
An Empirical Study on Using the National
Vulnerability Database to Predict Software

Vulnerabilities

Su Zhang, Doina Caragea, and Xinming Ou

Kansas State University, {zhangs84,dcaragea,xou}@ksu.edu

Abstract. Software vulnerabilities represent a major cause of cyber-
security problems. The National Vulnerability Database (NVD) is a pub-
lic data source that maintains standardized information about reported
software vulnerabilities. Since its inception in 1997, NVD has published
information about more than 43,000 software vulnerabilities affecting
more than 17,000 software applications. This information is potentially
valuable in understanding trends and patterns in software vulnerabil-
ities, so that one can better manage the security of computer systems
that are pestered by the ubiquitous software security flaws. In particular,
one would like to be able to predict the likelihood that a piece of software
contains a yet-to-be-discovered vulnerability, which must be taken into
account in security management due to the increasing trend in zero-day
attacks. We conducted an empirical study on applying data-mining tech-
niques on NVD data with the objective of predicting the time to next
vulnerability for a given software application. We experimented with var-
ious features constructed using the information available in NVD, and
applied various machine learning algorithms to examine the predictive
power of the data. Our results show that the data in NVD generally have
poor prediction capability, with the exception of a few vendors and soft-
ware applications. By doing a large number of experiments and observing
the data, we suggest several reasons for why the NVD data have not pro-
duced a reasonable prediction model for time to next vulnerability with
our current approach.

Keywords: data mining, cyber-security, vulnerability prediction

1 Introduction

Each year a large number of new software vulnerabilities are discovered in var-
ious applications (see Figure 1). Evaluation of network security has focused on
known vulnerabilities and their effects on the hosts and networks. However, the
potential for unknown vulnerabilities (a.k.a. zero-day vulnerabilities) cannot be
ignored because more and more cyber attacks utilize these unknown security
holes. A zero-day vulnerability could last a long period of time (e.g. in 2010
Microsoft confirmed a vulnerability in Internet Explorer, which affected some
versions that were released in 2001). Therefore, in order to have more accurate



2 Predicting zero-day software vulnerabilities through data-mining

results on network security evaluation, one must consider the effect from zero-
day vulnerabilities. The National Vulnerability Database (NVD) is a well-known
data source for vulnerability information, which could be useful to estimate the
likelihood that a specific application contains zero-day vulnerabilities based on
historical information. We have adopted a data-mining approach in an attempt to
build a prediction model for the attribute “time to next vulnerability” (TTNV),
i.e. the time that it will take before the next vulnerability about a particular
application will be found. The predicted TTNV metrics could be translated into
the likelihood that a zero-day vulnerability exists in the software.

Past research has addressed the problem of predicting software vulnerabilities
from different angles. Kyle et al. [10] pointed out the importance of estimating
the risk-level of zero-day vulnerabilities. Mcqueen et al. [15] did experiments on
estimating the number of zero-day vulnerabilities on each given day. Alhazmi
and Malaiya [3] introdced the definition of TTNV. Ozment [19] did a number of
studies on analyzing NVD, and pointed out several limitations of this database.

Fig. 1. The trend of vulnerability numbers

In this paper, we present our empirical experience of applying data-mining
techniques on NVD data in order to build a prediction model for TTNV. We
conduct a rigorous data analysis and experiment with a number of feature con-
struction schemes and learning algorithms. Our results show that the data in
NVD generally have poor prediction capability, with the exception of a few
vendors and software applications. In the rest of the paper we will explain the
features we have constructed and the various approaches we have taken in our
attempts to build the prediction model. While it is generally a difficult task to
show that data has no utility, our experience does indicate a number of reasons



Predicting zero-day software vulnerabilities through data-mining 3

why it is unlikely to construct a reliable prediction model for TTNV given the
information available in NVD.

2 Data Source – National Vulnerability Database

Each data entry in NVD consists of a large number of fields. We represent them
as <D, CPE, CVSS>. D is a set of data including published time, summary
of the vulnerability and external links about each vulnerability. CPE [6] and
CVSS [21] will be described below.

2.1 CPE (Common Platform Enumeration)

CPE is an open framework for communicating the characteristics and impacts
of IT vulnerabilities. It provides us with information on a piece of software,
including version, edition, language, etc. An example is shown below:

cpe:/a:acme:product:1.0:update2:pro:en-us

Professional edition of the "Acme Product 1.0 Update 2 English".

2.2 CVSS (Common Vulnerability Scoring System )

CVSS is a vulnerability scoring system designed to provide an open and stan-
dardized method for rating IT vulnerabilities. CVSS helps organizations priori-
tize and coordinate a joint response to security vulnerabilities by communicating
the base, temporal and environmental properties of a vulnerability. Currently
NVD only provides the Base group in its metric vector. Some components of the
vector are explained below.

– Access Complexity indicates the difficulty level of the attack required to
exploit the vulnerability once an attacker has gained access to it. It includes
three levels: High, Medium, and Low.

– Authentication indicates whether an attacker must authenticate in order to
exploit a vulnerability. It includes two levels: Authentication Required (R),
and Authentication Not Required (NR).

– Confidentiality, Integrity and Availability are three loss types of attacks.
Confidentiality loss means information will be leaked to people who are not
supposed to know it. Integrity loss means the data can be modified illegally.
Availability loss means the compromised system cannot perform its intended
task or will crash. Each of the three loss types have the three levels: None
(N), Partial (P), and Complete (C).

The CVSS Score is calculated based on the metric vector, with the objective
of indicating the severity of a vulnerability.



4 Predicting zero-day software vulnerabilities through data-mining

3 Our Approach

We choose TTNV (time to next vulnerability) as the predicted feature. The
predictive attributes are time, versiondiff (the distance between two different
versions by certain measurement), software name and CVSS. All are derived or
extracted directly from NVD.

3.1 Data Preparation and Preprocessing

Division of training/test data: As the prediction model is intended to be
used to forecast future vulnerabilities, we divide the NVD data into training and
test data sets based on the time the vulnerabilities were published. The ratio of
the amount of training to test data is 2. We chose to use the data starting from
2005, as the data prior to this year looks unstable (see Figure 1).

Removing obvious errors: Some NVD entries are obviously erroneous (e.g.
in one entry for Linux the kernel version was given as 390). To prevent these
entries from polluting the learning process, we removed them from the database.

3.2 Feature Construction and Transformation

Identifying and constructing predictive features is of vital importance to data-
mining. For the NVD data, intuitively Time and Version are two useful features.
As we want to predict time to next vulnerability, the published time for each
past vulnerability will be a useful information source. Likewise, the version infor-
mation in each reported vulnerability could indicate the trend of vulnerability
discovery, as new versions are released. Although both Time and Version are
useful information sources, they need to be transformed to provide the expected
prediction behavior. For example, both features in their raw form increase mono-
tonically. Directly using the raw features will provide little prediction capabil-
ity for future vulnerabilities. Thus, we introduce several feature construction
schemes for the two fields and studied them experimentally.

Time: We investigated two schemes for constructing time features. One is epoch
time, the other is using month and day separately without year. Like explained
before, the epoch time is unlikely to provide useful prediction capability, as it
increases monotonically. Intuitively, the second scheme shall be better, as the
month and day on which a vulnerability is published may show some repeating
pattern, even in future years.

Version: We calculate the difference between the versions of two adjacent in-
stances and use the versiondiff as a predictive feature. An instance here refers to
an entry where a specific version of an application contains a specific vulnera-
bility. The rationale for using versiondiff as a predictive feature is that we want



Predicting zero-day software vulnerabilities through data-mining 5

to use the trend of the versions with time to estimate future situations. Two
versiondiff schemas are introduced in our approach. The first one is calculating
the versiondiff based on version counters (rank), while the second is calculating
the versiondiff by radix.

Counter versiondiff: For this versiondiff schema, differences between minor ver-
sions and differences between major versions are treated similarly. For example,
if one software has three versions: 1.1, 1.2, 2.0, then the versions will be assigned
counters 1, 2, 3 based on the rank of their values. Therefore, the versiondiff
between 1.1 and 1.2 is the same as the one between 1.2 and 2.0.

Radix-based versiondiff: Intuitively, the difference between major versions is
more significant than the difference between minor versions. Thus, when calcu-
lating versiondiff, we need to assign a higher weight to relatively major version
changes and lower weight to relatively minor version changes. For example, for
the three versions 1.0, 1.1, 2.0, if we assign a weight of 10 to the major version
and a weight of 1 to each minor version, the versiondiff between 1.1 and 1.0 will
be 1, while the versiondiff between 2.0 and 1.1 will be 9.

When analyzing the data, we found out that versiondiff did not work very
well for our problem because, in most cases, the new vulnerabilities affect all
previous versions as well. Therefore, most values of versiondiff are zero, as the
new vulnerability instance must affect an older version that also exists in the
previous instance, thus, resulting in a versiondiff of zero. In order to mitigate
this limitation, we created another predictive feature for our later experiments.
The additional feature that we constructed is the number of occurrences of a
certain version of each software. More details will be provided in Section 4.

3.3 Machine Learning Functions

We used either classification or regression functions for our prediction, depend-
ing on how we define the predicted feature. The TTNV could be a number
representing how many days we need to wait until the occurrence of the next
vulnerability. Or it could be binned and each bin stands for values within a
range. For the former case, we used regression functions. For the latter case, we
used classification functions. We used WEKA [5] implementations of machine
learning algorithms to build predictive models for our data. For both regression
and classification cases, we explored all of the functions compatible to our data
type, with default parameters. In the case of the regression problem, the compat-
ible functions are: linear regression, least median square, multi-layer perceptron,
RBF network, SMO regression, and Gaussian processes. In the case of classifi-
cation, the compatible functions are: logistic, least median square, multi-layer
perceptron, RBF network, SMO, and simple logistic.



6 Predicting zero-day software vulnerabilities through data-mining

4 Experimental Results

We conducted the experiments on our department’s computer cluster - Beocat.
We used a single node and 4G RAM for each experiment. As mentioned above,
WEKA [5], a data-mining suite, was used in all experiments.

4.1 Evaluation Metrics

A number of metrics are used to evaluate the performance of the predictive
models learned.

Correlation Coefficient: The correlation coefficient is a measure of how well
trends in the predicted values follow trends in actual values. It is a measure of
how well the predicted values from a forecast model “fit” the real-life data. The
correlation coefficient is a number between -1 and 1. If there is no relationship
between the predicted values and the actual values, the correlation coefficient
is close to 0 (i.e., the predicted values are no better than random numbers). As
the strength of the relationship between the predicted values and actual values
increases, so does the correlation coefficient. A perfect fit gives a coefficient
of 1.0. Opposite but correlated trends result in a correlation coefficient value
close to -1. Thus, the higher the absolute value of the correlation coefficient, the
better; however, when learning a predictive model, negative correlation values
are not usually expected. We generate correlation coefficient values as part of
the evaluation of the regression algorithms used in our study.

Root Mean Squared Error: The mean squared error (MSE) of a predictive
regression model is another way to quantify the difference between a set of
predicted values, xp, and the set of actual (target) values, xt, of the attributed
being predicted. The root mean squared error (RMSE) can be defined as:

RMSE(xp, xt)=
√
MSE(xp, xt) =

√
E[(xp − xt)2] =

√√√√ n∑
i=1

(xp,i − xt,i)2

n

Root Relative Squared Error: According to [1], the root relative squared
error (RRSE) is relative to what the error would have been if a simple predictor
had been used. The simple predictor is considered to be the mean/majority of
the actual values. Thus, the relative squared error takes the total squared error
and normalizes it by dividing by the total squared error of the simple predictor.
By taking the root of the relative squared error one reduces the error to the
same dimensions as the quantity being predicted.

RRSE(xp, xt) =

√√√√√√√
n∑

i=1

(xp,i − xt,i)
2

n∑
i=1

(xt,i − x̄)
2



Predicting zero-day software vulnerabilities through data-mining 7

Correctly Classified Rate: To evaluate the classification algorithms investi-
gated in this work, we use a metric called correctly classified rate. This metric
is obtained by dividing correctly classified instances by all instances. Obviously,
a higher value suggests a more accurate classification model.

4.2 Experiments

We performed a large number of experiments, by using different versiondiff
schemes, different time schemes, and by including CVSS metrics or not. For dif-
ferent software, different feature combinations produce the best results. Hence,
we believe it is not effective to build a single model for all the software. Instead,
we build separate models for different software. This way, we also avoid potential
scalability issues due to the large number of nominal type values from vendor
names and software names.

Given the large number of vendors in the data, we did not run experiments
for all of them. We focused especially on several major vendors (Linux, Microsoft,
Mozilla and Google) and built vendor-specific models. For three vendors (Linux,
Microsoft and Mozilla), we also built software-specific models. For other vendors
(Apple, Sun and Cisco), we bundled all their software in one experiment.

4.3 Results

Linux: We used two versiondiff schemes, specifically counter-based and radix-
based, to find out which one is more effective for our model construction. We
also compared two different time schemes (epoch time, and using month and
day separately). In a first set of experiments, we predicted TTNV based on
regression models. In a second set of experiments, we grouped the predictive
feature (TTNV) values into bins, as we observed that the TTNV distribution
shows several distinct clusters, and solved a classification problem.

Table 1 shows the results obtained using the epoch time scheme versus the
results obtained using the month and day scheme, in terms of correlation coeffi-
cient, for regression models. As can be seen, the results of our experiments did

Table 1. Correlation Coefficient for Linux Vulnerability Regression Models
Using Two Time Schemes

Regression Functions
Epoch time Month and day

training test training test

Linear regression 0.3104 0.1741 0.6167 -0.0242

Least mean square 0.1002 0.1154 0.1718 0.1768

Multi-layer perceptron 0.2943 0.1995 0.584 -0.015

RBF network 0.2428 0 0.1347 0.181

SMO regression 0.2991 0.2186 0.2838 0.0347

Gaussian processes 0.3768 -0.0201 0.8168 0.0791



8 Predicting zero-day software vulnerabilities through data-mining

not show a significant difference between the two time schemes that we used,
although we expected the month and day feature to provide better results than
the absolute epoch time, as explained in Section 3.2. Thus, neither scheme has
acceptable correlation capability on the test data. We adapted the month and
day time schema for all of the following experiments.

Table 2 shows a comparison of the results of the two different versiondiff
schemes. As can be seen, both perform poorly as well. Given the unsatisfac-

Table 2. Correlation Coefficient for Linux Vulnerability Regression Models
Using Two Versiondiff Schemes

Regression Functions
Version counter Radix based
training test training test

Linear regression 0.6167 -0.0242 0.6113 0.0414

Least mean square 0.1718 0.1768 0.4977 -0.0223

Multi-layer perceptron 0.584 -0.015 0.6162 0.1922

RBF network 0.1347 0.181 0.23 0.0394

SMO regression 0.2838 0.0347 0.2861 0.034

Gaussian processes 0.8168 0.0791 0.6341 0.1435

tory results, we believed that the large number of Linux sub-versions could be
potentially a problem. Thus, we also investigated constructing the versiondiff
feature by binning versions of the Linux kernel (to obtained a smaller set of sub-
versions). We round each sub-version to its third significant major version (e.g.
Bin(2.6.3.1) = 2.6.3). We bin based on the first three most significant versions
because more than half of the instances (31834 out of 56925) have version longer
than 3, and Only 1% (665 out of 56925) versions are longer than 4. Also, the
difference on the third subversion will be regarded as a huge dissimilarity for
Linux kernels. We should note that the sub-version problem may not exist for
other vendors, such as Microsoft, where the versions of the software are natu-
rally discrete (all Microsoft products have versions less than 20). Table 3 shows
the comparisons between regression models that use binned versions versus re-
gression models that do not use binned versions. The results are still not good
enough as many of the versiondiff values are zero, as explained in Section 3.2
(new vulnerabilities affect affect previous versions as well).

TTNV Binning: Since we found that the feature (TTNV) of Linux shows distinct
clusters, we divided the feature values into two categories, more than 10 days
and no more than 10 days, thus transforming the original regression problem
into an easier binary classification problem. The resulting models are evaluated
in terms of corrected classified rates, shown in Table 4. While the models are
better in this case, the false positive rates are still high (typically above 0.4). In
this case, as before, we used default parameters for all classification functions.
However, for the SMO function, we also used the Gaussian (RBF) kernel. The
results of the SMO (RBF kernel) classifier are better than the results of most



Predicting zero-day software vulnerabilities through data-mining 9

Table 3. Correlation Coefficient for Linux Vulnerability Regression Models
Using Binned Versions versus Non-Binned Versions

Regression Functions
Non-binned versions Binned versions
training test training test

Linear regression 0.6113 0.0414 0.6111 0.0471

Least mean square 0.4977 -0.0223 0.5149 0.0103

Multi-layer perceptron 0.6162 0.1922 0.615 0.0334

RBF network 0.23 0.0394 0.0077 -0.0063

SMO regression 0.2861 0.034 0.285 0.0301

Gaussian processes 0.6341 0.1435 0.6204 0.1369

other classifiers, in terms of correctly classified rate. However, even this model
has a false positive rate of 0.436, which is far from acceptable.

Table 4. Correctly Classified Rates for Linux Vulnerability Classification
Models Using Binned TTNV

Classification Functions
Correctly classified

FPR TPR
training test

Simple logistic 97.6101% 69.6121% 0.372 0.709

Logistic regression 97.9856% 57.9542% 0.777 0.647

Multi-layer perceptron 98.13% 64.88% 0.689 0.712

RBF network 95.083% 55.18% 0.76 0.61

SMO 97.9061% 61.8259% 0.595 0.658

SMO (RBF kernel) 96.8303% 62.8392% 0.436 0.641

CVSS Metrics: In all cases, we also perform experiments by adding CVSS met-
rics as predictive features. However, we did not see much differences.

Microsoft: As we have already observed the limitation of versiondiff scheme
in the analysis of Linux vulnerabilities, for Microsoft instances, we use only the
number of occurrences of a certain version of a software or occurrences of a
certain software, instead of using versiondiff, as described below. We analyzed
the set of instances and found out that more than half of the instances do not
have version information. Most of these case are Windows instances. Most of the
non-Windows instances (more than 70%) have version information. Therefore, we
used two different occurrence features for these two different types of instances.
For Windows instances, we used the occurrence of each software as a predictive
feature. For non-Windows instances, we used the occurrence of each version of
the software as a predictive feature.

Also based on our observations for Linux, we used only the month and day
scheme, and did not use the epoch time scheme in the set of experiments we
performed for Windows. We analyzed instances to identify potential clusters of



10 Predicting zero-day software vulnerabilities through data-mining

TTNV values. However, we did not find any obvious clusters for either windows
or non-windows instances. Therefore, we only used regression functions. The
results obtained using the aforementioned features for both Windows and non-
Windows instances are presented in Table 5. As can be seen, the correlation
coefficients are still less than 0.4.

Table 5. Correlation Coefficient for Windows and Non-Windows Vulnera-
bility Regression Models, Using Occurrence Version/Software Features and
Day and Month Time Scheme

Regression Functions
Win Instances Non-win Instances

training test training test

Linear regression 0.4609 0.1535 0.5561 0.0323

Least mean square 0.227 0.3041 0.2396 0.1706

Multi-layer perceptron 0.7473 0.0535 0.5866 0.0965

RBF network 0.1644 0.1794 0.1302 -0.2028

SMO regression 0.378 0.0998 0.4013 -0.0467

Gaussian processes 0.7032 -0.0344 0.7313 -0.0567

We further investigated the effect of building models for individual non-
Windows applications. For example, we extracted Internet Explorer (IE) in-
stances and build several models for this set. When CVSS metrics are included,
the correlation coefficient is approximately 0.7. This is better than when CVSS
metrics are not included, in which case, the correlation coefficient is approxi-
mately 0.3. The results showing the comparison between IE models with and
without CVSS metrics is shown in Table 6. We tried to performed a similar
experiment for Office. However, there are only 300 instances for Office. Other
office-related instances are about individual software such as Word, PowerPoint,
Excel and Access, etc, and each has less than 300 instances. Given the small
number of instances, we could not build models for Office.

Table 6. Correlation Coefficient for IE Vulnerability Regression Models,
with and without CVSS Metrics

Regression Functions
With CVSS Without CVSS

training test training test

Linear regression 0.8023 0.6717 0.7018 0.3892

Least mean square 0.6054 0.6968 0.4044 0.0473

Multi-layer perceptron 0.9929 0.6366 0.9518 0.0933

RBF network 0.1381 0.0118 0.151 -0.1116

SMO regression 0.7332 0.5876 0.5673 0.4813

Gaussian processes 0.9803 0.6048 0.9352 0.0851



Predicting zero-day software vulnerabilities through data-mining 11

Mozilla: At last, we built classification models for Firefox, with and without the
CVSS metrics. The results are shown in Table 7. As can be seen, the correctly
classified rates are relatively good (approximately 0.7) in both cases. However,
the number of instances in this dataset is rather small (less than 5000), therefore
it is unclear how stable the prediction model is.

Table 7. Correctly Classified Rate for Firefox Vulnerability Models with
and without CVSS Metrics

Classification Functions
With CVSS Without CVSS

training test training test

Simple logistic 97.5% 71.4% 97.5% 71.4%

Logistic regression 97.5% 70% 97.8% 70.5%

Multi-layer perceptron 99.5% 68.4% 99.4% 68.3%

RBF network 94.3% 71.9% 93.9% 67.1%

SMO 97.9% 55.3% 97.4% 55.3%

4.4 Parameter Tuning

As mentioned above, we used default parameters for all regression and classifi-
cation models that we built. To investigate if different parameter settings could
produce better results, we chose to tune parameters for the support vector ma-
chines algorithm (SVM), whose WEKA implementations for classifications and
regression are called SMO and SMO regression, respectively. There are two main
parameters that can be tuned for SVM, denoted by C and σ. The C parameter
is a cost parameter which controls the trade-off between model complexity and
training error, while σ controls the width of the Gaussian kernel [2].

To find the best combination of values for C and σ, we generated a grid
consisting of the following values for C: 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10, 15, 20
and the following values for σ: 0, 0.05, 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 5.0, and run
the SVM algorithm for all possible combinations. We used a separate validation
set to select the combination of values that gives the best values for correlation
coefficient, and root squared mean error and root relative squared error together.
The validation and test datasets have approximately equal sizes; the test set
consists of chronologically newer data, as compared to the validation data, while
the validation data is newer than the training data.

Table 8 shows the best parameter values when tuning was performed based
on the correlation coefficient, together with results corresponding to these pa-
rameter values, in terms of correlation coefficient, RRSE and RMSE (for both
validation and test datasets). Table 9 shows similar results when parameters are
tuned on RRSE and RMSE together.



12 Predicting zero-day software vulnerabilities through data-mining

Table 8. Parameter Tuning Based on Correlation Coefficient

Group Targeted
Parameters Validation Test
C G RMSE RRSE CC RMSE RRSE CC

Adobe CVSS 3.0 2.0 75.2347 329.2137% 0.7399 82.2344 187.6% 0.4161

IE CVSS 1.0 1.0 8.4737 74.8534% 0.4516 11.6035 92.2% -0.3396

Non-Windows 1.0 0.05 92.3105 101.0356% 0.1897 123.4387 100.7% 0.223

Linux CVSS 15.0 0.1 12.6302 130.8731% 0.1933 45.0535 378.3% 0.2992

Adobe 0.5 0.05 43.007 188.1909% 0.5274 78.2092 178.5% 0.1664

IE 7.0 0.05 13.8438 122.2905% 0.2824 14.5263 115.5% -0.0898

Apple Separate 3.0 0.05 73.9528 104.0767% 0.2009 91.1742 116.4% -0.4736

Apple Single 0.5 0.0 493.6879 694.7868% 0 521.228 1401.6% 0

Linux Separate 2.0 0.05 16.2225 188.6665% 0.3105 49.8645 418.7% -0.111

Linux Single 1.0 0.05 11.3774 83.2248% 0.5465 9.4743 79.6% 0.3084

Linux Binned 2.0 0.05 16.2225 188.6665% 0 49.8645 418.7% -0.111

Windows 5 0.05 21.0706 97.4323% 0.1974 72.1904 103.1% 0.1135

Table 9. Parameter Tuning Based on RMSE and RRSE

Group Targeted
Parameters Validation Test
C G RMSE RRSE CC RMSE RRSE CC

Adobe CVSS 0.5 0.2 19.4018 84.8989% 0.2083 61.2009 139.6667% 0.5236

IE CVSS 2.0 1.0 8.4729 74.8645% 0.4466 11.4604 91.1018% -0.3329

Non-Windows 0.5 0.1 91.1683 99.7855% 0.188 123.5291 100.7% 0.2117

Linux CVSS 2.0 0.5 7.83 81.1399% 0.1087 19.1453 160.8% 0.3002

Adobe 1.0 0.5 19.5024 85.3392% -0.4387 106.2898 242.5% 0.547

IE 0.5 0.3 12.4578 110.0474% 0.2169 13.5771 107.9% -0.1126

Apple Separate 7.0 1.0 70.7617 99.5857% 0.1325 80.2045 102.4% -0.0406

Apple Single 0.5 0.05 75.9574 106.8979% -0.3533 82.649 105.5% -0.4429

Linux Separate 0.5 2.0 14.5428 106.3799% 0.2326 18.5708 155.9% 0.1236

Linux Single 5.0 0.5 10.7041 78.2999% 0.4752 12.3339 103.6% 0.3259

Linux Binned 0.5 2.0 14.5428 106.3799% 0.2326 18.5708 155.9% 0.1236

Windows 5.0 0.05 21.0706 97.4323% 0.1974 72.1904 103% 0.1135

4.5 Summary

The experiments above indicate that it is hard to build good prediction models
based on the limited data available in NVD. For example, there is no version
information for most Microsoft instances (especially, Windows instances). Some
results look promising (e.g. the models we built for Firefox), but they are far
from usable in practice. Below, we discuss what we believe to be the main reasons
for the difficulty of building good prediction models for TTNV from NVD.

4.6 Discussion

We believe the main factor affecting the predictive power of our models is the
low quality of the data from the National Vulnerability Database. Following are
several limitations of the data:



Predicting zero-day software vulnerabilities through data-mining 13

– Missing information: most instances of Microsoft do not have the version
information, without which we could not observe how the number of vulner-
abilities evolves over versions.

– “Zero” versiondiffs: most of versiondiff values are zero because earlier-version
applications are also affected by the later-found vulnerabilities (this is as-
sumed by a number of large companies, e.g. Microsoft and Adobe) and sig-
nificantly reduces the utility of this feature.

– Vulnerability release time: The release date of vulnerability could largely be
affected by vendors’ practices. For example, Microsoft usually releases their
vulnerability and patch information on the second Tuesday of each month,
which may not accurately reflect the discovery date of the vulnerabilities.

– Data error: We found a number of obvious errors in NVD, such as the afore-
mentioned Linux kernel version error.

5 Related Works

Alhazmi and Malaiya [3] have addressed the problem of building models for
predicting the number of vulnerabilities that will appear in the future. They
targeted operating systems instead of applications. The Alhazmi-Malaiya Logis-
tic model works well for fitting existing data, when evaluated in terms of average
error (AE) and average bias (AB) of number of vulnerabilities over time. How-
ever, fitting existing data is a prerequisite of testing models: predictive power is
the most important criteria [18] . They did test the predictive accuracy of their
models and got satisfactory results [18].

Ozment [19] examined the vulnerability discovery models (proposed by Al-
hazmi Malaiya [3]) and pointed some limitations that make these models inappli-
cable. One of them is that there is not enough information included in a govern-
ment supported vulnerability database (e.g. National Vulnerability Database).
This is confirmed by our empirical study.

McQueen et al. [15] designed algorithms for estimating the number of zero-
day vulnerabilities on each given day. This number can indicate the overall risk
level from zero-day vulnerabilities. However, for different applications the risks
could be different. Our work aimed to construct software-specific prediction mod-
els.

Massacci et al. [14, 16] compared several existing vulnerability databases
based on the type of vulnerability features available in each of them. They men-
tioned that many important features are not included in most databases. e.g.
discovery date is hard to find. Even though certain databases (such as OSVDB
that as we also studied) claim they include the features, most of the entries are
blank. For their Firefox vulnerability database, they employed textual retrieval
techniques and took keywords from CVS developer’s commit log to get several
other features by cross-referencing through CVE ids. They showed that by using
two different data sources for doing the same experiment, the results could be
quite different due to the high degree of inconsistency in the data available for
the research community at the current time. They further tried to confirm the



14 Predicting zero-day software vulnerabilities through data-mining

correctness of their database by comparing data from different sources. They
used data-mining techniques (based on the database they built) to prioritize the
security level of software components for Firefox.

Ingols et al. [10] tried to model network attacks and countermeasures using
attack graphs. They pointed out the dangers from zero-day attacks and also
mentioned the importance of modeling them. There has been a long line of
attack-graph works [4, 7–9, 11–13, 17, 20, 22] which can potentially benefit from
the estimation of the likelihood of zero-day vulnerabilities in specific applications.

6 Conclusions

In this paper we present our effort in building prediction models for zero-day
vulnerabilities based on the information contained in the National Vulnerability
Database. Our research found that due to a number of limitations of this data
source, it is unlikely that one can build a practically usable prediction model at
this time. We presented our rigorous evaluation of various feature construction
schemes and parameter tuning for learning algorithms, and notice that none
of the results obtained shows acceptable performance. We discussed possible
reasons as of why the data source may not be well suited to predict the desired
features for zero-day vulnerabilities.

References

1. Root relative squared error. Website. http://www.gepsoft.com/gxpt4kb/

Chapter10/Section1/SS07.htm.
2. Support vector machines. Website. http://www.dtreg.com/svm.htm.
3. Omar H. Alhazmi and Yashwant K. Malaiya. Prediction capabilities of vulner-

ability discovery models. In Annual Reliability and Maintainability Symposium
(RAMS), 2006.

4. Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based
network vulnerability analysis. In 9th ACM Conference on Computer and Com-
munications Security(CCS), 2002.

5. Remco R. Bouckaert, Eibe Frank, Mark Hall, Richard Kirkby, Peter Reutemann,
Alex Seewald, and David Scuse. WEKA Manual for Version 3.7. The University
of Waikato. The University of Waikato, 2010.

6. Andrew Buttner and Neal Ziring. Common platform enumeration (cpe) c specifica-
tion. Technical report, The MITRE Corporation AND National Security Agency,
2009.

7. Marc Dacier, Yves Deswarte, and Mohamed Kaâniche. Models and tools for quan-
titative assessment of operational security. In IFIP SEC, 1996.

8. J. Dawkins and J. Hale. A systematic approach to multi-stage network attack anal-
ysis. In Proceedings of Second IEEE International Information Assurance Work-
shop, pages 48 – 56, April 2004.

9. Rinku Dewri, Nayot Poolsappasit, Indrajit Ray, and Darrell Whitley. Optimal
security hardening using multi-objective optimization on attack tree models of
networks. In 14th ACM Conference on Computer and Communications Security
(CCS), 2007.



Predicting zero-day software vulnerabilities through data-mining 15

10. Kyle Ingols, Matthew Chu, Richard Lippmann, Seth Webster, and Stephen Boyer.
Modeling modern network attacks and countermeasures using attack graphs. In
25th Annual Computer Security Applications Conference (ACSAC), 2009.

11. Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical attack graph
generation for network defense. In 22nd Annual Computer Security Applications
Conference (ACSAC), Miami Beach, Florida, December 2006.

12. Sushil Jajodia, Steven Noel, and Brian O’Berry. Topological analysis of network
attack vulnerability. In V. Kumar, J. Srivastava, and A. Lazarevic, editors, Manag-
ing Cyber Threats: Issues, Approaches and Challanges, chapter 5. Kluwer Academic
Publisher, 2003.

13. Richard Lippmann and Kyle W. Ingols. An annotated review of past papers on
attack graphs. Technical report, MIT Lincoln Laboratory, March 2005.

14. Fabio Massacci and Viet Hung Nguyen. Which is the right source for vulnerability
studies? an empirical analysis on mozilla firefox. In MetriSec, 2010.

15. Miles McQueen, Trever McQueen, Wayne Boyer, and May Chaffin. Empirical
estimates and observations of 0day vulnerabilities. In 42nd Hawaii International
Conference on System Sciences, 2009.

16. Viet Hung Nguyen and Le Minh Sang Tran. Predicting vulnerable software com-
ponents with dependency graphs. In MetriSec, 2010.

17. Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A scalable approach to
attack graph generation. In 13th ACM Conference on Computer and Communica-
tions Security (CCS), pages 336–345, 2006.

18. Andy Ozment. Improving vulnerability discovery models analyzer. In QoP07,
2007.

19. Andy Ozment. Vulnerability Discovery & Software Security. PhD thesis, University
of Cambridge, 2007.

20. Cynthia Phillips and Laura Painton Swiler. A graph-based system for network-
vulnerability analysis. In NSPW ’98: Proceedings of the 1998 workshop on New
security paradigms, pages 71–79. ACM Press, 1998.

21. Mike Schiffman, Gerhard Eschelbeck, David Ahmad, Andrew Wright, and Sasha
Romanosky. CVSS: A Common Vulnerability Scoring System. National Infrastruc-
ture Advisory Council (NIAC), 2004.

22. Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M.
Wing. Automated generation and analysis of attack graphs. In Proceedings of the
2002 IEEE Symposium on Security and Privacy, pages 254–265, 2002.


