Dynamic Software Architecture Slicing

Taeho Kim, Yeong-Tae Song, Lawrence Chung and Dung T. Huynh
The University of Texas at Dallas
Dept. of Computer Science
email: {tkim,ysong,chung,huynh}@utdallas.edu

Abstract straction, a software architecture defines a software syste
in terms of components which carry out computations, con-
Software architectural design is becoming increasingly nectors which are used by the components to interact with
important in software engineering, as being manifested each other, constraints that are imposed on the behavior
through various recent developments in the field such asof components and connectors, etc. [1]. Despite its long-
the component-based software engineering paradigm andrecognized benefits, however, abstraction can also pose dif
the distributed and collaborative computing paradigm. Ab- ficulties with the understanding and analysis of software ar
straction is such a mechanism as the key concept underchitecture since one architecture can result in poteptal
pinning software architecture, namely hiding the immense infinite number of different system behaviors.
amount of details. Despite its long-recognized benefits, In order to alleviate such difficulties, we introduce the
however, abstraction can also pose difficulties with the un- notion of dynamic software architecture slicif@®SAS, in
derstanding and analysis of software architecture sinoe on which a dynamic software architecture slice represents the
architecture can result in potentially an infinite number of run-time behavior of those parts of the software architectu
different system behaviors. In order to alleviate such-diffi that are selected according to the particular slicing dadte
culties, we introduce the notion dffnamic software archi- (e.g., a set of resources and their values) provided by the
tecture slicing DSAS), a methodology for using the notion, software architect.
and an algorithm to generate dynamic software architec- The notion of DSAS utilizes, and extends, a couple of
ture slice. We demonstrate the feasibility and the expecteddifferent types of slicing techniques, one from prograro-sli
benefits of the approach by using an illustrative example. ing and the other from static software architecture slicing

Keywords: software architecture, dynamic slicing. Type
Level Static Dynamic
Program [Weiser84][Ottenstein84] [Agrawal90] [Korel86]
1 Int d t [Horwitz90] [Korel94] [Song98][Song99]
ntroauction :
Software | staffordgg][zhao97] AT PRI
Architecture Architectural Slicing

Software architectural design is becoming increasingly
important in software engineering, as being manifested Table 1. Categories of related work
through various recent developments in the field such as
the component-based software engineering paradigm and While a program slice is the set of program statements
the distributed and collaborative computing paradigmsThi that are relevant to the particular variables of interest at
increasing importance is largely due to the need for a mech-some point during the program level execution, a software
anism which would enable the software developer to deal architectural slice is the set of (parts of) architectuahe
with the ever-expanding complexity and size of software ponents and connectors that are relevant to the particular
systems. variables and events of interest at some point during the ar-
Abstraction is such a mechanism as the key concept un-chitectural level execution. For both types, a static slice
derpinning software architecture, namely hiding the im- is determined independently of the input at compile time
mense amount of details about the data structures, algotypically through the dependency analysis technique. A dy-
rithms, variations in programming language constructs, et namic slice, on the other hand, is determined according to
which would all be needed eventually for the implementa- the input at run time, hence smaller in size than its static
tion of the projected system. As the highest level of ab- counterpart. As such, a dynamic slice helps to isolate a par-

ticular execution path. oo ®

The distinctives of our work include: the proposal of the /' user 7 Queue ; LPD
notion of dynamic software architecture slicing or DSAS, ' st -
some extension of ADL with some features of Petri-Net in s ';s*,'ﬁx
order to enhance conceptual expressive power. We also pre- _ priady ’
sented the methodology for DSAS and its algorithm. Our .

, yo? e
| ’ R i A

Forward Dynamic Software Architecture Slidershown in Lo it

SPEL R Lo T Gulps_job] __ -~

found_error

\
~ prt_error

s getnext ... -7

send. 405 i oo ’
N A" I . E deq .
. ,%h\\\\ enq il =t -
VT
)

“7{ print_done

start

ascii_fle [v
\

a shaded cell along with the other related works in Table 1 | SO A (L RS _
[2][3] [4] [5] [6] [7]. L e R
The focus of this paper is dynamic software architecture 3 s \x
slicing, namely, revealing the dynamic behavior of the ar- P Lt
chitecture through the precise dependency among the set of 8 T [- :
components and connectors that are relevant to the partic- = Lo ASELALD
ular variable-value assignments and events as expressed in T S e T
the slicing criterion. :
(inport ¢ outport --->implicit invocation > internal action
. . L. D component ¢ -—=) connector ;I -=> synchronization|
2 DynamIC SOftW&I'e ArChIteCtU re S||Clng (x,y)[z] : event with parameter x and y, and guard z

In this section, we introduce a running example to be

h \ s Figure 1. Printer subsystem architecture dia-
used throughout this paper and some basic definitions of

) i . gram
software architecture and forward dynamic software archi-
tecture slice.
2.1 The Example or transmitted. The underlying event handler of the operat-

ing system then detects this event and notifies (or triggers)

Typically a printer subsystenis a part of an operating eit.her the printer queue daemon or one of the two types of
system (e.g., the UNIX operating system) which controls Printer daemons.
and manipulates various print requests for the sharing of] o
printers among multiple users. Suppose, for example, that2-2 Basic Definitions
a user wants to print a report and issues a print request, i.e.
the print command together with the name of the file, the ~ Now we define the basic conceptssufftware architec-
name of the printer, the number of copies to be printed, ture andarchitecture slice
single-/double-sided, etc. The operating system acchpts t
request and fulfills the print request by the use of various
processes, which can involve a humber of decision points A=(C,P,A,T)
and cycles.

The software architecture consists of seven compo-yhere
nents and a number of connectors between the compo-

Definition 1 A software architecture can be defined as

nents. All the seven components of the printer subsys- - C is afinite set otomponers.

tem are daemons, i.e., processes that are active all the . p s 3 finite set oforts event3 and P = P, U P,
time: one user shellUser); one printer queue daemon whereP; and P, are finite sets oihports andoutpors,
(Queue); one line printer daemorLPD); two filter dae- respectively. The set d@fports of a component C is
mons, Postscript filter daemoﬁ$_Flt_D) and ASCII fil- denoted b)PiC and the set abutpors of a Cis denoted

ter daemonASC_FIt_D); and two printer daemons, ASCII by PC. An eventrefers to the invocation of ®ort
printer daemonASC_Prt_D) and PostScript printer dae- Unless there is confusion, however, we use the terms
mon PS_Prt.D). eventandportinterchangeably.

The first componentJser, accepts the print command
from the user through thetart port as an eventsfart),
which interprets user commands in terms of the internal user
id (u) and the print jobjj — e.g., PostScript or ASCII file,
and generates send_job event at thesend_job port. As - T'is afinite set onternal guardsr actionsof C, writ-
can be seen here, our convention is that the name of anevent ten asP, —— P,. We useP; — P, to refer to the
is identical with that of the event where the event is reative path fromP; to P, throughy € T.

- A C P, x P;is a finite set ofconnectos, where
each connector is associated witrgaardwhich is a
Boolean expression and a set of parameters.

Internal path ist = {p; - e |pi € P, p, € P,, vy €
['}. And a part of a componentis a membefof PS¢ UPL.

Definition 2 Software architecture slice can be defined as
Sa=(C", P A"
where

- C'is a subset of’ where the set of ports of a compo-
nentinC’ is a subset oP¢ U P¢

- P'is a subset gports, P! C P,

- A’ is asubset ofonnectos, A’ C A.

2.3 Software Architecture Slicing Criterion

In software architecture slicing, we are interestedam-
ponentsand connectors When dynamic software archi-
tecture slicing is considered, occurrences of the evets ar
of main concern since we are interested in the causality of
events which drives the behavioral characteristics of the a

(A
Software Architecture
Structural |_| Dynamic
Charcteristic Behavior N
(B)

Implementation

Slicing
Criterion

(D)

Architecture
Slice

\

(C1) Fofward Dynamic Slicer ;

Y
Program (C3)
Execution |~ Event
Filter

B

1
(C. 2

Forward
rchitecture|
Slicer

Run-Time Environment

Figure 2. Dynamic software architecture slic-
ing methodology

(A) Software Architecture Software Architects together

chitecture.

Now we define dynamic software architecture slicing cri-

terion as follows.

Definition 3 A dynamic software architecture slicing crite-

rion can be defined as

Cj = (init_val_set, comp : port, event_num)

(I, ce : [pi|pe], m)

wherel is a finite set of initial valuesgcomyp : port is an

event to be observed, aadent_num is an event sequence
number. Note that. denotes the component in the slicing

criterion andp;© and pS- denoteinport and outportof c.,
respectively.

3 The DSAS Methodology and Algorithm

Dynamic software architecture slicif®SAS) is a tech-

nigue to decompose software architecture with respect to
givenslicing criterion We describe the methodology and

algorithm in the subsequent subsections.

3.1 The DSAS Methodology

The computation oforward dynamic software architec-
ture sliceis shown in Figure 2. The description of DSAS

methodology is as follows:

with requirements engineers desig§aftware Architec-
ture. It reflects therequirementof the software sys-
tem. Software architecture consists of structural and
behavioral parts and can be represented by an archi-
tecture diagram (e.g., as shown in Figure 1).

(B) Implementation of software architecture using ADLs

After phase(A), the architecture is implemented
using some ADL of choice. A software architec-
ture can be implemented at architectural level by us-
ing some of the popular architectural description lan-
guages (ADLs) such as ACME [8],ARI1DE [9], Ae-
sop [10], UniCon [11], and Wright [12]. After the
software architecture is implemented by an ADL of
choice, it then be compiled to make an executable.
Among those ADLs, we are focusing on event-driven
ADLs such as ACME and RPIDE.

(O Run-time During the run-time,Forward Dynamic

Slicer executes the executable and reads its ADL to
identify component and connector information along
with the event names used in the ADL.

(C. 1) Program Execution The ADL executable
generates bag of eventsTheForward Dynamic
Slicergets the event and its sequence number of
interest in the form of slicing criterion.

(C. 2) Slicing Criterion In the slicing criterion, the
initial condition (a finite set ofariable : value)
is also given.

(C. 3) Event Filter WhenForward Dynamic Slicer
receives events from the ADL executabisjent

Filter filters out the events that are not relevant - Left(TES): a function that returns the events in

to the slicing criterion and passes only the rele- TES

vant events tdorward Architecture SlicerThat - Slice(comp : ev): an architecture slice for an event
Is, on!y the events t_hat are relevant to 1$im- in a componentomyp

ing criterion are fed into thed~orward Architec- o . _

ture Slicer The trace of filtered event is a finite The formal description of the algorithm is as follows:

orderedset of events.

(C. 4) Forward Architecture Slicer Forward Archi- software architectured
tecture Slicecomputes architecture slice dynam- slicing criterion,C% = (I, comp : ev, num_sc)
ically during the execution of the implemented Output: ’ ’
architecture by following the components and software architecture slice 4
ports that are visited by those filtered events and Algorithm:
the conditions that trigger the events. In other) ‘o oach eventes in the target architecture
words, a dynamic architecture slice is computed Slice(comp : ev) = 0;
by tracing the components and ports where fil- » 0;
tered events are generated or received according3_ TES = 0

Input:

to the given slicing criterion. 4 do
))] o . perform a statement in ADL;

(D) Resulting Architecture Slicewhen the slicing crite- if an evenkv occurs

rion is satisfied, the slice computed up to that point current_num = current_num + 1;

is the resultindorward dynamic software architecture TES := TESU < comp : ev, current_num >;

slice Itis a subset of the architecture that consists only if ev € Left(TES)

of the components and ports that are relevant to the let ev’ be the event irLe ft(T ES) andi be

given slicing criterion. its corresponding event number;

_ TES :=TES\ {< comp : ev', num > |
We adopted the notion afependence tabknd software i < num < current_num};

architecture diagram in [6] and extended it so as topsse Slice(comp : ev) := TES;
rametersbetween components. The use of fugrdsof the while (num_sc # current_num);

events is also introduced to increase the expressive pdwer 05 print Stice(comp : ev);
describing dynamic behavior of the software architecture.

_ 4 lllustration
3.2 The DSAS Algorithm
Returning to the example shown earlier in Figure 1, we
The algorithm computes architecture slices in forward show how to compute the architecture slice fointer sub-
manner, which means that it computes slices as the targetysterrexample.
program executes. Figure 2 shows the relationships between the phases of
During the execution of the program, the algorithm the DSAS methodology and the various diagrams used in
maintains a set of components and connectors where theyur illustration. The computation of thierward dynamic
current event is control dependent on. That is, the setarchitecture sliceof printer subsystem with respect to the
of components and connectors is necessary for the currenlicing criterioncan be described as follows
event to happen. The event number is incremented by one Software Architecturéor print subsysteris described by
whenever an event occurs. a diagram as shown in Figure 1 and then the architecture is
When multiple events happens at a port, there exists aimplemented using some ADL of choice In this paper, we
cycle of events that can be removed from the current set asuse R\PIDE as an ADL with no specification of any internal
the control moves to the next event. The terms and dataconstructs. The implemented architecture is then compiled
structure used in the algorithm are as follows: to make an executable.

- th t b ified in the slici . 1We rename the components and connectors for the sake oficitypl
- num_sc: tne event numper speciiieda in tne slicing Cri- as shown in Table 2.

ter'on outport inport

Cl1:P1#C2:P4
- current_num: the current event number J_,

Connector

- TES: atemporary event set along with event nUMber ynere4 is a delimiter,CL: P1 is anoutport 1of component 1andC2: P4
andcomponent is aninport 4 of component 2

[ComPONENT | SymeoL || PorT | SvmeoL | COMPUTEDACTIVE SLICE
User C1 send_j ob Cl:P1 EVENTS 1 [2] 38] 4
prt _error Cl: P2 Cl: P1#C2: P4 Cl: P1
start Cl: P3 C2: P4
print .done Cl: P4 Cl: P1#C5: P2
Queue c2 found_error C2: P1 Cl: P1#C7: P2
deq C2: P2 C2: P1#C1: P2
get _next C2: P3 C2: P2#C3: P4 C2: P2
enq C2: P4 C3: P4
LPD C3 req.j ob C3: P1 C3: P1#C2: P3
psfile CG3: P2 C3: P2#C4: P2
asciifile C3: P3 C3: P3#C6: P2 C3:P3
start j ob C3: P4 C6: P2
prt._ready G:P5 C3: P3#C7: P2
PSFIt D 4 psfilerdy G Pl CA: P1#C5: P2
psfiledn C4: P2 C5: P1#C3: P5
PS_Prt _D c5 ps.done C5: P1 C5: P1#C1: P4
start _ps C5: P2 6. P1HCT: P2 C6: P1
ASCl | _FI't _.D C6 afile_rdy C6: P1 C7: P2
afiledn C6: P2 C6: P1#CA: P2
ASCI | _Prt D (674 ascii .done Cr: P1 C7: P1#C3- P5
start_asc C7: P2 C7- P1#CL. P4
Table 2. Names simplification for the compo- Table 3. Architecture slice for the printer sub-
nents and ports of the example system

WhenForward Dynamic Architecture Slicestarts it gets
printer subsysterarchitecture and slicing criterion as input
and builds table similar to Table 2 and the ADL executable
generates hag of events

For example, wheRorward Architecture Slicereceives
a filtered event with event number 2, the architecture slice
at that point is:

In slicing criterion, we assume thatinter subsysterar- {<C1:P1,1>, <C2:P4, 1>} U
chitecture has five users and we are interested in the fourth
eventthat occurred at thieport of PSFlt_D component and {<C2:P2,2>, <C3:P4, 2>}
the user id2 Theinitial valuesfor job anduser idare set = {<C1:P1, 1>, <C2:P4, 1>,
to be ascii_ps.txt and 2 respectively. Theevent names <C2:P2, 2>, <C3:P4, 2>}
C4: P2 and its event number & Then the slicing criterion
becomes When the giverslicing criterion is satisfied,Forward

. Dynamic Sliceistops and prints the resulting slice. The re-
C4 = ((ascii_ps.txt,2), C4: P2, 4). ; - ; :
A - ardl ' sulting software architecture slice contains only teenpo-

In other words, we are interested in tfaurth eveni(4) at nent&_andp(_)rtsthat are relevant to the_slicing criterion. The
theinport psfile_in (P2) of componenPS_Fit D (C4) and resulting slice, according to Table 3, is as follows:
initial values forjob is “ascii_ps.txt”, and user idis 2.

Event Filter receives the events from the ADL exe-
cutable. It filters out the events that are irrelevant to the C3:P3, C6:P2, C6:P1, C7:P2}.
slicing criterion and producessgt of eventthat is relevant
to theSlicing Criterion

Forward Architecture Slicegets theSoftware Architec-
ture as input and the filtered events frdavent Filter For
each occurrence of a filtered eveRgrward Architecture

S ={C1:P1, C2:P4, C2:P2, C3:P4,

The resulting printer subsystem architecture slice is
shown in Figure 3. The grayed-out portion of the diagram
is not the part of the architecture slice.

Slicercomputes a new architecture slice. 5 Conclusion
In Table 3, the first column lists thewnnectorsn the ar-
chitecture and each cell holds partial sligits) that are In this paper, we have introduced the notiordghamic

used by an event whose event number is the correspondsoftware architecture slicingDSAS to facilitate the under-

ing column number. The architecture slice is recomputed standing and analysis of software architecture. This motio
whenever a filtered event is received. The architecture slic hinges on only a couple of intuitive concepts, namely, dy-
at a given time is the union of the ports in the Table 3. namic software architectural slice and dynamic software ar

namic software architecture slicing as a promising tech-
nigque for a wide variety of software engineering activities
such as detection of specification errors, reverse engineer
ing and re-engineering, reuse and fault localization.

User

—

start 0
'9(; send_job

[printdone |

References

[1] M. Shaw and D. GarlanSoftware Architecture: Per-
spectives on an Emerging Disciplind’rentice Hall,
1996.

[2] M. Weiser. Program slicinglEEE Trans. on Software
Engineering 10(4):352-357, July 1984.

[3] H. Agrawal and J. R. Horgan. Dynamic program slic-
ing. Proc. ACM SIGPLAN’90pages 246—256, 1990.

[4] B. Korel and S. Yalamanchili. Forward computation
Figure 3. Dynamic architecture slice of printer of dynamic program slicesISSTA 94, Seattle Wash-
subsystem ington, pages 66—79, 1994.

[5] Y. Song and D. T. Huynh. Forward dynamic object-
oriented program slicing.Proc. Application Specific

chitecture slicing criterion, and yet it goes beyond the no- Systems and Software Engineering,'8tarch, March

tion of static software architecture slicing while expiog 1999.

the benefits of the “dynamic” aspect of dynamic program [g] J. A. Stafford, D. J. Richardson, and A. L. Wolf. Al-

slicing. addin: A tool for architecture-level dependence anal-
Given a software architecture, a dynamic software archi- ysis of software systems. Technical Report CU-CS-

tecture slice represents the particular sequence of compo- 858-98, University of Colorado, Department of Com-

nents and connectors of the architecture, to be involved in puter Science, April 1998.

the execution of a program which implements it, with re- o .)

spect to a particular set of events and variable-value bind- [7] J- Zhao. Slicing software architecturesTechnical
ings, i.e. a particular software architectural slicingteri Report 97-SE-117, Information Processing Society of
ria. Compared to static software architecture slicing, dy- Japan pages 85-92, November 1997.

namic slicing generates potentially a much smaller number [8] D. Garlan, R. Monroe, and D. Wile. Acme: An archi-

of components and connectors in each slice especially when tecture description interchange languageoc. CAS-
there are a large number of ports whose invocation depends con '97,1997.

on change in the value of a variable or the triggering of an

event. [9] D. C. Luckham, J. J. Kenney, and L. M. Augustin.

In this paper, we have also presented a methodology to ~ Specification and analysis of system architecture us-
use the notion and an algorithm to generate dynamic archi- ~ iNg rapide. IEEE Trans. Software Engineering
tecture slice. 21(4):336-345, April 1995.

Being the first in its kind, however, our proposal needs [10] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting
improvements along more than one avenue. One such av- style in architectural design environmerfsoc. ACM
enue concerns the completeness of our formalization of the SIGSOFTpages 179185, December 1994.
notion of dynamic software architecture slicing. Work is
underway to augment the current set of definitions with, for [11] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.

example, the precise relationship between a dynamic archi- ~ Young, and G. Zelesnik. Abstractions for software
tectural slice and its corresponding program slice. Anothe architecture and tools to support thetEEE Trans.
avenue of future work concerns the consideration of several ~ Software Engineering, Special issue on Software Ar-
different types of slicing criterion in relation to, for exa chitecture 21(4):314-335, April 1995.

ple, fault detection and tolerance and (perhaps weaker N0112]
tions of) deadlock and livelock.

Notwithstanding these issues, we feel that we now have
a basis for developing other more powerful varieties of dy-

R. Allen and D. Garlan. Formalizing architectural con-
nection.Proc. 16th International Conference on Soft-
ware Engineeringpages 71-80, May 1994.

