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Abstract

We introduce a structural parameter of a graph, the longest directed path length (LDPL), and

express the boundary of the di�culty of the problems along this parameter. The parallel complexity

of the lexicographically �rst maximal independent set (LFMIS) problem gradually increases as the

value of LDPL grows; the LFMIS problem on a graph of LDPL O(log

k

n) can be solved in O(log

k

n)

time in parallel; and the problem is P-complete on a graph of LDPL �(n

�

). Computing the LDPL

itself is in NC

2

. This is important in the sense that a \measure" is valid only if measuring the

complexity of a problem is easier than solving it. On the other hand, we also show the limits of the

measure. We reduce the LFMIS problem to a kind of the lexicographically �rst maximal subgraph

(LFMS) problems on a graph of LDPL 1. This implies that, even on a graph of LDPL 1, the LFMS

problem is P-complete. Finally we discuss the probability that a random graph has LDPL l and

show that a random graph of which each edge exists with probability p has LDPL �(np) with high

probability. This implies the limit of the LDPL on the average case, because the LFMIS problem on

a random graph can be e�ciently solved in parallel.

Keywords: Analysis of algorithms, NC algorithms, P-completeness, the lexicographically �rst

maximal subgraph problems, threshold function of a random graph.

1 Introduction

The parallel complexity of the problems to �nd a maximal vertex-induced subgraph that satis�es a

speci�ed graph property has been widely investigated. Karp and Wigderson �rst showed that the typical

maximality problem, the maximal independent set (MIS) problem, is in the class NC [1]. Since then,

much work has been devoted to the study of parallel complexity of maximality problems (see e.g. [2, 3, 4]).

On the other hand, the lexicographically �rst maximal independent set (LFMIS) problem is a typical

P-complete problem [5], and P-completeness of the lexicographically �rst maximal subgraph (LFMS)

problems for some graph properties � has been shown [6, 3] (see also [7] for a comprehensive reference).

As noticed by Iwama and Iwamoto [8], one of the approaches to make clear the boundary between

the classes NC and P is to �nd (su�cient) conditions for problems to be in NC or to be P-complete.

They produced a new problem on graphs, called �-connectivity, whose complexity gradually increases

as the value of � grows [8]. Our approach is slightly di�erent from theirs. We provide a \measure"

of sequentiality for the LFMIS problem. That is, the complexity of the problem on a graph gradually

increases as the value measured on the graph grows. The measure is the longest directed path length

(LDPL) of G, which is de�ned by the length of the longest directed path on the directed acyclic graph

of G. The problem to compute the LDPL is in NC

2

. This result is important since a \measure" is valid

only if measuring the complexity of a problem is easier than solving the problem. The results for the

LFMIS problem are the following: The LFMIS problem on a graph of LDPL O(log

k

n) can be solved in

O(log

k

n) time in parallel, and the problem on a graph of LDPL �(n

�

) is P-complete.

We next show a limit of the measure. In an early draft [9], Uehara claimed that the LDPL also

measures the sequentiality of the LFMS problems for a local graph property. However, his proof is

incomplete. As a counterexample, we show P-completeness of a kind of the LFMS problems even on a

graph of LDPL 1.

Finally we show another limit of the measure on the average case. We consider the average value of

the LDPL on a random graph. (For the detail of a random graph, see [10, 11] for example.) Let Q(l) be
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the graph property that the LDPL of the graph is at least l. For a random graph G(n; p), the threshold

function for the property Q(l) is

l

n

. The result implies that the LDPL of a random graph G(n; p) is

�(np) with high probability. Consequently, for any �xed positive real number 0 < p < 1, G(n; p) has

LDPL �(n) with high probability. On the other hand, the LFMIS problem on the random graph G(n; p)

can be solved in O(log n) time (on average) in parallel [12, 13]. That is, on a random graph, there seems

to exist a gap between the measure LDPL and the time required to solve the LFMIS.

2 Preliminaries

We will deal only with graphs and digraphs without loops or multiple edges. Throughout the paper,

unless stated otherwise, G always denotes the input (undirected) graph, V = f0; 1; � � � ; n � 1g and E

denote the set of vertices and edges in G, respectively. Without loss of generality, we assume that

G is connected. The neighborhood of a vertex v in G, denoted by N

G

(v), is the set of vertices in G

adjacent to v. The degree of a vertex v in G is jN

G

(v) j , and denoted by d

G

(v). Vertices of degree

0 are called isolated vertices. For U � V , N

G

(U) is [

u2U

N

G

(u), and G[U ] is the graph (U;F ), where

F = ffu; vg j u; v 2 U and fu; vg 2 Eg. For a graph G, jG j denotes the number of vertices in G.

Let X = fx

1

; x

2

; � � � ; x

k

g and Y = fy

1

; y

2

; � � � ; y

h

g be any subsets of V . (We assume that sets are

always sorted, that is, x

i

< x

j

and y

i

< y

j

for each 1 � i < j � k; h.) Let < be the total ordering on the

sets X and Y de�ned as follows: X < Y if and only if x

i

= y

i

for every i with 1 � i � k, or there is an

index i

0

� 1 such that x

j

= y

j

for every 1 � j < i

0

, and x

i

0

< y

i

0

.

A subset U of V is called an independent set if G[U ] only contains isolated vertices. A maximal

independent set (MIS) in G is an independent set that is not properly contained in any other independent

set. The MIS problem is to �nd, given a graph G, an MIS in G. The lexicographically �rst maximal

independent set (LFMIS) in G is the MIS I in G such that I < J for every MIS J in G. The LFMIS

problem is to �nd, given a graph G, the LFMIS in G. The distance of two vertices in G is the length of

a shortest path joining the vertices. The diameter of a graph is the greatest distance between any two

vertices in the graph.

For G = (V;E),

~

G = (V;

~

E) is de�ned by the directed acyclic graph (DAG) obtained from G by

replacing each edge fu; vg by the arc (minfu; vg;maxfu; vg). (It is easy to see that the resulting graph

~

G is acyclic for any graph G.) The neighborhood of a vertex v in

~

G, denoted N

~

G

(v), is the set of vertices

u in

~

G such that (v; u) 2

~

E. The outdegree of a vertex v in

~

G, denoted by d

+

~

G

(v), is jN

~

G

(v) j , and the

indegree of a vertex v in

~

G, denoted by d

�

~

G

(v), is jN

G

(v) j � jN

~

G

(v) j . We mention that any DAG

~

G

has at least one vertex v with d

�

~

G

(v) = 0, and at least one vertex u with d

+

~

G

(u) = 0 [14, Theorems

16.2 and 16.2']. Especially, d

�

~

G

(0) = 0 and d

+

~

G

(n� 1) = 0 for any DAG

~

G.

Now, we de�ne the measure of the sequentiality for the lexicographically �rst maximal problems. For

v

1

; v

2

; � � � ; v

k

2 V , � = (v

1

; v

2

; � � � ; v

k

) is a directed path in

~

G = (V;

~

E) if (v

i

; v

i+1

) 2

~

E for each 1 � i < k.

The length of �, denoted by j� j , is de�ned by the number of edges in �. (In this case, j� j = k � 1.)

The longest directed path length (LDPL) of G, denoted by LDPL(G), is de�ned by the maximum length

of directed paths in

~

G.

Let n be a positive integer, and p be a positive real number with 0 < p < 1 (and p may depend on n).

The random graph G(n; p) is a probability space over the set of graphs on the vertex set f0; 1; � � � ; n� 1g

determined by Pr [fi; jg is an edge in G] = p, with these events mutually independent. (For the detail of

a random graph, see [10, 11] for example.) Let Q be a graph property that is not destroyed by the addition

of edges to a graph. A function r(n) is called a threshold function for Q if lim

n!1

p(n)=r(n) = 0 implies

that almost no graph has property Q, and lim

n!1

p(n)=r(n) = 1 implies that almost every graph has

property Q.

We use P to denote the class of all polynomial time computable problems, NL to denote the class of

all decision problems solvable by nondeterministic Turing machines that use space bounded by O(log n),

and NC

k

to denote the class of all problems computable by a uniform polynomial size circuit family of

depth O(log

k

n), where n is the size of input, and k is some positive constant. The class NC is de�ned by

[NC

k

(for further details, refer to [5, 15]). Although the P-completeness is de�ned via NC

1

-reducibility

in [5], we use the log space reducibility simply as in [6]: A problem F

0

is said to be P-complete if F

0

is in

P and for each F in P there are log space computable functions f and g such that F (x) = g(F

0

(f (x)))

for all inputs. It is well known that the MIS problem is in NC [1, 16], and the LFMIS problem is one of

the fundamental P-complete problems [5, 6, 7].
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Lemma 1 The problem to compute LDPL(G) is in NC

2

.

Proof. Since any language in NL is also in NC

2

(see [15, Figure 7]), we show that the problem is in

NL. A nondeterministic Turing machine can compute LDPL(G) guessing a path of a certain length in

logarithmic space storing intermediately the length of the initial path segment and the actually visited

vertex. (Remark that it is su�cient to store the actually visited vertex since

~

G is acyclic.) This establishes

the lemma.

Recall that the EREW PRAM is the parallel model where the processors operate synchronously and

share a common memory, but no two of them are allowed simultaneous access to a memory cell (whether

the access is for reading or for writing in that cell). The CRCW PRAM di�ers from the EREW PRAM

in that both simultaneous reading and simultaneous writing to the same cell are allowed; in case of

simultaneous writing, the processor with lowest index succeeds. It is well known that problems solvable

by logspace uniform CRCW or EREW PRAM algorithms in time O(log

k

n) using a polynomial-bounded

number of processors are in NC

k+1

(see [17, Section 3.4]).

3 Lexicographically �rst maximal independent set problem

Let G = (V;E) be a given graph with jV j = n and jE j = m. The main theorem in this section is the

following:

Theorem 2 (1) The LFMIS problem on the graph of LDPL bounded by t(n) can be solved in O(t(n))

time using O

�

n+m

t(n)

�

processors on a CRCW PRAM. (2) The LFMIS problem on the graph of LDPL cn

�

is P-complete under log space reductions for any �xed positive constants c and �.

Proof. (1) The following parallel greedy algorithm solves the LFMIS problem on G (see [18, 12]):

1: Set G

0

:= G, and I := ;.

2: While G

0

has at least one vertex, do: In parallel, for each vertex v with d

�

~

G

0

(v) = 0, add v into I,

and delete v and every vertex in N

~

G

0

(v) from G

0

.

3: Output I.

We consider the time complexity of the algorithm. The algorithm essentially puts each vertex with

d

�

~

G

0

(v) = 0 into I; deletes each vertex whose at least one previous vertex is in I; and puts each vertex

into I whose all previous vertices are deleted. From this observation, we can get an unbounded fan-in

NOR switching circuit of depth t(n) and of size n+m for solving the problem. It is folklore to evaluate

the circuit in O(t(n)) time by a CRCW PRAM with the total workload O(n +m).

(2) It is well known that the LFMIS problem is P-complete [6, 7]. In other words, the LFMIS problem

on a graph of LDPL n � 1 is P-complete. We reduce the general LFMIS problem to the restricted

one. For a given graph G with n vertices, we make f(n) copies of the original graph with the same

orders, say G

0

, where f(n) =

l

�

n

c

�

1

�

m

. It is clear that this is a log space reduction, and the LFMIS

of G

0

consists of f(n) copies of the LFMIS of the original graph. Now, LDPL(G

0

) is at most n � 1

and the number of vertices of G

0

is n

0

= nf (n). Thus, for the resulting graph G

0

with n

0

vertices,

LDPL(G

0

) < n � c(f (n))

�

< c(nf(n))

�

= cn

0�

. This completes the proof.

4 Lexicographically �rst maximal subgraph problem for a local

property

Miyano proved the P-completeness of the lexicographically �rst maximal subgraph problem for a hered-

itary property [6], and Shoudai and Miyano showed that the maximal subgraph problem for a local

property is in NC [4]. Using their techniques, Uehara claimed that we can generalize the results in the

previous section in early drafts [18, 9]. However, his proofs are incomplete. We show a counterexample

in this section.

For a given graph G = (V;E), a subset U of V is called a star if G[U ] is acyclic and its diameter is at

most 2. The vertex v in a star set U is a center of U if N

G[U ]

(v) [ fvg = U . A subset U of V is called

a star set if G[U ] only contains disjoint stars. A maximal star set (MSS) in G is a star set that is not
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properly contained in any other star set. The MSS problem is to �nd, given a graph G, the MSS in G.

The MSS problem is in NC; Chen and Kasai showed the NC algorithm that �nds a maximal vertex set U

such that G[U ] is acyclic and its diameter is bounded above by a given integer [19]. The lexicographically

�rst maximal star set (LFMSS) in G is the MSS I in G such that I < J for every MSS J in G. The

LFMSS problem is to �nd, given a graph G, the LFMSS in G. A star set satis�es the following properties

stated in [6, 4, 18]; in�nitely many graphs are star set, and some graph is not a star set (nontrivial);

vertex induced subgraph of a star set is also a star set (hereditary); and independent edge set is a star

set. Moreover, for a given graph G = (V;E) and a subset U of V , testing if U is a star set in G can be

solved in constant time using n+m processors (assigned to each vertex and edge) on a CRCW PRAM

by the following algorithm (its implement is not di�cult and omitted here):

1. In parallel, each edge of which both endpoints are in U writes its index to both endpoints;

2. In parallel, each edge whose endpoints are both in U checks each endpoint, and labels it with

\center" if it has di�erent index from the edge;

3. If there exists an edge of which both endpoints are \center" then the answer is \No", else the answer

is \Yes."

We remark that an independent edge is a star and its endpoints are both centers. However, the edge

could not be checked in step 3 since both endpoints were not labeled with \center" in step 2.

Theorem 3 The LFMSS problem is P-complete even on a graph of LDPL 1.

Proof. We reduce the (general) LFMIS problem to the LFMSS problem on a graph of LDPL 1. For a

G G

0

2

4

0
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5

1

12

14
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15

11

0
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2

3

4

5

6

7

8

9

Figure 1: Reduction from the LFMIS to the LFMSS

given graph G = (V;E) with n vertices and m edges, we construct a new graph G

0

= (V

0

; E

0

) with n+m

vertices and 2m edges. We �rst replace each edge in E by a path of length 2. The replacement adds the

graph m new vertices. The original vertices i in V are renumbered by i + m, and the new vertices are

numbered by 0 to m � 1 in arbitrary order. Figure 1 depicts an example. Clearly, this is a log space

reduction.

We �rst show that LDPL(G

0

) = 1. In G

0

, every path of length 2 forms either (new vertex, original

vertex, new vertex) or (original vertex, new vertex, original vertex). Each original vertex is greater than

any new vertex. Thus

~

G

0

contains no directed paths of length 2, or LDPL(G

0

) = 1.

We next show that the algorithm for the LFMSS on G

0

also �nds the LFMIS on G. Without loss

of generality, we assume that G contains at least three vertices. Let U be the LFMSS on G

0

. Since U

is lexicographically �rst, U must contain independent set f0; 1; � � � ;m � 1g. That is, U contains all new

vertices. Let U

0

be U � f0; 1; � � � ;m � 1g. Then it is su�cient to show that U is the LFMSS on G

0

if

and only if U

0

is the LFMIS on G (we sometimes ignore that the index of u in G is changed to u + m

in G

0

for ease to read). We here show that U contains no pair of original vertices that are joined in G.

To derive a contradiction, we suppose that U contains two vertices u and v with fu; vg 2 E. Since G is

connected and contains at least three vertices, u or v has another neighbor. We say that w is the other

neighbor of u. Then, U is not a star set of G

0

since four vertices (the new vertex on the edge fw; ug,

the original vertex u, the new vertex on the edge fu; vg, and the original vertex v) produce a path of

length 3. Thus if U is a star set then U

0

is an independent set of G. Similar argument shows that if U is

not a star set then U

0

is not an independent set of G. Thus U is a star set of G

0

if and only if U

0

is an

independent set of G. It is easy to see that the maximality of the star set U on G

0

directly corresponds

to the maximality of the independent set U

0

on G. From the rule of the reduction, it is also easy to see

that U is the LFMSS of G

0

if and only if U

0

is the LFMIS on G.
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Remark: In [9], for a given graph G, Uehara claimed that his greedy parallel algorithm solves the

lexicographically �rst maximal subgraph problem in the time bounded by LDPL(G). We briey view

how his algorithm misses to e�ciently �nd the LFMSS of G

0

constructed in the proof above, although

LDPL(G

0

) = 1. The algorithm, for given G

0

, �rst �nds the lexicographically �rst independent set

f0;1; � � � ;m� 1g in a constant time. Then, the algorithm adds auxiliary edges that produce the original

graph G in this case. In the time, the algorithm faces the problem on the original graph G of large LDPL,

and can not solve it e�ciently.

5 LDPL on a random graph

In this section, we consider the average value of the LDPL on a random graph. We denote by Q(l) the

graph property that the LDPL of the graph is at least l. Without loss of generality, we assume that l

is an increasing function of n with l < n. The property Q(l) seems to be similar to the graph property

that contains a path of length l, say Q

0

(l). However, these properties are completely di�erent, and so

their threshold functions are. While the threshold function for Q

0

(l) is n

�(l+1)=l

[11, Figure 13.1], the

threshold function for Q(l) is

l

n

stated later. The reason is, intuitively, stated as follows: Let K

n

be

the complete graph with n vertices. Then while the number of the undirected (vertex-disjoint) paths of

length l in K

n

is

�

n

l+1

�

(l+1)!

2

, the number of the directed paths on

~

K

n

is only

�

n

l+1

�

, since a directed path

using speci�c (l + 1) vertices is uniquely determined following their order. This observation implies the

following proposition.

Proposition 4 Let N(n; p; l) be the expected value of the number of the directed paths of length l on

~

G(n; p) with l � 1. Then N(n; p; l) =

�

n

l+1

�

p

l

.

Let l

0

be the least integer that satis�es N (n; p; l

0

) � 1. Intuitively speaking, l

0

gives the LDPL on

G(n; p) on the average case. Using the equation

�

n

l

�

l

�

�

n

l

�

(see [20, Proposition B.2] for example),

we get 1 �

�

n

l

0

+1

�

p

l

0

�

�

n

l

0

+1

p

�

l

0

, consequently, np � 1 � l

0

. On the other hand, using the equation

�

n

l

�

�

�

en

l

�

l

and N (n; p; l

0

� 1) > 1, we also get 1 <

�

n

l

0

�

p

l

0

�1

�

�

en

l

0

�

l

0

p

l

0

�1

. This implies that

p <

�

enp

l

0

�

l

0

, consequently, l

0

<

enp

p

1

l

0

= enp

1�

1

l

0

< enp + 1 for su�cient large n (or l

0

). Thus the LDPL

on G(n; p) is nearly equal to np on the average case. We show that the average case occurs with high

probability.

Lemma 5 Let d be any positive integer with d+ l

0

� n. Then N(n; p; d+ l

0

) � (1� p)

d

�

l

0

+1

l

0

+2

�

d

:

Proof. Using

�

n

l

0

+1

�

p

l

0

� 1 and l

0

� np� 1, we have

N(n; p; l

0

+ d) =

n � l

0

� 1

l

0

+ 2

n � l

0

� 2

l

0

+ 3

� � �

n� l

0

� d

l

0

+ d + 1

�

n

l

0

+ 1

�

p

l

0

p

d

�

n � l

0

� 1

l

0

+ 2

n � l

0

� 2

l

0

+ 3

� � �

n� l

0

� d

l

0

+ d + 1

�

l

0

+ 1

n

�

d

�

�

n� l

0

� 1

n

�

d

�

l

0

+ 1

l

0

+ 2

�

d

� (1� p)

d

�

l

0

+ 1

l

0

+ 2

�

d

:

Lemma 6 We assume that

n

p

= o(n

2

). Let c

1

be any �xed real number with 0 < c

1

< 1, and l

1

be c

1

np.

Let � be any given real number with 0 < � < 1. Then for su�ciently large n, the LDPL of G(n; p) is at

least l

1

with probability greater than 1� �.

Proof. We consider the following algorithm:

1: Set v := 0;

2: Find the least vertex u such that u > v and (v; u) is an arc in

~

G(n; p);
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3: If such u does not exist or the length of the directed path produced by the computed vertices is l

1

,

halt;

4: Set v := u, and go to step 2.

We show that the algorithm �nds a directed path of length l

1

with high probability. This implies that

the LDPL of G(n; p) is at least l

1

. Let X be a random variable de�ned to be the number of trials

required to check whether (v; u) is an arc in

~

G(n; p) in step 2. Let C

1

; C

2

; � � � ; C

X

denote the sequence

of trials, where C

i

is \success" if (v; u) is an arc in

~

G(n; p), or \failure" otherwise. We assume that the

algorithm halts because it �nds a directed path of length l

1

. In this case, C

X

is success. We divide

the sequence into epochs as follows; epoch 1 begins with C

1

and ends with the �rst success; and epoch

i with i > 1 begins with the trial following the ith success and ends with the trial on which we obtain

the (i + 1)st success. De�ne the random variable X

i

, for 1 � i � l

1

, to be the number of trials in the

ith epoch, so that X =

P

l

1

i=1

X

i

. The random variable X

i

is geometrically distributed with parameter

p since the probability of success on any trial is p from the de�nition of a random graph G(n; p). Thus,

the expected value of X

i

is

1

p

, and its variance is

1�p

p

2

. Hence, the expected value of X is

l

1

p

= c

1

n, and

its variance is

1�p

p

c

1

n. Thus, using Chebyshev's Inequality, we get Pr

h

jX � c

1

n j �

q

(1�p)c

1

n

(1��)p

i

� 1� �:

Here

q

(1�p)c

1

n

(1��)p

<

q

c

1

1��

q

n

p

= o(n). Hence c

1

n+

q

(1�p)c

1

n

(1��)p

< n for su�ciently large n. Consequently,

the algorithm success to �nd a path of length l

1

with probability greater than 1� � for su�ciently large

n. This completes the proof.

Now we are ready to show the threshold function of Q(l). We remind that the function r(n) is the

threshold function of Q(l) if lim

n!1

p(n)=r(n) = 0 implies that almost no graph has property Q(l), and

lim

n!1

p(n)=r(n) =1 implies that almost every graph has property Q(l).

Theorem 7 For Q(l) with l � 1, r(n; l) =

l

n

is the threshold function.

Proof. Let l

2

be the least integer that satis�es N(n; r; l

2

) � 1 on a random graph G(n; r). Then

enr+ 1 � l

2

� nr � 1.

We �rst consider a random graph G(n; p) such that lim

n!1

p(n; l)=r(n; l) = 1. Then for any positive

�xed constant c

3

with 0 < c

3

< 1, c

3

np > enr + 1 � l

2

for su�ciently large n. This implies that

n

p

<

n

2

l

2

=

n

2

c

2

l

= o(n

2

). Thus, from Lemma 6, the LDPL of G(n; p) is at least l

2

with probability greater

than 1� � for any �xed positive real number �.

Next assume that lim

n!1

p(n; l)=r(n; l) = 0. Let l

3

be the least integer that satis�es N(n; p; l

3

) � 1 on

a random graph G(n; p). Since enp+1 � l

3

, for any �xed positive integer d, (1+d)l

3

� (1+d)(enp+1) <

nr � 1 � l

2

< n for su�ciently large n. From Lemma 5, N (n; p; l

3

+ dl

3

) � (1 � p)

dl

3

�

l

3

+1

l

3

+2

�

dl

3

: When

p is a positive constant, N(n; p; l

3

+ dl

3

) converges to 0 since N (n; p; l

3

+ dl

3

) � (1� p)

dl

3

. When

p = o(1), consequently, l

3

= o(n), we have N(n; p; l

3

+ dl

3

) �

�

l

3

+1

l

3

+2

�

dl

3

=

�

1 �

1

l

3

+2

�

d(l

3

+2)

�

l

3

+2

l

3

+1

�

2d

�

�

�

1 +

1

l

3

+1

�

2

1

e

�

d

, which also converges to 0 for large d and n (or l

3

). From their de�nitions, Q(l) is

satis�ed with probability at most N (n; p; l). Thus the probability that the LDPL of G(n; p) is at least l

3

converges to 0. Since l

3

< l

2

, the LDPL of G(n; p) is at least l

2

with probability less than � for any �xed

positive real number �.

6 Concluding remarks

In an early draft [18], as a measure, Uehara de�ned the maximum directed tree size (MDTS) as follows:

A directed tree T in G is the edge-induced subgraph of G such that T is a tree and every path from the

root to each leaf is a directed path on

~

G. The maximum directed tree size (MDTS) of G is de�ned by

the maximum number of vertices of a directed tree in G. The MDTS equals to maxf jR(v) j g, where

R(v) is the set of vertices that are reachable from v on

~

G. Thus, the graph of LDPL l has the MDTS

at least l. On the other hand, a complete binary tree of size n has the MDTS n and the LDPL dlog ne.

Hence, the graph family of LDPL O(logn) properly contains the graph family of MDTS O(log n). That

is, there is a graph such that (1) using the measure LDPL, we can know that the LFMIS can be found

in O(log n) time in parallel unless computing itself, and (2) we cannot know the fact using the measure

6



MDTS since its MDTS is n. From the viewpoint of preciseness, the LDPL is a better measure than the

MDTS. On the other hand, the graph G

0

in the proof of Theorem 3 has MDTS 3. That is, the proof of

Theorem 3 also states that the LFMSS problem is P-complete even on a graph of MDTS 3. Hence we

cannot use the LDPL and MDTS as measures of the sequentiality of the general lexicographically �rst

maximal subgraph problem.

Moreover, the LDPL does not completely characterize the parallel complexity of the LFMIS problem.

For any �xed positive real number 0 < p < 1, while the LDPL of a random graph G(n; p) is �(n) with

high probability, the LFMIS problem on the random graph can be solved in O(log n) time (on average)

in parallel [12, 13]. That is, on a random graph, there seems to exist a gap between the measure LDPL

and the time required to solve the LFMIS.

However, it is worth remarking again that computing the LDPL is in NC

2

for any given graph. In

the sense, using the LDPL, we can e�ciently measure the sequentiality of the LFMIS problem without

solving the problem.

These facts motivate us to �nd a better measure that characterizes the parallel complexity of P-

complete problems more strictly and/or generally.
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