
Dynamic Software Architecture Slicing

Taeho Kim, Yeong-Tae Song, Lawrence Chung and Dung T. Huynh
The University of Texas at Dallas

Dept. of Computer Science

email: ftkim,ysong,chung,huynhg@utdallas.edu

Abstract

Software architectural design is becoming increasingly
important in software engineering, as being manifested
through various recent developments in the field such as
the component-based software engineering paradigm and
the distributed and collaborative computing paradigm. Ab-
straction is such a mechanism as the key concept under-
pinning software architecture, namely hiding the immense
amount of details. Despite its long-recognized benefits,
however, abstraction can also pose difficulties with the un-
derstanding and analysis of software architecture since one
architecture can result in potentially an infinite number of
different system behaviors. In order to alleviate such diffi-
culties, we introduce the notion ofdynamic software archi-
tecture slicing(DSAS), a methodology for using the notion,
and an algorithm to generate dynamic software architec-
ture slice. We demonstrate the feasibility and the expected
benefits of the approach by using an illustrative example.

Keywords: software architecture, dynamic slicing.

1 Introduction

Software architectural design is becoming increasingly
important in software engineering, as being manifested
through various recent developments in the field such as
the component-based software engineering paradigm and
the distributed and collaborative computing paradigm. This
increasing importance is largely due to the need for a mech-
anism which would enable the software developer to deal
with the ever-expanding complexity and size of software
systems.

Abstraction is such a mechanism as the key concept un-
derpinning software architecture, namely hiding the im-
mense amount of details about the data structures, algo-
rithms, variations in programming language constructs, etc.
which would all be needed eventually for the implementa-
tion of the projected system. As the highest level of ab-

straction, a software architecture defines a software system
in terms of components which carry out computations, con-
nectors which are used by the components to interact with
each other, constraints that are imposed on the behavior
of components and connectors, etc. [1]. Despite its long-
recognized benefits, however, abstraction can also pose dif-
ficulties with the understanding and analysis of software ar-
chitecture since one architecture can result in potentially an
infinite number of different system behaviors.

In order to alleviate such difficulties, we introduce the
notion ofdynamic software architecture slicing(DSAS), in
which a dynamic software architecture slice represents the
run-time behavior of those parts of the software architecture
that are selected according to the particular slicing criterion
(e.g., a set of resources and their values) provided by the
software architect.

The notion of DSAS utilizes, and extends, a couple of
different types of slicing techniques, one from program slic-
ing and the other from static software architecture slicing.

Program

Software
Architecture

Static DynamicLevel
Type

[Weiser84][Ottenstein84] [Korel86][Agrawal90]
[Korel94] [Song98][Song99]

[Stafford98][Zhao97]

[Horwitz90]

DynamicForward
SlicingArchitectural

Table 1. Categories of related work

While a program slice is the set of program statements
that are relevant to the particular variables of interest at
some point during the program level execution, a software
architectural slice is the set of (parts of) architectural com-
ponents and connectors that are relevant to the particular
variables and events of interest at some point during the ar-
chitectural level execution. For both types, a static slice
is determined independently of the input at compile time
typically through the dependency analysis technique. A dy-
namic slice, on the other hand, is determined according to
the input at run time, hence smaller in size than its static
counterpart. As such, a dynamic slice helps to isolate a par-



ticular execution path.
The distinctives of our work include: the proposal of the

notion of dynamic software architecture slicing or DSAS,
some extension of ADL with some features of Petri-Net in
order to enhance conceptual expressive power. We also pre-
sented the methodology for DSAS and its algorithm. Our
Forward Dynamic Software Architecture Sliceris shown in
a shaded cell along with the other related works in Table 1
[2] [3] [4] [5] [6] [7].

The focus of this paper is dynamic software architecture
slicing, namely, revealing the dynamic behavior of the ar-
chitecture through the precise dependency among the set of
components and connectors that are relevant to the partic-
ular variable-value assignments and events as expressed in
the slicing criterion.

2 Dynamic Software Architecture Slicing

In this section, we introduce a running example to be
used throughout this paper and some basic definitions of
software architecture and forward dynamic software archi-
tecture slice.

2.1 The Example

Typically a printer subsystemis a part of an operating
system (e.g., the UNIX operating system) which controls
and manipulates various print requests for the sharing of
printers among multiple users. Suppose, for example, that
a user wants to print a report and issues a print request, i.e.,
the print command together with the name of the file, the
name of the printer, the number of copies to be printed,
single-/double-sided, etc. The operating system accepts the
request and fulfills the print request by the use of various
processes, which can involve a number of decision points
and cycles.

The software architecture consists of seven compo-
nents and a number of connectors between the compo-
nents. All the seven components of the printer subsys-
tem are daemons, i.e., processes that are active all the
time: one user shell (User); one printer queue daemon
(Queue); one line printer daemon (LPD); two filter dae-
mons, PostScript filter daemon (PS Flt D) and ASCII fil-
ter daemon (ASC Flt D); and two printer daemons, ASCII
printer daemon (ASC Prt D) and PostScript printer dae-
mon (PS Prt D).

The first component,User, accepts the print command
from the user through thestart port as an event (start),
which interprets user commands in terms of the internal user
id (u) and the print job (j) — e.g., PostScript or ASCII file,
and generates asend job event at thesend job port. As
can be seen here, our convention is that the name of an event
is identical with that of the event where the event is received

start_ps

User

PS_Flt_D

ASCII_Flt_DASCII_Prt_D

PS_Prt_D

Queue LPD
found_error

start_job

prt_ready

req_job

ps_file

ascii_file

psfile_in

ascii_done

psfile_rdyps_done

(j,u)

start_asc
afile_rdy

afile_in

start

print_done

send_job

get_next

(p
)

(p)

(j,u)

(p)

(p)[dir_asc]

(j,u)

(j,u)[ascii_ps_job]

(j,u)[ps_job]

(j,u)[ascii_ps_job]

(j)

deq

(j,
u)

(j,u)[ascii_job]

(p)[dir_ps]

internal

enq

implicitout port invocation actionin port

(x,y)[z] : event with parameter x and y, and guard z

component connector synchronization

prt_error

Figure 1. Printer subsystem architecture dia-
gram

or transmitted. The underlying event handler of the operat-
ing system then detects this event and notifies (or triggers)
either the printer queue daemon or one of the two types of
printer daemons.

2.2 Basic Definitions

Now we define the basic concepts ofsoftware architec-
tureandarchitecture slice.

Definition 1 A software architecture can be defined asA = (C;P;�;�)
where

- C is a finite set ofcomponents.

- P is a finite set ofports (events) andP = Pi [ Po
wherePi andPo are finite sets ofinports andoutports,
respectively. The set ofinports of a component C is
denoted byPCi and the set ofoutports of a C is denoted
by PCo . An eventrefers to the invocation of aPort.
Unless there is confusion, however, we use the terms
eventandport interchangeably.

- � � Po � Pi is a finite set ofconnectors, where
each connector is associated with aguardwhich is a
Boolean expression and a set of parameters.

- � is a finite set ofinternal guardsor actionsofC, writ-
ten asPi �! Po. We usePi �! Po to refer to the
path fromPi toPo through 2 �.



Internal path is	 = fpi �! po j pi 2 Pi; po 2 Po;  2�g. And a part of a component is a member of	[PCi [PCo .

Definition 2 Software architecture slice can be defined asSA = (C 0; P 0;�0)
where

- C 0 is a subset ofC where the set of ports of a compo-
nent inC 0 is a subset ofPCi [ PCo

- P 0 is a subset ofports,P 0 � P ,

- �0 is a subset ofconnectors,�0 � �.

2.3 Software Architecture Slicing Criterion

In software architecture slicing, we are interested incom-
ponentsand connectors. When dynamic software archi-
tecture slicing is considered, occurrences of the events are
of main concern since we are interested in the causality of
events which drives the behavioral characteristics of the ar-
chitecture.

Now we define dynamic software architecture slicing cri-
terion as follows.

Definition 3 A dynamic software architecture slicing crite-
rion can be defined asCdA = (init val set; omp : port; event num)= (I;  : [pi jpo ℄; n)
whereI is a finite set of initial values,omp : port is an
event to be observed, andevent num is an event sequence
number. Note that denotes the component in the slicing
criterion andpi and po denoteinport and outportof ,
respectively.

3 The DSAS Methodology and Algorithm

Dynamic software architecture slicing(DSAS) is a tech-
nique to decompose software architecture with respect to
givenslicing criterion. We describe the methodology and
algorithm in the subsequent subsections.

3.1 The DSAS Methodology

The computation offorward dynamic software architec-
ture sliceis shown in Figure 2. The description of DSAS
methodology is as follows:

Behavior
Dynamic

Charcteristics
Structural

Software Architecture

EnvironmentRun-Time

Execution
Program

Forward Dynamic Slicer

Slicer

Architecture
Slice

Implementation

(A)

(B)

(C)

Architecture
Forward

Filter
Event

(C.1)

(D)

(C.3) (C.4)

Criterion
Slicing

(C.2)

(init_val_set, event,
event_num)

Figure 2. Dynamic software architecture slic-
ing methodology

(A) Software Architecture. Software Architects together
with requirements engineers designSoftware Architec-
ture. It reflects therequirementsof the software sys-
tem. Software architecture consists of structural and
behavioral parts and can be represented by an archi-
tecture diagram (e.g., as shown in Figure 1).

(B) Implementation of software architecture using ADLs.
After phase(A), the architecture is implemented
using some ADL of choice. A software architec-
ture can be implemented at architectural level by us-
ing some of the popular architectural description lan-
guages (ADLs) such as ACME [8], RAPIDE [9], Ae-
sop [10], UniCon [11], and Wright [12]. After the
software architecture is implemented by an ADL of
choice, it then be compiled to make an executable.
Among those ADLs, we are focusing on event-driven
ADLs such as ACME and RAPIDE.

(C) Run-time. During the run-time,Forward Dynamic
Slicer executes the executable and reads its ADL to
identify component and connector information along
with the event names used in the ADL.

(C.1) Program Execution. The ADL executable
generates abag of events. TheForward Dynamic
Slicergets the event and its sequence number of
interest in the form of slicing criterion.

(C.2) Slicing Criterion. In the slicing criterion, the
initial condition (a finite set ofvariable : value)
is also given.

(C.3) Event Filter. WhenForward Dynamic Slicer
receives events from the ADL executable,Event



Filter filters out the events that are not relevant
to the slicing criterion and passes only the rele-
vant events toForward Architecture Slicer. That
is, only the events that are relevant to theslic-
ing criterion are fed into theForward Architec-
ture Slicer. The trace of filtered event is a finite
orderedset of events.

(C.4) Forward Architecture Slicer. Forward Archi-
tecture Slicercomputes architecture slice dynam-
ically during the execution of the implemented
architecture by following the components and
ports that are visited by those filtered events and
the conditions that trigger the events. In other
words, a dynamic architecture slice is computed
by tracing the components and ports where fil-
tered events are generated or received according
to the given slicing criterion.

(D) Resulting Architecture Slice. When the slicing crite-
rion is satisfied, the slice computed up to that point
is the resultingforward dynamic software architecture
slice. It is a subset of the architecture that consists only
of the components and ports that are relevant to the
given slicing criterion.

We adopted the notion ofdependence tableand software
architecture diagram in [6] and extended it so as to usepa-
rametersbetween components. The use of theguardsof the
events is also introduced to increase the expressive power of
describing dynamic behavior of the software architecture.

3.2 The DSAS Algorithm

The algorithm computes architecture slices in forward
manner, which means that it computes slices as the target
program executes.

During the execution of the program, the algorithm
maintains a set of components and connectors where the
current event is control dependent on. That is, the set
of components and connectors is necessary for the current
event to happen. The event number is incremented by one
whenever an event occurs.

When multiple events happens at a port, there exists a
cycle of events that can be removed from the current set as
the control moves to the next event. The terms and data
structure used in the algorithm are as follows:

- num s: the event number specified in the slicing cri-
terion

- urrent num: the current event number

- TES: a temporary event set along with event number
andcomponent

- Left(TES): a function that returns the events inTES
- Slie(omp : ev): an architecture slice for an eventev

in a componentomp
The formal description of the algorithm is as follows:

Input:
software architecture,A
slicing criterion,CdA = (I; omp : ev; num s)

Output:
software architecture slice,SA

Algorithm:
1. for eacheventev in the target architectureSlie(omp : ev) := ;;
2. urrent num := 0;
3. TES := ;;
4. do

perform a statement in ADL;
if an eventev occursurrent num := urrent num+ 1;TES := TES [ < omp : ev; urrent num >;

if ev 2 Left(TES)
let ev0 be the event inLeft(TES) andi be

its corresponding event number;TES := TES n f< omp : ev0; num > ji � num � urrent numg;Slie(omp : ev) := TES;
while (num s 6= urrent num);

5. print Slie(omp : ev);
4 Illustration

Returning to the example shown earlier in Figure 1, we
show how to compute the architecture slice forprinter sub-
systemexample.

Figure 2 shows the relationships between the phases of
the DSAS methodology and the various diagrams used in
our illustration. The computation of theforward dynamic
architecture sliceof printer subsystem with respect to the
slicing criterioncan be described as follows1:

Software Architecturefor print subsystemis described by
a diagram as shown in Figure 1 and then the architecture is
implemented using some ADL of choice In this paper, we
use RAPIDE as an ADL with no specification of any internal
constructs. The implemented architecture is then compiled
to make an executable.

1We rename the components and connectors for the sake of simplicity
as shown in Table 2. outportz }| {C1 : P1# inportz }| {C2 : P4| {z }Connetor
where# is a delimiter,C1:P1 is anoutport 1of component 1, andC2:P4
is aninport 4 of component 2.



COMPONENT SYMBOL PORT SYMBOL

User C1 send job C1:P1
prt error C1:P2
start C1:P3
print done C1:P4

Queue C2 found error C2:P1
deq C2:P2
get next C2:P3
enq C2:P4

LPD C3 req job C3:P1
ps file C3:P2
ascii file C3:P3
start job C3:P4
prt ready C3:P5

PS Flt D C4 psfile rdy C4:P1
psfile in C4:P2

PS Prt D C5 ps done C5:P1
start ps C5:P2

ASCII Flt D C6 afile rdy C6:P1
afile in C6:P2

ASCII Prt D C7 ascii done C7:P1
start asc C7:P2

Table 2. Names simplification for the compo-
nents and ports of the example

WhenForward Dynamic Architecture Slicerstarts it gets
printer subsystemarchitecture and slicing criterion as input
and builds table similar to Table 2 and the ADL executable
generates abag of events.

In slicing criterion, we assume thatprinter subsystemar-
chitecture has five users and we are interested in the fourth
event that occurred at theinportof PSFlt D component and
the user id2 The initial values for job anduser idare set
to be ascii ps.txt and 2 respectively. Theevent nameis
C4:P2 and its event number is4. Then the slicing criterion
becomes CdA = ((asii ps:txt; 2); C4 : P2; 4):
In other words, we are interested in thefourth event(4) at
the inport psfile in (P2) of componentPS Flt D (C4) and
initial values forjob is “ascii ps.txt”, anduser idis 2.

Event Filter receives the events from the ADL exe-
cutable. It filters out the events that are irrelevant to the
slicing criterion and produces aset of eventsthat is relevant
to theSlicing Criterion.

Forward Architecture Slicergets theSoftware Architec-
ture as input and the filtered events fromEvent Filter. For
each occurrence of a filtered event,Forward Architecture
Slicercomputes a new architecture slice.

In Table 3, the first column lists theconnectorsin the ar-
chitecture and each cell holds partial slice (ports) that are
used by an event whose event number is the correspond-
ing column number. The architecture slice is recomputed
whenever a filtered event is received. The architecture slice
at a given time is the union of the ports in the Table 3.

COMPUTEDACTIVE SLICE

EVENTS 1 2 3 4

C1:P1#C2:P4 C1:P1
C2:P4

C1:P1#C5:P2
C1:P1#C7:P2
C2:P1#C1:P2
C2:P2#C3:P4 C2:P2

C3:P4
C3:P1#C2:P3
C3:P2#C4:P2
C3:P3#C6:P2 C3:P3

C6:P2
C3:P3#C7:P2
C4:P1#C5:P2
C5:P1#C3:P5
C5:P1#C1:P4
C6:P1#C7:P2 C6:P1

C7:P2
C6:P1#C4:P2
C7:P1#C3:P5
C7:P1#C1:P4

Table 3. Architecture slice for the printer sub-
system

For example, whenForward Architecture Slicerreceives
a filtered event with event number 2, the architecture slice
at that point is:f< C1 : P1; 1 >; < C2 : P4; 1 >g [f< C2 : P2; 2 >; < C3 : P4; 2 >g= f< C1 : P1; 1 >; < C2 : P4; 1 >;< C2 : P2; 2 >; < C3 : P4; 2 >g:

When the givenslicing criterion is satisfied,Forward
Dynamic Slicerstops and prints the resulting slice. The re-
sulting software architecture slice contains only thecompo-
nentsandportsthat are relevant to the slicing criterion. The
resulting slice, according to Table 3, is as follows:SA = fC1 : P1; C2 : P4; C2 : P2; C3 : P4;C3 : P3; C6 : P2; C6 : P1; C7 : P2g:

The resulting printer subsystem architecture slice is
shown in Figure 3. The grayed-out portion of the diagram
is not the part of the architecture slice.

5 Conclusion

In this paper, we have introduced the notion ofdynamic
software architecture slicing(DSAS) to facilitate the under-
standing and analysis of software architecture. This notion
hinges on only a couple of intuitive concepts, namely, dy-
namic software architectural slice and dynamic software ar-



LPDQueue

ascii_done

start_job

prt_ready

start
deq

User

PS_Flt_D

ASCII_Flt_DASCII_Prt_D

PS_Prt_D

(j,u)

(j)

ps_done

afile_rdy

start_ps

start_asc
afile_in

psfile_rdy

print_done

send_job

get_next

(p
)

(j,u)

(j,u)

(p)

(p)[dir_asc]

found_error

(j,u)[ascii_ps_job]

(j,u)[ps_job]

(j,u)[ascii_ps_job]

req_job

(p)

(j,
u)

(j,u)[ascii_job]

(p)[dir_ps]

enq

2

3

1

4

ps_file

prt_error

ascii_file

psfile_in

Figure 3. Dynamic architecture slice of printer
subsystem

chitecture slicing criterion, and yet it goes beyond the no-
tion of static software architecture slicing while exploiting
the benefits of the “dynamic” aspect of dynamic program
slicing.

Given a software architecture, a dynamic software archi-
tecture slice represents the particular sequence of compo-
nents and connectors of the architecture, to be involved in
the execution of a program which implements it, with re-
spect to a particular set of events and variable-value bind-
ings, i.e. a particular software architectural slicing crite-
ria. Compared to static software architecture slicing, dy-
namic slicing generates potentially a much smaller number
of components and connectors in each slice especially when
there are a large number of ports whose invocation depends
on change in the value of a variable or the triggering of an
event.

In this paper, we have also presented a methodology to
use the notion and an algorithm to generate dynamic archi-
tecture slice.

Being the first in its kind, however, our proposal needs
improvements along more than one avenue. One such av-
enue concerns the completeness of our formalization of the
notion of dynamic software architecture slicing. Work is
underway to augment the current set of definitions with, for
example, the precise relationship between a dynamic archi-
tectural slice and its corresponding program slice. Another
avenue of future work concerns the consideration of several
different types of slicing criterion in relation to, for exam-
ple, fault detection and tolerance and (perhaps weaker no-
tions of) deadlock and livelock.

Notwithstanding these issues, we feel that we now have
a basis for developing other more powerful varieties of dy-

namic software architecture slicing as a promising tech-
nique for a wide variety of software engineering activities,
such as detection of specification errors, reverse engineer-
ing and re-engineering, reuse and fault localization.

References

[1] M. Shaw and D. Garlan.Software Architecture: Per-
spectives on an Emerging Discipline. Prentice Hall,
1996.

[2] M. Weiser. Program slicing.IEEE Trans. on Software
Engineering, 10(4):352–357, July 1984.

[3] H. Agrawal and J. R. Horgan. Dynamic program slic-
ing. Proc. ACM SIGPLAN’90, pages 246–256, 1990.

[4] B. Korel and S. Yalamanchili. Forward computation
of dynamic program slices.ISSTA 94, Seattle Wash-
ington, pages 66–79, 1994.

[5] Y. Song and D. T. Huynh. Forward dynamic object-
oriented program slicing.Proc. Application Specific
Systems and Software Engineering ’99, March, March
1999.

[6] J. A. Stafford, D. J. Richardson, and A. L. Wolf. Al-
addin: A tool for architecture-level dependence anal-
ysis of software systems. Technical Report CU-CS-
858-98, University of Colorado, Department of Com-
puter Science, April 1998.

[7] J. Zhao. Slicing software architectures.Technical
Report 97-SE-117, Information Processing Society of
Japan, pages 85–92, November 1997.

[8] D. Garlan, R. Monroe, and D. Wile. Acme: An archi-
tecture description interchange language.Proc. CAS-
CON ’97, 1997.

[9] D. C. Luckham, J. J. Kenney, and L. M. Augustin.
Specification and analysis of system architecture us-
ing rapide. IEEE Trans. Software Engineering,
21(4):336–345, April 1995.

[10] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting
style in architectural design environments.Proc. ACM
SIGSOFT, pages 179–185, December 1994.

[11] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, and G. Zelesnik. Abstractions for software
architecture and tools to support them.IEEE Trans.
Software Engineering, Special issue on Software Ar-
chitecture, 21(4):314–335, April 1995.

[12] R. Allen and D. Garlan. Formalizing architectural con-
nection.Proc. 16th International Conference on Soft-
ware Engineering, pages 71–80, May 1994.


