efficient machine learning.
In particular, feature selection is one area in machine
learning that can benefit from parallelism.

In recent years, researchers have shown great inter-
est in applying parallelism for improving data mining
algorithms/paradigms. In feature selection, surprisingly
not many attempts have been made at applying paral-
lelism. In [4], the authors propose a parallel algorithm
based on the Sum of Squared Differences strategy de-
signed to select features in images. Experimental results
suggest the approach lends itself well to parallelization.
Other researchers have used the inherently parallel char-
acteristic of genetic algorithm to design new parallel
feature selection algorithms. A parallel variant of ge-
netic algorithm is used in [5]. Here, sets of individuals
(representing subsets of features) of a single population
are passed out to individual processors for evaluation
with K-nearest-neighbor. Since evaluation dominates
the rest of the GA operations, the approach can achieve
near linear speedup. In [3], parallelism is applied over a
genetic algorithm to create a new wrapper feature selec-
tion system. Authors report improved accuracies when

~ *Computer Science Department, Federal University of Cear4,
Fortaleza, Ceara, 60.455-760, Brazil.

fSchool of Information Technology and Engineering, Univer-
sity of Ottawa, Ottawa, Ontario, KIN 6N5, Canada.

£School of Information Technology and Engineering, Univer-
sity of Ottawa, Ottawa, Ontario, KIN 6N5, Canada.

104

Nathalie Japkowicz

Stan Matwin®

applying this approach on a near-infrared (NIR) spec-
troscopic application and linear speedup.

Parallelizing a sequential algorithm may constitute
a hard task depending on what kind of problem such
an algorithm solves and how the algorithmic solution is
organized. However, we can identify a few clear charac-
teristics that make certain algorithms lend themselves
better to parallelism than others. They are: Easy Par-
titioning, Independent Partitioning and Easy Load Bal-
ancing.

Based on these characteristics we studied the poten-
tial of parallelization of the several feature selection al-
gorithms and classified these algorithms (Table 1) using
the following classes: Hard Parallelization, Easy Paral-
lelization and Obvious Parallelization.

Algorithm Parallelization
Best-First Search Easy

Genetic Obviuos

LVF Hard

Relief Obvious

Focus Easy

Forward Wrapper Obvious
FortalF'S Obvious

Table 1: Potential of Parallelization of F'S Algorithms.

We have also presented, discussed and evaluated
a parallel version of the FortalFS feature selection
algorithm [6]. The design of ParallelFortalF'S was
based on the Master-Slave design pattern [2]. In
ParallelFortalF'S, the master process distributes the
work among slave processes, that will calculate a local
best subset, and computes the global best subset from
these results. This implementation of ParallelFortalF'S
will require a minimum number of iterations between
processes. In fact, master and slaves will communicate
only once when the slaves are created and another
time when slaves send their local best. In addition,
slaves will not communicate among themselves. The
reduced amount of communication provided by this
implementation makes us expect and predict a high
efficiency level in practice.

The master process starts by running a feature
selection system and calculating the Adam vector. This
first part is done sequentially. Next, this component is

responsible for starting the slaves in their corresponding 2. Total efficiency drops as the number of processors

processors (hosts) and distributing the work equally being used increases. Despite that, ParallelFort-
among them. In order to accomplish that, it will simply alF'S as a whole was able to run 12 times faster on
divide the total number of iterations by the number of average for the five datasets when using 16 proces-
available processors (slaves) and assign this new number SOrs.

of iterations to each of the slave processes. Finally, the
master will receive each slave’s local best subsets and
calculate the global optimum. The slave component of
ParallelFortalF'S will iteratively generate a new subset
according to the Adam vector, evaluate this subset with

a ML system and update local variables that will store 4 1 we consider the parallel efficiency alone, Paral-
the best subset and its accuracy. The final local best lelFortalF$S is able to maintain a high performance
subset and its corresponding accuracy will then be sent in all cases, with averages of 99.34%, 97.34%
fo the master process. _ . 98.10%, 96.44% and 93.74% for 1, 2, 4, 8 and 16
The ParallelFortalF'S algorithm was implemented processors, respectively. Thus, this parallel imple-
in Java with RMI (Remote method Invocation). The N . . .
m mentation achieves near optimal efficiency in most
initial evaluation of ParallelFortalFS was run on a

3. The drop in the total efficiency can be attributed
to the sequential fraction of the code, since the
sequential execution time becomes more relevant
as the parallel execution time decreases.

100-Mbps local network composed of Pentium 4 PCs cases:
running Windows NT. We tried ParallelFortalF'S with
1, 2, 4, 8 and 16 computers (processors), using the
filter LVF as initial feature sele(ction algori)thrn7 10- N References
iterations (IV is the initial number of features in the
dataset) and 5 UCI datasets (mushroom(22 features), [1] A. Blum and P. Langley. Selection of relevant features
ionosphere(34 features), splice(60 features), sonar(60 and examples in machine learning. Artificial Intelli-
features) and audiology(69 features)). gence, 97(1-2):245-271, 1997.

For each dataset, we calculated the following values [2] F. Buschmann. The Master-Slave Pattern., pages 133~
according to the equations below: 142. Pattern Languages of Program Design. Addision-

Wesley, 1995.
TotTime; [3] N. Melab, S. Cahon, E. Talibi, and L. Duponchel. Par-

(0.1) Speedup, = T()Timep allel GA-Based wrapper feature selection for spectro-

scopic data mining. In Bob Werner, editor, Proceed-

(0.2) OptSpeedup, = TotTime, ‘ ings of the 16th International Parallel and Distributing
(SeqTime + %) Processing Symposium (IPDPS’02), pages 201-201, Ft.
Lauderdale, Florida, USA, April 2002.

(0.3) ParEff, = Speedup, [4] B.N. Miller, N.P. Papanikolopoulos, and J.V. Carlis. A
P OptSpeedup, parallel feature selection algorithm. Technical Report
Speedup UMSI 95/55, University of Minnesota Supercomputing

(0.4) TotEff,= ——2% Institute, apr 1995.
[5] W.F. Punch, E.D. Goodman, M. Pei, L. Chia-Shun,
where p is the number of processors used, TotTime; P. Hovland, and R. Enbody. Further research on
is the total elapsed execution time (considering both feature selection and classification using genetic algo-
the sequential and the parallel parts of the algorithm) rithms. In Stephanie Forrest, editor, Proceedings of the

Fifth Int. Conf. on Genetic Algorithms, pages 557—-564,
San Mateo, CA, 1993. Morgan Kaufmann.
[6] J.T. Souza, S. Matwin, and N. Japkowicz. Feature

when only one processor is used. TotTime, is the total
execution time when p processors are used. SeqTime
is the execution time of the sequential part of the code Selection with a General Hybrid Algorithm. PhD
alone and ParTime, the parallel execution time for p thesis, University of Ottawa, School of Information
processors. Thus, TotTime, = SeqTime + ParTime,. Technology and Engineering (SITE), Ottawa, ON,
From the results obtained from our experiments, 2004.

we can reach a few conclusions about the ability of

ParallelFortalF'S to speed up the FortalF'S algorithm.

We describe a few of these conclusions next:

1. ParallelFortalF'S achieves a very high speedup when
we use 2 processors, with an average parallel effi-
ciency of 99.34% and total efficiency of 96.84%.

105

Optimal Division for
Feature Selection and Classification
(Extended Abstract)

Mineichi Kudo! and Hiroshi Tenmoto't

f Department of Information Engineering, Faculty of Engineering Hokkaido University, Japan
ffDeparment of Information Engineering Kushiro National College of Technology, Japan

Abstract

Proposed is a histogram approach for feature se-
lection and classification. The axes are divided into
equally-spaced intervals, while the division numbers
differ among axes. The main difference from the
similar approaches is that feature selection is embed-
ded in the model selection criterion. As a result, this
criterion brings feature selection for a small number
of training samples and convergence to the optimal
Bayes error for a large number of training samples.

Keywords: Soft feature selection, Histogram,

MDL, Convergence, Bayes error
1 Formulation

Let us consider to make a classifier from n training
samples in m-dimensional Euclidean space U = R™.
Here, a sample is given by = (21,22,...,Zm) €
R™, and a training sample sequence 2" is denoted
by 2" = (xvy)n = {(x1,y1), (an yQ)a) (l‘n, yn)} €
(U x Y)™ with the class set Y = {1,2,---,c}.

According to the MDL principle [1], we measure
the cost of sending the class-label sequence y™ un-
der the assumption that a receiver knows z", ¢ and
m. Let L(¢|z™) be the bit length needed to send
the classifier ¢ (the classification rule). In addition,
let L(S|¢,x™) the cost of sending the class-label se-
quence information when ¢ is given. Then, the total
cost is written as

Ly", ¢la") = L(y"|d, 2") + L($|z").

In our case, L(¢|z™) is the bit length to send infor-
mation of the histogram, that is, the division infor-
mation of each axis, and L(S|¢,x™) is the sum of the
bit length of the class-label sequences in cells form-
ing the histogram. We assume that xi,zs,..., %,
as well as cells can be ordered in some way, e.g., a
dictionary order with numerical order.

106

1.1 MDL coding

What we think of as a classifier is a histogram.
We divide ith axis into 2% equally-spaced inter-
vals. The ends of each axis are determined by the
minimum and maximum values over training sam-
ples. Thus, a partition is expressed by m-tuple
d = (dy,da,...,dy). By d we denote the sum of
division indexes as d = ..", d;. Then there are
240 = 24 cells.

We want to find the optimal division d in some
sense. In our case, we use MDL criterion for this
goal. In the MDL criterion, a shorter length means
a better partition for classification.

Through evaluation of the code lengths of individ-
ual parts, the total bit length is give by

L(y", plz™)
= L(y"|¢,z") + L(¢|z")

R
= logy R+ logy (RM> + RP log, ¢

LA ny nh n’ c—1
+ Z nTH(=, =2, %)+ 5 lognr}

nr' e’ nr
r=nl
+ logom +1o m
g2 g m_er
* dl d2 dm m—l
I H(—, —,---,—) — 1
+ Og2d+d (d7 d7 ’ d) Ode
m—2
+ logyd+ Y log d;
i=1
R RM 1
~ (RH(?,?)+§log2R+Rplog20>
RM T T T T 1R1\4
n ny nh n c— -
+ nZ;H(F,F,...,n—i)—f— 5 Zlogn
r=1 r=1
mt m—mt
+ <log2m+mH(—,7)>
m m

* di doy dm m—1
+ <log2d+dH(E7ga"'a7)+ 2 10g2d>
= I+ IIT+1IT+1V

Here, n} is the number of samples of class i in cell r,
RF is the number of class-pure cells, and RM is the
number of class-mixture cells.

Let us examine how our criterion (1) works. First
of all, it is noted that with this criterion our clas-
sification approaches to Bayes optimal classifier as
n goes to infinity. Next let us examine (1) term by
term. The dominant terms are I, I and I'V. When
the perfect classification on training samples is done
by a certain d, IT vanishes because of RM = 0 and
RP = R. Then, the problem reduces to minimize
terms I and IV. Thus, what should be done is
firstly to minimize the value of d and then to mini-
mize the entropy of {d;/d}. This tendency holds for
general cases. That is, this enhances feature selec-
tion in which some d;’s are expected to be zero to
decrease the entropy. This is the biggest difference
from previous similar MDL approaches [2, 3, 4].

2 Experiments

We carried out an experiments on an artificial
dataset (Fig. 1 (a)). The results are shown in Figs.1,
2 and 3. We can see that feature selection succeeded
for a small sample size and the boundary approaches
to the optimal one for a large sample size.

3 Conclusion

We have seen that an MDL-based histogram
works in double directions: (soft) feature selection
for a limited number of training samples and con-
vergece to the optimal Bayes classifier. Especially,
from the simple division numbers, it was confirmed
that we could know the degree of importance of each
feature even if no removal of the feature was done.

References

[1] J. Rissanen. Stochastic Complexity in Statistical
Inquiry, volume 15 of Series in Computer Sci-
ence. World Scirntific, 1989.

J. Rissanen and B. Yu. MDL leraning. In D. W.
Kueker and C. H. Smith, editors, Learning and
Geometry: Computational Approaches, pages 3—
19. Birkhauser, 1998.

2]

K. Yamanishi. A learning criterion for stochastic
rules. In The Third Workshop on Computational
Learning Theory, pages 67-81, 1990.

H. Tsuchiya, S. Itoh, and T. Mashimoto. An al-
gorithm for designing a pattern classifier by us-
ing MDL criterion. IEICE Trans. Fundamentals,
E79-A(6):910-920, 1996.

(1)

107

05 05

o . o egmlmmE S
0s n e B o Gags 2 Sample

03 03
02 02

%
01 01 o @ °
o op_o ° x

o1 orp o oxx x %

02 02 2
03 03 x

04 04 *

05 04 o3 02 o1 0 01 02 03 04 05 05 04 03 02 01 0 01 02 03 04 05

2
(b) (10%,0,3)
ST o Glass T Sample o
: 8

05 04 03 02 01

(c) (5% 102,1,2)

Giass T Sample o

5 o1 0z 03 04 o5

%5 54 05 0z

(e) (5 x 103,3,4)

02 03 04 05

Figure 1. Change of classification bound-
ary. The caption is (n, dy, d2).

Training Error ~F
o Test Error -O—

Error Rate

0.02

100 10000

1000
Number of Training Samples

Figure 2. Training and test error.

g s Tsampl ©
%?” 22 Sample X

5 04 03 02 o1

(a) (0.0,1,4)

0 o1 0z 03 04 o

05 04 03 02 01 0

(d) (37/12,3,3)

01 0z 03 04 05

(c) (27/12,2,2)

Figure 3. Soft feature selection (n = 1000).
The caption is (0, d1, ds)-

