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AbstractWe consider upper bounds on two fundamental parameters of a code; mini-mumdistance and covering radius. New upper bounds on the covering radiusof non-binary linear codes are derived by generalizing a method due to S. Lit-syn and A. Tiet�av�ainen [9] and combining it with a new upper bound on theasymptotic information rate of non-binary codes. The new upper boundon the information rate is an application of a shortening method of a code.These results improve on the best presently known asymptotic upper boundson minimum distance and covering radius of non-binary codes in certainintervals.
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1 IntroductionBounds on minimum distance and covering radius attracted a great deal ofresearch (see, e.g. [10, 3]).In this paper we consider the case of bounds for parameters of non-binarycodes. The best presently known upper bounds on the minimum distanceis due to M. Aaltonen [2], and was obtained using the linear programmingmethod in the generalized Johnson scheme (see Section 3 for more details).It is known that there the covering radius depends crucially on the distanceof the dual code.In 1973 Delsarte [5] proved that the covering radius of a code is at mostthe number of nonzero weights in the dual code. Later in the papers [4, 6, 7,12, 13, 14, 16, 17] a number of bounds have been obtained for the coveringradius of a code with a given dual distance.Especially, Tiet�av�ainen [17] gave the following asymptotic result:Let (Cn)1n=1 be a sequence of codes Cn � F nq with dual distance d0 = d0(n)and covering radius R = R(n) where R=n! � and d0=n! �0 when n!1.Then � � q � 1q � q � 22q �0 � 1qq(q � 1)�0(2� �0): (1)In the paper [14] Sol�e and Stokes proved the following asymptotic resultfor linear codes with certain assumptions (see [14, Section VI]):� � Hq � q�1q � q�2q �0 � 2qq(q � 1)�0(1 � �0)�logq � q�1(1��0)q�1� (2)whereHq(x) = ( 0 if x = 0;x logq(q � 1)� x logq x� (1� x) logq(1� x) if 0 < x � q�1q :In the last expression an upper bound on the information rate is implic-itly used. The best known bound for non-binary codes was obtained byM.Aaltonen [2] in the frames of linear programming method.In this paper we generalize a method due to Litsyn and Tiet�av�ainen [9]to non-binary codes and we give a new upper bound on the asymptotic in-formation rate improving on Aaltonen's bound; i.e., a new asymptotic upperbound on the minimum distance is obtained. Combining these two resultsgives a new asymptotic upper bound on the covering radius of non-binarylinear codes which improves on the best presently known bounds (1) and (2)in certain intervals (see Section 4). 1



2 The generalized methodLet Fq denote the �nite �eld of cardinality of q. Assume that C � F nq is alinear code of dimension k, minimum distance d(� 3), covering radius R anddual distance d0. Let the (n � k) � n matrix H = (h1; : : : ;hn) be a paritycheck matrix for C and, denote the set fh1; : : : ;hng by L and the nonzeroelements of Fq by F ?q . Let Na(L; s;b), where a = (a1; : : : ; as) 2 (F ?q )s, be thenumber of solutions (x1; : : : ;xs) 2 Ls of the equationa1x1 + : : :+ asxs = b: (3)Denote also N(L; s;b) = Pa2(F?q)sNa(L; s;b).The covering radius R of a linear code C is the smallest integer r suchthat every syndrome of C is a Fq-linear combination of at most r columns ofH. Let q = pr where p is the characteristic of Fq. We recall (see e.g. [5]) thata character  u, u 2 F nq , of (F nq ;+) is of the form u(v) = !Trqp(u�v) for all v 2 F nqwhere ! denotes a primitive complex pth root of unity, u�v the inner productof the vectors u and v, and the trace function Trqp : Fq ! Fp is de�ned byTrqp(x) = x+ xp + : : :+ xpr�1:The next lemma is crucial in the sequel and it generalizes the resultpresented in [9] to non-binary codes.Lemma 1 Assume that for each b 2 F n�kq there is a polynomial of degreeat most r such that f(0) + nXi=1 �i(b)f(i) > 0where �i(b) = Pk2Fn�kq ;w(kH)=i k(�b). Then R � r.Proof. It is well-known (see e.g. [10, p.143]) thatXk2Fn�kq  k(a) = ( qn�k if a = 0,0 otherwise,and therefore, by (3), we obtainqn�kN(L; s;b) = Xk2Fn�kq  k(�b)0@Xx2L Xa2F ?q  k(ax)1As2



Furthermore, Xx2L Xa2F ?q  k(ax) = n(q � 1)� qw(kH)where w denotes the Hamming weight.Since kH runs through all elements of the dual code C? of C, when kruns through the elements of F n�kq , we haveqn�kN(L; s;b) = nXi=00B@ Xk2Fn�kq ;w(kH)=i k(�b)1CA (n(q � 1) � qi)sand therefore, qn�kN(L; s;b) = nXi=0 �i(b)(n(q � 1)� qi)s: (4)We choose next such a polynomial g(x) = rPs=0 
sxs that g(n(q�1)� qi) =f(i). Since �0(b) = 1 for all b 2 F n�kq , we have by (4)0 < f(0) + nXi=1 �i(b)f(i)= qn�k rXs=0 
sN(L; s;b):Hence N(L; s;b) 6= 0 for at least one s (s = 0; 1; : : : ; r) and so R � r. 2We should now �nd a polynomial of a low degree such that jf(i)j is smallcompared to f(0) when i 6= 0 and �i(b) 6= 0.The Chebyshev polynomial of the �rst kind and degree r is de�ned in [11,p.5] by Tr(x) = 12 ��x+px2 � 1�r + �x�px2 � 1�r� :So clearly, x � 1, Tr(x) � 12((x+px2 � 1)r + 1) (5)Assume that 0 � a < b. Among the polynomials pr(x) of degree at mostr such that pr(0) = 1 the one de�ned bytr(x) = Tr � b+a�2xb�a �Tr � b+ab�a�3



provides (see [15, p.42]) the minimum of maxx2[a;b] jpr(x)j: Furthermore,maxx2[a;b] jtr(x)j = 1Tr � b+ab�a�In order to apply the polynomial tr(x) to Lemma 1 e�ciently, we need toknow something about the asymptotic information rate of non-binary codes.It will be studied in the next section.3 New upper bounds on the information rateLet Mq(n; d) denote the number of words in the largest code C � F nq withminimum distance at least d. We de�ne the asymptotic information rateRq(�) (0 � � � 1) by Rq(�) = lim supn!1 1n logqMq(n; d);where limn!1 d=n = �:The tightest presently known upper bounds on asymptotic informationrate of non-binary codes are the following ones (see [2, p.141]):Rq(�) � 1 � � qq � 2 logq(q � 1); q > 2; 0 � � �  q � 2q !2 ; (6)and Rq(�) � 1�Hq(!) + fq(�; �); (7)where the parameters satisfy the following conditions:0 � ! � 1; 0 � � � q � 2q � 1!; 0 � � � � � minf! � �; 1� !g;� = (1� �)h ! � �1 � � ; � � �1� �! � ! � q � 1q � 2�;� � 2� + (! � �)kq�1  �! � �!with the following notations:fq(�; �) = Hq(�) + �Hq(�=�) � (� + �) logq(q � 1) + � logq(q � 2);kq(x) = q � 1q � q � 2q x� 2qq(q � 1)x(1� x); (0 � x � 1);4



and h(x; y) = x(1� x)� y(1� y)1 + 2qy(y � 1) ; (0 � x � 1; 0 � y � 1):With a certain choice of parameters the bound (7) reduces to a simplerform (see [2, p.141]):Rq(�) � Hq(kq(�)); 0 � � � q � 1q ; (8)which is useful for when � is close to (q � 1)=q (see [2, p.157]). We arehere interested in large values of �, since the method presented in Lemma 1improves on the bound (1) when �0 is large.In order to give a new upper bound on Rq(�), we shall need the followingtheorem, which generalizes the well-known result (see e.g. [10, p.43])Mq(n; d) � qtMq(n� t; d)where t � n � d. Let Br(x) be the Hamming sphere of radius r and withcenter at x 2 F nq . Denote its cardinality by Vq(n; r) = rPi=0 �ni�(q � 1)i:Theorem 1 Let 0 � d � n, d�2r � n� t, 0 � r � t and 0 � r � 12d: ThenMq(n; d) � qtVq(t; r)Mq(n� t; d� 2r): (9)Proof. Let a code C � F nq be such that its cardinality is Mq(n; d) =:M ; i.e., let C be an (n;M; d) code. We shorten the code C choosing tcomponents of codewords and taking those codewords in which the chosent components belong to a Hamming sphere of radius r. Finally, we deletethese t coordinates.Next we show that in this way we get from C an (n � t;� Mqt Vq(t; r);�d � 2r) code. The �rst parameter is clear and the third one follows fromthe fact that the deleted parts of the selected codewords di�er at most in2r positions. Let us now consider the second parameter. We denote the Mwords (not necessarily distinct) of the t components by y1; : : : ;yM 2 F tq insome order. Let �x(y) = ( 1 if y 2 Br(x);0 otherwise.Since 1qt Xx2F tq MXi=1 �x(yi) = 1qt MXi=1 Xx2F tq �x(yi)= Mqt Vq(t; r);5



there exists a sphere of radius r which contains at least Mqt Vq(t; r) of the wordsy1; : : : ;yM and so the claim follows. 2By the previous theorem we get now the following upper bound on theasymptotic information rate.Theorem 2 Let 0 � � � q�1q , ��2� � 1�� , 0 � � � 12� and 0 � � � q�1q � .Denote x2 = �� and y = ��2�1�� . Assume that x 6= �. ThenRq(�) � R(y) + (1 �Hq(x=2)�R(y)) � � yx� y (10)where R(y) is an upper bound on the asymptotic information rate at point y.Proof. Let r = b���1b�ncc and t = b�nc. It is well-known (see e.g. [8,p.55]) that limn!1 logqVq(n; b�nc)n = Hq(�)where 0 � � � q�1q . Combining this result with Theorem 1 givesRq(�) � � (1�Hq(�=� )) + (1 � � )Rq  � � 2�1 � � ! :Thus Rq(�) � R(y) + ((1�Hq(x=2)�R(y)) � � yx� y : 2By the Hamming bound (see e.g. [8, p.60]):H(�) := 1�Hq(�=2); 0 � � � 1;we may write the bound (10) in the formRq(�) � R(y) + (H(x)�R(y)) � � yx� ywith the assumptions of the previous theorem.Hence Theorem 2 means that Rq(�) is on or below any straight line seg-ment between the Hamming bound and a given upper bound, i.e., a straightline between any point on the Hamming bound (x;H(x)) and any point ona given upper bound (y;R(y)) is also an upper bound on the asymptoticinformation rate. Clearly, the best improvements are achieved when the line(10) is tangential to the Hamming bound and to the given upper bound.6



Table 1: Numerical values for q = 16.� (6) & (7) (10) � (6) & (7) (10)0.26 0.70201 0.70192 0.52 0.41955 0.415680.28 0.68056 0.67990 0.54 0.39722 0.393660.30 0.65908 0.65788 0.56 0.37490 0.371640.32 0.63755 0.63586 0.58 0.35257 0.349630.34 0.61598 0.61384 0.60 0.33025 0.327610.36 0.59435 0.59183 0.62 0.30792 0.305590.38 0.57269 0.56981 0.64 0.28560 0.283570.40 0.55098 0.54779 0.66 0.26327 0.261550.42 0.52923 0.52577 0.68 0.24095 0.239530.44 0.50744 0.50375 0.70 0.21862 0.217520.46 0.48561 0.48173 0.72 0.19630 0.195500.48 0.46374 0.45972 0.74 0.17397 0.173480.50 0.44184 0.43770 0.76 0.15165 0.15146Table 2: The interval [a,b] and parameters x and y.q a b x y q a b x y7 0.54 0.56 0.08 0.58 27 0.14 0.84 0.04 0.868 0.52 0.60 0.08 0.62 32 0.12 0.86 0.04 0.8816 0.26 0.76 0.06 0.78 64 0.06 0.92 0.02 0.94Choosing the given upper bound to be the bound (8), the bound (10)gives a small improvement on the bounds (6) and (7) in a certain interval.In Table 1 the comparing of these bounds is given for q = 16 and only thosevalues of � are given where these improvements occur on best of the bounds(6) and (7).On the other hand, Table 2 shows (for some q's) the interval [a,b] in whichthe bound (10) improves on the bounds (6) and (7) (note that q is at least7). In Table 2 the parameters x and y are also shown.If we choose x = 0 and R(y) to be the bound (8) and we minimize theright-hand side of the inequality (10) (for minimization see [1, p.156]), weobtain the bound (6).4 New upper bounds for covering radiusWe are now in a position to state the results for covering radius. Theorem 3is valid in the whole interval [0; 1] whereas Theorem 4 improves it in a certainpart of this interval. 7



Theorem 3 Let (Cn)1n=1 be a sequence of nonbinary linear codes Cn of lengthn, dual distance d0 and covering radius R where R=n! � and d0=n! �0 whenn!1. If 0 � �0 � � q�2q �2, then� � 1� �0 qq�2 logq(q � 1)logq � (1+p�0)21��0 � ; (11)and, if � q�2q �2 � �0 � q�1q ,then� � Hq(kq(�0))logq � (1+p�0)21��0 �: (12)Proof. We choose f(x) = tr(x), a = d0 and b = n. Thenmaxx2[d0;n] jf(x)j = 1Tr �n+d0n�d0 �Thus f(0) + nXi=1 �i(b)f(i) � 1� (qn�k � 1) maxi2[d0 ;n] jf(i)j> 1� qn�kTr �n+d0n�d0 �:Therefore, by Lemma 1, we have R � r ifqn�k � Tr  n+ d0n� d0! : (13)Combining the results (13) and (5) with the dual forms of the bounds (6)and (8); i.e.,lim supn!1 n� kn � 1� �0 qq � 2 logq(q � 1); 0 � �0 �  q � 2q !2 ;lim supn!1 n� kn � Hq(kq(�0)); 0 � �0 � q � 1qgives the desired result. 2Note that the bounds (11) and (12) coincide at ((q � 2)=q)2.8



Table 3: Numerical values for q = 16.�0 (11) & (12) (15) �0 (11) & (12) (15)0.42 0.95387 0.94417 0.68 0.28522 0.283550.44 0.88317 0.87433 0.70 0.25049 0.249220.46 0.81671 0.80867 0.72 0.21755 0.216660.48 0.75410 0.74682 0.74 0.18635 0.185820.50 0.69501 0.68845 0.76 0.15683 0.156640.52 0.63917 0.63328 0.78 0.12909 0.129090.54 0.58633 0.58107 0.80 0.10347 -0.56 0.53626 0.53161 0.82 0.08005 -0.58 0.48879 0.48470 0.84 0.05895 -0.60 0.44375 0.44020 0.86 0.04034 -0.62 0.40099 0.39795 0.88 0.02450 -0.64 0.36038 0.35783 0.90 0.01186 -0.66 0.32183 0.31973 0.92 0.00314 -If we replace the dual forms of the bounds (6) and (8) with the dual formof the bound (10) where we have chosen R(y) = Hq(kq(y)); i.e.,lim supn!1 n� kn � Hq(kq(y))� 1 +Hq(x=2)y � x (�0 � x) + 1�Hq(x=2) (14)where 0 � x � �0 � y � q�1q , x 6= y, the same argument as in the previousproof gives the following result.We denote the right-hand side of (14) by Lx;y(�0).Theorem 4 Let (Cn)1n=1 be a sequence of nonbinary linear codes Cn � F nqwith dual distance d0 and covering radius R where R=n ! � and d0=n ! �0when n!1. Assume also that x � �0 � y, x 6= y where x; y 2 [0; (q � 1)=q].Then � � Lx;y(�0)logq � (1+p�0)21��0 �: (15)Table 3 shows that the values of the bounds (11) & (12) and (15) forq = 16. In the Table 3 the values less than 1 are given and the bound (15)is included when x � �0 � y. As q grows the improvement of the bound (15)becomes small compared to the bounds (11) & (12), however these boundsstill improve essentially on the well-known bounds (1) and (2).It should be emphasized that in the binary situation further improvementsare possible (see [7]). 9
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