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Extracting the Building Response Using Seismic Interferometry: Theory

and Application to the Millikan Library in Pasadena, California

by Roel Snieder and Erdal Safak

Abstract The motion of a building depends on the excitation, the coupling of the
building to the ground, and the mechanical properties of the building. We separate
the building response from the excitation and the ground coupling by deconvolving
the motion recorded at different levels in the building and apply this to recordings
of the motion in the Robert A. Millikan Library in Pasadena, California. This de-
convolution allows for the separation of instrinsic attenuation and radiation damping.
The waveforms obtained from deconvolution with the motion in the top floor show
a superposition of one upgoing and one downgoing wave. The waveforms obtained
by deconvolution with the motion in the basement can be formulated either as a sum
of upgoing and downgoing waves, or as a sum over normal modes. Because these
deconvolved waves for late time have a monochromatic character, they are most
easily analyzed with normal-mode theory. For this building we estimate a shear
velocity ¢ = 322 m/sec and a quality factor Q = 20. These values explain both the
propagating waves and the normal modes.

Introduction

The response of a building to natural or man-made shak-
ing is largely determined by the velocity of shear waves and
their attenuation in the building. The shear velocity, together
with the geometry of the building, controls the resonant fre-
quencies of the building. The attenuation determines the rate
of energy dissipation in the building, which in turn controls
the motion of the building for a given excitation.

A complicating factor in the response of a building to
shaking is that this response depends both on the properties
of the building and on the nature of the coupling to the sub-
surface (Safak, 1995) and the associated radiation damping
(Snieder, 2004b). It has been documented that the resonant
frequencies of a building can change after heavy precipita-
tion, which changes the coupling between the building and
the ground with soil moisture (Clinton, 2004). The ground
motion itself can also alter the coupling of a building to the
subsurface (Trifunac et al., 2001a, b). To fully understand
the response of the building, one needs to unravel the prop-
erties of the building itself from the coupling of the building
to the ground. This work is aimed at retrieving the building
response from the recording of incoherent shaking of the
building and to unravel the properties of the building itself
from the coupling of the building to the subsurface.

We analyze this problem using a technique referred to
as seismic interferometry. This technique is based on the
correlation of waves recorded at different receivers. When
the excitation of the waves is evenly distributed in space, or
among the normal modes of the system, this correlation can
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be shown to lead to the Green’s function that accounts
for the wave propagation between receivers (Lobkis and
Weaver, 2001; Derode et al., 2003; Snieder, 2004a; Wape-
naar, 2004; Snieder et al., 2006). This technique is valuable
because it enables the study of the waves that propagate
between receivers without needing a source at one of the
receiver locations. It does not matter whether the waves re-
corded at the receivers are excited by coherent sources or
incoherent sources. Here we apply this technique to extract
the building response of the Robert A. Millikan Library in
Pasadena, California. In contrast to earlier work on seismic
interferometry we base our analysis on the deconvolution of
the recorded waves at different locations in the building
rather than on the correlations.

In the next section we give details on the Robert A.
Millikan Library and the employed recordings of the motion
of the building. We describe the deconvolution that we use
in the Deconvolved Waves section, and we show in the sec-
tion Deconvolution Changes the Boundary Condition that
the deconvolved waveforms satisfy a boundary condition at
the base of the building different from the recorded waves.
In the section Simple Model for the Wave Propagation in
the Building we present a simple analytical model of the
motion of the building that is based on interfering upgoing
and downgoing waves. We show that the deconvolution
gives a response that is independent of the excitation and
that it does not depend on the coupling of the building with
the ground. We show that these deconvolved waves can be
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interpreted either as propagating waves or as normal modes.
We use the deconvolved waves in the section Interpretation
of the Deconvolved Waveforms to determine the shear ve-
locity and the attenuation of the building. In the appendix
we use integration in the complex plane to show how the
normal modes of the building can be obtained from the de-
convolved waveforms.

In this work we assume that the response of the building
and the underlying soil is linear and time invariant. The li-
nearity of the building response breaks down when strong
shaking damages the building. Trifunac ef al. (2001a,b) have
shown that shaking at a moderate intensity may lead to
changes in the dynamic properties of the soil and the
building.

The Millikan Library and the Recorded Waves

The Robert A. Millikan Library is a ten-story re-
inforced-concrete building located on the campus of the
California Institute of Technology in Pasadena, California.
Completed in 1967, the building is 21 X 22.9 m in plan,
and 43.9 m high from the ground level. The north—south
elevation of the building, and the plans for a typical floor
and the foundation are given in Figures 1 and 2, respectively.
There is a 4.3-m-deep basement level below the ground. The
structural system includes moment-resisting frames and
shear walls. The shear walls at the center of the building
form the elevator shaft and carry lateral loads in the east—
west direction, whereas the curved shear walls at the east
and west ends carry lateral loads in the north—south direc-
tion. The foundation system is composed of a central pad 32
feet wide by 4 feet deep that extends between the east and
west curved shear walls. In addition, 10-feet-wide and 2-
feet-deep continuous foundation beams run in the east—west
direction beneath the columns at the north and south ends
of the building. The alluvium under the foundation consists
of medium to dense sands mixed with gravels to the bedrock
at a distance of about 275 m. The water table is about 11 m
deep (Kuroiwa, 1967; Luco et al., 1987). More on the struc-
tural system is given by Kuroiwa (1967), Foutch er al.
(1975), Foutch (1976), Luco et al. (1987), and Clinton
(2004).

The building was first instrumented in 1968 with two
permanent tri-axial accelerometers, located on the roof and
the basement. A ten-channel strong-motion array was added
to the instrumentation in 1979, with channels on the basement,
the sixth floor, and the roof. After the 1994 Northridge, Cali-
fornia, earthquake, the instrumentation was upgraded to a
36-channel, triggered system with three horizontals at each
floor plus three verticals in the basement; the locations and
directions of these are shown by the arrows in Figure 2. In
2000, the system was converted to a 19-bit real-time system
recording continuously at 200 Hz. Also, a separate 24-bit tri-
axial accelerometer was installed on the ninth floor recording
continuously as a California Integrated Seismic Network
(CISN, formerly TriNet) station MIK. (See www.cisn.org for
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Figure 1. Vertical cross section of the Millikan
Library in the north—south direction.

C 0 Ly <%
I. u -5,,, _[ " -,r,dmu A 7_5,“" .,_‘

Figure 2.  Floor plan of the Millikan Library. On
floors 1-9 seismometers measure the motion in two
horizontal directions on the west side of the building
and the north—south motion on the east side, as indi-
cated by the arrows.
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more information on these networks.) Figure 2 shows the
current sensor layout in the building.

Since its construction, the building has been a field lab-
oratory for researchers in earthquake engineering. A syn-
chronized shaker was permanently installed on the roof of
the building in the early 1970s by M. D. Trifunac, which is
still operational and used for forced vibration testing exper-
iments (e.g., Foutch et al., 1975; Wong et al., 1977). Nu-
merous studies on the dynamic behavior of the building have
been completed by using vibration data from shaker exper-
iments and real earthquakes (Kuroiwa, 1967; Trifunac,
1972; Udwadia and Trifunac, 1974; Luco et al., 1986, 1987;
Foutch et al., 1975; Foutch, 1976; Foutch and Jennings,
1978; Clinton, 2004).

The acceleration in the north—south direction recorded
at the west side of the building after the Yorba Linda earth-
quake of 3 September 2002 (M 4.8; time, 02:08:51 PDT;
33.917° N 117.776° W; depth, 3.9 km) is shown in Figure
3. The P waves generated by the earthquake arrive before
t = 9 sec; these waves couple weakly to the horizontal mo-
tion in the building. The S wave that arrives at about = 11
sec is the strongest phase. The surface waves that arrive later
excite a resonance in the building with an amplitude that
increases with the floor level.

The Deconvolved Waveforms

In this study we extract the building response by de-
convolving the waves recorded at all floors either with the
waveform recorded in the basement or with the signal re-
corded at the top floor of the building. The deconvolution
of two signals u;(w) and u,(w) is in the frequency domain
given by

D(w) = uy (@) uy(). (D

This expression is unstable near the notches in the spectrum
of u, because the denominator goes to zero. To stabilize the
deconvolution we used the following estimator for the de-
convolution instead:

Uy (@)u3(w)

Diw) = luy(@)I? + &

@)

where the asterisk denotes the complex conjugation. When
¢ = 0 this expression reduces to expression (1). In this study
the parameter ¢ was set to 10% of the average spectral power.

The waveforms deconvolved with the signal recorded
in the basement are shown in Figure 4. The deconvolved
wave in the basement is a single spike because a signal de-
convolved with itself is a delta function. The deconvolved
waves at all the floors are causal, that is, they vanish for
t < 0. The first onset of the deconvolved waves is a wave
that propagates upward in the building. A reflection of this
wave by the top of the building is visible as the second peak

R. Snieder and E. Safak

—
QO

6

5 ‘;

—

3 /ﬁ

» k
MWWNWWWWWMWWWWWMW

B J““J"‘vvv‘u“‘w A AR A AN P

o, inmtervalt__ interval2
0 5 10 15 20 25 30 35 40
time (s)
Figure 3. The north-south component of accel-

eration in the west side of the Millikan Library after
the Yorba Linda earthquake of 3 September 2002 (M,
4.8; time, 02:08:51 PDT; 33.917° N 117.776° W;
depth, 3.9 km). The traces are labeled with the floor
number (B indicates basement).
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Figure 4. The waveforms of Figure 3 at the dif-

ferent floors after deconvolution with the waves re-
corded in the basement.

in the waves that propagates downward. The early part of
the deconvolved waves consists of a superposition of up-
ward- and downward-propagating waves. Because these
waves interfere, it is difficult to identify the individual up-
ward- and downward-propagating waves. The later part of
the deconvolved waves consists of the resonance of the
building. This resonance grows in amplitude with the floor
level and is fairly monochromatic.

The waveforms deconvolved with the signal recorded
in the basement are complicated. In contrast, as shown in
Figure 5, the waveforms deconvolved with the signal re-
corded at the top floor are much simpler. These deconvolved
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Figure 5. The waveforms of Figure 3 at the dif-

ferent floors after deconvolution with the waves re-
corded at the top floor.

waves are acausal and consist of the superposition of one
upgoing wave and one downgoing wave. The waves prop-
agate, in general, in three directions through the building.
The simplicity of the deconvolved waveforms suggests that
the wave propagation is essentially one-dimensional for the
employed frequencies. There is little indication that the up-
going and downgoing waves are reflected within the build-
ing. The reflection coefficients by the floors within the build-
ing (Safak, 1999), therefore, must be small for the employed
frequencies. The reflection coefficient for elastic waves by
a floor in the building depends on the product of the fre-
quency and the mass of the floor (Doyle, 1989; Safak, 1999).
This means that the absence of waves reflected off the floors
in the building may be due to the relatively low frequencies
in the waveforms used in this study. In addition, the domi-
nant wavelength of the employed waves spans several floors;
this further suppresses reflections generated by the individ-
ual floors because a medium with small-scale variations can
be treated as an effective medium that behaves like a ho-
mogeneous medium with properties that are determined by
the background velocity and the embedded scatterers (Ta-
tarskii and Gertsenshtein, 1963; Keller and Karal, 1966;
Frisch, 1968). For frequencies higher than employed here
the floor spacing is larger than a wavelength; this may pro-
duce reflections by the individual floors.

The deconvolved waveforms in Figures 4 and 5 are
computed from the full waveforms shown in Figure 3. It is,
however, not necessary to use the full waveforms. We have
also deconvolved the signals using the time intervals 1 and
2 shown in Figure 3. Interval 1 straddles the S-wave arrival
and is 4 sec long, whereas interval 2 contains the surface-
wave arrivals and has a duration of 25 sec. Both intervals
were padded with zeroes to a duration of 40 sec. The signals
deconvolved with the waves recorded in the basement for
each of the intervals are shown in Figure 6. The thick line

time (s)

Figure 6. The waveforms of Figure 3 at the dif-
ferent floors after deconvolution with the waves re-
corded in the basement using only part of the data of
Figure 3. The deconvolved waves shown in thick lines
are obtained by using only the data in interval 1 of
Figure 3, whereas the deconvolved waves shown in
the thin lines are computed from the data in interval 2.

denotes the deconvolved waveforms from interval 1,
whereas the thin line denotes the deconvolved waves from
interval 2.

The similarity of the waves deconvolved over different
intervals is striking. Note how the deconvolved waves from
interval 1 display the resonance of the building, despite the
fact that these waves are based on the impulsive S-wave
arrival only. The broadband nature of the S wave ensures
that sufficient low-frequency information is present to re-
produce the resonance. Note also that the deconvolved
waves from interval 2 are based on the surface-wave signal.
Nevertheless, these deconvolved waves display the upward-
and downward-propagating waves early in the deconvolved
signal. The recorded waves in interval 2 are dominated by
low-frequency surface waves. These waves visually mask
the higher-frequency components in interval 2. The decon-
volution equalizes the frequency content and therefore
brings out the high-frequency propagating waves in Figure
6. Interval 1 is shorter than interval 2, and one might think
that interval 1 therefore contains less information than in-
terval 2. Because of the impulsive character of the S wave,
the waves in interval 1 have a larger bandwidth than the
waves in interval 2. This larger bandwidth helps stabilize the
deconvolution. The similarity of the deconvolved waves for
the intervals 1 and 2 shown in the Figures 6 and 7 suggests
that for the level of shaking used in this study the building
responds linearly. Moreover, the similarity of the deconvol-
ved waveforms for intervals 1 and 2 indicate that the build-
ing response has not changed by the shaking by this event.
This supports the assumption of a time-invariant response
for this event. This assumption does not necessarily hold for
ground motion with a higher intensity. Small differences in
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deconvolved waves obtained from the two intervals can be
due to the nonlinear response of the building.

The waves deconvolved with the signal recorded at the
top floor for interval 1 and interval 2 is shown in Figure 7
with a thick and thin line, respectively. As in the preceding
figure, these deconvolved waves are similar. This implies
that the S wave and the surface wave both contain infor-
mation about the upward- and downward-propagating waves
in the building. The deconvolution defined in equation (2)
and the choice of ¢ are not optimized. A more careful choice
of the deconvolution algorithm could make the deconvolved
waves from intervals 1 and 2 even more similar.

The deconvolved waves behave in the same way as a
hologram. A part of a hologram can be used to reconstruct
the image, albeit with a degraded resolution compared with
the image of the full hologram (Lauterborn et al., 1995). As
shown in the Figures 6 and 7, the deconvolved waves that
are computed from different subintervals of the whole signal
lead to the same deconvolved waves.

Deconvolution Changes the Boundary Condition

We denote the motion at height z deconvolved with the
motion at the top floor as 7(z, w), so that in the frequency
domain

u(z, w)

T(Z, CU) = m

3

Similarly, the motion deconvolved with the motion at the
bottom floor as denoted by B(z, w), hence,

u(z, )

B(z, ) = m

“

We show in this section that the waveforms obtained by
the deconvolution (4) satisfy a different boundary condition
at the base of the building than the original waveforms do.
The treatment in this section is applicable to tall buildings
where the motion is essentially one-dimensional. It is not
valid for broad buildings that are exposed to a lateral shear
at the base (Trifunac, 1997).

As indicated in Figure 8 the waves near the base of the
building can locally be decomposed in downgoing and up-
going waves

uz, w) = A_(w)e ™ + A (w)e™. 5)

The deconvolved wavefield defined in expression (4) can,
locally, also be written as a superposition of upgoing and
downgoing waves:

B(z, ) = C_(w)e * + C,(w)e~, ©6)
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Figure 7. The waveforms of Figure 3 at the dif-

ferent floors after deconvolution with the waves re-
corded in the top floor using only part of the data of
Figure 3. The deconvolved waves shown in thick lines
are obtained by using only the data in interval 1 of
Figure 3, whereas the deconvolved waves shown in
the thin lines are computed from the data in interval 2.
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Figure 8.  Sketch of the coefficients for upgoing
and downgoing waves A .. (w) at the base of the build-
ing, the building response G(w) to an upgoing wave,
and the excitation S(w). The positive z direction is
upward.
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but the coefficients C.. differ from A ., . Inserting the decom-
position (5) into (4) gives

e L C
N A_(@) + A (w)’ A
Colw) = A ()

A () + A ()

In the following we denote the building response to an
upgoing wave by G(w), which accounts for the wave prop-
agation within the building, including internal reflections
and anelastic attenuation. The downgoing wave is related to
the upgoing wave by

A_(0) = GwA (). ®)

We assume the building is excited at the base by a shaking
that is, in the frequency domain, denoted by S(w), and the
reflection coefficient at the base of the building is given by
R(w). The shaking S(w) is the combined result of the ground
motion in the free field, and the transfer of the ground motion
to the base of the building. The coefficient for upward-going
waves is equal to the sum of the excitation and upward-
reflected wave at the base

A (w) = S(w) + R(wA_(w). C))

Solving expressions (8) and (9) for A . (w) gives

- S(w)

Ar(@) = 1 — R(w)G(w)’ (10)
_ G@)S)

A = IR oG@)"

A Taylor series of the denominator of A , (w) expresses the
coefficient of the upgoing wave in the building as a sum
of waves that are reflected repeatedly off the base of the
building

Aj(@) = {1 + R@)G(w)

+ R*(w)G*(®) + ...}S(w). (11)
The term R"(w) corresponds to waves that are reflected n
times off the base of the building. Inserting expression (10)
for A. (w) into equation (7) for the coefficient C, (w) for
the upgoing wave in the deconvolved wave field gives

Cilw) = ———. (12)

This coefficient does not depend on the excitation S(w); this
is a natural result of the spectral division in expression (4).
Note that C, (w) is also independent of the coefficient R(w)

for reflection off the base of the building. A Taylor series
expansion of the denominator expresses C, () in the series

C.(w) =1 — Gw) + GHw) + .... (13)

This reverberation series is similar to the reverberation series
(11) for the original wave field, but the reflection coefficient
R(w) in expression (11) is replaced by a reflection coefficient
— 1 in the series (13). Physically this means that the decon-
volved wave field B(z, w) corresponds to a wave state that
is totally reflected off the base of the building.

It has been shown earlier that seismic interferometry can
be used to determine waveforms for the system with differ-
ent boundary conditions than the physical boundary condi-
tions (Riley and Claerbout, 1976; Wapenaar et al., 2004).
Riley and Claerbout (1976) coined the phrase “Noah’s de-
convolution” for this principle.

The wave motion in the building is damped by intrinsic
attenuation and by radiation damping at the base of the
building. Radiation damping is accounted for by the condi-
tion IR(w)l < 1. As shown in the expansion (13) the decon-
volved waves correspond to a wave state with reflection co-
efficient — 1 at the base of the building. This means that the
deconvolved wave field is not subject to radiation losses,
and its decay with time depends on the intrinsic attenuation
in the building only.

A Simple Model for the Wave Propagation
in the Building

In this section we present a simple model for the wave
propagation for the building. This model is similar to the
shear-beam model proposed by Iwan (1977). The shear-
beam model has been used to study various aspects of the
building response to earthquakes (e.g., Anagnostopulos and
Spiliopoulos, 1992; Hall et al., 1995). The base of the build-
ing is exposed to an external motion s(#) with Fourier trans-
form S(w). In this model, the wave propagates upward in
the building with a velocity c that is the shear velocity of
the building. At the top of the building with height H the
waves are reflected with reflection coefficient + 1. During
the upward and downward propagation the waves attenuate;
for a wave that travels over a distance L this is described by
an attenuation operator A(L, ). For a constant Q-model, this
attenuation operator is in the frequency domain given by Aki
and Richards (2002):

AL, w) = exp(—ylwlL/c), (14)

where the viscous damping ratio y is related to the quality
factor by

y = 1120. (15)

The assumption of a viscous damping ratio, and quality fac-
tor, that is independent of frequency may not be realistic.
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This assumption is, however, not essential in the following
analysis because the viscous damping ratio can be an arbi-
trary function of frequency y(w) that satisfies causal energy
dissipation. Kim and Collins (2002) describe different atten-
uation mechanisms for dynamic models similar to the one
described here.

The downward-propagating waves reflect off the base
of the building with a reflection coefficient R(w) that cor-
responds in the time domain to a reflection operator r(f).
A wave s(¢) that travels upward in the building is given by
s(t — z/c). When the wave reflects off the top of the building,
with reflection coefficient + 1, the downgoing wave is given

u(z, ty = Az, 1) = s(t — g) + AQH — z, 1) * s(t —

2H + z

+ () « ACH + z,1) = s(t —

This sum of upgoing and downgoing waves is similar to the
uniform shear beam model used by Iwan (1997). With the
wavenumber defined by

k = wlc, (17

and for the attenuation model (14), this expression is in the
frequency domain given by

M(Z CO) — E S(a))R"(a)) {eik(2nH+z)e*y|k|(2nH+z)
n=0

+ eik(Z(nJrl)Hfz)efyIkI(Z(n+I)H*Z)} . (18)

2H—z)

) + r(t) « AMH — z, 1) * s(t -
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by s(t — (2H — z)/c. When this downgoing wave reflects
off the base of the building, it is convolved with the reflec-
tion operator r(f). The wave that then travels upward is given
by r(¢) = s(t — (2H + z)/c). The delay time 2H/c accounts
for the time needed to propagate once up and down the build-
ing. This process can be continued for all the upward- and
downward-propagating waves and is similar to the treatment
of water-layer reverberations of Backus (1959) and that of
Love waves in a soft layer near the surface. After a convo-
lution with the attenuation operators for each upward- and
downward-going wave, the total response of the building is
in the time domain given by

(16)

4H—z>
+

C

In this expression n counts the number of bounces off the
base of the building. The first term denotes the upward-
propagating waves, whereas the last term accounts for the
downward-propagating waves that have bounced » times in
the building.

Let us first analyze the deconvolution with respect to
the motion at the highest floor. Inserting expression (18) in
the numerator and denominator of the definition (3) gives

2::0 S(w)R”(w) {eik(2nH+z)e—','IkI(2nH+z) + eik(2(n+I)H—z)e—ylkl(Z(n+l)H—Z)

T(z, w) =

This expression can also be written as:

22::0 S(CU)R”(CU) eik(2n + l)He —ylkl2n+ 1)H

19)

{eik(Z*H)efylkI(sz) + eik(Hfz)ef”/IkI(Hfz)} E::O S(w)Rn(a))eik(ZnJr l)Hef*/IkI(2n +1)H

I(z, w) =

The excitation S(w) and the sum with the reverberations in
the numerator and the denominator cancel, so that

1 | ike—H) =kl — K(H—7)  — _
T(Z,CO) — 5 {ezk(z H)e ylkl(z— H) 4 ezk(H z)e yIkI(H z)}‘

(21
This means that 7(z, w) accounts for the sum of one atten-

uating upgoing wave and one downgoing wave. Because
z < H, the upgoing wave is acausal. The cancellation of the

22:’= o S(w)R"(w) eik(2n + I)He —ylkl2n+ DHH

(20)

sum over reverberations means that 7(z, w) is independent
of the reverberations in the building. The cancellation of the
reflection coefficient R(w) implies that 7(z, ) does not de-
pend on the coupling of the building to the subsurface. The
cancellation of S(w) means that the deconvolved response
in independent of the excitation of the building.

A similar analysis can be applied to the building re-
sponse deconvolved with the motion at the base. Inserting
expression (18) in the numerator and denominator of ex-
pression (4) gives
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E::O S(U))R”(U)) {eik(ZnH+z)e—ylkl(2nH+z) + eik(2(n+l)H—z)e—yIkI(Z(n+l)H—Z)}

Bz, w) =

2” 0 S(UJ)R”(U)) { eik2nHe — ylkl2nH + eik2(n + I)He — ylkl2(n+ I)H} (22)
n=
Factoring out the summations this can be written as
{ eikze —ylklz + eik(ZH* z)e —lkl(2H —2z) } E:’C 0 S(w)Rn(w)eikZHHe —ylkI2nH
n=
(23)

B(z, w) =

The summation over the reverberations, the reflection co-
efficient R(w), and the excitation S(w) cancel, so that

elkze —ylklz + elk(2H— z)e —lkl(2H —z)

B(z, w) = (24)

1 + e2ikHe —2ylklH

Just as for the signals deconvolved with the top floor, this
deconvolved signal depends neither on the coupling with the
ground nor on the excitation.

The deconvolved response 7(z, w) is the superposition
of one acausal upgoing wave and one causal downgoing
wave. Such a simple interpretation cannot be applied to
B(z, ») because the numerator depends on frequency. The
deconvolved response can be interpreted in two ways: as a
superposition of traveling waves, or as a superposition of
modes. The traveling-wave interpretation is obtained by us-
ing the following geometric series:

1 — i (_l)n e2ianef2yIkInH. (25)

1 + Q2ikH,—2IkiH =

Because of the attenuation, this sum is guaranteed to con-
verge. Inserting this in equation (24) gives B(z, @) as an
infinite sum of upgoing and downgoing traveling waves:

B(Z, 60) — 2 (_l)n {eik(z+2nH)e—y|k|(z+2nH)
n=0

+ eik(Z(n +1)H— z)e —ylkl2(n+ 1)H — z} (26)

The difference from expression (24) is that the frequency-
dependent denominator has disappeared. Note that because
the argument of each of the complex exponentials is positive,
B(z, o) is a causal function. This deconvolved response is
an infinite sum of upgoing and downgoing attenuated waves.
This sum differs from the sum of upgoing and downgoing
waves in the building, because B(z, @) does not depend on
the ground coupling, whereas the original sum of upgoing
and downgoing waves (18) does depend on the ground cou-
pling through the reflection coefficient R(w).

In expression (26) the number of bounces off the base
is given by the summation index n. Each bounce gives a
contribution (— 1)". As shown in the section Deconvolution
Changes the Boundary Condition for a general building re-
sponse, a reflection of the deconvolved waves off the base
of the building corresponds to a reflection coefficient — 1
rather than the reflection coefficient R(w) caused by the

{ 1 + eZikHe - 2y|k|H} E:’: 0 S(w)R"(a)) eik2nHe —ylkl2nH

subsurface at the base of the physical building. There is a
simple explanation for this (J. Sheiman, personal comm.,
2004). The deconvolution of the motion of the basement
with itself gives, by definition, a bandpass-filtered delta
function as shown in the bottom trace of Figure 4. When the
wave that has reflected off the top of the building propagates
downward, it gives a vanishing contribution at the base of
the building because the deconvolved wave at that level van-
ishes for # > 0. The motion at the base can only vanish when
an upward-propagating wave is launched with the opposite
polarity to the downward propagating wave that strikes the
basement. This corresponds to a reflection coefficient for the
deconvolved waves that is equal to — 1 rather than the re-
flection coefficient R(w) of the subsurface.

An alternative way to interpret B(z, @) is based on nor-
mal modes (Chopra and Chintanapadkee, 2001). Using the
inverse Fourier transform and expression (17), the decon-
volved response is in the time domain given by

Im ®

Re ®

®llllll® ® ®

® IIIIII®

Figure 9.  The location of the poles in the complex
o plane and the contour integration that is used for
t> (2H — z)lc.
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o0 —iw(t— z/c)e —7lwlzlc + e~ iw(t—(2H— z)/c)e —7lwl(2H —2)/c

B(z, 1) = J

o 1 + eZIa)H/ce—2y|mIH

We show in the appendix that this integral can be solved by
contour integration. The integrand has simple poles when

1 + eZi(uH/Ce —2ylwlH  _ 0 , (28)

the location of the poles in the lower half-plane is shown in
Figure 9. For t > (2H — z)/c, the contour must be closed in
the lower half-plane, and as shown in the appendix the in-
tegral (27) can be written as a sum of damped normal modes:

B(z, 1 = 4% i (="

m=0
H —
exp(—yw,, 1) cos(M) sin(w,,?), (29)
c
with
(m + 12)nc
wsz,mZO,l,L... 30)

Note that these normal modes are not the normal modes of
the building, because its normal modes also depend, in gen-
eral, on the coupling to the ground (Trifunac et al., 2001a,b,
2003). The normal modes in the sum (29) are independent
of the reflection coefficient R(w); hence, the normal modes
in the deconvolved response depend on the properties of the
building only. This is consistent with the traveling-wave for-
mulation of expression (26), where the reflection coefficient
for the deconvolved wave is equal to —1 rather than the
reflection coefficient R(w) of the subsurface. The normal
mode frequencies (30) correspond to those of a shear beam
that is clamped at one end.

Each term in the sum (29) is exponentially damping.
The term with the fundamental mode (m = 0) has the small-
est damping. This means that for large times (t > 2H/znc)
the fundamental mode dominates; hence,

dne
B(z, 1) =~ H exp(—ywy 1)

os(@> sin(wor),  (31)

with

wy = —. (32)
The period that corresponds to this angular frequency is
given by

4H
T, = —. (33)
C

do. Q27)

Note that this is the time needed to propagate up and down
the building twice. This period is determined by the factor
(—1)" in expression (26). Because of this factor the wave
changes polarity if it propagates up and down the building
once. If the wave travels up and down the building twice
and covers a distance 4H, the polarity changes twice and the
reverberating wave reinforces itself to form a resonance.

Interpretation of the Deconvolved Waveforms

The theory of the preceding section agrees with the de-
convolved waves in the Figures 4 and 5. Let us first consider
the waves deconvolved with the waves at the top floor as
shown in Figure 5. These deconvolved waves are given by
expression (21) that gives the superposition of an acausal
upgoing wave and a causal downgoing wave; both waves
are clearly visible in Figure 5. Given the floor spacing of
4.27 m (Clinton, 2004) these waves can be used to estimate
the shear velocity in the building. It follows from expression
(21) that if there is no attenuation (y = 0), and if the data
have infinite bandwidth, that the deconvolution is in the time
domain given by a superposition of upward- and downward-

propagating delta functions:
- H - H

TG, 1) = n{é(r - ) + 5(; + 2 )} (34)
c

(Expression 17 is used in deriving this result.) The attenu-
ation and the finite bandwidth of the data cause the broader
pulses shown in Figure 5.

We measured the arrival time of the upward- and down-
ward-propagating waves by picking the maximum of these
waves. These arrival times are shown in Figure 10. The dis-
tance is measured relative to the position of the accelerom-
eter at the top floor. For the upward-propagating wave this
distance is given a negative value. For floors 4-10 the up-
ward- and downward-propagating waves overlap. This may
bias the travel-time measurements. The travel times at these
floors are indicated with open squares. The travel time de-
termined from the waves recorded in the basement may be
biased by the presence of the solid earth below the basement;
these travel times are also indicated with open squares. De-
spite these reservations, the measurements in Figure 10 dis-
play a fairly linear dependence of the travel time with dis-
tance; this indicates a constant shear velocity in the building.

According to expression (21), the upward- and down-
ward-propagating waves both decay due to attenuation. This
attenuation can be seen in Figure 5 because the downward-
going wave has a consistently smaller amplitude than the
upward-propagating wave. The absolute value of the ampli-
tude at different floors cannot be compared with great ac-
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Figure 10. The arrival times of the upgoing and

downgoing waves in Figure 5. A negative distance/
time corresponds to the upgoing wave, a positive dis-
tance/time to the downgoing wave. The travel times
at floors 1-3 are marked with solid circles. The solid
line indicates the travel time predicted for the shear
velocity inferred from the normal-mode measure-
ments that give a velocity of 322 m/sec.

curacy, because the absolute amplitude is affected by the
receiver coupling and other uncertainties. The ratio of the
amplitude of the downgoing wave and the upgoing wave,
however, does not depend on the receiver coupling. Figure
11 shows the natural logarithm of the ratio of the downgoing
wave and the upgoing wave at each floor. The amplitude
measurements in floors 4—10 and in the basement are likely
to be unreliable because of the interference of the upgoing
and downgoing waves and the presence of the solid earth
below the basement, respectively. The amplitude ratios at
these levels are indicated with open squares. The amplitude
ratio for floors 1-3 is indicated by solid circles and are most
reliable. The two-way distance is measured relative to the
receiver at the top floor. The scatter in the amplitude ratio
is considerable because the amplitude difference between the
upgoing and downgoing waves is fairly small. In a taller
building these amplitude differences would be larger, and
the attenuation can be determined with greater accuracy.
According to expressions (26) and (29), the signals de-
convolved with the bottom floor can be seen either as a su-
perposition of upward- and downward-propagating waves,
or as a sum of normal modes. The interpretation in terms of
propagating waves is most useful for the early part of the
deconvolved waves in Figure 4. In that figure, the upward-
and downward-propagating waves are not as clear as in Fig-
ure 5 for the waves deconvolved with the signals at the top
floor, because in Figure 4 only one upgoing wave and one
downgoing wave are present, whereas according to expres-
sion (26) many upgoing and downgoing waves interfere with
each other in Figure 4. For this reason we analyze the waves
deconvolved with the signal in the basement in Figure 4
from the normal mode point of view as formulated in ex-

0
- |
3|
g -0.1 .
®
~ o
c
< 1
o}
o, o o
g-0.2f o o S
®
£ o *
m]
‘ | . | . | . |
0 20 40 60 80
two-way distance (m)
Figure 11.  The natural logarithm of the ratio of

the amplitudes of the upgoing and downgoing waves
of Figure 5 as a function of the two-way distance to
the top of the building. The amplitude ratio for floors
1-3 is indicated with solid circles. The log-amplitude
ratio predicted by the attenuation of expression (37)
is shown with the straight line.

pression (29). Because the fundamental mode is much
stronger than the higher modes, we use the expressions (31),
(32), (33) in the following.

The amplitude spectrum of the deconvolved waves of
Figure 4 averaged over all the floors has a pronounced peak
at 1.72 Hz. This reflects the monochromatic nature of the
resonance. Given that the height of the building measured
to the basement is 47 m, this gives with expression (33) a
shear velocity of

¢ = 322 m/sec. (35)
The travel time as a function of distance for this velocity is
indicated by the solid line in Figure 10. The proximity of
this travel time curve to the arrival times of the upward- and
downward-propagating waves, shows that the traveling
waves and the normal modes predict a shear velocity that is
similar. This provides a consistency check on the analysis.
A systematic difference between the velocity of the propa-
gating waves and the normal modes can be due to dispersion
caused by the internal structure in the building (e.g., Todo-
rovska et al., 1988, 2001a, b), and to amplitude variations
between floors that are ignored in expression (15) that forms
the basis of the mathematical model in section A Simple
Model for the Wave Propagation in the Building.
According to expression (31) the resonance decays with
time because of anelastic attenuation. To quantify the atten-
uation we bandpass filtered the deconvolved waves of Fig-
ure 4 with a Butterworth filter with cutoff frequencies of 1
and 3 Hz, respectively. This filter extracts the fundamental
mode from the waveforms. The natural logarithm of the en-
velope of the bandpass-filtered waveforms is shown in Fig-
ure 12. Since the modal amplitude is weak for the lowest
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Figure 12.
of the deconvolved waves in Figure 4 after applying
a bandpass filter with corner frequencies of 1 Hz and
3 Hz, respectively. For clarity the floor number is
added to each curve. The best-fitting straight line to
each curve is indicated with thick solid lines.

The natural logarithm of the envelope

floor, we used only the top nine floors in the normal-mode
analysis. We added the floor number to each curve to sepa-
rate them in the figure. Because only the slope depends on
the attenuation, this offset does not affect the analysis. Note
that, apart from some fluctuations, the envelope of the de-
convolved waves decays with time. This contrasts the origi-
nal waveforms in Figure 4 that do not decay with time be-
cause the motion is continuously excited by the surface
waves. The deconvolution extracts the decay of the reso-
nance with time, this makes it possible to measure the ane-
lastic attenuation in the building.

Between 1.5 and 14 sec the logarithm of the envelope
decays linearly with time, this is consistent with the expo-
nential decay in expression (31). For later times the reso-
nance is of the same order of magnitude as the ambient noise,
and the exponential decay is not valid. To determine the
attenuation we fitted straight lines to the curves for 1.5 sec
<t < 14 sec. The least-squares fit of the envelopes is shown
by the solid lines in Figure 12. The slopes are similar and
the average slope is given by

Slope = —0.1321 =+ 0.0017 sec ™. (36)

The error is determined by the standard deviation of the
slope for the deconvolved waves at different floors. Accord-
ing to the expressions (15) and (31) the slope is equal to
—w/2Q. For the resonant frequency of 1.72 Hz, this gives

0 = 20.45. (37)

This value of the attenuation can be compared with the
attenuation of the propagating waves shown in Figure 11.
The propagating waves in Figure 5 have a dominant fre-
quency of about f = 5 Hz. The propagating waves decay

R. Snieder and E. Safak

with distance as exp(—nfz/Qc). For the value of Q given
previously, and a velocity of 322 m/sec, this decay is shown
by the solid line in Figure 11. The variability in the ampli-
tude measurements in that figure is fairly large. For the lower
three floors, where the upgoing and downgoing waves do
not overlap and their amplitude ratio can be measured reli-
ably, the attenuation inferred from the resonance agrees well
with amplitude decay determined from the propagating
waves as indicated with the solid circles. The comparison of
the attenuation from the normal modes and the propagating
waves provides a consistency check on the model of wave
propagation employed in the building.

Discussion

We have shown that the deconvolution of the motion
recorded at different floors in the building is an effective
tool for extracting the building response and for separating
intrinsic attenuation from radiation damping. The deconvo-
lution with respect to the signals recorded in the basement
and the top floor provides complementary information. The
deconvolution with the signal recorded at the top floor gives
one upgoing and one downgoing propagating wave that
clearly are separated. The deconvolution with the waveforms
recorded in the basement provides information on the fun-
damental mode of the building.

The deconvolved waves are independent of the excita-
tion and of the ground coupling. This can be seen in ex-
pressions (21) and (24) that are independent of the excitation
S(w) and the reflection coefficient R(w) at the base of the
building. Suppose that instead of the deconvolution we had
used the correlation, as is common in seismic interferometry
(Lobkis and Weaver, 2001; Derode et al., 2003; Snieder,
2004a; Wapenaar, 2004; Wapenaar et al., 2005; Snieder et
al., 2006). In the frequency domain, the correlation of the
waves recorded at height z with those in the basement is
given by

C(z, ) = u(z, ou*(z = 0, w). (38)

When equation (18) is inserted in this expression, the result
contains the power spectrum IS(w)I* of the excitation and
products of the reflection coefficient R(®). In contrast to this,
the deconvolved waves of expressions (21) and (24) depend
on neither of these quantities.

Expression (21) can be generalized for SH waves in an
arbitrary-layered medium. In this case the deconvolved
waves 7(z, w) are equal to the P,,-element of the propagator
matrix (Trampert et al., 1993). This contrasts formulations
of seismic interferometry based on correlation where the
Green’s function is obtained (Lobkis and Weaver, 2001; De-
rode et al., 2003; Snieder, 2004a; Wapenaar, 2004; Wape-
naar et al., 2005; Snieder et al., 2006). According to ex-
pression (7.43) of Aki and Richards (2002), the P,-element
of the propagator matrix for SH waves in a lossless homo-
geneous medium is given by
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(eik(sz) 4 eik(H*Z)) .

Py (z, H = cos k(z — H) =

| —

(39)

Apart from terms that depend on the attenuation, this ex-
pression is identical to equation (21). We can show that this
is also the case for a general layered medium that has internal
reflections.

The deconvolved waves can be used to estimate the
shear velocity and attenuation in the Millikan Library. The
waves deconvolved with the motion in the top floor lead to
clear upgoing and downgoing waves. The velocity of prop-
agation can be measured from the arrival time of these
waves, whereas the ratio of the amplitude of the upgoing
and downgoing waves constrains the attenuation. The wave-
forms obtained by deconvolution with the motion in the
basement gives the motion of the fundamental mode of
the building. The frequency and temporal decay constrain
the shear velocity and attenuation as well. As shown in Fig-
ures 10 and 11, these complementary pieces of information
are consistent. This shows that the deconvolution of the mo-
tion in the building recorded at different levels can be used
successfully to eliminate the imprint of the excitation and
the ground coupling and that the values of the shear velocity
and attenuation from propagating waves and the fundamen-
tal mode are consistent.

The motion shown in Figure 3 depends on the strength
of the shaking. The deconvolved waves are independent of
the excitation, if the building response is linear. The linearity
of the building response can therefore be investigated by
comparing the deconvolved waveforms for events with dif-
ferent strengths.
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Appendix
Evaluation of the Fourier Integral (27)

In this appendix we evaluate the Fourier integral (27)
by using complex integration. For t > (2H — z)/c the inte-
gration along the real w axis must be closed in the lower
half-plane to obtain a vanishing contribution of the semicir-
cular integration path that is added in the contour integration
(Snieder, 2004b). The value of the contour integral over the
path shown in Figure 9 is determined by the poles of the
integrand in expression (27) in the lower half-plane. The
pole positions are determined by expression (28). To first
order in y the poles are located at

W = * o, — o, m=012...), (Al

with w,, given by expression (30). There are infinitely many
poles at locations in the lower half-plane as shown in Fig-
ure 9.

The terms in the integrand in expression (27) are of the
form
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I = J' ﬂ# w, (A2)
— ] + etwte—ylwlf
where flw) is an analytic function. Setting ® = w. + ¢ and
using a first-order Taylor expansion in ¢ gives

1 + 9% " = —jfr + O(E?). (A3)
This implies that the poles are simple and that the residue
for the pole at w- is given by

f@)  _ flo)

Res _
1 + & —it

(A4)

Together with the factor —2ni from the counterclockwise
contour integration, this gives a contribution 2nf{w-)/ to the
the complex integral. Using this in integral (27) and taking
the poles in the third and fourth quadrant into account gives:

e
B(t) = % S et {cos(,(t — c))
m=0

+ cos(w,(t — 2H — z2)lc)}. (A5)

Using trigonometric identities the terms in curly brackets
equal

cos(w,,(t — z/c)) + cos(w,,(t — (2H — 2)lc))
= 2 cos(w,,Hlc) cos(w,,(H — 2)lc) cos(w,,t) (A6)
— 2 sin(w,,H/c) cos(w,,(H — z) sin(w,,?).
According to expression (30), cos(w,H/c) = 0 and
sin(w,, H/c) = (—1)", so that
cos(w,,(t — zlc)) + cos(w,,(t — 2H — z2)/c))
= 2(—1)"*! cos(w,,(H — 2)lc) sin(w,,t). (A7)

Using this in equation (AS5) gives expression (29).
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