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Abstract

We consider upper bounds on two fundamental parameters of a code; mini-
mum distance and covering radius. New upper bounds on the covering radius
of non-binary linear codes are derived by generalizing a method due to S. Lit-
syn and A. Tietavéinen [9] and combining it with a new upper bound on the
asymptotic information rate of non-binary codes. The new upper bound
on the information rate is an application of a shortening method of a code.
These results improve on the best presently known asymptotic upper bounds
on minimum distance and covering radius of non-binary codes in certain
intervals.
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1 Introduction

Bounds on minimum distance and covering radius attracted a great deal of
research (see, e.g. [10, 3]).

In this paper we consider the case of bounds for parameters of non-binary
codes. The best presently known upper bounds on the minimum distance
is due to M. Aaltonen [2], and was obtained using the linear programming
method in the generalized Johnson scheme (see Section 3 for more details).
It is known that there the covering radius depends crucially on the distance
of the dual code.

In 1973 Delsarte [5] proved that the covering radius of a code is at most
the number of nonzero weights in the dual code. Later in the papers [4, 6, 7,
12, 13, 14, 16, 17] a number of bounds have been obtained for the covering
radius of a code with a given dual distance.

Especially, Tietavainen [17] gave the following asymptotic result:

Let ()2, be a sequence of codes €, C F' with dual distance d' = d'(n)
and covering radius R = R(n) where R/n — p and d'/n — §' when n — oo.
Then

p i - = o0 (1)

In the paper [14] Solé and Stokes proved the following asymptotic result
for linear codes with certain assumptions (see [14, Section VI]):

Hq (‘1;_1 B %5/ B 3\/((] B 1)5/(1 B 5/)) (2)
log, (ﬁ)

H,(2) {0 if x =0,
) = . 1
7 vlog, (¢ —1) —zlog,a — (1 —a)log, (1 —a) if 0 <a <=

In the last expression an upper bound on the information rate is implic-
itly used. The best known bound for non-binary codes was obtained by
M.Aaltonen [2] in the frames of linear programming method.

In this paper we generalize a method due to Litsyn and Tietavédinen [9]
to non-binary codes and we give a new upper bound on the asymptotic in-
formation rate improving on Aaltonen’s bound; i.e., a new asymptotic upper
bound on the minimum distance is obtained. Combining these two results
gives a new asymptotic upper bound on the covering radius of non-binary
linear codes which improves on the best presently known bounds (1) and (2)
in certain intervals (see Section 4).



2 The generalized method

Let F, denote the finite field of cardinality of q. Assume that C' C F}' is a
linear code of dimension k, minimum distance d(> 3), covering radius R and
dual distance d'. Let the (n — k) x n matrix H = (hy,...,h,) be a parity
check matrix for ' and, denote the set {hy,...,h,} by L and the nonzero
elements of I, by I'x. Let Nu(L,s,b), where a = (ay,...,a,) € (F})°, be the

number of solutions (xy,...,xs) € L* of the equation
X1+ ...+ aX, = b. (3)
Denote also N(L,s,b)= > Na(L,s,b).
ae(Fy)°

The covering radius R of a linear code €' is the smallest integer r such
that every syndrome of C' is a Fi-linear combination of at most r columns of
H.

Let ¢ = p” where p is the characteristic of F}. We recall (see e.g. [5]) that
a character ¥y, u € I, of (£, +) is of the form

Yu(v) = W) for all v € Fr
where w denotes a primitive complex pth root of unity, u-v the inner product

of the vectors u and v, and the trace function Tr? : F; — F), is defined by

Tri(z) = :1;—|—:1;p—|—...—|—:1;pr_1.

P
The next lemma is crucial in the sequel and it generalizes the result

presented in [9] to non-binary codes.

Lemma 1 Assume that for each b € Fq”_k there is a polynomial of degree
at most r such that

where (3;(b) = > Yk(=b). Then R <.

keFr* w(kH)=:

Proof. 1t is well-known (see e.g. [10, p.143]) that

ko if a =
Z ¢k(a):{g f 0.

. otherwise,
keFg™

and therefore, by (3), we obtain

qn_kN(L,S,b) = Z ¢k(_b) (Z Z ¢k(ax))

kEF;_k xX€eL aEF;



Furthermore,

> 2 vkl(ax) =n(q—1) — qu(kH)

xeL aEF;

where w denotes the Hamming weight.
Since kH runs through all elements of the dual code €'~ of ', when k

runs through the elements of Fq”_k, we have

¢"N(L,s,b) =3 > Uk(=b)| (nlg—1) —qi)°
=0 \keF* w(kH)=i
and therefore,

¢"*N(L,s,b) = > Bi(b)(n(qg—1) — ¢i)". (4)
=0
We choose next such a polynomial g(z) = Zr: vsx® that g(n(g—1)—qi) =
5=0
f(2). Since Bo(b) =1 for all b € Fq”_k, we have by (4)

0 < f(0 +Zﬁ

= q”_kZ’ysN L.s,b
s=0

Hence N(L,s,b) # 0 for at least one s (s =0,1,...,r) and so R <r. O

We should now find a polynomial of a low degree such that |f(7)| is small
compared to f(0) when ¢ # 0 and 3;(b) # 0.

The Chebyshev polynomial of the first kind and degree r is defined in [11
p.5] by

Tox) =5 ((e+Var=1) + (e = Va2 =1)').

DN | —

So clearly, = > 1,

L(z) < 5((z + Va2 = 1)+ 1) (5)

[N

Assume that 0 < a < b. Among the polynomials p,.(x) of degree at most
r such that p,(0) = 1 the one defined by

T. (b—l—a—Qx)

b—a

to(z) = W

b—a
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provides (see [15, p.42]) the minimum of max,ep, 4 [pr()|. Furthermore,

1
max_[t.(z)| =

c€[a,b] T. (Zirz)

In order to apply the polynomial ¢,(z) to Lemma 1 efficiently, we need to
know something about the asymptotic information rate of non-binary codes.
It will be studied in the next section.

3 New upper bounds on the information rate

Let M,(n,d) denote the number of words in the largest code C' C F" with
minimum distance at least d. We define the asymptotic information rate

R,(8) (0< 8 <1) by

1
R,(6) = lim sup —log, M,(n, d),
n—oo N
where lim,,_, ., d/n = 4.
The tightest presently known upper bounds on asymptotic information
rate of non-binary codes are the following ones (see [2, p.141]):

2
q q—2
Rq(5)§1—5q_210gq(q—1), g>2,0<6< (T) ,  (6)

and
Ry(8) <1 = Hy(w) + fo(&m), (7)

where the parameters satisfy the following conditions:

—2
0<w<l, Ogngq—lw, 0<¢—n<min{w-—n,1-w},
q_

with the following notations:

Jo(&sm) = Hy (&) + EHy (/&) — (£ 4n)log,(q — 1) +nlog,(q — 2),

g—1 q—2
b ===

z— 2\/((] —Da(l—2), (0<a<1),
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and

With a certain choice of parameters the bound (7) reduces to a simpler
form (see [2, p.141]):

Ry(6) < Hy (0 (8)), 0 < 6 < T, Q
which is useful for when ¢ is close to (¢ — 1)/q (see [2, p.157]). We are
here interested in large values of §, since the method presented in Lemma 1
improves on the bound (1) when ¢’ is large.

In order to give a new upper bound on R,(§), we shall need the following
theorem, which generalizes the well-known result (see e.g. [10, p.43])

Mq(nv d) < thq(n —t, d)
where t < n —d. Let B.(x) be the Hamming sphere of radius r and with
center at x € F'. Denote its cardinality by V,(n,r) = Zr: (n) (g —1).
=0

K3

Theorem 1 Let 0 <d<n,d—2r<n—t,0<r<tand0<r< %d. Then

i1

_7
Va(t,r)

Proof. Let a code €' C F]' be such that its cardinality is M,(n,d) =:
M:; ie. let C be an (n,M,d) code. We shorten the code C' choosing ¢
components of codewords and taking those codewords in which the chosen
t components belong to a Hamming sphere of radius r. Finally, we delete

M,(n,d) < M,(n —t,d—2r). (9)

these t coordinates.

Next we show that in this way we get from C an (n —¢,> %%(t,r), >
d — 2r) code. The first parameter is clear and the third one follows from
the fact that the deleted parts of the selected codewords differ at most in
2r positions. Let us now consider the second parameter. We denote the M
words (not necessarily distinct) of the ¢ components by y1,...,ym € F; in
some order. Let

1 ify € B.(x),

(0 otherwise.

\x(y) = {

Since
1 M JRl
=D > =) = 2> (i)
q XEF(; =1 q =1 xEFé
= qu(tvr)v



there exists a sphere of radius r which contains at least th\/(](t, r) of the words
Yi,...,¥nm and so the claim follows. a

By the previous theorem we get now the following upper bound on the
asymptotic information rate.

Theorem 2 Let 0 <6 < ‘1;—1,7—2)\§ 1-6,0< A< 5and0 <X < %r.
Denote £ =2 and y = 51_%. Assume that x # 6. Then

-7

d—y
r—y

Ry(8) < R(y) + (1 — Hy(x/2) — R(y)) (10)

where R(y) is an upper bound on the asymptotic information rate at point y.

Proof. Let r = |At7'|7n|] and ¢ = |7n]. It is well-known (see e.g. [8,
p.55]) that
o omVatnlon)) _

n—0oo n

where 0 < a < % Combining this result with Theorem 1 gives

i) < (1= 1, 0/m) + (-, (52,

-7
Thus 5
-y
Ry(8) < Rly) + (1 = Hy(x/2) — R(y))— "
O
By the Hamming bound (see e.g. [8, p.60]):
H(§):=1—H,(4/2), 0<6 <1,
we may write the bound (10) in the form
-y
Ra(5) < Riy) + (H(2) - Ry 2=

with the assumptions of the previous theorem.

Hence Theorem 2 means that R,(d) is on or below any straight line seg-
ment between the Hamming bound and a given upper bound, i.e., a straight
line between any point on the Hamming bound (x, H(x)) and any point on
a given upper bound (y, R(y)) is also an upper bound on the asymptotic
information rate. Clearly, the best improvements are achieved when the line
(10) is tangential to the Hamming bound and to the given upper bound.
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Table 1: Numerical values for ¢ = 16.

d  (6) & (7) (10) d  (6) & (7) (10)
0.26  0.70201  0.70192 0.52  0.41955  0.41568
0.28  0.68056  0.67990 0.54 0.39722  0.39366
0.30  0.65908  0.65788 0.56  0.37490  0.37164
0.32  0.63755  0.63586 0.58  0.35257  0.34963
0.34  0.61598 0.61384 0.60 0.33025  0.32761
0.36  0.59435  0.59183 0.62  0.30792  0.30559
0.38  0.57269  0.56981 0.64 0.28560  0.28357
0.40  0.55098  0.54779 0.66  0.26327  0.26155
0.42  0.52923  0.52577 0.68  0.24095  0.23953
0.44 0.50744  0.50375 0.70 0.21862  0.21752
0.46  0.48561  0.48173 0.72  0.19630  0.19550
0.48  0.46374  0.45972 0.74  0.17397  0.17348
0.50 0.44184  0.43770 0.76 0.15165 0.15146

Table 2: The interval [a,b] and parameters x and y.
q a b x Yy q a b x Yy
7 054 0.56 0.08 0.8 27 0.14 0.84 0.04 0.86
8 0.52 0.60 0.08 0.62 32 0.12 0.86 0.04 0.88
16 0.26 0.76 0.06 0.78 64 0.06 0.92 0.02 0.94

Choosing the given upper bound to be the bound (8), the bound (10)
gives a small improvement on the bounds (6) and (7) in a certain interval.
In Table 1 the comparing of these bounds is given for ¢ = 16 and only those
values of § are given where these improvements occur on best of the bounds
(6) and (7).

On the other hand, Table 2 shows (for some ¢’s) the interval [a,b] in which
the bound (10) improves on the bounds (6) and (7) (note that ¢ is at least
7). In Table 2 the parameters @ and y are also shown.

If we choose @ = 0 and R(y) to be the bound (8) and we minimize the
right-hand side of the inequality (10) (for minimization see [1, p.156]), we
obtain the bound (6).

4 New upper bounds for covering radius

We are now in a position to state the results for covering radius. Theorem 3
is valid in the whole interval [0, 1] whereas Theorem 4 improves it in a certain
part of this interval.



Theorem 3 Let (C,)02, be a sequence of nonbinary linear codes Cy, of length
n, dual distance d' and covering radius R where R/n — p and d'/n — &' when

n—oo. If0<¥ < (%)2, then

<
P> ((H—WV) ) (11)

1-6'

Thus

FO)+ 3 B(b)f() = 1—(¢"" = 1) max |/(7)]

€[d!\n

qn—k

> 1-— 7,]‘7’ (ZJ_’Z;)'

Therefore, by Lemma 1, we have R < r if

o n+d
o< (P, (13

Combining the results (13) and (5) with the dual forms of the bounds (6)
and (8); i.e.,

—k —2\?
limsupn <1-¢ 7 log,(¢q—1), 0 < < (q—) ,
n—soo n q—2 q
—k —1
lim sup n < H,(k,(8"), 0< 6" < -
n—00 n q
gives the desired result. O

Note that the bounds (11) and (12) coincide at ((¢ — 2)/q)*.
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Table 3: Numerical values for ¢ = 16.

§  (11) & (12) (15) 8 (11) & (12) (15)
0.42 0.95387 0.94417 0.68 0.28522 0.28355
0.44 0.88317 0.87433 0.70 0.25049 0.24922
0.46 0.81671 0.80867 0.72 0.21755 0.21666
0.48 0.75410 0.74682 0.74 0.18635 0.18582
0.50 0.69501 0.68845 0.76 0.15683 0.15664
0.52 0.63917 0.63328 0.78 0.12909 0.12909
0.54 0.58633 0.58107 0.80 0.10347 -
0.56 0.53626 0.53161 0.82 0.08005 -
0.58 0.48879 0.48470 0.84 0.05895 -
0.60 0.44375 0.44020 0.86 0.04034 -
0.62 0.40099 0.39795 0.88 0.02450 -
0.64 0.36038 0.35783  0.90 0.01186 -
0.66 0.32183 0.31973  0.92 0.00314 -

If we replace the dual forms of the bounds (6) and (8) with the dual form
of the bound (10) where we have chosen R(y) = H,(k,(y)); i.e.,

lim sup n—k < Hy(ky(y)) — 1+ Hy(x/2)
n—0oo n y_l'

(0" —a)+1—Hy(z/2) (14)

where 0 <z < ¢ <y < %, x # y, the same argument as in the previous
proof gives the following result.

We denote the right-hand side of (14) by L, ,(4").

Theorem 4 Let (C,);2, be a sequence of nonbinary linear codes C, C I}
with dual distance d' and covering radius R where R/n — p and d'/n — &'
whenn — 0o. Assume also that v < §' <y, x # y where v,y € [0, (g — 1)/q].
Then

Lay(8')

p < .
log, (ﬁ—“ﬁ 2)

(15)

1-¢/

Table 3 shows that the values of the bounds (11) & (12) and (15) for
g = 16. In the Table 3 the values less than 1 are given and the bound (15)
is included when @ < ¢ < y. As g grows the improvement of the bound (15)
becomes small compared to the bounds (11) & (12), however these bounds
still improve essentially on the well-known bounds (1) and (2).

It should be emphasized that in the binary situation further improvements
are possible (see [7]).
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