
Estimating Execution Time Probability Distributions
in Component-based Real-Time Systems

Ricardo Perrone1, Raimundo Macêdo1, George Lima1 , Verônica Lima2

1 Distributed Systems Laboratory (LaSiD)
Computer Science Department - UFBA

2Statistics Department - UFBA

{perrones,macedo,gmlima,cadena}@ufba.br

Abstract. Many component-based real-time systems have recently been
proposed as a solution to modular and easily maintainable distributed real-
time systems. This paper proposes a methodology for estimating probability
distributions of execution times in the context of such component-based dis-
tributed real time systems, where no access to component internal code is
assumed. In order to evaluate the proposed methodology, experiments have
been conducted with components implemented over CIAO, and the related
probability distributions estimated. The collected experimental data show
that the proposed approach is indeed a good approximation for component
execution time probability distributions.

1. Introduction

The requirements of modern real-time distributed systems, such as more flexibility,
interoperability, and cost savings, have motivated both the use of software-intensive
solutions and the exploitation of hardware and software COTS (Commercial Off-
The-Shelf). In this context, distributed software components appear as a promising
technology, since their modular and uncoupled approach used for implementing and
combining components leads to reusable and easily maintainable systems. Therefore,
the use of real-time component-based middleware for the construction of real-time
distributed systems has deserved a great deal of attention from the research com-
munity in the last years [Wang et al. 2004].

Whereas it is widely acknowledged that applications can benefit from the
adoption of such modular solutions, where COTS can be integrated into a system
provided that their implementations comply rigorously with the specified interfaces,
the lack of knowledge of the component implementation (black-box approach) makes
it difficult to verify the timeliness guarantees of the whole system - which may turn
out to be a barrier to use such an approach in the real-time arena.

A conventional way of verifying the timeliness guarantees of a safety-critical
real-time system is to calculate the feasibility of meeting the deadline of each of the
related tasks, even when all tasks are activated concurrently (worst-case response
times). To realize that analysis, one must first calculate the worst case execution



time (WCET) of each task in isolation and then combine such WCETs in formu-
las that capture the worst-case response times for each task. In order to precisely
calculate the WCET of a given task, one must take into account each instruction
execution time of the task worst case execution path (moreover, variations of in-
struction execution times due to mechanisms such as memory caches and pipelines
should be also considered).

Unfortunately, when COTS components are used, it is not always possible
to apply such an approach (when the component code is not available, but just its
interface). Hence, such COTS-based real-time systems have limited applicability
on safety-critical applications where missing deadlines can cause great losses. On
the other hand, there are other real-time scenarios, such as multimedia, telecommu-
nication, and some industrial applications, where missing a deadline causes only a
quality of service degradation, but it is still tolerable given that the probability of
such misses is below a certain limit. Therefore, finding alternative ways of estimat-
ing response times of such COTS-based real-time systems is an important challenge
to be faced by the research community.

This paper tackles this challenge by proposing and validating a methodol-
ogy for estimating probability distributions of execution times in the context of
a component-based distributed real-time system. These estimations can help de-
signers to verify the timeliness behavior of component-based systems by applying
alternative models of timeliness analysis [Kim et al. 2005, Manolache et al. 2001].
The ultimate motivation of the proposed approach is to apply it to estimate response
times of services developed in the context of ARCOS, a component-based framework
implemented atop CIAO and devoted to the construction of industrial control and
supervision distributed systems [Andrade and Macêdo 2007].

In order to evaluate the proposed methodology, experiments have been con-
ducted with components implemented over CIAO, and the related probability dis-
tributions estimated. The analysis of performance data shows that the proposed
approach is indeed a good approximation for estimating component execution time
probability distributions.

The remainder of this paper is structured as follows. In section 2 related
work is discussed. In section 3 the assumed system model and the new approach for
estimating the component execution time probability distributions are presented. In
section 4, a case study is used to illustrate and validate the efficacy of the presented
approach. Finally, in section 5 conclusions are drawn and future work pointed out.

2. Related Work

Most work in the filed of time analysis of real-time systems is on estimating WCET
and the related techniques can be broadly divided into static, probabilistic, and
hybrid. The publication list on static analysis is considerably large where the fo-
cus is on analyzing the execution paths of the application code to derive the values
of WCET for a given hardware platform. There are some recent work that apply
such an approach to component-based real-time systems [Estévez-Ayres et al. 2005,
Ballabriga et al. 2007, Fredriksson 2006, Moss and Muller 2004]. Usually static ap-
proaches produce over-pessimistic estimations and/or need the knowledge of the



application code. This has motivated the development of probabilistic and hybrid
estimation techniques, which are more related to our work.

One of the first results on probabilistic WCET estimation was by
[Edgar and Burns 2001]. By carrying out measurements, execution time values are
sampled based on which WCET is estimated using Extreme value statistics. The
authors assume that the sampled data follow a Gumbel distribution and are in-
dependent and identically distributed. Although this is a black-box approach, the
assumption on data independence may limit the applicability of this approach for
practical systems. The work by [Bernat et al. 2002] can be seen as a hybrid of the
static and probabilistic approaches. They determine the execution time profiles of
blocks of code by, for instance, measurements. Execution time profiles are actually a
table that contains the execution time observed and its frequency. Then, they obtain
a WCET value (with an associated probability) by convolving and combining these
profiles. Certain data and execution paths dependencies are taken into considera-
tion, although the fine-grained instrumentation of application code is necessary. A
scheme to store execution time profiles of component-based systems is also presented
by [Nolte et al. 2003]. They argue that the components of the system should keep
monitoring themselves. Based on this scheme, a hybrid WCET estimation technique
is proposed [Möller et al. 2005].

Instead of estimating a value for WCET, this paper focus on deriving the ex-
ecution time probability distributions in component-based systems. Such distribu-
tions have been used in modern real-time scheduling mechanisms [Kim et al. 2005,
Manolache et al. 2001]. Similar to probabilistic and hybrid approaches, the pro-
posed estimation method is based on measurements. However, we do not require
the instrumentation of application code to carry out the measurements. We assume,
for example, that there may be components developed by third-part development
teams, so the knowledge of application code may not be available. This makes
static or hybrid estimation approaches clearly unsuitable. Moreover, unlike some
probabilistic approaches [Edgar and Burns 2001], we do not assume any particular
distribution and may consider complex systems, where data independence may not
be ensured.

3. An Approach for Estimating the Execution Time Distribution

It is assumed a system made up of components that communicate through the related
interfaces, known as ports. Such components are implemented by processes and
communicate by exchanging messages through communication channels. Processes
and channels are assumed to be timely: process steps and message delivery are
carried out within bounded times. However, such bounds or deadlines may be missed
from time to time. Hence, it is assumed a soft real-time system.

The proposed method is based on measurements, where a monitor component
is responsible for measuring the response-time for executing a service provided by
another component. It also measures the response time to call a null-code service,
which is called round-trip time. Thus, response time (R) and round-trip time (RT )
are defined as the variables of interest. It is important to emphasize that no knowl-
edge about the application code is being used. Application code is seen as black-box



entities.

The main goal of the proposed approach is to estimate the execution time
probability distribution, where the execution time of a component service can be seen
as the variable C = R−RT . To realize that, the monitor component is designed to
measure several values of R and RT . Before detailing the approach, some definitions
are introduced in the following.

Let Sr and Srt denote two collections of measured values that contain response
times and round-trip times obtained by the monitor, respectively. The elements of
a collection are not necessarily distinct. The set of distinct values in a collection S
is given by D(S). The number of times a value v is observed in a collection S is
denoted by η(v, S). Also, define the function f(v, S) that gives the relative frequency
of value v in a collection S. For example, if the monitor measured the same value
r ∈ Sr three times in 10 measurements, f(r, Sr) = 0.3. More precisely,

f(v, S) =
η(v, S)

∑
∀u∈D(S) η(u, S)

(1)

It is possible to derive the probability distribution of C by computing the
joint probability distribution

P (C = c) =
∑

P (R = r, RT = rt) ∀r ∈ Sr, rt ∈ Srt : c = r − rt (2)

Nevertheless, not all combinations of values in r ∈ Sr and rt ∈ Srt are possible
since it is known that P (C ≤ 0) = 0. More generally, assuming that there must
exist a lower bound cmin > 0 on the execution time, it is necessary to consider those
combinations that satisfy r − rt ≥ cmin. It is important to point out that non-valid
values of r− rt may appear because the measurements in Sr and Srt are carried out
independently. Thus, let us define a collection of possible values for C as

Sc = {r − rt|r − rt ≥ cmin, r ∈ Sr, rt ∈ Srt} (3)

Assuming cmin ≈ 0 is simple but non-realistic. In order to provide better
estimations when deriving the probability distribution of C, it is convenient to use
better estimations for cmin. Since larger values of execution times are of more inter-
est, the following procedure can be used to estimate cmin:

1. Find the minimum value rtu ∈ Srt such that the probability P (RT ≤ rtu) ≥
p, where p, 0 < p < 1, is a threshold on the desired probability given by the
user and P (RT ≤ rtu) can be computed as

P (RT ≤ rtu) =
∑

∀rt∈D(Srt):rt≤rtu

f(rt, Srt) (4)

2. Find the minimum value rmim ∈ Sr such that rmin − rtu > 0.
3. Define cmin = rmin − rtu.

Once cmin is found, collection Sc and function (1) produce the desired
distribution of C. In order to illustrate the proposed estimation approach, let



Sr = {1, 2, 3, 6, 6, 7} and Srt = {1, 2, 3, 3, 3, 4}. Also, consider the desired threshold
p = 0.8. In this case, rtu = 3 since P (RT ≤ 2) = 1/3 and P (RT ≤ 3) = 5/6 ≈ 0.83.
Thus, rmin = 6 and so the values of C cannot be less than cmin = 3. Therefore,
Sc = {3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6}.

It is important to emphasize that the above definition of rtu is used to derive
the lower bound cmin. Discarding values of C below this bound is useful since it
improves the quality of the estimation and does not compromise the estimation
procedure. Indeed, the discarded values are too low and can be only observed for
too high and very unlikely round-trip time values. Since it is of more interest to
better estimate higher values of C, this discarding strategy is also a safe approach.
The next section shows a case study that illustrates the effectiveness of the proposed
estimation method.

4. Case Study and Evaluation

We applied the proposed method in an experimental test-bed. The component model
used was CIAO, which is in line with the CORBA CCM lightweight specification
[OMG 2006]. CIAO provides suitable execution environments to host the compo-
nents, named containers. The services provided by the containers include security,
data persistence, and component life-cycle operations. The default configuration
of CIAO was used during installation, and the following ORB parameters config-
ured: FIFO scheduling policy, direct priority mappings to native priorities, policy
of priorities declared by server and static threads for each component installed. We
configured this component platform (version 0.6.0) on top of Linux 2.6.20-16 running
on a 1.83 GHz Intel Centrino Duo machine with 1GB of RAM and 2 MB cache. This
run-time environment was set up with maxcpus = 1 (only one core was considered)
and runlevel = 1 (only basic Linux kernel services were enabled). These setup
parameters were necessary to minimize possible interferences during measurements.

We implemented a monitored and the monitor components, both hosted in
the same container. The monitored component provides a service that simulates a
kind of data analyzer, which keeps sampled data records and provides predictions
on the analyzed data behavior. Since the semantics of this component service is
not relevant here, it will not be further described. To obtain round-trip times,
one third component was hosted latter in the same container with no internal code
implementation (null-service). In order to minimize the interference in the measured
times of the monitored component, its execution priority was set to the maximum
value.

To carry out the necessary measurements, the monitor did n calls through
the connections with the analyzer and the null-service. For each completed call, the
times measured were recorded. Both services use an identical port (named facet
in the CIAO terminology) and the calling parameters were randomly generated by
the monitor based in a range of values of interest. The measurements performed
by the monitor were not correlated whatsoever. In our experiments, first the values
of variable R were measured and then those of RT . The calling frequencies used
in those measurements were set to 25MHz, 50MHz, 75MHz and 100MHz so that
there were n/4 measurements for each calling frequency. In order to measure these



values, we used the class High Resolution Timer provided by the framework ACE
[Schmidt and Huston 2003], on top of which CIAO was implemented. Thus, time
was measured in microseconds (μs). The number n of measurements should be
defined by the user and must be large enough so that the collected values of R and
RT are representative. In our experiments, n = 2 × 106.

0.
0

0.
6

Time(μs)

R
el

at
iv

e 
fr

eq
.

100 150 200 250 300 350 400
82 378

0.
1

0.
2

0.
3

0.
4

0.
5

(a) Response Time

0.
0

0.
6

Time(μs)

R
el

at
iv

e 
fr

eq
.

50 100 150 200 250 300 350
18 315

0.
1

0.
2

0.
3

0.
4

0.
5

(b) Round Trip

Figure 1. Probability distributions of R and RT .

Figure 1 plots the probability distributions derived from the collected values
in Sr and Srt. As can be seen, these distributions exhibit similar behaviors although
the dispersion of Sr is higher. This is due to the fact that they are more subject
to higher interference when compared to Srt. Given that we did not use a real-time
operating system, the observed dispersion is not so high.

Table 1. Descriptive analysis.

R RT C C′

Mode 89 21 68 66
Median 89 21 68 66
Average 88.8 20.62 68.20 65.87
Std. dev. 2.317528 1.143541 2.381033 1.699584

min. 82 18 60 61
max. 378 315 360 352

Given the collections Sr and Srt, the proposed estimation method was carried
out. Table 1 shows some descriptive analysis for the obtained results. In order to
evaluate the proposed method, we also measured the execution time of the code of
the monitored component service. Thus, it was necessary to instrument the moni-
tored service internal code. Measured execution times are represented by variable
C ′ in the table. Also, it can be noted that there is a higher standard deviation for R
when compared with RT . This is caused by the already mentioned higher dispersion
of Sr as compared to Srt.

Figures 2 and 3 illustrate better the effectiveness of the proposed approach.
As can be seen, the probability distributions of C and C ′ and their respective
mass functions are very similar. In figure 2 the distribution of C exhibits a right-
shifted curve when compared with C ′ distribution. It is due to the influence



0.
0

0.
6

Time(μs)

R
el

at
iv

e 
fr

eq
.

50 100 150 200 250 300 350 400
60

0.
1

0.
2

0.
3

0.
4

0.
5 C’

C

352 360

Figure 2. Distributions of variables C and C′

50 100 150 200 250 300 350 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time(μs)

C
um

ul
at

iv
e 

fr
eq

.

60 360

C’
C

Figure 3. Cumulative Distribution of variables C and C′.

caused by the joint probability computation when the equation (2) was applied
- i.e. P (r = 89 ∧ rt = 21) ∼= 21.86%. However, this right-shift does not compromise
the results since the estimated probabilities in C distribution are related to time
values that are higher than time values related to the curve of probabilities in C ′

distribution. The same occurs with comulative distribution of C in figure 3, that
exhibits a right-shift (e.g. P (C ≤ 100) = 99.93% and P (C ′ ≤ 100) = 99.99%).

Finally, it is should be noticed that the estimated probability distribution
provides a simple way of estimating probabilistic WCET, for instance, 360μs with
probabilistic guarantee P (C < 360) ∼= 99.999%). Likewise, the probability distri-
bution produced can be used in probabilistic models like in [Kim et al. 2005] or in
[Manolache et al. 2001] where the ratio of missed deadlines are computed per task,
and the analysis uses a pseudo-continuous distribution based on probabilistic density
curves.

5. Conclusion

This paper proposed and evaluated a methodology for estimating component exe-
cution time probability distributions of COTS-based real-time systems. To evalu-
ate the proposed methodology, component execution time probability distributions
were estimated from interactions via the component interface and from instrumented
code inside the component, bypassing the component interface. The comparison of
these distributions showed that the proposed approach is indeed a good approxi-
mation for estimating component execution time probability distributions. Future



work includes complementing the proposed methodology with mechanisms to de-
rive probabilistic worst-case execution times of components and related probabilistic
scheduling feasibility tests.

References

Andrade, S. and Macêdo, R. (2007). Engineering components for flexible and in-
teroperable real-time distributed supervision and control systems. In 12th IEEE
Conf. on Emerging Technologies and Factory Automation, Patras - Greece.

Ballabriga, C., Cassé, H., and Sainrat, P. (2007). Wcet computation on software
components by partial static analysis. Junior Researcher Workshop on Real-Time
Computing. IRIT - Université de Toulouse, France.

Bernat, G., Colin, A., and Petters, S. M. (2002). Wcet analysis of probabilistic hard
real-time systems. In 23rd IEEE Real-Time Systems Symposium, pages 279– 288,
Washington.

Edgar, S. and Burns, A. (2001). Statistical analysis of wcet for scheduling. In 22nd
IEEE Real-Time Systems Symposium, page 215, Washington, DC, USA.

Estévez-Ayres, I., Garćıa-Valls, M., and Basanta-Val, P. (2005). Enabling wcet-based
composition of service-based real-time applications. SIGBED Review, 2:25–29.

Fredriksson, J. (2006). Increasing accuracy of property predictions for embedded
real-time components. In 18th Euromicro Conf. on Real-Time Systems.

Kim, K., Diaz, J. L., Lopez, J. M., Bello, L. L., Lee, C.-G., and Min, S. L. (2005).
An exact stochastic analysis of priority-driven periodic real-time systems and its
approximations. IEEE Trans. Comput., 54(11):1460–1466.

Manolache, S., Eles, P., and Peng, Z. (2001). Memory and time-efficient schedu-
lability analysis of task sets with stochastic execution time. In 13th Euromicro
Conference on Real-Time Systems, page 19, Washington, DC, USA.

Möller, A., Peake, I., Nolin, M., Fredriksson, J., and Schmidt, H. (2005).
Component-based context-dependent hybrid property prediction. In Workshop
on Dependable Software Intensive Embedded systems.

Moss, A. and Muller, H. (2004). Model generation for temporal properties of reactive
components. In 1st International Workshop on Software Analysis and Develop-
ment for Pervasive Systems, pages 12–19.

Nolte, T., Möller, A., and Nolin, M. (2003). Using components to facilitate stochastic
schedulability analysis. In 24th IEEE Real-Time System Symp - WiP Session,
Cancun, Mexico.

OMG (2006). CORBA Component Model Specification.

Schmidt, D. C. and Huston, S. D. (2003). C++ Network Programming: Systematic
Reuse with ACE and Frameworks. Addison-Wesley Longman.

Wang, N., Gill, C., Subramonian, V., and Schmidt, D. C. (2004). Configuring Real-
Time Aspects in Component Middleware, pages 1520–1537. SpringerLink.


