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Abstract

This work deals with unsupervised sonar image segmentation. We present a new estimation and segmentation

procedure on images provided by a high-resolution sonar. The sonar image is segmented into two kinds of regions:

shadow (corresponding to a lack of acoustic reverberation behind each object lying on the seabed) and reverberation (due

to the re#ection of acoustic wave on the seabed and on the objects). The unsupervised contextual method we propose is

de"ned as a two-step process. Firstly, the iterative conditional estimation is used for the estimation step in order to

estimate the noise model parameters and to accurately obtain the proportion of each class in the maximum likelihood

sense. Then, the learning of a Kohonen self-organizing map (SOM) is performed directly on the input image to

approximate the discriminating functions, i.e. the contextual distribution function of the grey levels. Secondly, the

previously estimated proportion, the contextual information and the Kohonen SOM, after learning, are then used in the

segmentation step in order to classify each pixel on the input image. This technique has been successfully applied to real

sonar images, and is compatible with an automatic processing of massive amounts of data. ( 2000 Pattern Recognition

Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

In high-resolution sonar imagery, three kinds of re-

gions can be visualized: echo, shadow and sea-bottom

reverberation. The echo information is caused by the

re#ection of the acoustic wave from the object while the

shadow zone corresponds to a lack of acoustic reverber-

ation behind this object. The remaining information is

called the sea-bottom reverberation area. On the pictures

provided by a classi"cation sonar, the echo features are

generally less discriminant than the shadow shape for the

classi"cation sonar of object lying on the sea#oor. For

this reason, detection and classi"cation of an object
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located on the sea#oor (as wrecks, rocks, man-made

objects, and so on2) are generally based on the extrac-

tion and the identi"cation of its associated cast shadow

[1]. Thus, before any classi"cation step, one must

segment the sonar image between shadow areas and

reverberation areas. In fact, the sea-bottom reverberation

and the echo are considered as a single class.

Unfortunately, sonar images contain speckle noise [2]

which a!ects any simple segmentation scheme such as

a maximum likelihood (ML) segmentation. In this simple

case, each pixel is classi"ed only from its associated grey

level intensity.

In order to face speckle noise and to obtain an accu-

rate segmentation map, a solution consists in taking

into account the contextual information, i.e. class of the

neighborhood pixels. This can be done using Markov

random "eld (MRF) models [3] and this is why Mar-

kovian assumption has been proposed in sonar imagery

[4]. In this global bayesian method, pixels are classi"ed
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using the whole information contained in the observed

image simultaneously. Nevertheless, simple spatial MRF

model have a limited ability to describe properties on

large scale, and may not su$cient to ensure the regulariz-

ation process of the set of labels when the sonar image

contains high speckle noise. Such a model can be im-

proved by using a large spatial neighborhood for each

pixel [5], or a causal scale and spatial neighborhood [6]

but this rapidly increases the complexity of segmentation

algorithms and the parameter estimation procedure re-

quired to make this segmentation unsupervised. Besides,

the segmentation and the estimation procedure with such

a priori model requires a lot of computing time. More-

over, the uses of such a global method does not allow to

take into account the noise correlation on the sonar

image [7].

An alternate approach adopted here, uses a local

method, i.e. takes into account the grey levels of the

neighborhood pixels. In this scheme, each pixel is classi-

"ed from information contained in its neighborhood.

This method allowing to take into account the noise

correlation is divided in two main steps: the model para-

meter estimation [8] and the segmentation algorithm

which is fed with the previously estimated parameters.

In this paper, we adopt for the parameter estimation

step an iterative method called iterative conditional es-

timation (ICE) [9] in order to estimate, in the ML sense,

the noise model parameters and specially the proportion

of each class (shadow and reverberation). Followed

by the training of a competitive neural network as a

Kohonen self-organizing map (SOM) [10] in order to

approximate the discriminating function (i.e. the contex-

tual distribution function of the grey level). For the seg-

mentation step, we develop a contextual segmentation

algorithm exploiting e$ciently the previously estimated

parameters, the input sonar image, and the topology of

the resulting Kohonen SOM.

This paper is organized as follows. In Section 2, we

detail the parameter estimation step based on the ICE

procedure in Section 2.1, and the training step of the

SOM in Section 2.2. Section 3 presents the segmentation

step. Experimental results both on real scenes and syn-

thetic sonar images are presented in subsection 3.3, where

we compare the results obtained with the proposed

scheme, a ML segmentation and a classical monoscale

Markovian segmentation. Then a conclusion is drawn in

Section 4.

2. Estimation step

2.1. Iterative conditional estimation

2.1.1. Introduction

We consider a couple of random "elds Z"(X, >) with

>"M>
s
, s3SN the "eld of observations located on a lat-

tice S of N sites s, and X"MX
s
, s3SN the label "eld. Each

>
s
takes its value in "

obs
"M0,2,255N and each X

s
in

Me
0
"shadow, e

1
"reverberationN. The distribution of

(X,>) is de"ned "rstly by P
X
(x), the distribution of X as-

sumed to be stationary and Gibbsian (i.e. Markovian)

in this estimation step, and secondly by the site-wise

likelihoods P
Ys@Xs

(y
s
/x

s
). In this work, these likelihoods

depend on the class label x
s
. The observation > is called

the incomplete data whereas Z stands for the complete data.

In this step, we estimate the parameter vector '
y
which

de"nes P
Y@X

(y/x) by using the iterative method of estima-

tion called iterative conditional estimation (ICE) [9].

This method requires to "nd an estimator, namely

'
y
(X, >) for completely observed data. When X is unob-

servable, the iterative ICE procedure de"nes '*k`1+
y

as

conditional expectations of ')
y

given >"y, computed

according to the current value '*k+
y

. This is the best

approximation of '
y

in terms of the mean square error

[9]. By denoting E
k
, the conditional expectation using

'*k+
y

, this iterative procedure is de"ned as follows:

f Initialize the noise model parameters to '*0+
y

.

f '*k`1+
y

is computed from '*k+
y

and >"y by

'*k`1+
y

"E
k
[')

y
/>"y]. (1)

The computation of this expectation is impossible in

practice, but we can approach Eq. (1) owing to the law of

large numbers by

'*k`1+
y

"
1

n
[')

y
(x

(1)
, y)#2#')

y
(x

(n)
, y)], (2)

where x
(i)
, with i"1 ,2, n are realizations of X accord-

ing to the posterior distribution P
X@Y,'y(x@y,'

*k+
y )

. Finally, we

can use the ICE procedure for our application because

we get:

f An estimator ')
y

(X,>) of the complete data: we use

a maximum likelihood (ML) estimator for the noise

model parameter estimation (see Section 2.1.2.)

f An initial value '*0+
y

not too far from the optimal

parameters (see Section 2.1.3).

f A way of simulating realizations of X according to the

posterior distribution P
Y@X

(y/x) by using the Gibbs

sampler [11]. For the prior model, we adopt an 8-

connexity spatial neighborhood (see Fig. 1) in which

b
1
, b

2
, b

3
, b

4
represent the a priori potential associated

to the horizontal, vertical, right and left diagonal bi-

nary cliques, respectively. In our application, we want

to favour homogeneous regions. Then, we de"ne po-

tential functions associated to the two-site cliques of

the form

b
s,t

"k[1!d(x
s
, x

t
)], (3)
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Fig. 1. Second-order neighborhood and two-site associated

cliques.

where b
s,t

"b
1
, b

2
, b

3
or b

4
according to the type of

neighboring pair Ss, tT, k is a predetermined positive

constant and d(.) is the Kronecker function.

2.1.2. Estimation of the noise model parameters

for the complete data

The Gaussian lawN(k, p2), is an appropriate degrada-

tion model to describe the luminance y within shadow

regions (essentially due to electronic noise) [12]. The

most natural choice of the estimator ')
y
(x"e

0
, y) is the

empirical mean and the empirical variance. If N
0

pixels

are located in the shadow areas, we have

k(
ML

"
1

N
0

+
s|S>xs/e0

y
s
, (4)

p2
ML

"
1

N
0
!1

+
s|S>xs/e0

(y
s
!k(

ML
)2. (5)

In order to take into account the speckle noise phe-

nomenon [2] in the reverberation areas, we model the

conditional density function of the reverberation class by

a shifted Rayleigh law R(min, a2) [12]

P(y
s
/x

s
"e

1
)"

y
s
!min

a2
exp C!

(y
s
!min)2

a2 D. (6)

The maximum value of the log-likelihood function is

used to determine a ML estimator of the complete data.

If y(
.*/

is the minimum grey level in the reverberation

areas and N
1

the number of pixels located within this

region, we obtain for ')
y
(x"e

1
, y) the following results

[12]:

p2
ML

"
1

2N
1

+
s|S>xs/e1

(y
s
!min

ML
)2, (7)

min
ML

Ky(
.*/

!1. (8)

In the two cases, the proportion n
k

of the kth class is

given by the empirical frequency

n(
k
"

N
k

N
0
#N

1

with k3M0, 1N. (9)

2.1.3. Initialisation

The initial parameter values have a signi"cant impact

on the rapidity of the covergence of the ICE procedure

and the quality of the "nal estimates. In our application,

we use the following method: the initial parameters of the

noise model '*0+
y

are determined by applying a small

non-overlapping sliding window over the image and

calculating the sample mean, variance and minimum

grey-level estimates. Each estimation calculated over the

sliding window gives a `samplea x
i
, a three component

vector. These samples Mx
1
,2, x

M
N are then clustered

into two classes Me
0
, e

1
N using the K-means clustering

procedure [13]. This algorithm uses a similarity measure

based on the Euclidean distance between samples. A cri-

terion is based on the minimization of the related cost

function de"ned by

J"
K
+
i/1

+
xl|Ci

Dx
l
!c

i
D2, (10)

where the second sum is over all samples in the ith cluster

and c
i
is the center of this cluster. It is easy to show that

for a given set of samples and class assignments, J is

minimized by choosing c
i
to be the sample mean of the ith

cluster. Moreover, when c
i
is a sample mean, J is mini-

mized by assigning x
j
to the class of the cluster with the

nearest mean. A number of other criteria are given in

Ref. [13]. The complete algorithm is outlined below:

(1) Choose K initial clusters c*1+
1

,2, c*1+
K

. These could be

arbitrarily chosen, but are usually de"ned by

c*1+
i

"x
i

(1)i)K). (11)

(2) At the kth step, assign the sample x
l
(1)l)M) to

cluster i if

Ex
l
!c*k+

i
E(Ex

l
!c*k+

j
E (∀jOi). (12)

In fact, we reassign every sample to the cluster with

the nearest mean. In the case of equality, we assign

x
l
arbitrary to i or j.

(3) Let c*k+
i

denote the ith cluster after Step 2. Determine

new clusters by

c*k`1+
i

"
1

N
i

+
xl|c

*k+
i

x
l
, (13)

where N
i
represents the number of samples in c*k+

i
.

Thus, the new cluster position is the mean of the

samples in the previous one.

(4) Repeat until convergence is achieved, say

c*k`1+
i

"c*k+
i

, ∀i.

Although it is possible to "nd pathological cases where

convergence never occurs [13], the algorithm does con-

verge in all tested examples. The rapidity of convergence

depends on the number K, the choice of initial cluster

centers and the order in which the samples are con-

sidered. In our application K"2. Fig. 2(a) represents a

sonar image and the result of the K-means clustering

algorithm is reported in Fig. 2(b).
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Fig. 2. K-means clustering procedure: (a) sonar picture involv-

ing an object and a rock shadow (b) segmentation according

to the ML criterion with parameter estimation given by the K-

means algorithm.

Fig. 3. Image histogram of the picture reported in Fig. 2 with

the estimated Gaussian and Rayleigh laws.

Table 1

Estimated parameters on the pictures reported in Fig. 2(a).

n stands for the proportion of the two classes within the sonar

image. k and p2 are the Gaussian parameters (shadow area). Min

and a are the Rayleigh law parameters (reverberation area).

'*0+
y

represents the initial parameter estimates and the "nal

estimates are denoted ')
y

Initialisation of K-means procedure

'*final+
y(shadow)

0.04
(n)

36
(k)

55
(p

2
)

'*final+
y(sea~bottom)

0.96
(n)

39
(.*/)

1061
(a

2
)

ICE procedure

'*final+
y(shadow)

0.03
(n)

32
(k)

17
(p

2
)

'*final+
y(sea~bottom)

0.97
(n)

39
(.*/)

1591
(a

2
)

On the one hand, a small size window increases the

accuracy of the segmentation and then the precision of

the distribution mixture estimation. On the other hand, it

decreases the number of pixels with which x
l
's are com-

puted and may increase the misclassi"cation error. In our

application, good results are obtained with a 6]6 pixels

window. The ML estimation is then used over the K-

means segmentation in order to "nd '*0+
y

.

2.1.4. Parameter estimation procedure for the incomplete

data

We can use the following algorithm to estimate the

noise model parameters. Let us recall that this method

takes into account the diversity of the laws in the distri-

bution mixture estimation.

f Parameter initialization:

The K-means algorithm is used. Let us denote by

'*0+
y

the obtained result.

f ICE procedure. '*k`1+
y

is computed from '*k+
y

in the

following way:

f C Using the Gibbs sampler, n realizations

x
(1)

,2, x
(n)

are simulated according to the poste-

rior distribution with parameter vector '*k+
y

, and

with P
Ys@Xs

(y
s
/x

s
"e

0
) a Gaussian law for shadow

area, P
Ys@Xs

(y
s
/x

s
"e

1
) a shifted Rayleigh law for

reverberation area.

f C For each x
(i)

with i"1 ,2, n, the parameter vec-

tor '
y
is estimated with the ML estimator on each

class:

f C '*k`1+
y

is obtained from '
y
(x

(i)
, y) with (1)i)n)

by using Eq. (2).

If the sequence '*k+
y

becomes steady, the ICE procedure

is ended and one proceeds the segmentation using the

estimated parameters. We can use all these estimated

parameters in order to get a complete unsupervised Mar-

kovian segmentation (see Section 3.2) or only use the

proportion of each class in the Kohonen SOM-based

unsupervised segmentation described in Section 2.2.

We calibrate the weight of the `stochastica aspect of the

ICE by choosing n. When n increases, the `stochastica

aspect of the algorithm decreases. The choice of a small

value for n (n"1 in our application) can increase its

e$ciency [14].

Fig. 3 represents the mixture of distributions of the

sonar image reported in Fig. 2(a). The obtained results

are given in Table 1.

The quality of the estimations is di$cult to appreciate

in absence of real values. We can roughly perform such

evaluation by comparing the image histogram with the

probability density mixture corresponding to the esti-

mated parameters. Fig. 3(a) shows the resulting mixture

solution in graphical form. The two dashed curves in the

"gures represent the individual components P
Y@Xi

(y/e
m
)

with 0)m)K. The histogram is quite close to the

mixture densities based on the estimated parameters, and

a segmentation with these estimates can be done as

shown in the following section.
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Fig. 4. Model of the SOM used for the segmentation. An 3]3

sliding window is used to feed the SOM.

2.2. Self-organizing map

2.2.1. Introduction

Researches on neurobiology have shown that centers

of diverses activities as thought, speech, vision, hearing,

lie in speci"c areas of the cortex and these areas are

ordered to preserve the topological relations between

informations while performing a dimensionality reduc-

tion of the representation space. Such organization led

Kohonen to develop the SOM algorithm [10]. This kind

of competitive neural network is composed of one or two

dimensional array of processing elements or neurons in

the input space. All these neurons receive the same inputs

from external world. Learning is accomplished by iter-

ative application of unlabeled input data. As training

process, the neurons evolve in the input space in order to

approximate the distribution function of the input vec-

tors. After this step, large-dimensional input vectors are,

in a sense, projected down on the one or two-dimensional

map in a way that maintains the natural order of the

input data. This dimensional reduction could allow us to

visualize and to use easily, on a one or two-dimensional

array, important relationships among the data that

might go unnoticed in a high-dimensional space.

The model of SOM used in our application is a one-

dimensional array of n nodes. To each neuron N
i
,

a weight vector w
i
"(w

i1
, w

i2
,2, w

ip
)53Rp is associated.

During learning procedure, an input vector x3Rp ran-

domly selected among vectors of the training set, is con-

nected to all neurons in parallel. The input x is compared

with all the neurons in the Euclidean distance sense via

variable scalar weight w
ij
. At the kth step, we assign the

vector x to the winning or leader neuron N
l
if:

Ex!w*k+
l

E"min
i

Ex!w*k+
i

E. (14)

All the neurons within a certain neighborhood around

the leader participate in the weight-update process. Con-

sidering random initial values for w*0+
i

(0)i)n), this

learning process can be described by the following iter-

ative procedure:

w*k`1+
i

"w*k+
i

#H*k+
li

(x*k+!w*k+
i

). (15)

The lateral interactions among topographically close

elements are modeled by the application of a neighbor-

hood function or a smoothing Kernel de"ned over the

winning neuron [10]. This Kernel can be written in terms

of the Gaussian function

H*k+
li

"a*k+ exp A!
d2(l, i)

2(p*k+)2B, (16)

where d(l, i)"El!iE is the distance between the node l

and i in the array, a*k+(t) is the learning-rate factor and

p*k+ de"nes the width of the Kernel at the iteration k. For

the convergence, it is necessary that H*k+
li

P0 when kP¹,

where ¹ is the total number of steps of the process [10].

Therefore, for the "rst step, a*k+ should start with a value

that is close to unity, thereafter decreasing monotonically

[10]. To achieve this task, we use

a*k+"a*0+A1!
k

¹B. (17)

Moreover, as learning proceeds, the size of the neigh-

borhood should be diminished until it encompasses only

a single unit. So, we applied for the width of the Kernel

the monotonically decreasing function:

p*k+"p*0+ A
p*T~1+

p*0+ B
k@(T~1)

(18)

The ordering of the map occurs during the "rst steps,

while the remaining steps are only needed for the "ne

adjustment of the weight values.

2.2.2. Iterative learning step

The learning process is performed directly on the real

image to be segmented. An input vector is "lled with the

grey levels of the pixels contained in a 3]3 pixels win-

dow sliding over the image (cf. Fig. 4). Therefore, each

neuron has nine weights allowing to locate it in the input

space. At each step, the location of the window in the

image is randomly chosen and the weights are modi"ed

according to Eq. (15). Experiments have shown that this

training strategy provides as good results as an ordered

image scanning process while spending less processing

time.

p has a signi"cant impact on the quality of the conver-

gence. We have to start with a fairly large value to

globally order the map. The initial value p
0

of p can be

half the length of the network. During learning, p has

to decrease monotonically until it reaches a small value.

Experiments have shown that p
T~1

"0.1 is a good

choice and provides the minimum quantization error
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Fig. 5. The distance graph between the 100 neurons of the SOM before learning.

de"ned by

E
quant

"
1

N

N
+
i/1

Ex
i
!w

l
E, (19)

where the summation is over all the N windows of the

image and w
l
is the weight vector associated to the leader

neuron of the input vector x
i
after learning step.

3. Segmentation step

3.1. SOM segmentation

The classi"cation task consists in running the sliding

window over the image. For each location of the window,

the corresponding input vector x is compared with all

the neurons using Eq. (14). The winning neuron, the one

which leads to the smallest distance, gives the class of

the pixel located in the center of the window. However,

before any classi"cation task, we have to calibrate the

map in order to associate the label shadow or reverber-

ation to each neuron.

Assuming that the input vector x
0
"(0 ,2, 0)5 should

represent a window setting on a perfect shadow area, it is

very useful to de"ne the distance graph representing the

Euclidean distance in the nine-dimensional space be-

tween the point x
0

and all the neurons. Such a graph is

given in Fig. 5 and Fig. 6 respectively before and after

learning for a hundred-neuron network.

Both these "gures show that the maximal distance

between two successive cells is widely smaller after learn-

ing than before. We can deduce that, after learning,

neurons that are topologically close in the array are close

in the input space too. As a matter of fact, neurons that

are physical neighbors should respond to a similar input

vectors. The calibration of the map uses this topological

property and the portion n
0

estimated in Section 2.1 of

the pixels labelled as shadow in the image. This process

can be summarized as follows:

(1) Initially, we a!ect the class reverberation to all neur-

ons.

(2) We seek the most evident prototype of the shadow

class. This neuron is the winning unit according to

Eq. (14) when inputting the vectors x
0
. Then, we

a!ect it to the shadow class.

(3) We a!ect the shadow class to pixels for which the

leader neuron belongs to the shadow class. We can

deduce the intermediate shadow portion n
int

provided

by the resulting image.

(4) If n
int

is smaller than n
0
, we have to select an addi-

tional prototype of a shadow class among neurons of

the reverberation class. According to the topological

preserving properties of the map, this additional neur-

on should be a direct neighbor of an already shadow

labelled neuron. Among both the possible neighbors,

we take the one which has the smallest Euclidean

distance with the point x
0
. Go to 3.

(5) If n
int

is larger than n
0
, we stop the process.

Experiments have shown that E
quant

is a monotonically

decreasing function of the number of steps and reaches

an asymptotic value for large value of ¹. One hundred

times the number of network units seems to be a reason-

able compromise solution between speed and quality of

learning. In our application, 100 neurons have been

chosen for the network.
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Fig. 6. The distance graph between neurons obtained after learning.

Fig. 7. (a) A real sonar image involving a sandy sea #oor with

the cast shadow of a tyre. Two-class segmentation results ob-

tained with this image using: (b) ML segmentation, (c) Mar-

kovian segmentation with a deterministic relaxation technique

as ICM, (d) the SOM based segmentation result (see Table 2 for

the estimated parameters). The SOM segmentation exhibits

a good robustness against the speckle noise (which induces false

small shadow areas compared to the others approaches).

3.2. Markovian segmentation

The segmentation of sonar images in two classes can

be viewed as a statistical labelling problem according to

a global Bayesian formulation in which the posterior

distribution P
X@Y

(x/y) J exp [!;(x, y)] has to be

maximized [3]. In our case, the corresponding posterior

energy ;(x, y) to be minimized is

;(x, y)"+
s|S

t
s
(x

s
, y

s
)

hgigj
;

1
(x,y)

# +
Ss,tT

b
s,t

[1!d(x
s
, x

t
)]

hggiggj
;

2
(x,y) (20)

where ;
1

denotes the adequacy between observations

and labels ((
s
(x

s
, y

s
)"In [P

Xs@Ys
(x

s
/y

s
)]) and ;

2
ex-

presses the energy of the priori model. In order to minim-

ize this energy function, we use a deterministic relaxation

technique called ICM algorithm [3}5,15].

3.3. Results on real scenes

We compare the segmentation performance of the pro-

posed SOM-based algorithm described in Section 3.1

with a ML segmentation and a classical Markovian

segmentation using a deterministic relaxation technique

such as the ICM [3]. All the segmentation results exploit

the parameter estimation step presented in Section 2.1.

This estimation step is used to estimate both the noise

model parameters for the ML segmentation, the Mar-

kovian segmentation and the proportion of the shadow

class for the SOM segmentation.

Figs. 6}9 show the segmentation results obtained

with the di!erent methods. Example of the noise model
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Fig. 8. A real sonar image involving an object and a rock

shadows. Two-class segmentation results obtained with (a),

(b) ML segmentation, (c) Markovian segmentation with ICM

technique, (d) SOM based segmentation method (see Table 3 for

the estimated parameters). The ML and ICM do not permit to

totally eliminate the speckle noise e!ect (creating shadow mis-

labelled isolated pixels).

Fig. 9. (a) A synthetic sonar image of a sphere lying on the

seabed. Segmentation results obtained with: (b) ML segmenta-

tion, (c) Markovian ICM technique, (d) SOM-based segmenta-

tion method.

Table 4

Estimated parameters on the picture reported in Fig. 8

ICE procedure

'*final+
y(shadow)

0.03
(n)

34
(k)

39
(p

2
)

'*final+
y(reverberation)

0.97
(n)

42
(.*/)

1412
(a

2
)

Table 2

Estimated parameters on the picture reported in Fig. 6

ICE procedure

'*final+
y(shadow)

0.02
(n)

36
(k)

85
(p

2
)

'*final+
y(sea~bottom)

0.98
(n)

46
(.*/)

1878
(a

2
)

Table 3

Estimated parameters on the picture reported in Fig. 7

ICE procedure

'*final+
y(shadow)

0.03
(n)

25
(k)

32
(p

2
)

'*final+
y(sea~bottom)

0.97
(n)

35
(.*/)

1430
(a

2
)

parameters '
y

obtained with our scheme are given in

Tables 2}4.

Experiments indicate that the SOM segmentation re-

quires less computation than the Markovian segmenta-

tion (30A for the SOM estimation-segmentation, whereas

roughly 100A are required for unsupervised scale causal

Markovian modelization [16] on IBM 43P-200 MHz

workstation). Besides, the ICM algorithm do not

permit to decrease the number of false alarm (wrong

detections) due to the speckle noise e!ect. The SOM

segmentation performs better, exhibits a good robustness

versus speckle noise (false alarms have been eliminated),

and allows us to preserve the shadow shapes of little

rocks.

Manufactured objects or rock shadows are better

segmented with our method than with the others (cf.

Figs. 7}9) and their shape are close to the result we

expected. The cast shadow of a manufactured object (a

cylinder) reported in Fig. 10 has a geometric shape (con-

trary to the cast shadow of the rock) that will be dis-

criminant for the classi"cation step.
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Fig. 10. Real sonar images of a cylindrical object (a) and of

ridges of sand (c). Their corresponding SOM-based segmenta-

tion results are depicted, respectively, in (b) and (d).

4. Conclusion

We have described an unsupervised segmentation pro-

cedure based on a parameter estimation step (which o!ers

an appropriate estimation of the noise model) and a seg-

mentation step well adapted for sonar image segmenta-

tion problem. The estimation step takes into account the

diversity of the laws in the distribution mixture of a sonar

image and can be used with the Kohonen SOM-based

segmentation in order to solve the di$cult problem of

unsupervised sonar image segmentation. This scheme is

computationally simple and appears as an interesting

alternative to existing complex hierarchical Markovian

methods. This method has been validated on several real

sonar images demonstrating the e$ciency and robust-

ness of this scheme.
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