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Abstract. We address the problem of computing a general-purpose early visual representation that satisfies two
criteria. 1) Explicitness: To be more useful than the original pixel array, the representation must take a significant
step toward making important image structure explicit. 2) Completeness: To support a diverse set of high-level tasks,
the representation must not discard information of potential perceptual relevance. The most prevalent representation
in image processing and computer vision that satisfies the completeness criterion is the wavelet code. In this paper,
we propose a very different code which represents the location of each edge and the magnitude and blur scale of
the underlying intensity change. By making edge structure explicit, we argue that this representation better satisfies
the first criterion than do wavelet codes. To address the second criterion, we study the question of how much visual
information is lost in the representation. We report a novel method for inverting the edge code to reconstruct a
perceptually accurate estimate of the original image, and thus demonstrate that the proposed representation embodies
virtually all of the perceptually relevant information contained in a natural image. This result bears on recent claims
that edge representations do not contain all of the information needed for higher level tasks.
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1. Introduction

Visual perception may be seen as a loose collection
of algorithms to solve specific, well-defined problems,
e.g. estimating the pose of a known object. From
this perspective, algorithms and representations may
be designed to rely heavily on the specific constraints
and knowledge available for the restricted task at hand.
This approach was adopted by some of the earliest ma-
chine vision systems (e.g. Roberts, 1965), and remains
popular, and often effective, today.

An alternative to this approach is to seek more
general algorithms and representations which impose
coherence over a diversity of visual tasks (e.g. Barrow
and Tenenbaum, 1981; Marr, 1982; Zucker, 1986).
This approach is motivated in part by what we know
of biological vision systems. While there is ample ev-
idence for modularity in the primate visual cortex, it
is also clear that these modules depend upon com-
mon computations and representations in the retina,
lateral geniculate nucleus and striate cortex at least. It

is this type of early, general-purpose visual computa-
tion which concerns us here.

It is widely assumed that a general-purpose visual
system must entail multiple types of representation
which share data through a variety of computations.
This paper focuses on the specific problem of com-
puting an initial, early, general-purpose representation
directly from the image; a representation which will
replace the original image in providing all of the data
required for a diversity of higher-level computations.

Lacking a narrow high-level goal, this early vi-
sual representation must be designed according to
general criteria. We propose the following evaluative
measures:

• Generality: The diversity of structures found in nat-
ural images must be detectable and representable in
the proposed encoding.
• Reliability: Features of the image which correspond

to scene features must be reliably represented (low
false negative rate). At the same time, artifacts of
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the sensing process should not be represented (low
false positive rate).
• Precision: Features in the image should be localized

precisely.
• Concision: The encoding should reduce pointless re-

dundancy present in the original image (e.g. Barlow
(1961)).
• Explicitness: The encoding should represent impor-

tant image structure more explicitly than does the
original pixel array.
• Completeness: Given the need to support a diver-

sity of higher level visual tasks, the encoding should
contain all visual information of potential perceptual
relevance.

Many early visual representations have been pro-
posed, but most do not attempt to satisfy the complete-
ness criterion, which is critical if the representation
is to support all higher-level computation. An excep-
tion to this is the large class of wavelet-based image
codes (e.g. Daubechies, 1991; Mallat, 1989; Mallat
and Zhong, 1992; Simoncelli et al., 1992), which are
typically mathematically complete or over-complete.

In itself, a wavelet encoding is not a concise descrip-
tion of an image: at best, an orthogonal code requires
the same storage as the original image. However, it has
been shown that wavelet encoding leads to a decreased
correlation in the second-order statistics of natural im-
ages, and hence a reduction in entropy in the first-order
statistics. This reduction in entropy can in turn be ex-
ploited to compress the image (Vetterli, 1984; Adelson
et al., 1987).

So what is wrong with the wavelet code as a general-
purpose early vision representation? In our view, the
wavelet code falls short of meeting the explicitness cri-
terion. Fundamentally, a wavelet code is simply a lin-
ear transformation of the original image into a set of
new images. The pixels of these new images represent
the strength of response to a small set of linear filters.
Beyond that, no interpretation or inference has been
made, and the structures and features of the image are
not explicitly represented, but remain implicitly coded
as collections of pixels. To use a distinction due to
Adelson (1991), the wavelet code represents “stuff”
not “things”. This property makes the criteria of re-
liability, generality and precision meaningless, since
these criteria assume that explicit features are being
represented.

The search for a more symbolic yet complete early
visual code can be traced to Marr and Hildreth (1980),

who conjectured that an image may be completely rep-
resented by zero-crossing data over scale space. There
have been a number of subsequent attempts to design
complete or nearly-complete early visual codes based
upon zero-crossings or edges (e.g. Carlsson, 1984,
1988; Hummel and Moniot, 1989; Mallat and Zhong,
1992; Grattoni and Guioucci, 1990; Cumani et al.,
1991), however none of these codes are able to jointly
satisfy the key criteria for a general-purpose early
visual representation. In particular, high fidelity (near
completeness) has been achieved, but only at the ex-
pense of reliability and concision and/or explicitness
(these claims are justified in Section 4).

In this paper we introduce a representation which
comes much closer to meeting all of these criteria. The
proposed representation is an edge code: information
is represented only at pixels where an edge has been
identified and localized. At each of these edge points,
four parameters of a local edge model are represented:
two parameters describing the asymptotic intensity on
either side of the edge (alternatively coded as bright-
ness and contrast), one parameter representing the blur
scale of the edge, and a fourth parameter representing
the gradient (alternatively, the tangent) direction of the
edge. For the purposes of reconstruction, the gradient
direction parameter need only be represented to 90◦

accuracy, i.e. 2-bit resolution. In contrast to prior ap-
proaches (e.g. Yuille and Poggio, 1985; Hummel and
Moniot, 1989; Mallat and Zhong, 1992), each edge
is not represented at multiple scales. Rather, estima-
tion scale is adapted over the image, so that each edge
is estimated at a single, optimum scale, and is repre-
sented only once. Thus the proposed representation is
far more concise than prior multiscale approaches.

Unlike wavelet codes, the edge code makes impor-
tant features explicit. At any particular image loca-
tion, an edge either exists or does not exist: edges are
“things”, not “stuff”. Edges signal and localize impor-
tant changes in scene properties (object boundaries,
surface creases, pigment changes, shadows, etc...).
Moreover, the parameters of the edge model make ex-
plicit information which will be critical in comput-
ing scene structure in higher-level computations. For
example, while not sufficient for positive identifica-
tion, edge blur is an important cue to shadows and
shading (Elder, 1999). Quantitative blur estimation can
also be useful for depth from defocus (e.g. Pentland,
1987; Nayar and Yasuo, 1994) and depth from shadows
(Kersten et al., 1997; Elder and Zucker, 1998; Elder
et al., 1998). Edge tangent information is crucial for
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the refinement and grouping of global image contours
(e.g. Zucker et al., 1977; Sha’ashua and Ullman, 1988;
David and Zucker, 1990; Cox et al., 1993; Elder and
Zucker, 1996a).

The specific method we propose to detect edges and
estimate model parameters has been reported in detail
elsewhere (Elder and Zucker, 1996b, 1998). In this
paper we will only briefly summarize the method, and
focus on those points which demonstrate the generality
and reliability of the algorithm. We have also demon-
strated methods to localize edges to a precision of less
than 1/20 pixel (Elder and Zucker, 1996c); we will not
discuss this localization algorithm further here. We
are left with the criteria of completeness and conci-
sion, which will be our focus for the remainder of this
paper.

It is sometimes argued (e.g. Belhumeur and
Kriegman, 1996) that edges fail to capture all of the in-
formation in an image important for higher-level com-
putations. To address this claim, we have developed
a novel method for inverting our edge representation
to reconstruct a perceptually accurate estimate of the
original image. Through a series of experiments on
natural images, we demonstrate that the proposed edge
code is perceptually nearly complete, that is, it con-
tains nearly all of the visually perceptible information
in a natural image. The encoding and reconstitution of
the edge blur information is seen to be critical to the
high fidelity of these reconstructions. We believe this
to be the first purely edge-based representation demon-
strated to yield high-quality reconstructions as well as
high potential compactness.

These results are important for a number of reasons.
First, they will hopefully help to correct the mistaken
view that edges do not carry enough information to
support higher level tasks. Second, reconstruction al-
lows us to evaluate, both perceptually and objectively,
any errors or inaccuracies that may be present in the
representation. Finally, there are a number of poten-
tial applications for such an invertible representation,
some of which we have begun to explore (Elder and
Goldberg, 1998).

2. Organization of Paper

In the next section, we briefly review the local scale
control algorithm used to compute the proposed edge
code. More details of this work can be found in Elder
and Zucker (1996b, 1998). In Section 4 we address
the problem of information loss in the proposed edge

code. We begin by reviewing previous theoretical and
empirical results on the reconstructability of images
from zero-crossings, and then develop a novel algo-
rithm for image reconstruction from the proposed edge
code. We demonstrate the perceptual content of the
code through a series of experiments on a diverse set
of natural images. In Section 5 we analyse the sources
of error in our reconstructions and how these may be
reduced. In Section 6 we discuss possible applications
of the proposed representation.

3. Computing the Edge Representation

While edge detectors are typically designed to recover
step discontinuities in an image (e.g. Canny, 1983;
Leclerc and Zucker, 1987), the boundaries of physical
structures in the world generally do not project to the
image as step discontinuities, but as blurred transitions
corrupted by noise (Fig. 1). Variations in reflectance
and lighting generate a broad range of contrasts, while
defocus, shadows and shading generate a broad range
of local blur.

Consider the image shown in Fig. 2 (left). The mid-
dle figure shows the edge map generated by the Canny
edge detector (Canny, 1983), where the scale parameter
has been tuned to detect the details of the mannequin.
At this relatively small scale, the contour of the shadow
cannot be reliably resolved. On the right is shown the
edge map generated when scale is tuned to detect the
contour of the shadow. At this larger scale, the details
of the mannequin are blurred out, and the contour of the
shadow is fragmented at the section of high curvature
under one arm.

This example demonstrates that detecting and mod-
eling the edges in a natural image requires a multi-
scale approach. Multi-scale theories generally require

Figure 1. Edges in the world typically project to the image as spa-
tially blurred. From left to right: focal blur due to finite depth-of-
field; penumbral blur at the edge of a shadow; shading blur at a
smoothed object edge.
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Figure 2. The problem of local estimation scale. Different structures in a natural image require different spatial scales for local estimation. The
original image contains edges over a broad range of contrasts and blur scales. In the middle are shown the edges detected with a Canny/Deriche
operator tuned to detect structure in the mannequin. On the right is shown the edges detected with a Canny/Deriche operator tuned to detect the
smooth contour of the shadow. Parameters are(α = 1.25, ω = 0.02) and(α = 0.5, ω = 0.02), respectively. See (Deriche, 1987) for details of
the Deriche detector.

the integration of filter responses over many scales
(Marr and Hildreth, 1980; Canny, 1983) or feature-
tracking through a continuous 3-D scale space, in
which image contours are coded as two-dimensional
surfaces (Witkin, 1983; Koenderink, 1984; Grattoni
and Guiducci, 1990; Lindeberg, 1990). Here we de-
scribe a theory for local scale control that determines
a unique scale for local estimation at each point in an
image, thus avoiding the problem of combining filter
responses or tracking features through scale space. Al-
ternative methods for scale selection based on normal-
ized derivatives have been proposed (Lindeberg, 1996);
however we argue that the local scale control method
offers advantages in its simplicity, robustness to sensor
noise and minimal distortion in localizing edges (Elder
and Zucker, 1996b, 1998).

Edge detection typically involves the estimation of
first and perhaps second derivatives of the luminance
function, followed by selection of zero crossings or ex-
trema (e.g. Marr and Hildreth, 1980; Canny, 1983).
If these derivative estimates are unreliable, the se-
lected edges will be incorrect. Local scale control is
based on the observation that sensor noise proper-
ties and operator norms can be used to determine a
unique minimum scale at which derivative estimates
can be used to make reliable local logical inferences.
We call this unique scale theminimum reliable scale
for the estimation.

Ensuring reliability in terms of sensor noise does
not account for the danger of incorrect assertions due
to the influence of scene events nearby in the image,
which in any band-limited system must be an increasing
function of scale. By selecting the minimum of the set

of reliable scales, we ensure reliability relative to sensor
noise, while minimizing distortion from nearby image
events and deviations from our local edge model. By
reliable here we mean that the likelihood of committing
at least one Type I (false positive) error over an entire
image is less than a standard tolerance of 5%.

The key to the local scale control algorithm is the
prior computation of a critical value functionc(σ )
which determines the lower bound on filter response as
a function of filter scaleσ , below which the response
cannot be used reliably. The critical value function de-
pends on theL2 norm of the filter, the statistics of the
sensor noise, and the property of the response that we
wish to exploit.

Our method for edge detection depends upon the
reliable detection of a non-zero gradientr θM

1 (x, y, σ1)

in the luminance function, and the reliable inference
of the sign of the second derivativer θM

2 (x, y, σ2) of
the luminance function in the gradient directionθM .
These derivative estimates are computed using steer-
able Gaussian derivative filters (Freeman and Adelson,
1991; Perona, 1995), based on unit-integral Gaussian
smoothing kernels. The gradient estimates are com-
puted using the two basis functions

gx
1(x, y, σ1) = −x

2πσ 4
1

e−(x
2+y2)/2σ 2

1

gy
1(x, y, σ1) = −y

2πσ 4
1

e−(x
2+y2)/2σ 2

1

where σ1 denotes the scale of the first derivative
smoothing kernel. The second derivative estimates are
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computed using the three basis functions

gx
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2πσ 4
2

((x/σ2)
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2
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2
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2
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2πσ 6
2
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whereσ2 denotes the scale of the second derivative
smoothing kernel. Details of the methods used for
derivative estimation may be found in Elder and Zucker
(1998).

Each of these inferences determines a specific criti-
cal value function. The critical value functions for as-
serting a non-zero gradient, and for determining the
sign of the second derivative in the gradient direction
are (Elder and Zucker, 1998)

c1(σ1) = 1.1sn
/
σ 2

1 c2(σ2) = 1.3sn
/
σ 3

2

wheresn is the standard deviation of the sensor noise
(assumed to be Gaussian i.i.d.), andσ1 andσ2 are the
scales of the Gaussian first and second derivative filters,
respectively.1

3.1. Edge Detection

To apply local scale control to the detection of blurred
edges, we model an edge as a step function(I l −
Id)u(x)+ Id from a dark intensityId to a bright inten-
sity I l . The edge is aligned, for convenience, with the
y-axis of our coordinate frame. The blur of this edge
is modelled by a Gaussian blur kernel,g(x, y, σb) =

1
2πσ 2

b
e−(x

2+y2)/2σ 2
b of unknown scale constantσb. Sen-

sor noisen(x, y) is modeled as a stationary, additive,

Figure 3. The edge model used for edge detection and representation.

zero-mean white noise process. The complete edge
model is thus

I l − Id

2
(er f (x/

√
2σb)+ 1)+ Id+ n(x, y). (1)

Figure 3 illustrates the model with no sensor noise
added.

The prior construction of critical value functions al-
lows the minimum reliable scale for each estimation
to be determined at each point as the image is pro-
cessed. The situation for gradient estimation at an edge
is shown in Fig. 4 (top left). Although both the gradient
responser θM

1 and the critical value functionc(σ1) de-
cline with increasing scale, the critical value function
declines much more quickly. The scale at which the two
curves intersect is the minimum reliable scale for gra-
dient estimation. In our experiments we attempt only
to stay close to the minimum reliable scale by comput-
ing estimates at octave intervals of scale, at each point
using the smallest scale at which the estimate exceeds
the critical value function, i.e., for gradient estimation,
σ̂1(x, y) = inf{σ1 : r θM

1 (x, y, σ1) > c1(σ1)}.
The importance of the second derivative in localizing

blurred edges is also illustrated in Fig. 4. Figure 4 (top
right) shows the luminance profile through the edge of
the mannequin’s shadow. Figure 4 (middle right) shows
the gradient magnitude along the cross-section, and
Fig. 4 (middle left) shows the minimum reliable scales
at which the gradient was estimated. Note how the
scale of estimation automatically adapts as the strength
of the signal varies. Although this allows the gradi-
ent to be reliably detected as non-zero over this cross-
section, the response is not unimodal: there are in fact 5
maxima in the gradient along the cross section of the
edge. Marking edges at extrema in the gradient func-
tion would clearly lead to multiple separate responses
to this single edge.
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Figure 4. Top left: The intersection of the critical value functionc1(σ1) with the gradient responser θM
1 (σ1) determines the minimum reliable

scale for gradient estimation.Top right: Cross section of image across shadow boundary.Middle left: Minimum reliable scale for the gradient
estimate.Middle right: Estimated gradient magnitude.Bottom left: Minimum reliable scale for the second derivative estimateBottom right:
Estimated directional second derivative. A unique zero-crossing localizes the edge.

Figure 4 (bottom right) shows the estimated second
derivative steered in the gradient direction, and Fig. 4
(bottom left) shows the minimum reliable scales for
these estimates. Note again how scale automatically
adapts as the signal varies in strength: larger scales

are needed near the centre of the edge where the lumi-
nance function is nearly linear. Despite the rockiness
of the gradient response, the adaptive second deriva-
tive response provides a unique zero-crossing to loca-
lize the edge. The key here is that local estimation at
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Figure 5. Left: The blur grade is linear, ranging fromσb = 1 pixel to σb = 26.6 pixels. Parameters (see Eq. 1):I l = 170 grey levels,
Id = 85 grey levels,σb ∈ [1, 26.6] pixels,σn = 1.6 grey levels.Middle: Edges detected by local scale control.Right: Estimated vs actual
blur scaleσb.

the minimum reliable scale guarantees that the sign
of the second derivative estimate is reliable, and hence
that the zero-crossing is unique. The number of peaks
in the gradient response, on the other hand, depends
on the blur of the edge, and is not revealed in the re-
sponse of the operator at any single point: ensuring
the uniqueness of a gradient maximum is not a local
problem. Thus the reliable detection and localization of
blurred edges requires both gradient and second deriva-
tive estimation.

The ability of the local scale control algorithm to
detect edges over a broad range of blurs is shown in
Fig. 5. The test image is a vertical edge blurred by a
space-varying Gaussian kernel, corrupted by Gaussian
i.i.d. noise. Five scales were used for gradient esti-
mation (σ1 ∈ {0.5, 1, 2, 4, 8} pixels), six for second
derivative estimation (σ2 ∈ {0.5, 1, 2, 4, 8, 16} pix-
els). Figure 5 (middle) shows the edges detected by
the local scale control algorithm. The edges are reli-
ably and uniquely detected over a wide range of blur.
Figure 6 shows the edges detected in the image of the
mannequin and shadow. Both the fine detail of the
mannequin and the complete contour of the shadow
are resolved, without spurious responses to the smooth
shading gradients on the ground surface (compare with
the results of the Canny detector in Fig. 2). We em-
phasize that this is achieved by a single system with
no input parameters other than the second moment of
the sensor noise. The key to the performance of the
system is the automatic identification of a unique min-
imum reliable scale for estimation at each point in the
image.

Figure 6. Results of local scale control for image of mannequin with
shadow. Both the fine detail of the mannequin and the blurred, low-
contrast shadow are reliably recovered.

3.2. Estimation of Blur and Intensity

Local scale control may also be applied to the estima-
tion of focal blur. While excellent passive techniques
for blur estimation have been developed, these typi-
cally require densely-textured surfaces varying slowly
in depth (e.g. Pentland, 1987; Ens and Lawrence, 1993,
Nayar and Yasuo, 1994) and are therefore not suited
for complex images, where each local neighbourhood
may contain many depth discontinuities. In such cases,
blur estimates can only be made where structure exists,
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and must be computed as locally as possible. Contour-
based blur estimation at the minimum reliable scale is
naturally suited to the task.

In our local scale control method, blur scaleσb is
estimated by computing the distanced between ex-
trema of opposite sign in the second derivative response
along the gradient direction, and then correcting for the
blur induced by the estimation itself, yielding the equa-
tion (Elder and Zucker, 1996b, 1998)

σb =
√
(d/2)2− σ 2

2

Figure 5 (right) shows a plot of the estimated and
actual blurs of the synthetic test image. While the re-
sulting pointwise blur estimates are noisy, they provide
an approximately unbiased estimate of the blur scale
of the edge.

Estimation of the parametersI l and Id of our edge
model Eq. (1) is straightforward. We first estimate the
intensity valuesI (±σb) at a distance±σb from the
edge location along the gradient line, using bilinear
interpolation. From the model Eq. (1), we can write

I (±σb) ≈ I l − Id

2
(±er f (1/

√
2)+ 1)+ Id

Solving for I l and Id, we have

I l ≈ I (σb)+ I (−σb)

2
+ I (σb)− I (−σb)

2er f (1/
√

2)

and

Id ≈ I (σb)+ I (−σb)

2
− I (σb)− I (−σb)

2er f (1/
√

2)

3.3. Generality and Reliability

In terms of an edge code, the generality criterion for an
early visual representation demands that the diversity of
edge types that occur in natural images be identified and
localized. In our approach, this is achieved through the
generalization of the edge model to encompass edges
over a broad range of blur scales and contrasts. The
examples shown in Figs. 5 and 6 demonstrate that this
broad range of naturally-occurring edges are indeed
detected.

The reliability criterion demands that real edges cor-
responding to structure in the scene be consistently de-
tected, while false edges caused by sensor noise are

ignored. This is achieved by the local scale control al-
gorithm, which automatically adapts estimation scale
to determine the minimum scale for reliable estima-
tion. Estimation at the minimum reliable scale reduces
the false-positive rate to a very low, pre-determined
level, while at the same time minimizing distortion and
missed (false-negative) edges.

There are other reliability criteria against which an
early visual representation could be evaluated. One
example is stability with respect to illumination con-
ditions. It has been pointed out (Adini et al., 1997;
Belhumeur and Kriegman, 1996) that when light-
ing changes, the locations of shading and shadow
edges change, so that two edge maps taken under dif-
ferent illumination conditions may look very differ-
ent. These observations have motivated “appearance-
based” methods for object recognition.

When considering this criticism, it is important to
maintain the distinction between special-purpose and
general-purpose early representations. Suppose we re-
strict our computational goal to the recognition of ob-
jects with fixed pose that have been previously viewed
under multiple illumination conditions. Then the re-
stricted nature of the problem introduces significant
constraints that we may take advantage of in designing
representations, and an edge code may not be the first
choice. However, these constraints are not available
for a general-purpose system, which may be viewing a
novel object, or a novel view, or which may not be sup-
porting just recognition, but a computation of scene lay-
out, requiring interpretation of shadows and shading.

One promising property of our proposed representa-
tion for such higher-level tasks is the explicit encoding
of edge blur scale. We have previously noted that edge
blur is an important cue to shadows and shading. More
than this, the degree of blur is a useful predictor of sta-
bility with respect to variation in the illuminant. For
example, the blur scale of a cast shadow edge measures
the width of the shadow penumbra. If the dominant
light source moves, the cast shadow moves also, and
the distance it moves is roughly proportional to the blur
scale of the shadow edge. Similarly, the blur scale of
an attached shadow edge varies inversely with the lo-
cal curvature of the surface. Consequently, the shift
in location of attached shadow edges as a function of
the illuminant direction also increases as a function of
the blur of the attached shadow edge. Thus shadow
and shading edge blur may be used by higher-level al-
gorithms to estimate and account for instability with
respect to illumination conditions.
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4. Are Edges Incomplete?

The idea that the primary purpose of early visual
coding is to detect and represent contour dates to
the experiments of Mach and the proposition of lat-
eral inhibition. However, this idea does not explain
our perception of brightness, colour and shading
between contours. 60 years ago, Werner provided
some possible clues, in what is generally regarded as
the first “metacontrast” experiment (Werner, 1935).
Werner showed that by interrupting the formation
of a complete bounding contour, one could prevent
observers from perceiving the colour of the object
which this contour bounds. Many subsequent meta-
contrast experiments have elaborated this finding (e.g.
Paradiso and Nakayama, 1991), leading to the hy-
pothesis of a contour-based “filling-in” process res-
ponsible for our perception of surface brightness and
colour.

In a parallel development, computational vision re-
searchers have been studying the degree to which an
image can be reconstructed from its edges or zero-
crossings. This research has produced two classes of
techniques:

1. Scale space algorithms which produce high-quality
reconstructions but which require large, highly re-
dundant representations of edges over scale space.
These representations thus require an expansion,
rather than a compression, of the original image,
and thus fail to satisfy our concision criterion for an
early visual representation (Section 1).

2. Hybrid algorithms which code only a subset of
edges, and use a sub-sampled, lowpass image to
carry the low frequency image information (e.g.
shading). These algorithms, while more compact,
produce reconstructions with substantial artifact,
and thus do not satisfy our completeness criterion.
Also, the implicit representation of low-pass struc-
ture through sub-sampled images fails to satisfy our
explicitness criterion (Section 1).

Here, we describe an algorithm for reconstructing an
approximation of the original image from the edge rep-
resentation computed by the local scale control algo-
rithm. We will show empirically that nearly flawless re-
constructions are possible from this purely edge-based
representation. Since the local scale control algorithm
selects a unique scale for estimation at each edge point,
the representation is potentially very compact.

We begin our analysis of the reconstruction prob-
lem by reviewing prior theoretical and experimental re-
sults on the reconstructability of images from edges2

(see Hummel and Moniot, 1989 for a more detailed
review).

4.1. Previous Theoretical Results

Logan (1977) proved that the zero-crossings of a
one-dimensional, strictly bandpass one-octave signal
form a complete representation of the signal. Based
on this result, Marr and Hildreth (1980) conjectured
that an image may be completely represented by the
zero-crossings and gradient magnitudes of the image
convolved with a Laplacian of Gaussian operator at
multiple scales.

Yuille and Poggio (1985) proved the theoretical
completeness of the zero-crossing locations over scale
space for a one-dimensional finite polynomial signal.
Curtis et al. (1987) proved the theoretical complete-
ness of zero-crossing locations for a restricted class
of band-limited two-dimensional signals. However,
Hummel and Moniot (1989) have argued that these
theorems are unlikely to lead to stable reconstructions
in practice, and have noted that theoretical results for
polynomial or otherwise-restricted signals may be of
little relevance to the problem of reconstructing more
general continuous functions. In fact there are many
examples of substantially different continuous func-
tions which have the same zero-crossings at all scales in
Gaussian scale space (Mallat and Zhong, 1992). Thus
it is clear that the zero-crossing locations alone must be
incomplete.

Hummel and Moniot (1989) have shown that if
the zero-crossing locations over scale space of ann-
dimensional signal are supplemented with gradient
data at the zero crossings, then the original signal can, in
principle, be exactly reconstructed. They noted, how-
ever, that their method for exact reconstruction is prov-
ably unstable.

4.2. Previous Empirical Results

Carlsson (1984, 1988) introduced an algorithm which
computes an approximate reconstruction of an image
from information coded at the image edges. The spe-
cific edge representation consists of edge locations
and the grey level values on either side of the en-
coded edges. The reconstruction algorithm computes
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an optimally smooth interpolation of the grey level
image between these edge points. Carlsson employed
the two-dimensional Laplacian operator as a measure
of smoothness, and used a multi-resolution technique
to solve Laplace’s equation with boundary conditions
imposed by the grey-level values at the edge points.

In Carlsson’s system, candidate edge points are iden-
tified by first locating the zero-crossings of the image
convolved with a small-scale Laplacian of Gaussian op-
erator. These edge points are then thresholded based
upon the output of simple non-steerable horizontal
and vertical gradient filters. Carlsson found that the
edges thus detected contain many small gaps, which
he attributed to the anisotropy in his gradient detec-
tion scheme. He therefore followed this thresholding
stage by a gap-filling stage designed to reconnect the
fragmented contours.

In his original algorithm (Carlsson, 1984), Carlsson
employed this edge representation to produce recon-
structions which were intelligible but contained sig-
nificant perceptual flaws. Texture and shading were
largely absent, certain features were badly smudged,
and defocused structures appeared unnaturally sharp.

In a later version of the algorithm (Carlsson, 1988),
Carlsson augmented the edge representation with a sub-
sampled low-pass residual image, which was expanded
and added to the edge-based reconstruction to correct
for low spatial-frequency errors. This produced a slight
improvement in the representation of shaded and de-
focused structures, although many perceptually signi-
ficant errors remained.

Zeevi and Rotem (1986) developed an image repre-
sentation in which the image is decomposed into mul-
tiple bandpass sub-images which tile frequency space.
The binary signum functionsgnof these bandpass sub-
images is then encoded. The low-frequency informa-
tion is also encoded as a lowpass sub-sampling of the
original image. Reconstruction proceeds as a sequence
of iterative one-dimensional horizontal and vertical re-
constructions of the bandpass sub-images, which are
then recombined with the low-frequency sub-image.
While the iterative technique used for reconstructing
the sub-bands is not guaranteed to converge (Hummel
and Moniot, 1989), results of the reconstruction are
generally quite good.

Hummel and Moniot (1989) developed an algorithm
for stable image reconstruction from zero-crossing lo-
cations and gradient data at zero-crossings over scale
space, using a method based on minimizing equation
error. The reconstructions are quite good, although

there remain perceptual differences between the re-
construction and the original image. Also, since the
algorithm requires both the zero-crossing locations
and gradient vectors along the zero-crossings over
the entire scale space, the representation is highly
redundant and significantly larger than the original
image.

Grattoni and Guiducci (1990) developed a represen-
tation of images based upon a model of an edge as a
Gaussian-blurred step discontinuity, encoding edge lo-
cation, brightness, contrast, blur and ‘contour width’.
The latter parameter specifies the spatial extent, in the
normal direction to the contour, over which the model is
considered valid. Edges are detected at the finest scale
(filter scale of 0.5 pixels), and edge parameters are es-
timated by fitting the model to the gradient operator
response as a function of filter scale. Images are re-
constructed by rendering the edge models within their
domain of validity, and interpolating using the Laplace
equation at remaining image points. The approach was
later extended to colour images (Cumani et al., 1991).
Results are reasonable, although images appear to lack
fine detail and have a blurred appearance. It should
be noted that at a scale of 0.5 pixels, edge density is
typically very high (on the order of 30%), and hence
most pixels in the image are adjacent to at least one
edge pixels. Thus reasonable reconstructions are not
terribly surprising.

Mallat and Zhong (1992) have developed an algo-
rithm for reconstructing an image from the locations,
amplitudes and directions of the gradient maxima of
the image, sampled at octave scales over Gaussian scale
space. They report that reconstructions are perceptu-
ally indistinguishable from the original image. As with
the approach of Hummel and Moniot (1989), however,
this representation is highly redundant, since edges are
represented at many scales, and at the finest scales
edge density is very high. Using techniques similar
to those of Carlsson (1984), Mallat and Zhong have
achieved a more compact code by thresholding the
edges detected at the finest scales, and encoding the
low-frequency variations as a sub-sampled grey-scale
image. While this representation is far more compact,
the reconstructions lack texture detail and some defo-
cused structures are not recovered.

4.3. Analysis

On the theoretical side, the most recent results
(Hummel and Moniot, 1989) suggest that exact



Are Edges Incomplete? 107

reconstruction of a two-dimensional image from zero-
crossing locations and gradient data at zero-crossings
over scale space may be theoretically possible, but sta-
bility problems make exact reconstruction unlikely in
practice.

Recent empirical results are more encouraging. The
highest-quality reconstructions appear to come from
Mallat and Zhong (1992). However these high-quality
reconstructions require a highly redundant encoding
of the edges over scale space. In order to achieve rea-
sonable reconstructions from more compact represen-
tations, Zeevi and Rotem (1986), Carlsson (1988) and
Mallat and Zhong (1992) have all resorted to hybrid
representations, which combine the encoding of a sub-
set of edges (hopefully, the most important ones) with
a low pass sub-sampled grey-level image.

In our view, the main impediments to developing re-
constructible image representations which are purely
edge-based are limitations in the methods employed
for detecting and characterizing local edge structure.
For example, Carlsson’s results clearly suffer from the
limitations of the edge detection algorithm he employs.
Anisotropies in linear filtering, and a failure to adapt
filter scale to local signal-to-noise ratios are two of
the more serious problems. Most importantly, the use
of a fixed spatial scale and fixed threshold creates a
dilemma: if a high threshold is chosen, then many im-
portant edges are missed and the reconstruction fails to
represent important image structure. If a lower thres-
hold is chosen, blurred gradients due to shadows, shad-
ing and defocused edges are detected, but when recon-
structed these edges appear unnaturally sharp, leading
to perceptually objectionable artifacts. In Carlsson’s
words, “contours due to illumination variation have a
tendency to stand out in front of the smooth surround”
(Carlsson, 1988).

Mallat and Zhong (1992) avoid these problems by
encoding the structure at each edge point at many
scales. As noted above, this yields a large, highly-
redundant representation. There are two additional
problems with this representation for computer vision
applications. First, although inclusion of the finest-
scale zero-crossings over the entire image allows small-
scale detail to be reconstructed, many of these edges
are in fact artifact (false positives) due to sensor noise,
which violates our reliability criterion and creates
problems for higher-level computations. Second, each
edge point is represented as a distributed code over
many scales, and the correspondence between repre-
sentations of the same edge at different scales is not

computed. Thus there is no explicit compact char-
acterization of an edge which is rapidly available for
further inference, and the representation fails to satisfy
our explicitness criterion.

The representation proposed by Grattoni and
Guiducci (1990) has the advantage that edge blur is
represented explicitly, rather than as a distributed code
over scale space. However, as with Mallat and Zhong
(1992), the representation of all edges detected at the
finest scale (most of which are artifact) violates our reli-
ability and concision criteria. Also, dependence upon a
‘contour width’ parameter introduces significant com-
plexity, requiring the tracking of edge points through
scale space, and a spatially heterogeneous reconstruc-
tion method that would be difficult to parallelize. It
is hard to argue that contour width (as distinct from
blur) is a critical perceptual parameter that should be
explicitly represented.

In this paper, we will show that by addressing these
problems, the local scale control algorithm (Elder and
Zucker, 1996b, 1998) produces a compact, purely
edge-based representation which is perceptually nearly
complete. Each edge point is explicitly represented
only once, not as a distributed code over scale space.
No additional lowpass image is required to capture the
low frequency grey-level variations. The representation
is based on the hypothesis that the most critical percep-
tual parameters of an edge are its location and the mag-
nitude and blur of the underlying change in brightness
(Elder and Zucker, 1995). These are the parameters
which are estimated at each edge point, and which are
used in the reconstruction algorithm.

The proposed representation is more compact and
explicit than the multi-scale representation employed
by previous methods (e.g. Hummel and Moniot, 1989;
Mallat and Zhong, 1992) in that the local scale con-
trol algorithm chooses a single most appropriate scale
(the minimum reliable scale) for estimation at each
edge point. An edge is thus represented by a point
in scale space, with curves in the image sweeping
out space curves in scale space, producing a one-
dimensional encoding of the two-dimensional image.
In contrast, typical multi-scale techniques represent
each edge point as a curve lying in the scale space
volume, so that image curves sweep out surfaces in
scale space, producing a two-dimensional encoding of
the two-dimensional image.

The use of steerable filters (Freeman and Adelson,
1991; Perona, 1995) ensures that edges are detected and
represented with isotropic accuracy, and the use of the
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minimum reliable scale at each point ensures that while
actual brightness changes in the scene are accurately
characterized, artifactual changes due to sensor noise
are ignored. The explicit encoding of blur scale is use-
ful for the interpretation of shadows, shading and focal
blur (Elder and Zucker, 1998). No additional ‘con-
tour width’ parameter is required, and reconstruction
is accomplished with a spatially homogeneous mul-
tiorid algorithm that maps directly to parallel archi-
tectures.

4.4. The Reconstruction Algorithm

The edge representation produced by local scale control
represents not only the estimated position of the edge,
but also the intensity valuesI l and Id on either side of
the edge and the estimated blur scaleσb of the edge. A
very coarse encoding of the gradient direction at each
edge point into the 4 diagonal directions is also required
for reconstruction. No attempt is made to compress
this information further: at this time our main interest
is to determine the quality of reconstructions that are
achievable from a purely one-dimensional edge-based
representation where edges are represented at only a
single scale at each edge point.

Reconstruction proceeds in two stages. In the first
stage, the intensity function over the image is recon-
structed using only the position, intensity and 2-bit gra-
dient direction values at each edge point. The method
employed is very similar to that used by Carlsson (1984,
1988). The fundamental assumption underlying the re-
construction is that the Laplacian( ∂

∂x2 + ∂
∂y2 ) of the

original image is zero at all non-edge points. Under
this assumption, a unique interpolation of the intensity
function between the edges is computed by minimizing
the Laplacian over the image. The problem is thus one
of solving Laplace’s equation with boundary condi-
tions imposed by the intensity values at the detected
edges. Reflection boundary conditions are used at the
frame of the image and the initial conditions are zero
at all non-edge points.

The most straightforward solution to Laplace’s equa-
tion is to solve the heat equation by Gaussian diffusion
until it reaches steady state. The only complication
arises from the fact that each boundary point (i.e. each
edge point) represents two different boundary condi-
tions: one for the light side of the edge (I l ) and one
for the dark side of the edge (Id). Using a small 4-tap

Figure 7. In solving the Laplace equation, boundary conditions at
edge points are determined by either the dark intensityId or the light
intensityI l , depending upon the dot product of the gradient direction
at the edge and the location of the kernel centre relative to the edge.

smoothing kernel given by 0 1
4 0

1
4 0 1

4

0 1
4 0

 ,
this problem is resolved by selecting the appropriate lu-
minance value at each edge point based upon the 2-bit
gradient direction at the edge point and the position of
the kernel centre with respect to the edge point (Fig. 7).
We define the kernel displacement vector as the vec-
tor from the edge point to the kernel centre. At points
where the dot product of the kernel displacement vec-
tor with the gradient vector is positive,I l is used as the
boundary condition at the edge. At points where the
dot product is negative,Id is used as the boundary con-
dition.

Figure 8 (middle left) shows the solution to the heat
equation using this algorithm for a lower resolution
(256×384) image of the mannequin figure at an inter-
mediate stage (625 smoothing iterations).

This simple diffusion algorithm is far too slow
to be practical, requiring tens of thousands of iter-
ations to converge. Carlsson (1988) used a multi-
resolution method in which the edge representation
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Figure 8. Top left: Original image. Top right: Detected edge locations.Middle left: Intermediate solution to the heat equation.Middle
right: Reconstructed luminance function.Bottom left: Reblurred result.Bottom right: Error map (reblurred result—original). Bright indicates
overestimation of intensity, dark indicates underestimation. Edge density is 1.7%. RMS error is 10.1 grey levels, with a 3.9 grey level DC
component, and an estimated 1.6 grey levels due to noise removal.

is sub-sampled and Laplace’s equation solved on a
small grid and then used as an initial condition for
solution on a grid twice the size. This procedure is
repeated until Laplace’s equation is solved at full res-
olution. In our approach, we have implemented a full

multigrid algorithm (Press et al., 1992, pp. 871–881)
in which Laplace’s equation is solved at successively
greater resolution by using coarser resolutions to com-
pute a correction term from the residual at the current
scale.
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The Laplacian kernel used to compute the residual
is implemented in finite difference form as0 1 0

1 −4 1

0 1 0


The corresponding smoothing kernel is

 0 1
4 0

1
4 0 1

4

0 1
4 0


Standard red-black Gauss-Seidel relaxation is used for
smoothing. Downsampling is performed by averaging
high resolution pixels in blocks of 4. Upsampling is
performed by copying each low resolution pixel into
4 high resolution pixels. The main design decision in
implementing the multigrid solution is how to subsam-
ple (restrict) the boundary conditions given by the dark
and light intensity estimates at the edge pixels. We have
taken the following approach: if one or more edges ex-
ist in a block of 4 pixels to be subsampled, the highest
contrast edge is selected and copied to the low resolu-
tion grid. In all other respects, the reconstruction is a
standard full multigrid algorithm.

Convergence of the algorithm can either be as-
sessed by measuring the maximum residual, or by
visually inspecting successive reconstructions. By the
first measure, iteration is halted when the maximum
residual is less than one gray level. By the second mea-
sure, iteration is halted when two successive images
are perceptually indistinguishable. We find empiri-
cally that by either measure, convergence is achieved
roughly twice as fast as for Carlsson’s method, re-
quiring 3-4 cycles of the multigrid algorithm, with 6
smoothing iterations at each cycle. This takes roughly
15 s on a 200 MHz Pentium Pro computer for a
512× 512 image.

The result of this algorithm on the image of the man-
nequin casting a shadow is shown in Fig. 8 (middle
right). While the brightness values appear roughly cor-
rect, note that the cast shadow appears highly unnatural.
Many observers perceive it as a hole or a painted figure
on the ground surface rather than as a cast shadow. Also
note that the mannequin surface appears less smooth
than in the original image. Figure 9 illustrates the
cause of these problems. Although the solution to
Laplace’s equation may have produced a perceptually

reasonable interpolation of brightness values between
edges, the boundary conditions at the edges are such
that all edges have been completely deblurred and ap-
pear perfectly sharp.

It is clearly important that a representation capture
the blur characteristics at the edges of the original
image in order to approach perceptual completeness.
However, restoring the local blur information to the re-
constructed image is problematic since we only have
blur estimates at edge points, yet we need to smoothly
reblur the image not just at these points, but in the
general neighbourhood of each point, and the size of
this neighbourhood depends upon the local degree of
blur.

There is an elegant solution to this problem (Fig. 10).
We again solve Laplace’s equation over the image, but
this time blur scale, rather than luminance, is used as
the diffusive quantity, and the boundary conditions are
the local estimates of blur scale along the detected
contours. In this way, a blur surface is constructed
which assigns a blur scale to each pixel in the im-
age. The reconstructed luminance function can then
be reblurred with an isotropic Gaussian blur kernel
with space-varying blur scale, where the blur scale at
each pixel is selected from the corresponding point
on the reconstructed blur surface. If we letI (i, j )
represent the initial reconstructed intensity function at
pixel (i, j ), σb(i, j ) represent the estimated blur scale
at pixel (i, j ), and N(i, j ) represent the support of a
truncated isotropic Gaussian kernel at pixel(i, j ), then
the reconstructed intensity functionÎ (i, j ) after reblur-
ring is given by

Î (a, b) =
∑

(i, j )∈N(a,b)

1

2πσ 2
b (a, b)

e
− (a−i )2+(b− j )2

2σ2
b (a,b) × I (i, j )

The results of the complete reconstruction algorithm
are shown in Fig. 8 (bottom left). Note that the shadow
appears much more realistic, and the mannequin has
been restored to its original smoothness. We stress that
this reconstruction is computed without resorting to a
low-frequency sub-image and that each edge is repre-
sented only once, not over the entire scale space. Edges
account for only 1.7% of the pixels in this image.

In practice we find that for realistic rendering of blur,
the isotropic blur kernel must extend to approximately
±2σb. Efficiency can be improved by pre-computing
the blur kernels: empirically we find that blur scales
can be sampled in 0.5 pixel intervals without percepti-
ble artifact. Reblurring is found to take roughly 5 s
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Figure 9. Reconstruction of brightness alone leads to perceptually significant artifact.Left: Original image, with 3D rendering of intensity
function for indicated region.Right: Reconstruction obtained by solving Laplace’s equation for brightness, with 3D rendering of intensity
function for indicated region. Deblurring of intensity edges leads to artifactual rendering of shadows and shading.

Figure 10. The complete reconstruction algorithm. Brightness and
blur reconstructions are computed in parallel by solving Laplace’s
equation. These two functions are then recombined with a space-
varying convolution to compute the final reconstruction.

on a 200 MHz Pentium Pro computer for a typical
512× 512 image.

The RMS error of the reconstruction is 10.1 grey
levels for this image. The DC component of this error is

3.9 grey levels, the reconstruction being slightly darker
than the original image. This DC error may be due to
the fact that considerable parts of the original image
were saturated at a luminance of 255. Since estimated
luminances were thresholded at 255, this may have
introduced a systematic negative bias in luminance
estimation.

In addition to the DC component, roughly 1.6 grey
levels can be attributed to the sensor noise in the orig-
inal image which has been removed in the reconstruc-
tion. This leaves an RMS error of roughly 9.2 grey
levels due to other factors. We discuss sources of error
in Section 5.

It should be noted that the perceptual fidelity of the
reconstruction is better than might be predicted by the
RMS accuracy. In other words, although the edge code
is technically lossy, it appears to retain the perceptually
critical image features, while discarding only unimpor-
tant (largely imperceptible) information. What appears
to matter most to perceptual fidelity is accurate rep-
resentation of edge information. This underscores the
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advantage of a representation that represents edges ex-
plicitly, rather than approximately and indirectly over
a compressed wavelet code.

4.5. Reconstruction Results

Given that the proposed representation is entirely edge-
based, it is important to test our encoding and decoding
algorithms on images which are not necessarily readily
described by edges. Figure 11 shows the results of our
algorithm on an image of low-pass filtered Gaussian
i.i.d. noise. Certainly edges have nothing to do with
the construction of this image, and yet, unavoidably,
edges emerge, as zero-crossings in the second deriva-
tive of the intensity function, steered in the gradient
direction. The edge code is a potentially very compact
representation of the image (edge density= 6%), and
reconstruction results are excellent. RMS error is 7.1
grey-levels, with a 1.4 grey-level DC component.

The natural image of a cloud shown in Fig. 12 also
has an amorphous quality which might not seem read-
ily described by edges. Yet in fact an edge encod-
ing is seen to be both highly compact (edge density=
1.8%) and nearly complete: reconstruction results are

Figure 11. Top left: Image of low-pass filtered Gaussian i.i.d.
noise.Top right: Detected edges.Bottom left: Reconstructed inten-
sity function.Bottom right: Reblurred result. Edge density is 6%,
and RMS error for this reconstruction is 7.1 grey levels, including a
1.4 grey-level DC component.

perceptually very accurate. The amorphous quality of
the cloud is captured by the edge code in terms of a
high degree of edge blur and a lack of good contour
continuity. RMS error is 7.1 grey-levels, with a 2.3
grey-level DC component.

Figure 13 shows the edge representation and recon-
struction for a scene with shallow depth-of-field, and
hence a substantial range of focal blur. Observe that
reconstruction of the luminance signal alone leads to
a highly artifactual rendering, which appears more as
a painting than as a photograph. It is apparent that fo-
cal blur can be an important perceptual component of
a natural image. Figure 13(d) shows how restitution
of the blur signal yields a reconstruction which is per-
ceptually nearly flawless. Edge density is 12% and
RMS error is 6.7 grey levels, including a 1.0 grey-level
DC component and an estimated 1.6 grey levels due to
noise removal.

Figure 14 affords an opportunity to examine how
well the proposed edge code captures information
about shading and highlights. Note again how recon-
structing the brightness signal alone produces an un-
realistic, painting-like effect. However, restitution of
the blur signal allows shading structure and highlights
to be faithfully restored. The sensor noise in the orig-
inal image is higher than the previous images, with a
standard deviation of roughly 2.5 grey levels. One can
clearly see the noise-removing function of the algo-
rithm in comparing the surface of the bell pepper in the
foreground in the original and reconstructed images.
For this image, edge density is 10% and RMS error is
10.0 grey levels, including a 1.0 grey-level DC com-
ponent, and an estimated 2.5 grey levels due to noise
removal.

Given the high sensitivity of the human visual sys-
tem to the details of human faces, portrait images are
a good test of the perceptual accuracy of an edge code.
Figure 15 shows how reconstructing the brightness
alone fails to properly render the smooth facial shad-
ing. Once the blur component is restored, however, the
rendering is perceptually nearly flawless, aside from
the removal of noise. Note, however, that the render-
ing of the detailed texture in the hat, scarf and hair
requires many edge points: edge density is 18%. In
order to apply the proposed edge code to the com-
pression of such images, it is clear that some method
must be found for efficient coding of this texture in-
formation. The demonstrated near-invertibility of the
proposed edge code raises the interesting possibility of
developing compact texture coding schemes entirely
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Figure 12. Top left: Image of cloud.Top right: Detected edgesBottom left: Reconstructed intensity function.Bottom right: Reblurred result.
Edge density is 1.8%, and RMS error for this reconstruction is 7.1 grey levels, including a 2.3 grey-level DC component, and an estimated 1.6
grey levels due to noise removal.

in the edge domain. RMS error for this reconstruction
is 5.0 grey levels, including a 0.1 grey-level DC com-
ponent, and an estimated 1.7 grey levels due to noise
removal.

Accurate reconstruction with simultaneous noise re-
moval will of course become more challenging as noise
levels increase. Figure 16 shows reconstruction for an
image where the standard deviation of the noise is es-
timated at 3.3 grey levels. Results are still very good
perceptually. Edge density is 10%, and RMS error for
this reconstruction is 8.4 grey levels, including a 0.1
grey-level DC component, and 3.3 grey levels due to
noise removal.

At even higher levels of noise, artifacts of the re-
construction become more apparent. Figure 17 shows
an image where the standard deviation of the noise is
estimated at 5.8 grey levels. This high level of noise
causes the local scale control algorithm to automat-
ically select larger filter scales, preventing smaller
signals from being detected. This is most evident in
the reconstruction of the young girl’s legs: failure to

encode the attached shadows have produced an eerie
shapeless and transparent quality to their reconstruc-
tion. Edge density for this image is 5%, and RMS
error for this reconstruction is 11.1 grey levels, includ-
ing a 2.7 grey-level DC component, and an estimated
5.8 grey levels due to noise removal.

The tradeoff between noise removal and feature loss
is most apparent in Fig. 18, where the noise standard
deviation is estimated at 7.0 grey levels. While the
smooth quality of the skin has been restored quite
nicely, detail has been lost in the hair and blouse.
Edge density for this image is 5%, and RMS error
for this reconstruction is 12.2 grey levels, including
a 0.7 grey-level DC component, and an estimated 7.0
grey levels due to noise removal.

Figure 19 shows the effects of errors in estimat-
ing the sensor noise variance. When noise variance is
underestimated, reconstruction is actually improved,
since fine details in the image are better represented.
However, this improvement comes at the expense of
representing and reconstructing a large number of false
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Figure 13. Top left: A photograph of tree branches with small depth of field (f/3.5) and near focus.Top right: Edge map computed by local
scale control.Bottom left: Reconstructed luminance terrain.Bottom right: Reconstructed, reblurred result. Note the importance of reconstructing
the blur information for images with finite depth–of-field. Edge density is 12% and RMS error is 6.7 grey levels, including a 1.0 grey-level DC
component and an estimated 1.6 grey levels due to noise removal.

positive edges due solely to sensor noise (edge density
is 25%). Overestimating noise variance does not per-
ceptually improve the denoising behaviour of the local
scale control algorithm, but does lead to further loss of
fine detail, i.e. false negatives (edge density is 3%).
Both types of errors lead to a decrease in the reliability
of the edge code.

5. Analysis of Errors

Figure 8 (lower right) shows an error map for the recon-
structed mannequin image, where intensity is propor-
tional to the difference between the final reconstruction
and the original image (bright for overestimates of
intensity, dark for underestimates). The error map
indicates that most of this error is concentrated near the
edges of the image, particularly near the sharp edges.
There are at least two plausible explanations for this
general pattern of errors:

1. Small errors in localization of edges result in local
shifts of the reconstructed intensity function. These

shifts produce intensity error proportional to inten-
sity gradient.

2. Small errors in the edge model and/or estimation
of model parameters produce unbiased intensity
errors, which are attenuated by averaging at points
more distant from the edges.

There are many specific potential sources of error in
our representation and reconstruction algorithm. We
discuss each of these in turn.

5.1. Texture Flows

Our representation is based upon a model of an edge
as a Gaussian-blurred step discontinuity. The rationale
for this representation is that edges signal important
changes in scene properties (object boundaries, surface
creases, pigment changes, shadows, etc...), and the step
discontinuity model appears to be the simplest possible
model to describe these events.

The step edge model fails when edges are located
very close together to form stripes or texture flows, for
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Figure 14. Top left: Original image.Top right: Detected edges.Bottom left: Reconstructed luminance function.Bottom right: Reblurred
result. Note the importance of reconstructing the blur function for accurate rendering of shading structure. Edge density is 10% and RMS error
is 10.0 grey levels, including a 1.0 grey-level DC component, and an estimated 2.5 grey levels due to noise removal.

example in hair or corduroy texture. The primary cause
of failure is a decrease in signal-to-noise ratio caused by
interference between these neighbouring edges. The
evidence for these errors is blur and loss of detail in
reconstructions of hair and fine texture.

There are numerous methods in the literature for
detecting thin curvilinear structures in images (e.g.
Fischler et al., 1981, Cox et al., 1990; Iverson and
Zucker, 1995). We are presently studying methods

which could be integrated with the local scale control
approach.

5.2. Pixel Aliasing

Edges are localized to the nearest pixel in our repre-
sentation. This results in “jagginess” (pixel aliasing)
in oblique contours which are relatively sharp. While



116 Elder

Figure 15. Top left: Original image. Top right: Detected edges.Bottom left: Reconstructed luminance function.Bottom right: Reblurred
result. Reblurring is critical to capturing the smooth shading of the skin. Edge density is 18%, and RMS error for this reconstruction is 5.0 grey
levels, including a 0.1 grey-level DC component, and an estimated 1.7 grey levels due to noise removal.

we have developed methods for sub-pixel localization
using local scale control, we have not yet integrated
these into our reconstruction method to eliminate this
problem.

5.3. Kurtotic Noise

The local scale control algorithm assumes that the
probability distribution function of the sensor noise is



Are Edges Incomplete? 117

Figure 16. Top left: Original image. Top right: Detected edges. Bottom left: Reconstructed luminance function. Bottom right: Reblurred
result. Edge density for this image is 10%, and RMS error for this reconstruction is 8.4 grey levels, including a 0.1 grey-level DC component,
and an estimated 3.3 grey levels due to noise removal.

Gaussian, and requires an estimate of the variance of
the noise in order to guide scale adaptation. Counter to
this assumption, we have found in practice that many
images contain noise with a kurtotic distribution. In
such cases, the longer tails of these actual distributions
lead to a greater number of false positives than pre-
dicted by the Gaussian model.

Since these false edges are typically of low contrast
and often blurred, their effect on reconstruction may
be minimal. However, these edges do decrease the
potential compression of the representation, and pose
a problem for higher-level visual inference.

To solve this problem, we require a more complex
noise model tuned to match not only measured vari-
ance, but also measured kurtosis. This model could
then be used to derive the appropriate critical value
functions for local scale control.

5.4. Blur Model Errors

The proposed edge representation uses a Gaussian
model for local image blur, even though geometric

optics would predict a “pillbox” model for common
focal and penumbral blur scenarios (Elder and Zucker,
1998). Differences between images blurred with
pillbox and Gaussian blur kernels of similar size are ap-
parent mainly because of the Mach bands visible in the
former but missing in the latter. However, the more crit-
ical problem may be the systematic overestimation in
contrast that results from applying the Gaussian model
to blur which is closer to that predicted by geometric
optics (Elder, 1997). This error in contrast estimation
can lead to large RMS errors in reconstruction.

We have developed a more general model for local
image blurring which can in principle be used to es-
timate not only the amount of local image blurring,
but also the shape of the blur kernel (Elder, 1997). We
have not yet fully integrated this new model into our
detection and reconstruction method.

5.5. Reconstruction Models

Reconstruction is based upon the approximation that
the Laplacian of the intensity function is zero at all



Figure 17. Top left: Original image.Top right: Detected Edges.Bottom left: Reconstructed luminance function.Bottom right: Reblurred
result. Due to higher noise levels, minimum reliable scales for estimation are generally greater, so that some smaller signals are not detected.
Note that the failure to encode the attached shadows on the legs results in an artifactual reconstruction. Edge density for this image is 5%, and
reconstruction is 11.1 grey levels, including a 2.7 grey-level DC component, and an estimated 5.8 grey levels due to noise removal.
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Figure 18. Top left: Original image. Top right: Detected edges.
Bottom left: Reconstructed luminance function.Bottom right: Re-
blurred result. The local scale control algorithm is able to remove
large amounts of uncorrelated noise; however when noise levels are
high, fine features (e.g. in the hair and on the blouse) are also elimi-
nated. RMS error for this reconstruction is 12.2 grey levels, including
a 0.7 grey-level DC component, and an estimated 7.4 grey levels due
to noise removal.

non-edge points.3 In differential geometric terms,
Laplace’s equation constrains the intensity function to
be either planar or hyperbolic at all non-edge points.
The curvatures of the intensity surface at hyperbolic
points must be such that the Laplacian is zero (this
does not mean that the mean curvature is zero, in
general). Our algorithm can therefore be viewed as a
reconstruction of planar and hyperbolic image regions
from edge data. In contrast, Barth et al. (1993) have
suggested that little information is contained in “low
dimensional” planar and parabolic regions of the inten-
sity surface for natural images, and that such regions
can be reconstructed from data at “high dimensional”
elliptic and hyperbolic regions.

We chose Laplace’s equation as an interpolation
model because of its simplicity and prior application
(Carlsson, 1988), not for any evidence that it is in some
way optimal. It would be worthwhile to examine var-
ious candidate interpolation models and measure em-
pirically which of these leads to lowest error, both in
RMS and perceptual terms.

Figure 19. Effects of error in sensor noise input parameter. Stan-
dard deviation of sensor noise measured in original image issn = 7.0
grey levels.Top: Edge map and reconstruction when input sensor
noise parameter is correct (sn = 7.0 grey levels). Edge density is
5%. Middle: Edge map and reconstruction when input sensor noise
parameter is underestimated (sn = 2.0 grey levels). Fine image de-
tails are much better represented (compare with original image in
Fig. 18), but at the expense of representing many false edges pro-
duced by sensor noise. Edge density is 25%.Bottom: Edge map and
reconstruction when input sensor noise parameter is overestimated
(sn = 20.0 grey levels). Overestimating the sensor noise does not
improve denoising, and leads to additional loss of detail in image
structure. Edge density is 3%.

6. Applications

The approximate invertibility of our representation
suggests a number of possible applications.

Image Compression. While other invertible edge
codes represent each edge at many scales, our
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approach detects each edge at only one scale (the
minimum reliable scale) and represents each edge
by a simple local model, the parameters of which
are likely to be highly redundant along edgel chains.
The representation thus could form a very good ba-
sis for compression. In order to fully evaluate this
potential, methods for exploiting the redundancy in
edgel position and model parameters must be devel-
oped. As for many other methods, a limiting factor
in compressibility will be the encoding of texture,
which in the edge domain may produce a dense field
of edges which are not easily linked into redundant
chains.

Image Editing. Image editing systems are essen-
tially pixel-based. The problem with this is that pix-
els are essentially artifacts of the sensing process,
having nothing to do with image content. Edges and
contours, on the other hand, have a direct correspon-
dence to important events in the image and scene, and
are known to be very important to human perception.
The reconstructability of our edge code suggests the
possibility of using edges as the primitive working
unit in an image editing system. In such a system,
artists and designers manipulate edges and contours
directly, and the effects their changes produce are
seen by reconstructing the resulting modified edge
representation. We have recently developed a pro-
totype image editing method called ICE (Interactive
Contour Editing) which demonstrates this concept
(Elder and Goldberg, 1998).

Deblurring. The initial stage of reconstruction pro-
duces an intensity function which is approximately
correct, except that all edges are perfectly sharp. This
could be considered a perfectly deblurred image. In
practical applications, one may wish to remove a
general focal blur, while retaining blur variation in
the image due to shadows and shading. This could
be accomplished by estimating the minimum blur
over all edge points, and then correcting the blur
of each edge point to remove this common blur
factor.

Denoising. The local scale control method is de-
signed to achieve an extremely low false positive
rate (less than 5% probability that one or more false
edges are detected in an image). The result is an edge
representation in which each edge reflects real im-
age structure. The reconstructed image is essentially
noise free.

7. Conclusion

To support a diversity of higher-level computations, an
early visual representation must make important infor-
mation explicit and discard only redundant or perceptu-
ally irrelevant information. We have argued that an edge
code computed by local scale control satisfies these re-
quirements. This edge code represents position, inten-
sity change, blur and gradient direction at each edge
point in an image. Edges are detected reliably over a
broad range of contrast and blur scale, and edge model
parameters may be estimated accurately even for com-
plex, highly discontinuous images. A simple and effi-
cient method for inverting the edge code to reconstruct
an estimate of the original image was presented. Resti-
tution of local blur information was seen to be critical to
achieving high fidelity reconstructions. The perceptual
accuracy of these reconstructions is evidence that the
edge code captures the information needed for higher-
level visual inference. Immediate applications of the
representation include compression, image editing, de-
blurring and denoising.
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Note

1. The equation for the critical value functionc2(σ2) published in
(Elder, 1998) contains a typographical error: the constant 1.8
should be replaced by 1.3.

2. There has been considerable work on the problem of reconstruct-
ing an image from two-dimensional image regions, selected by
some form of significance criteria (e.g., Barth et al., 1993; Dron,
1977). We will not review these here.

3. While initial intensity reconstruction satisfies this constraint, the
image will not obey Laplace’s equation exactly after the reblurring
stage.
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