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Abstract. The concept of cluster stability is introduced as a means for as-
sessing the validity of data partitionings found by clustering algorithms. It
allows us to explicitly quantify the quality of a clustering solution, without
being dependent on external information. The principle of maximizing the
cluster stability can be interpreted as choosing the most self-consistent data
partitioning. We present an empirical estimator for the theoretically derived
stability index, based on imitating independent sample-sets by way of resam-
pling. Experiments on both toy-examples and real-world problems effectively
demonstrate that the proposed validation principle is highly suited for model
selection.
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1 Introduction

Unsupervised learning or clustering aims at extracting hidden structure in a
data set. This goal requires to find an answer to some fundamental questions:
(i) what structure are we interested in? (ii) what kind of clustering model
provides a suitable method for extracting the desired structure? (iii) what
is the “correct” number of clusters? The first question can be viewed as a
problem definition, the last two ones are usually referred to as the problem
of cluster validation. In general, validating clustering solutions means evalu-
ating results of cluster analysis in a quantitative and objective fashion. Such
evaluation can be based on two types of criteria: (i) External criteria: a clus-
tering solution is matched to a priori information, i.e. external information
that is not contained in the dataset. (ii) Internal criteria: the quality measure
is exclusively based on the data themselves. Internal criteria can roughly be
subdivided into two groups: such that assess the fit between the data and the
expected structure, and others that focus on the stability of the solution.

In this work we present a resampling-based method for cluster validation.
According to the above taxonomy, it is an internal criterion which requires no
prior information. The central ingredient of the validation method is the no-
tion of cluster stability. Stability measures the variability of solutions, which
were built on two independent samples from the same data source. The sta-
bility concept has a clear theoretical interpretation as choosing the most self-
consistent data partitioning. Clustering is treated as the problem of identify-
ing the hypothetical supervisor, that explains the data in the most consistent
way. Among all possible labeling of the data (i.e among all possible supervi-
sors), we select the one which provides us with the smallest expected number
of misclassifications on a test set, given a fixed grouping algorithm.

Seen from a technical viewpoint, our resampling method refines related
approaches initially described in [1] and later generalized in different ways in
[5] and [4]. From a conceptual viewpoint, however, it extends these heuristic



2

approaches by providing a clear theoretical background for model selection
in unsupervised clustering problems.

2 Stability and risk minimization

Applying the stability concept to unsupervised clustering problems is only
meaningful, if we think about clustering as partitioning the whole object space.
This view of the problem requires the user to specify a predictive inference
mechanism for data-grouping methods. While this may be viewed as a very
strong requirement, we believe that otherwise any general concept of purely
data-dependent (internal-) cluster validity would be inherently ill-defined.

Contrary to classification problems, algorithms for clustering data cannot
be stated in a purely discriminative fashion. The missing labeling information
requires an additional modeling step: given a set of physical measurements
(or features) describing the objects to be partitioned, we must specify how
these features relate to the structure we are interested in. This is usually done
by specifying a grouping principle, such as inter-cluster compactness crite-
ria or intra-cluster separation measures. Based on such a principle, different
grouping algorithms can be formulated. In spite of the fact that the stability
framework also applies to this general setup, in the following we will restrict
ourselves to the more intuitive situation in which we have already specified
an algorithm. The open question within this framework is the “correct” num-
ber of clusters, a problem which is usually called the model order selection
problem.

We may formalize this by considering potential supervisors, each of which
labels the n objects contained in a training set by a different number 2 ≤
k < n of clusters (we do not consider the degenerate case k = 1 which of
course always has perfect stability). A grouping algorithm α assigns labels to
objects, and in this sense it defines a potential supervisor. For this supervisor,
α can then be viewed as a classifier with zero empirical risk. More precisely,
we have the following situation: a data generator produces a series of i.i.d. sets
of n objects

On
1 , . . . , On

l , . . . (1)

If the set On
i is presented to a fixed clustering algorithm α, we obtain a set

of hypothetical labels
Y n := {αi(On

i )}, (2)

where the variable Y takes values in the range of {1, . . . , k}. In the following
we will always denote by αi a fixed algorithm trained on the sample On

i .
Despite the clustering algorithm is considered fixed, the actual partition of
the object space still depends on the training set. The principle of cluster
stability estimates the degree of this dependence with respect to differences
between partitions. Presenting a second set of objects On

j to the algorithm,
we define (in-)stability as the empirical risk of the rule αj on the test-set On

i ,
assuming the true labels are those defined in (2). Note that this is a measure
of the generalization ability of αj , since both sets On

i and On
j are drawn

independently from the same data source. Denoting with 1{·} an indicator
function, our instability functional is defined as the empirical probability of
false predictions:

d′′ [αi(On
i ), αj(On

i )] =
1
n

n∑
l=1

1{yl 6= αj(ol)}, with On
i = {o1, . . . , on}. (3)
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It is important, that we have this asymmetric situation in which only the rule
αj is used in a predictive sense, whereas αi is evaluated on its training set.
If we would have tested both rules on a third set, it is possible to measure
high stability in overfitting situations where both rules cannot generalize at
all: consider for example an algorithm that only memorizes the objects seen
in the training set, and always predicts label i for unseen objects. The same
problem occurs, if we measure the stability based on a common fraction of
the learning sets. The latter also explains, why stability measures are only
meaningful with respect to generalization ability, if the grouping algorithm
can be used in a predictive sense.

Selecting a grouping solution with high stability corresponds to identifying
a hypothetical supervisor, for which the chosen learning algorithm provides
on average a small risk on a test set of size n (we averaged over many tuples
of learning- and training sets). Since by assumption all solutions have zero
empirical risk, the principle of favoring stable solutions can be viewed as
selecting the most self-consistent labeling.

Due to the inherent permutation symmetry of clustering algorithms, how-
ever, the following problem arises in equation (3): even if exactly the same
objects are grouped together, the labels may be arbitrarily permuted. In order
to overcome this problem, we consider the loss incurred for all permutations
π of the set of predicted labels αj(On

i ), and choose the one with smallest risk:

d′(αi, π(αj)) := min
π

d′′ [αi(On
i ), π(αj(On

i ))] . (4)

Fortunately, there is no need to explicitly examine all k! possible matches. We
can rather use the Hungarian method for solving minimum weighted perfect
bipartite matching problems with computational complexity of O(k3), [6],
p. 248.

The minimization over the permutations limits the highest possible insta-
bility to that of a random predictor ρ: d′(αi, π(αj)) ≤ d′(ρi, π(ρj)). If for one
fixed labeling the risk of α is higher than that of ρ, we can always find a
permutation such that it becomes smaller. In the asymptotic case, n → ∞,
we can analytically calculate that the random instability approaches 1−1/k.
Therefore, (4) is bounded from above by

d′(αi, π(αj)) ≤ 1− 1/k. (5)

In the non-asymptotic case, we cannot neglect the influence of the permu-
tations. However, we can easily estimate the random stability by sampling.
In order to use the (in)stability value for selecting the “correct” number of
clusters k, the dependency of d′(ρi, π(ρj)) on k requires us to normalize the
measurements. Taking expectations with respect to different pairs of sets
(On

i , On
j ), the final estimator that ensures fair comparisons between different

values of k then reads:

d̂(α) = Ei,j

[
min
π,π′

d′(αi, π(αj))
d′(ρi, π′(ρj))

]
. (6)

In practice, different pairs of sets (On
i , On

j ) are hardly available (note that
the size of the individual sets n should be large), but we may emulate these
sets by iteratively splitting the total set of objects into two disjoint halves.
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3 The Algorithm in Practice

With the theoretical derivation of the stability concept in the last section, a
practical algorithm can now be outlined as follows:

1. Split the object set into two sets of equal size, On
1 and On

2 .
2. Present the first dataset to the algorithm. The result is the mapping α1

of each of the objects in On
1 to one of k clusters.

3. Apply α to the second set On
2 . Use α2 to predict the cluster membership

of all objects contained in the first set.
4. Set On

1 now has two different labelings. Find the correct permutation
of labels by using the Hungarian method for minimum weighted perfect
bipartite matching. The costs for identifying labels i and j are the number
of miss-classifications with respect to the labels Y n = α1(On

1 ) (these are
assumed correct).

5. Normalize with respect to the random stability.
6. Iterate the whole procedure from step 1 to 5, average over assignment

costs and compute the expected (in-)stability value.
7. Iterate the whole procedure for each k to be tested.

4 Experiments

A Toy Example
In a first toy example, we demonstrate the model selection performance of
the proposed stability estimator for synthetically generated datasets. We have
drawn data samples from 3 different sources forming concentric rings in the
2-dimensional plain. A suitable clustering method for line-shaped data of this
kind is Path-based Clustering, [2]. Figure 1 shows the estimated (in-)stability
curve for this grouping model. We can clearly identify the solution for k = 3
as the most stable partition with an estimated risk of d̂(α) < 0.1%. This
model significantly outperforms all other choices of k.
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Fig. 1. Averaged instability curve and standard deviations for the 3 rings
toy-example (left panel). The most stable solution with k = 3 (right panel).

The Iris Dataset
Perhaps the best known database to be found in the pattern recognition
literature are the Iris data, [3]. The data report four characteristics (sepal
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width, sepal length, pedal width and pedal length) of three species of Iris
flower. Each class contains 50 instances. One class is linearly separable from
the other 2, the latter are not linearly separable from each other. Thus,
we expect a two-cluster solution to two be very stable on different subsets.
Estimating three clusters should also be possible with high stability. Our
experiments nicely coincide with these expectations: we have randomly split
the data 30 times in two subsets, applied a k-means clustering algorithm
(optimized by way of deterministic annealing), and measured the matching
costs between the two partitions. The resulting instability curve is depicted
in figure 2.
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Fig. 2. Estimated instability for the Iris dataset vs number of classes, and standard

deviations. The solution for k = 2 is extremely stable (risk d̂(α) ≈ 0.1%, the one

for k = 3 still has a relatively low estimated risk d̂(α) ≈ 8%.

The Yeast Cell Cycle Dataset
The yeast cell cycle dataset [7] shows the fluctuation of expression levels
of yeast genes over cell cycles. Using periodicity and correlation algorithms,
(Spellman et al.) identified 800 genes that meet an objective minimum cri-
terion for cell cycle regulation. By observing the time of peak expression,
(Spellman et al.) crudely classified the 800 genes into 5 different groups.

In our experiments, we investigated both the validity of clustering solu-
tions and their accordance with the classification proposed. From the com-
plete dataset (available at http://cellcycle-www.stanford.edu), we used
the 17 cdc28 conditions for each gene, after log-transforming and normaliza-
tion to zero mean and unit variance. We grouped the 17-dimensional data by
minimizing the k-means cost function using a deterministic annealing strat-
egy. The estimated instability curve over the range of 2 ≤ k ≤ 20 is shown
in figure 3. For each k, we averaged over 20 random splits of the data. A
dominant peak occurs for k = 5, with an estimated misclassification risk of
d̂(α) ≈ 19%.

In order to to compare a 5 cluster solution with the labeling proposed by
(Spellman et al.), we again used the bipartite matching algorithm to break
the inherent permutation symmetry. The averaged agreement rate over all 5
groups is ≈ 52%. This may be viewed a rather poor performance. However,
the labels cannot be really considered as the “ground truth”, but rather as
a vague estimate. The authors themselves consider their labels as “...only a
crude classification with many disadvantages”. Moreover, a closer view on the
individual agreement rates per group shows, that at least two groups could
be matched with more than 70 % agreement.
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Fig. 3. Estimated instability for the Yeast Cell-Cycle dataset vs. number of classes.

5 Conclusions
We have introduced the concept of cluster stability as a means for solving
the model order selection problem in unsupervised clustering. Given two in-
dependent object-sets from the same source, we recast grouping problems as
supervised classification tasks. In this scenario, the first grouping solution
identifies a hypothetical supervisor, for which it provides a classifier with
zero empirical risk. Presenting the second object-set to the fixed grouping
algorithm, the (in-)stability functional measures the empirical probability of
misclassifications with respect to the labeling by the identified supervisor.
Taking expectations over tuples of object-sets, and normalizing by the sta-
bility of a random predictor, we derive a stability measure that allows us to
compare solutions for different numbers of clusters in a fair and objective way.
In order to estimate the cluster stability in practical applications, we intro-
duced an empirical estimator that emulates independent samples by way of
iteratively splitting the total object-set. Unless many other validation indices
proposed in the literature, the estimated instability has a clear interpretation
in terms of misclassification risk. The results presented in the experiments
section effectively demonstrate that cluster stability is a suitable measure for
estimating the most self-consistent data partitioning.
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