Towards the Formal Verification of Electronic Commerce
Protocols*

Dominique Bolignano, GIE Dyade, Dominique.Bolignano@dyade.fr

Abstract

We generalize the approach defined in [4] so as to be able to formally verify electronic
payment protocols. The original approach is based on the use of general purpose formal
methods. Tt 1s complementary with modal logic based-approaches as it allows for a descrip-
tion of protocols, hypotheses and authentication properties at a finer level of precision and
with more freedom. The proposed generalization mainly requires being able to express and
verify payment properties. Such properties are indeed much more elaborate than authen-
tication ones, and require a significant generalization in the way properties are expressed.
The modelling of the protocol and of the potential knowledge hold by intruders is on the
other hand left unchanged. The approach is currently being applied to the C-SET and SET
protocols, and has already lead to significant results.

1 Introduction

Consumer demand for secure access to electronic shopping and other services is becoming very
high. Many electronic commerce protocols ([12, 6, 2, 9, 14], etc.) have been proposed recently
to meet this demand. Such protocols mainly use encryption and decryption functions to achieve
security requirements.

But the design of a cryptographic protocol is a difficult and error-prone task, and many popular
and largely used cryptographic protocols have been shown to have flaws. For this reason the use
of formal methods that allow for the verification of such protocols in a systematic and formal way
has received increasing attention. Formal methods have been mainly applied to authentication
protocols. Their industrial application has been quite marginal until now, but they have shown
successful in finding problems or flaws in protocols (e.g. [5, 11, 4], etc.)

Electronic payment appears to be a very promising area of application of such systematic
approaches. Formal approaches for the verification of cryptographic protocols are indeed quite
mature at a time where many new protocols are designed and implemented. These new protocols
put at the same time a higher requirement on security issues: while it is possible to obtain account
information in other environments, there is a heightened concern about the ease of doing so with
public network transactions; this concern reflects the potential for high volume fraud, automated
fraud (such as using filters on all messages passing over a network to extract all payment card
account numbers out of a data stream), and the potential for mischievous fraud that appears to
be characteristic of some hackers.

Formal techniques for the verification of cryptographic protocol have been developed for the
verification of authentication protocols but they cannot directly be applied to electronic payment
protocols, mainly because of the difference between authentication and payment properties.

*Nraft: to be presented at the “10th TEEF Computer Security Foundations Workshop”

Payment properties involve some standard authentication requirements. As an example of
such standard requirement, let us consider the situation found in many payment protocols such
as SET [12], C-SET [6], Globe-On-line [14], iKP [2], etc., where the merchant will typically ask
to a representative of a bank, the payment gateway, for a payment authorization. The merchant,
at the time when he receives payment authorization, wants typically to be sure that he has really
been talking to the proper gateway, and that the payment authorization has just been issued
by the gateway and is not a replay of an old message for example. This property is a typical
requirement for traditional authentication protocols. But payment properties also involve more
specific requirements that are not found in authentication protocols. In the previous example
the merchant wants also to be sure that the payment authorization he receives really is for the
transaction he requested for: not for another product, for another price, or for another customer,
as in case of "misunderstanding” the customer could well try to cancel payment.

2 Formal Verification of Cryptographic Protocols

Techniques for the formal verification of cryptographic protocols have been designed and applied
mainly for the verification of authentication protocols.

The formal verification of authentication protocols may be done in basically three ways. One
possibility is to use a modal logic for authentication, that is, a logic that has some modalities
for expressing properties in an appropriate way. One such modal logic is the Burrows, Abadi
and Needham (BAN) logic [5]. The second possibility is to use general purpose formal methods.
Such methods have been designed and used for various kinds of software applications: safety-
critical embedded systems for trains, nuclear power plants; complex distributed systems; etc.
The approach of Meadows [13] is a good representative of such approaches. The third possibility
is to use model-checking techniques as in [11, 10].

More recently another approach has been presented in [4]. This is the approach we rely on
in this paper. It uses general purpose formal methods but tries to exploit the specificity of the
problem to achieve easier formalization and to reduce proofs. It has been mainly designed to
achieve simplicity and conciseness in proofs when a precise modeling of the protocol is required.
The idea is to have proofs that can be read and understood, and for example used as a basis
for code inspection procedures or vulnerability analysis. The approach is based on a clear sep-
aration between the modeling of trustable principals and that of untrustable ones. A specific
axiomatization for the knowledge of untrustable principals is proposed. This allows for easy and
concise proofs in the style of modal logic proofs. The specification of the protocol is done in
a precise manner, and the precise sequencing constraints are in particular taken into account.
A discussion on the respective advantages of these different approaches can be found in [4] for
example. In any case none of these approaches has been applied, to our knowledge, to electronic
commerce protocols. We believe this would require significant extensions or revisions for most
existing formal approaches as electronic commerce protocols guaranty more elaborate properties
then authentication protocols do.

The objective of this paper is to show how such extension can be done using the work in
[4] as a starting point. The revisited approach has first been applied on the C-SET protocol,
the smartcard based payment protocol proposed by GIE CB, an organization sponsored and
owned by major french banks, and is currently being applied on the SET (Secure Electronic
Transaction) protocol, proposed recently by Visa and MasterCard. The presentation is organized
as follows. In the two next sections we present the problem basics and introduce as an illustration

an hypothetical payment protocol, which although much more simple then SET and C-SET,
presents many similarities with these two protocols. In Sections 5 we recall the main steps of
the approach presented in [4]. Tn Sections 6 and 7 we show how the approach can be extended
to express payment properties. In section 8 we describe the verification itself by means of some
examples.

3 Problem Basics

Encryption is the transformation of data into a form unreadable by anyone without a secret
decryption key. Decryption is the inverse function, which recreates the original data in its form
prior to encryption A cryptographic key system is said to be symmetric if, and only if, the same
key can be used for both encryption and decryption. A cryptographic key system is said to
be asymmetric when different keys are used for encryption and decryption. In that case the
encryption key is called a public key, while the decryption key is called a private key. The public
key can be made available to anyone, while the private key can be used only by its legitimate
owner. If K, is the encryption key, then K, ' is the corresponding decryption key. An asymmetric
cryptographic key system can also be used to provide a digital signature. A digital signature makes
it possible to prove to anyone that some data has been issued by an entity. A digital signature is
obtained either by adding some data redundancy to the data to be signed or by condensing the data
into a small value that is characteristic of the data and then encrypting this value using a private
key. Anyone that knows the corresponding value of the public key can then verify the signature.
In that case, these keys are sometimes called, respectively, a signature key and a verification key.
Some asymmetric algorithms can be used to provide data encryption or a digital signature (e.g.,
the RSA algorithm), while some others can be used only to provide digital signatures (e.g., DSA
algorithm).

4 A Payment Protocol

In this section we provide, as an illustration, an hypothetical payment protocol which although
quite different and much more simple then the SET or C-SET protocols, encompasses most, of the
specificities and difficulties encountered in the verification of electronic commerce protocols such

as SET and C-SET.

The proposed protocol which corresponds to the purchase and authorization phases is in-
voked after the cardholder has completed browsing, selection and ordering. Before this flow
begins, the cardholder will have been presented with a completed order form and approved
its contents and terms. As a result of this phase which is supposed to be performed out
of bound, the cardholder has a valid order description (OD) and a valid payment description
(PD). The protocol is described in the figure below where Transaction stands for the sextuple
(C, M, (Lid_c, Lid_m), Purchamt, hash(Od), hash(Pd)) whose components will be commented in
the sequel.

(PTInitReq) C—M:(C,M)
(PInilRes) M —= ' : Lid_m
(PReq) C' = M : ((Transaction) k.-, (Od)km, (Pd)kg)
(AuthReq) M — G : ((Transaction) g, (Transaction) gpm-1, (Pd) k)
(AuthRes) G — M : (Results, (hash(Transaction))) g ,—1
(PRes) M — C': (Results, (hash(Transaction))) g -

PInitReq: The message is sent by the cardholder, i.e. C, to the merchant,i.e. M, to request a
fresh and unique local transaction identifier (i.e. Lid_m) from the merchant.

PInitRes: When the cardholder receives the requested identifier, he also assigns a fresh and
unique local transaction identifier (i.e. Lid_c) to the transaction, so as to form a unique
transaction identifier, i.e. (Lid_c, Lid_m), (in SET and C-SET some additional information
is added and the resulting aggregate is called Transid).

PReq: The transaction data, i.e. Transaction, is then composed by the cardholder and includes
in particular Purchamt, the purchase amount, (', the cardholder identity, and M the mer-
chant identity. The transaction data is then signed using the cardholder private key K ',
and is sent together with the order description and the payment description. The order de-
scription should only be known by the merchant and is thus encrypted using the merchant
public key. The payment description should only be known by the payment gateway GG (i.e.
the representative of the bank) and is thus encrypted using the payment gateway public key.
On reception of PReq, the merchant decrypts and validates Od, checks that the same Od
was used for the composition of the Transaction data aggregate, and furthermore validates
M, Lid_m, and Purchami. The merchant also checks that the signature of the message
belongs to the cardholder whose identity appears in Transaction (i.e. C')." The merchant
finally stores the signed Transaction data together with the decrypted Od.

AuthReq: The merchant then signs the same Transaction data using his own private key, K, ',
and sends it together with (Tran/.eaction/),(:1 and (Pd)x, as received from (/. When
the Payment (GGateway receives the authorization request, it verifies that the same data
was signed by the merchant and the cardholder as specified by ' and M components of
Transaction.

AuthRes: The Payment Gateway then formats and sends an authorization request to the Issuer
via a payment system. Upon receiving an authorization response from the Issuer, the
Payment Gateway generates and digitally signs an authorization response message. When
the cardholder system receives the purchase response message from the merchant, it verifies
signature and conformance with the previous purchase request.

PRes: The same authorization message is then sent to the cardholder who also verifies signature
and conformance with the previous purchase request.

5 Approach

5.1 Modeling Strategy

First the different principals involved in the process must be identified. Principals receive mes-
sages at one end and emit other messages at another end. Some principals will be considered to
be "trustable” (i.e., work according to their role in the protocol) and some not. Communications
media are typically considered to be non-trustable, because messages can usually be intercepted,
replayed, removed, or created by intruders. We will consider that this is the case in the following

"The distribution of keys is not part of this protocol.

discussion. The same protocol can be studied in terms of many different hypotheses. Trustable
principals will always be assumed to play their roles as stated by the protocol. For non-trustable
principals, the situation is very different, because we do not know how many there are, how they
work, or how they cooperate, and so the worst situation has to be assumed. So instead of modeling
each non-trustable principal separately, and instead of describing how they work, the combination
and cooperation of all such principals is modelled as a unique agent which is called it the "ex-
ternal world” or, more concisely, the intruder. The intruder is modelled as a principal that may
know some data initially and that will store and try to decrypt all data passed to the malicious
principals and thus all information circulating on the communications media. The intruder will
also be able to encrypt data to create new messages that will be sent to mislead other principals.
But the intruder will be able to decrypt and encrypt data only with keys he or she knows. This
modeling will in particular allow us to determine at any time which data are potentially known
to the intruder under the chosen "trustability” hypothesis. The selection of such hypotheses will
be discussed and illustrated in section 6.

5.2 Exploitation of Knowledge

The knowledge of the intruder is formalized as a set of data components. The intruder will be
able to deduce new data from available data by using four basic operations; namely encryption,
decryption, and two other operations for handling clear-text data structures. These operations
have been formalized in [4]. The exploitation of a given knowledge (i.e., a given set of data) to
deduce new information (i.e., new data) consists of the application of one or more of the four basic
operations, in any order and any number of times. A set of data s’ (or a single data element) is
said to be deducible from a set of data s if, and only if, there exists a sequence of applications
of the four basic operations that can obtain s’ starting from s. The predicate known_in is used
to formalize this rule and the previous fact is noted s’ known_in s. A set of rules based on the
predicate known_in is then derived from this formalization. Appendix shows some of these rules
for a restricted set of encryption and decryption operators (other operators such as the hash
operator are introduced in the same way). These rules make it possible to implement decision
procedures (i.e., tools) to determine if a given data may be known by the intruder or not. But in
the most general case such facts are to be proved in an interactive manner using formal provers
as shown in [3]. An example of such a rule is ¢, known_in sA k= known_in s = ¢ known_in s
which states that if the a principal knows (i.e. can deduce) both the encrypted component ¢ (i.e.
c encrypted using the key k) and the inverse key k=" of k, using the set of data s, then he knows
(i.e., can deduce) the component ¢ using the same set of data s.

5.3 Formalization of the Protocol

We then need to formally specify the protocol itself. This specification consists of describing
the role of each trustable agent. The formal specification of the protocol consists of a set of
atomic actions. The sending and reception of a message are not synchronous. Consequently
the transmission of a message is considered as two atomic actions, one for sending and one for
receipt. This corresponds exactly to the decomposition used in the SET as well as in the C-SET
specification documents. Our modeling of the previous payment protocol will thus distinguish
12 different. kinds of atomic actions, two for each message type. These actions will be identified
using the labels PInitReqo, PInitReqyr, PInitResyy, PInitResc, PReqo, PReqgyr, PResyy,
PResc, AuthReqgnr, AuthReqq, AuthResq, AuthRess. Fach of the 12 labels My stands for

the sending or reception of message M by principal X: PInitReqgc stands for example for the
sending of message PinitReq by the principal (. ?

As part of its role, the cardholder will, for example, initiate payment session by sending a
PInit Req message, i.e. by performing a PInitReqs action, and will then receive a PInitRes
response message, i.e. perform a PInitResqs action, and then will complete the session with a
PReqq action followed by a PResc one. Each atomic action also involves some specific processing
(verification, generation, storing of values, computation, etc.) which is described as for any piece
of code in an implementation language, by describing its precise test, computation and effects
on the state variables. In order to facilitate verification and also to specify the protocol at the
required level of abstraction, a logic-like language is used for this purpose (c.f. [4]). The first step
is thus to identify and define the state variables that are to be used by each principal in order to
“implement” the protocol. The only difference from a low-level description is that we may use
more abstract types, such as sets or sequences, and that we do not need to consider storage or
efficiency problems.

More precisely, the formalization is based on the chemical abstract machine paradigm [1]: a
system is described as a set of atomic actions which may be applied repeatedly, in any order and
whenever pre-condition holds. Tet § stand for the domain of global states. In the case where the
cardholder, the merchant and the gateway are all trustable, § will quite naturally be defined as
S X Sar X S x 87 where each component describes the domain of local states for each trustable
principal and for the intruder: (' for the particular cardholder, M for the particular merchant, ¢
for the particular payment gateway, and [for the intruder. Tn [4] the specification is defined as a
single predicate r on § X A x & binding the state before application to the state after application.
The domain A, is the set of action labels. We use instead a relation on § x (A x M) x S, where
M is the domain of messages: r(s, (I, m),s’) if and only if the global state s is modified into s
upon firing of action labelled [for the sending or receipt of message m. The information on the
content of the message which is added here will be exploited in section 6 in the expression of
security properties. The domain M is defined more formally as the domain of data components,
and 87 as the domain for sets of data components. Both are formally defined in [4].

Intuitively the state of the intruder is the set of data components that have been listened to
on the communication line. Each sending of message m augments the knowledge of the intruder,

i.e. s& = s; Um where s; is the state of the intruder before firing of the action and s is the

K]
state after. The receipt of a message m does not change the state of the intruder. According to
the modelisation all messages received by a trustable principal are produced by the intruder (the
communication media are part of the intruder). Thus, m known_in s;, is a precondition to the

reception of message m.

6 FExpressing Properties

FElectronic commerce protocol have to address standard requirements such as confidentiality of
information; integrity of data; cardholder account authentication; and merchant authentication.
These requirements and corresponding functions are not specific to electronic commerce protocols.
For all such basic and standard properties the approach defined in [4] can be applied without any
adaptation.

20, M, G, stand respectively for cardholder, merchant. and payment gateway.

6.1 Extending the approach

But electronic commerce protocols also involve some significant specificities that are responsible
for additional difficulty in the expression of properties, when compared to more traditional authen-
tication protocols. The first one comes from the fact that the principals involved in an electronic
commerce transaction have rather different expectations than the one involved in authentication
sessions. The merchant is for example not only interested in making sure that he has really been
talking to the proper gateway at the time he completes a session. He also wants to make sure that
the transaction cannot be refuted afterwards, due to some misunderstanding between the parties.
The second source of difficulty comes from the fact that payment protocol involves three-party
decisions. Tn the case of authentication protocols, interactions can usually be considered as sep-
arate two-party agreements, even when such agreements are interleaved: the requester and the
resquestee involved in an authentication session will typical interact with some other entity such as
a key server during a session, but each interaction is to fulfill a specific function, such as obtaining
a correct and fresh key for the interaction with key server. In the case of electronic commerce
protocols it is not sufficient for the gateway just to make sure that the information produced by the
cardholder or the merchant has the desired confidentiality, or integrity properties. It also needs
to be sure that both correspond to a coherent, non ambiguous and real three-party deal. In other
words, a typically electronic commerce protocol should implement an abstract atomic transaction
between three principals. In the sequel of this section we address these two specific problems and
show how to extend the approach presented in [4] to handle electronic payment protocols.

The revised approach is presented as the combination of 5 modeling decisions. The first
decision was already part of the approach proposed in [4]. The second one and the fourth one
are quite direct generalization or extension of decisions that were already implicit in the original
approach. The two other decisions are introduced here.

6.1.1 Adopting the view of a global observer

The first decision is indeed to adopt the view of a global observer which has a correct and
complete view of the system. This decision is taken in many approaches and is a quite natural
one: weaknesses or flaws of protocols are often reported using this same perspective.

6.1.2 Breaking down security properties into agent centric properties

The second decision is more of methodological nature and amounts to break down properties into
more basic properties that express the belief of a particular principal at a particular point in
the session. Confidentiality properties are not amenable to this kind of decomposition as they
are of more global nature, but their expression is straightforward as will be shown in the next
section. The proposed decomposition allows for a more systematic identification and classification
of properties. A practical way of obtaining this decomposition is to consider each role in turn,
and to identify in each case and at each possible point during a corresponding session the belief
and expectation of the principal about what really happened. Particular points of interests are the
beliefs at the end of a session. Typically such beliefs need only be identified in the case where the
session proceeds normally from the point of view of the principal at hand, as whenever an incorrect
message is received, the principal will generally refuse to continue with this particular session. In
the case of authentication protocols only two different kinds of principals had to be considered,
the initiator of the authentication session and the requested principal. The two corresponding

properties where called the master and the slave properties. In the case of payment protocols the
beliefs or expectations of three different kinds of principal need typically to be formalized: the
cardholder, the merchant and the payment gateway. The cardholder wants, for example, to make
sure that his bank account is only debited for the purchases he did accept, and with the correct
amount. The merchant wants to make sure that the authorization he receives from the gateway is
really done for the purchase he agreed with the cardholder. The gateway wants to make sure that
he is giving an authorization for a coherent, purchase agreement. Such properties will be referred
to as the cardholder, merchant or gateway properties. Most protocols will have to satisfy all such
kinds of properties.

6.1.83 Verification under various trustability hypotheses

In the approach presented in [4], a property is verified under the assumption that some principals
are trustable (i.e. behave according to their role in the protocol) and some are not, or more
precisely that they cannot be considered to be trustable. The selection of trustability hypotheses
is done so as to minimize the number of hypotheses. T.et us consider in order to illustrate this, the
case of an authentication protocol involving three different roles, a master (a principal requesting
an authentication session), a slave, and a key server. let us then consider the following master
property: any principal A requesting an authentication session with B, wants to be sure at the
end of its (master) session that he has really been talking to B. In order to verify this statement
we will do the verification under the assumption that both A and B are trustable. The particular
key server used during the session will also be considered to be trustable if this is required to
satisfy the property. The proof of this property will guaranty that whenever B and the key server
are trustable and A has performed a session intended to be with B, then A can be sure he has
really been talking to B. But A knows on the other hand that this is only true if B is trustable.
If this is not the case then the previous security property is not guaranteed: if for example B
happens to be compromised, then B may well give his private key to a third principal which is
then in a position to impersonate B. If there is a doubt about the importance or validity of one
of the hypotheses it is possible to relax some of them and perform the same verification again.
Thus the use of various trustability hypotheses is only meant to test the importance and effect of
selected hypotheses, such as for example the importance of having a trustable key server.

In the case of payment protocols the same considerations apply but are not sufficient. It is
for example not sufficient for the gateway to know that whenever the cardholder and merchant
involved in a particular transaction are trustable then the gateway can be sure that both the
cardholder and the customer have agreed on a non ambiguous and coherent transaction. It is
also important for the gateway to be able to identify responsibilities and commitments in an
unambiguous manner, in the case of dispute. Worst, it is not sufficient for the gateway to be able
to identify responsibilities. It may also be important to demonstrate this to other parties (e.g.
the court) which will not take the trustability of the gateway for granted. The gateway thus needs
to keep and provide irrefutable proofs a posteriori.

In other words, an authentication protocol is typically only meant to provide some level of
confidence to participants of an authentication session in the case where the two principals that
try to authenticate themselves are trustable. Trustable principals should not be mislead by com-
promised principals that are supposed to be external to the particular session. An electronic
commerce protocol is meant to provide in addition some kind of assurance even in the case of a
deal involving corrupted principals.

In order to tackle these new problems we will use again the same technique (i.e. verification

under different trustability hypotheses) but the selection of hypotheses will be done in a different
way. Indeed, even in the case where the trustability of principal Ay, .., A, is required for the
transaction to proceed normally, we will have to consider some weaker sets of hypotheses, and
derive from these various hypothetical situations various beliefs that the protocol provide for each
principal. In the case of the previous example, it is clear that a proper deal should involve at
least three trustable principals: a client, a merchant, and a payment gateway. In the case of an
authentication protocol this would be the main set of hypotheses to consider. Here this set of
hypotheses is of course to be considered and will be referred to as the main set of hypotheses.
But we will also need to carry the analysis under weaker sets of hypotheses, namely:

(1) the particular gateway and the particular merchant are the only trustable principals,
(2) the merchant is the only trustable principal,
(3) the gateway and the particular cardholder are the only trustable principals,

(4) the cardholder is the only trustable principal,

The first set is used to prove important merchant and gateway properties that are comple-
mentary and different from merchant and gateway properties expressed using the main set of
hypotheses. An important gateway property that can be expressed under this weaker set of hy-
potheses is indeed the guaranty that the gateway has enough evidence, at the time when he receives
the merchant request, that the merchant has taken an unquestionable commitment towards a new
transaction with a valid cardholder (independently of cardholder trustability). In the protocol
of section 4 this is intuitively achieved by the fact that the data structure that unambiguously
describes the transaction is signed by the merchant. As another example, we might consider the
merchant property that guarantees to the merchant on reception of message AuthRes that the
gateway has taken an unquestionable commitment towards a new transaction with a valid card-
holder (independently of cardholder trustability), and information passed by the client is coherent,
with that passed by the merchant. These two commitments are complementary with properties
that can be expressed using the main set of hypotheses, for example the fact that whenever the
commitments of the merchant and of the cardholder are guaranteed then they are are coherent (i.e.
compatible): the situation where the trustable merchant believes that he fixed a given price and
the trustable client believes that he agreed on another price is impossible, even in the presence of
other corrupted principals.

The second weak set hypotheses is used to prove that the gateway will have enough evidence of
the merchant commitment, in the case of dispute between the merchant and the bank: the gateway
will in this case provide information received from the merchant, and it should be possible to prove
the merchant commitment without making the assumption that the gateway is trustable: in the
protocol of section 4 the data signed by the merchant provides this proof (the gateway or any
trustable or non trustable principal can only get this signed data if the merchant has really made
a commitment for the particular transaction at hand).

The third and the fourth sets of hypotheses are used to prove the commitment of the cardholder
and are similar to the two first.

All such aspects are complementary. If the first one was missing, their would still be some room
for the merchant to argue that the cardholder has not behaved according to its role in the protocol
(is not a trustable principal). Although the merchant would not have any evidence of this, there
would not be either any evidence (i.e. proof) to discard this possibility. The second and fourth

sets of hypotheses may be irrelevant for protocols which do not provide to the gateway the ability
to prove its trustability in case of dispute. Even in the case where such ability is provided, this can
only be done a posteriori with the help of another trustable principals (e.g. the court) which will
have access to all data provided. During the session, both the client and the merchant have to rely
on the gateway trustability: all protocols that we studied so far were falling in this category. Thus
some particular combination of hypotheses may bring little information on principal belief. Such
combinations were omitted here for the sake of conciseness: for example when the cardholder and
the merchant are the only trustable principals, very little can be guaranteed to the merchant or the
cardholder; the cardholder has no evidence that the merchant has agreed on the same transaction
even if he receives a valid authorization response; the merchant does not know if the commitment
of the cardholder is valid.

To sum up, the general approach we propose here is to consider each possible set of trustability
involving Ay, .., A, (instead of only considering the main one for which Ay, through A, are
trustable), and express the various gateway, cardholder or merchant properties that are to be
satisfied in each case. In doing so we may of course have to skip situations for which nothing
interesting can be guaranteed.

As a result of this splitting into many sets of trustability hypotheses, a new global state
domain, S, is to be used in each case. This construction is automatic and based on section 5.3
principles: § = S¢ X Sar X Sz X S7 for the main set of hypotheses, S = Sar X S X St for the first
set, of hypotheses, etc. The same is true for the predicate r. If an unbounded number of trustable
principals of the same type needs to be considered (e.g. a chain of trustable payment gateways),
then functions are used to associate particular principals identities to principal local states in the
global states (e.g. & = Sy X (I'd — Si) X Sy) but the general approach is left unchanged.

6.1.4 Focussing on ”correct” actions for a specific session

As a result of the specific modeling of the intruder knowledge only actions performed by trustable
principals are explicitly considered: potential processing of data by compromised principals or
intruders is indeed taken care of by the specific axiomatization of intruder knowledge proposed
in [4] (see Appendix). Now the approach also provides the ability to express security properties
on partial views of the global system, i.e. some actions are abstracted away, based on their
type, or/and based on the values that they carry (see [4] for a justification of this feature). In
other words the approach implicitly makes use of two kinds of abstraction functions. The first
one abstracts away actions performed by non trustable principals, and the second one allows to
focus on any particular session and on the correct actions expected for this session: unexpected
actions or actions carrying non coherent values will be abstracted away, and the security property
can be more concisely and more simply expressed on remaining actions, which are called the
visible actions. This second abstraction function will be called the filtering function in the sequel,
as it also performs some renaming of visible actions. The first abstraction is meant for proof
simplification. The filtering function is meant to simplify the expression of security properties.
But none of these two abstractions results in any loss of precision orin any kind of approximation:
actions that are abstracted away are still modelled and taken care of in the proof.

6.1.5 Using a finite automaton and a filtering function to describe each property

In the following we extend the use of partial views by revisiting and formalizing the filtering
function implicitly proposed in [4] and by using it within a more general framework.

10

For this we need to introduce some notations and definitions. The filtering function will thus be
noted ff,(y) where z is used to parametrize® the function and y ranges in the domain of actions.
The range of the function will be finite (for any given instance of z), and the particular value L
will be given a particular meaning: if ff.(y) = L, then y is to be abstracted away; otherwise y is
to be replaced by ff.(y). Thusif £ is a finite trace of actions we will define ff,.(¢) recursively as:
FEAD) = [and FLa(gl) = £ if Fla() = Ly and [L(glt) = [£ ()1 £-(1)] otherwise.

According to the modelisation proposed in [4], the system behavior can be described as a set,
of finite traces* T. Fach trace in T models one of the potential global and finite behavior of the
system up to a given point in time. Finite as well as infinite behaviors are thus modelled using all
their finite prefixes and the set T' is closed by prefix inclusion (any prefix of a run is also a run).
Each trace in T models a sequence of actions the global system may go through. We propose
to describe each security property (other then confidentiality properties and similar ones, which
can be described as simple invariant properties) using a filtering function ff.(y) and a regular
language I.: the property is satisfied if and only if:

VeVttt e T = ff.(t)e L

Since T is prefix closed we can use prefix closed regular languages .. We will describe I
using either a finite automaton A or a regular expression 4 and we will consider by convention
that I is defined as the reflexive transitive prefix-closure of the language accepted by A.

As a simple example let us suppose we want to express that the same action is never played
twice: we just need to use a as the regular expression describing the regular language I (i.e. I =
{[], [a]} by reflexive transitive prefix-closure) and ff.(y)= Lifa#yand ff.(y)=aifx =y
where a is just an arbitrary symbol. If there exists some trace ¢ in T such that the same action,
let us say”3, is played twice, for example t = [5,4, 3,6, 3], then there exists a value of z, namely
3, for which ff.(t) =[a,a] ¢ L.

For illustrating purposes we now consider a more elaborate example, namely the main gateway
property under the first set of hypotheses. More precisely we will try to express the belief of the
gateway at the time when it receives an authorization request. let us thus consider a particular
gateway (& and an action, let us say a, on which G receives a new authorization request (G
will receive many such requests and we consider here one of them). According to the protocol
modelisation described in section 5.3, a is a triple (state,, (label,, message,), state)), where
label, = AuthReqga. The message will contain the identification of a particular merchant, let us
say M, together with the identification of a particular client C'. M and ' are considered by ¢ to
be the initiators of the deal.

Here we are under the assumption that M and (& are the only trustable principals. The main
gateway property to consider under this set of hypotheses is that (7 can be sure at the time when
he receives the authorization message that this message really originates from M and has not been
tempered with: in other words there is another action, 3 = (stateg, (labelg, messageg), smte'ﬁ),

*More formally, the filtering function ff has the form Ax.Ay.body, and ff, has the form Ay.body.

*The use of traces of actions results in some data redundancy here as the same state appears twice: once as
the state after of a given and once as the state before of the next action. This could easily be avoided but at the
expense of some loss of conciseness in the definition of the filtering function.

The use of finite traces (as opposed to infinite trees for example) does not result in any loss in expressiveness
here and is justified by the absence of invisible actions (i.e. 7s), and by the fact that security properties of concern
are all safety properties: denial of service properties that would be liveness properties are not considered here as
well as in other formal approaches.

5For this first illustration we oversimplify the situation by considering that actions range in Nat domain.

11

such that labelz = AuthReqy and message, = messageg which has preceded a, and neither o
or 3 is repeated. In order to formalize this we just need to use the regular expression AuthReqgns
AuthReqq together with the following filtering function:

ffm,essage ((Stv (]7 m/sg)v Stl)) =
AuthReqpr 1 f | = AuthReqas A message = msqg A st'.mcht.gateway = G

AuthReqg 1 f | = AuthReqg N message = msg A st’.gtw.merchant = M
1L otherwise

where st’ is the global state after the execution of the action; st’.mcht (resp. st’.gtw) is the part
of this global state that corresponds to the local state of the particular merchant M (resp. the
particular gateway (), and st’.mcht.gateway (resp. st’.gtw.merchant) refers to the field gateway
(resp. merchant) in this local state that holds the identifier of the particular gateway (resp. the
particular merchant), M (resp. (3) believes he is talking to. If the message is tempered with, and
an incorrect value is received by (7, let us say wrong_msg, then the problem will be pointed out
with the particular parameter value wrong_msg as the trace f that corresponds to the problematic
scenario will be such that f firong_msg(t) & L (i.e. f furong_msg(t) = AuthReqa). In a similar way
if a message message for(7' has been sent to another gateway, let us say G’, and G believes it
has been sent to him, then if trace ¢ stands for this problematic scenario then f ficssage forcy (f) =
AuthReqs ¢ L. Furthermore, if the same message can be replayed by the intruder and is accepted
unnoticed by (G then there exists 2 and ¢ such that ff.(t) = AuthReqe AuthReqs ¢ L (2 is the
content of the message and ¢ the problematic scenario).

The property expressed so far is in fact too strong for the protocol of section 4 as evidenced
by the following scenario: a wrong value is passed for (Pd) g, on action PReqgyr; M has no way
of detecting this and uses this wrong value for AuthReqps; the intruder then replaces the wrong
value of (Pd) 4 by the correct one so that a correct authorization message is received and checked
by (G. For this particular scenario t, taking the authorization message effectively received by ¢
for the value of 2, leads to ff.(t) = AuthReqs ¢ L. This scenario is not problematic for the
transaction in itself. Thus, instead of revisiting the protocol by adding some kind of link in the
message so as to prevent this kind of scenario we decide here to weaken the property: in the new
version we will only require that the two first components of the message are not tempered, and
not necessarily the whole message. The third component is indeed just forwarded by M and could
be forwarded by any other mean: the checking of this component is under G responsibility. The
new filtering function thus becomes:

ff(c,lid_c,lid_m,,a,m,t,hor],hpr]) ((Stv (]7 (9(]]) Sg?v 677/(3)7 St,)) =
let Trnse = (e, M, (lid_c, lid_m), amt, hod, hpd), oy = Trnscg—1,00="Trascg—1 in
AuthReqpr if | = AuthReqgyr A sgl =0l Asg2 =02 A st'.rﬁcht.gat@may =G
AuthReqq if 1 = AuthReqa A sgl = ol A sg2 = 02 A st .gtw.merchant = M
1L otherwise

Intuitively a filtering function is to express the belief that a principal can have at a given point
while playing his role about what really happened concerning actions related to the current session.
Thus the parameter for the filtering function is chosen so as to provide enough information to
characterize the last expected visible action (the one after which the belief is implicitly expressed)
but also to characterize the other visible actions that should precede. In practise we would expect
this parameter to range in a restricted domain of values: hod should for example be a valid hash

12

which we could express by using od as a component of the parameter of the filtering function and
hash(od) in the body of the function; similarly not all combinations of hod and amt are feasible.
But there is usually no need for expressing such constraints as in the case where improper or
incoherent value are used the filtering function will return [| which by construction belongs to 1.

The gateway property expressed so far is only concerned with the AuthReqps as, in the case of
the protocol of section 4 (but also in the case of both C-SET and SET), AuthReqys is the particular
action during which the merchant takes its transaction commitment. But we could very easily
if necessary express additional requirements on the actions PInitReqgys and PlnitReqgyy that
the merchant necessarily performs in order to prepare the payment request. The corresponding
filtering function and previous regular expression can be obtained by a slight modification of the
previous ones.

More interestingly, let us consider the same gateway property under the general set of hypo-
theses, i.e. (/, M, and (7 are trustable. We would typically want to express that the authorization
request always follows a coherent purchase request Pur Reqo and thus uses PurReqc AuthReqgns
AuthReqq as a regular expression together with a new filtering function. In fact the new filtering
function can easily be obtained from the previous one by associating PurReqc to actions whose
label is Pur Reqc, whenever these actions carry values that are coherent with the transaction at
hand: all actions are coherent if the value they carry refer to the same Transaction data (with
the exception of (Pd)x, for actions PReqy and AuthReqas as explained previously).

As another illustration let us consider the merchant property under the first set of hypotheses
(M and G are trustable). We use AuthReqn AuthReqe AuthResqc AuthResyr as a regular
expression. This corresponds to the following partial order (which happens to be total here):

M G
\J \
AuthReqns
! NV
AuthReqq
\J \J
AuthRespe
! !
AuthResppr

S 3

In this particular situation the coherent response from P must fall within a given time frame
delimited by the two last events performed by M (i.e. AuthReqar and AuthRespar). This
particular situation was the specific case addressed in [4], and was called a window property. Tt
was formalized and verified in an ad-hoc manner. This situation is only a very particular case for
electronic commerce protocols, where more elaborate three-party flows of messages are involved.

As for any formal verification one has to be convinced that the formalized property is adequate.
Another user might well prefer another formulation, and it is always possible to use redundant
properties in case of doubt. The interesting aspect here is that a property can be expressed with
simple and well-defined basic notions such as the ordering of events. The more surprising fact is
that, for the large variety of protocols formalized with this approach, complex properties can be
expressed using quite simple automata.

13

7 Verification

7.1 Proving confidentiality properties

Confidentiality properties are expressed and verified as simple invariants. The verification of
such properties amounts to verify that the various invariants are preserved by each action of the
protocol. In the case of protocol at hand it is essential that private keys remain confidential. The
property is formalized easily by writing that —=(K ' known_in sr) is an invariant of the protocol,
where sy stands for the knowledge owned by the intruder (i.e. the state of the intruder according
to our formalization), and where K ' is the private key under consideration. Tn other words, the
invariant property expresses that the key cannot be deduced from the intruder knowledge. Once
the invariant property is expressed, two standard distinct verifications need to be done in order
to prove invariant preservation. First we need to make sure that the invariant property is initially
true. If this initial property is found acceptable, it will be taken and registered as an assumption
under which the protocol is supposed to work. Someone in charge of reviewing the verification
process of the protocol will typically make sure that all such assumptions are acceptable. The
same protocol can of course be analyzed under various sets of assumptions, so as to assess the
importance of some problematic assumptions. The second kind of verification that needs to be
done is to check that each possible action involved in the protocol preserves the invariant. Such
verifications have been formalized and detailed in [4]. We only summarize the main steps. For
each of the 12 protocol actions we need to prove that the invariant is preserved. More formally,
each proof obligation has the form Vs, s', m.inv(s)Ar(s, (I;; m), s') = inv(s’) where inv is the logic
formula that expresses the invariant, r is defined according to section 5.3, and [; is the label of the
i*" action. Tn the case of the particular property at hand the verification is straightforward and
basically uses axiom (D1),(D2) and (C2) to (C4) of Appendix: more informally, the confidentiality
of K" is trivially guaranteed because no key is ever sent in clear or in encrypted form: thus even
if the intruder is able to decrypt all messages he will never succeed in obtaining K ! as a result
of such processing. More account, on such proofs can be found in [4].

7.2 Proving more elaborate properties

In the section 6 we have discussed how to formalize more elaborate properties using both an
automaton and a filtering function to describe expected constraints on behaviors. Automata turn
out to be very simple in terms of the number of states, and it is thus a good strategy to discharge
them using invariant techniques.

According to section 6, each property is expressed using a filtering function ff,. and a finite
automaton. Let n be the number of states of the automaton. The user has to provide one temporary
invariant, ¢nw; for each automaton states € 1..n . Fach of these invariants is defined on the domain
of global states S introduced in section 5.3. These invariants may use an additional parameter
which has the same structure and meaning as the parameter z used for ff,.. Proofs obligations
are then generated automatically. They are discharged using the techniques illustrated in the
previous section.

In the sequel we justify the proposed verification approach. By convention we will let 1 be
the automaton initial state. All states 1 to n are final states by construction: such an automaton
can be obtained directly and automatically from a regular expression or from any finite auto-
maton by applying simple reduction steps; the existence of such a normal form is due to the
fact that the accepted language is prefix closed [8]. The first step in the verification process is

14

to transform the automaton into a deterministic automaton. This step which is of course auto-
matic will add exactly one state to the antomaton®. This state which is the only non final state
will be noted n + 1 by construction. Tt is an absorbing state: all transitions from n + 1 lead
to n + 1. By conventions the labels of the transition from ¢ to 7 will be called 17;'7'7. States of
the final automaton will be called meta-states in order to avoid confusion with the global states
used for the protocol modelisation. The second step in the verification process is to incorporate
the value of the current meta-state in the system modelisation itself in a way that does not af-
fect the behavior of the system: this addition can be seen as the test performed by the global
observer to check whether all behaviors conform to the property at hand. The test is rather
simple: the meta-state n 4+ 1 should not be reachable, as this state precisely models the failure
for the filtered global behavior to conform to the described automaton. The global states, which
range in &, are thus extended using an extra global variable meta_state. This variable is used
to store the current meta-state. The value of the new meta_state variable depends on the global
history. Let us consider a particular global history and it modelisation using the particular trace
t. The sequence of visible actions that has been traversed is, according to section 6.1.6, ff.(1)
for any particular value of 2 (2 characterizes the particular session of interest). The value car-
ried by meta_state should thus be the state of the automaton reached upon input of sequence
ff-(t). More practically, the meta_state will be initialized with the initial state of the automaton
(i.e. 1), and will change each time a visible action is fired (i.e. each time ff,.(action) #.1)
and the state change is done according to the specified automaton. Thus if the protocol spe-
cification described in section 5.3 is expressed using predicate r, the revised relation for the
particular property at hand will be r’ defined as r'((s, meta_state), (I, m), (s', meta_state’)) =
r(s, (I,m), s) A ((ffe(s,(I,m),s") =L A meta_state = meta_state’) V Fi, j.(ff-(s, (I,m),s) =
Lij Ny L AN meta_state = i A meta_state’ = j)). Within this framework, the property spe-
cified using the particular automaton and filtering function, amounts to verify the very simple
invariant: meta_state % n + 1. This invariant needs typically to be reinforced into a stronger
invariant in order to be proved inductively. For this we use the n temporary invariants proposed
as a result of the previously mentioned user interaction. The new reinforced global invariant
v is defined on § X Nat x €' where § x Nat is the new global state and (' is the domain of
potential values for the parameter 2 of ff,.. It is defined as inv(s, meta_state, x) = meta_state €
1. A iU eta_state (S,). In other words Va.inv(s, 1, 2) should be true for the initial values of s
and Vs, &', 2, ms, ms’.inv(s,ms,) A r'((s,ms), (I, m), (', ms')) = inv(s, ms, z) should be satis-
fied. In fact this latter proof obligation can be transformed into the two following more intuitive
proof obligations that are here implicitly universally quantified over their free variables:®

(1) r(s, (L,m), Y A ffe(s,(I,m),s) =L Ainvi(s,2) ANi € To.n = inv; (s, x)
(2) r(s,(l,m),)N ffu(s,(I,m),s) =1;; N invi(s,z) Ni € l.n=j#n+1Ainv,;(s,z)

The first one specifies that if no visible action is fired then the temporaryinvariant is preserved.
The second one specifies that if a visible action is fired then it is an expected one (i.e. the transition

fThe transformation into a deterministic antomaton adds exactly one more state, in all cases but the trivial
one situation in which the automaton is already determistic and the property is trivially satisfied: . = ¥* where
32 is the alphabet of labels.

Tt is assumed in this document, for the sake of concisness in mathematical formulations that, all functions and
indexed notations are extended to be defined on all possible values, i.e. are total: I;; is for example defined for all
indices and return a particular and non conflicting value, let us say undef, for all non relevant indices.

#This transformation can be automatized and formalized once for all using a higher order prover like Coq.

15

is conform to the initial automaton) and the next temporary invariant is satisfied. In fact if we
decide that by convention that inv, (s, 2) is defined as false, then j # n+1Ainv; (s, 2) in the
second proof obligation can even be simplified into inv; (s, 2). The two proofs obligations can be
discharged using the techniques described in the previous section. The only specificity is due to
the use of parametrized invariants and is illustrated below using a very simple example. Consider
the following protocol with only one principal and only one action that stores in its only local
variable done the set of all messages received so far, and accepts a new incoming message msg
only if it is not already in set done: msg ¢ done. We can easily express that the same message
is never accepted twice: we just need to use a as the regular expression and a filtering function
ffrsuch that ff.(s,(I,m),s) = Lif x # mand ff.(s,(I,m),s") =aif 2 =m. The original
automaton is a very simple two state automaton (i.e. n = 2). Before the particular message
of interest z is first received we are in meta-state 1. The meta-state becomes 2 the first time
a message msg whose value is z is received. We thus propose inv; ((done, s;),z) = true? and
inve((done, s;),2) = x € done. The first proof obligation will basically turn out proving after a
few trivial steps that Vo, done, msg.x € done A & # msg = x € (done U {msg}). The second
proof obligation will turn out proving that Va,done, msg.x = msg = = € done U {msg} and
Va,done, msg.x € done N x = msg A —(msg ¢ done) = false. The first part corresponds to
1= 1 and j = 2, whereas the second one corresponds to i = 2 and j = 3.

et us now consider the revisited merchant property of the previous section under the first set
of hypotheses. Meta-state 1 will refer to the state before firing of the first expected visible action
(i.e. PReqpr), meta-state 2 to the state after firing of the first visible action and before firing of
the second (i.e. PReqc), meta-state 3 to the state after firing of the second and last expected
visible action; meta-state 4 will stand for the absorbing state which is reached whenever a scenario
does not conform to the security property. Now we propose the following local invariants:

invy (s, (e,le,Im,amt, hod, hpd)) = =(((e, M, (le,Im), amt, hod, hpd)) .~ known_in s;
inve (s, (e, le,Im,amt, hod, hpd)) = Im € s.mcht.used_ids
invs(s, (e,le,Im,amt, hod, hpd)) = Im € s.mcht.used_ids A (e, M, (le,Im)) € s.gtw.auth_ids

where M and K ! are constants (i.e. for the selected merchant), where used_ids is the local state
variable used by the merchant to store the set of already used local identifiers (so as to avoid the
reuse of a same local id more then once) and where auth_ids is the local state variable used by
the gateway to store the set of already requested authorizations.

Intuitively, the first invariant corresponds to the situation where the first visible action
AuthReqys (i.e. this action is characterized by (¢, lid_c, lid_m, amt, hod, hpd)) has not been fired.
Thus the corresponding message has not been generated and the intruder cannot compose the
message by himself: —(((¢, M, (le,Im), amt, hod, hpd)) g, —1 known_in s;. The proof obligations
for the preservation of this invariant can be discharged quite easily using the technique illustrated
in section 7.1 for the proof of confidentiality. In doing so confidentiality properties need typically
to be used as lemmas. Invariant inwvy is also useful for proving that the visible action AuthReqq
cannot be fired in the first place. The second invariant corresponds to the situation where the
first visible action has been fired. This property is useful when proving that the visible action
AuthReqp; cannot, be fired a second time. The third invariant is similar and guarantees also that
AuthReqq cannot be fired a second time.

®inv: ((done, 5;), 1) = = ¢ done would be a possible alternative provided that done is always initialized to 0.

16

The proof of properties involving more visible actions or more trustable principals is very
similar. Tt may additionally involve the use of constraints on the position of a particular principal
with respect to its role: e.g. pre_PInitReq,, < s.mcht.at < pre_AuthReqp;s where s.mcht.at is
the abstract program counter of M as used in [4] and where pre_PInit Reqas, pre_AuthReqyr are
particular program points (i.e. labels) for the role of the merchant. This would be the case for the
proof of the merchant property expressed in section 6. But the proof would be very similar. We
would in particular use, in addition to the invariant properties used for the previous proof, the
fact that before AuthRespq is fired the intruder does not know (in other words cannot compose)
the signed AuthResp message that M is expecting. Thus, if we had not included the merchant
identifier M as part of the Transaction data, then the merchant property verification would
point out the following problematic scenario: a corrupted merchant M’ intercepts the AuthReq
message sent by M and replaces (Transaction)y,,—+ by (Transaction)y,,— and then sends
the authorization request under his own identity. The payment gateways sends the authorization
response back to M’ and M’ forwards it to M as if (G had been accepting the transaction between
C' and M. Tn this situation M’ wrongly believes that he has received an authorization from
and that he can deliver the object of the transaction to ' who can contest the deal and claim
that he did in fact perform the transaction with M’. For this scenario £ there exists 2 such that
ffe(t) = AuthReqny AuthResyr ¢ I (i.e. the actions performed by (5 are abstracted away as they
involve an incorrect value for st’.gtw.merchant). The problem is pointed out because non visible
action AuthResq violates the invariant, namely the part that says that the signed response from
(7 cannot be known by the intruder.

The technique has shown to scale up very well. Furthermore, in practise the number of visible
actions used for a particular expressions is limited: the number of different actions specified in
the protocol (e.g. 12 for the protocol of section 4) is in practise a upper limit as properties can
be expressed by focussing on one particular session at a time.

8 Conclusion

We have presented a new approach to the formal verification of electronic commerce protocols
which extends the approach proposed originally in [4] for authentication protocols. The proposed
approach has first been applied successfully on the C-SET protocol, and is currently being ap-
plied on the SET protocol, with complete formal proofs using Coq [7, 3]. The generality of the
approach has been further validated by expressing security properties for other electronic com-
merce protocols (such as [2, 9, 14]). The main extensions are relative to the expression of security
properties, and involves two new steps: (1) the use of a finite automaton and of a filtering function
to describe each property, and (2) the verification under various weaker trustability hypotheses.
The verification process was also revisited as a result of these extensions.

The proposed way of expressing properties amounts to consider the global behaviors of the
system after some appropriate filtering of global behaviors and to express the constraint using
a finite automaton. In practise it was found both intuitive and powerful. The combination of a
filtering function and of an automaton can indeed be seen as the specification of a (symbolic) test
performed by the global observer, and this fact was indeed exploited in discussions with protocol
designers.

The approach has shown to scale up quite well in the case of large protocols such as C-SET
or SET. The simplicity of proofs has been found to be a very important element to achieve useful

17

10

interaction between designers of the protocol and formal method experts Formal proofs can

indeed be presented in an informal way by explaining for each automaton meta-state, why un-
expected visible actions cannot be fired, and why the invariant is preserved by all other visible
as well as non visible actions. The informal explanations are based on intruder knowledge as
illustrated for confidentiality properties in section 7.1. Informal explanations can furthermore be
used in optional informal reviews which can prove useful in demonstrating pertinence of formal
verification to security experts. In the case of C-SET whose formal verification has been com-
pleted, the formal verification has allowed to identify significant improvements to the protocol in
terms of security. The verification activity happens to reuse much from one verification to the
other and from on protocol to the other. As a result many variants of a given protocol or sets of
hypotheses can be analyzed with few additional effort.

9 Appendix

A1l ¢ known_in s A ¢ known_in s = (¢, ') known_in s

A2 (¢,c) known_in s = ¢ known_in s A ¢ known_in s

A3 cknownan s Ak known_in s = ¢ known_in s

A4 ¢ known_in s A k™" known_in s = ¢ known_in s

A5 ¢ known_in s A §" known_in s = (' U ") known_in s
A6 (s'US") known_in s = & known_in s A 8" known_in s
AT s known_in s

A8 () known_in s

B1 (¢,d) compof s = ¢ compof s A comp_of s

B2 ¢, compof sAk™" compof s = ccompof s

B3 s compof s A" compof s= (s US") comp_of s
B4 (s Us") compof s= s compofsAs’compofs

B5 scompof s

B6 () compof s

C1 —(ccomp-of s) A=(k~" comp_of s) Ac+# ¢}, = —(ccomp_of sUc))
C2 —(ccompof sUdYANe# ¢, = =(ccompof sUc)

(
(

C3 —(ccompof s)Nec#d= —(ccompof sUd)

C4 ~(ccompof sUciUc) Ac# (c1,63) = —(c compof sU (c1,c2))
(

C5 —(ccompof ()

'"This has been experimented in the case of C-SET.

18

C6

C7

C8

C9

D1

D2

D3

D4

D5

D6

(' compof)V ~(s" compof) = (< U< compoof 5)
c & sAsetofkeys(s) = —(ccompoof s)

setofkeys(s) = setofkeys(s U k)

setofkeys(0)

s known_in s) = = (s comp_of s)

=(b comp_of s) = —(b known_in s)

—(cx comp_of s) A=(k comp_of s) = —(ci known_in s)
(e comp_of s) A =(c known_in s) = — (¢ known_in s)

-

(e,) comp_of s) A (=(c known_in s) V = (¢ known_in s)) = =((¢,) known_in s)

=(s'
(
(
(
(
(

=(s known_in ")V =(s" known_in §") = =(sU s known_in ")

References

[1]

J.-P. Banatre and D. T.e Métayer. Gamma and the chemical reaction model: ten years

after. In Coordination programming: mechanisms, models and semantics. World Scientific
Publishing, 1C Press, 1996.

Mihir Bellare, Juan A. Garay, Amir Herzberg, Hugo Krawczyk, Michael Steiner, Gene
Tsudik, and Michael Waidner. ikp a family of secure electronic payment protocols. In
"Proc. First USENIX Workshop on FElectronic Commerce”, July 1995.

D. Bolignano. Vérification formelle de protocoles cryptographiques a 'aide de Coq. In Actes
des journées GDR, 1995.

D. Bolignano. Formal verification of cryptographic protocols. In Proceedings of the third
ACM Conference on Computer and Communication Security, 1996.

M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions on
Computer Systems, 8, 1990.

GTIE CB. C-set architecture de sécurité. June 1996.

G. Dowek, A. Felty, H. Herbelin, GG. Huet, C. Murthy, C. Parent, C. Paulin-Mohring, and
B. Werner. The coq proof assistant user guide. In Rapport INRIA 154, 1993.

S. Eilenberg. Automata, Languages, and Machines (Vol. A). Academic Press, 1974.

Steve (zlassman, Mark Manasse, Martin Abadi, Paul Gauthier, and Patrick Sobalvarro. The
millicent protocol for inexpensive electronic commerce. In "Fourth International World Wide
Web Conference Dec 1995, Boston, MA, USA”, December 1995.

19

[10] G.TLeduc, O. Bonaventure, E. Koerner, I.. Lonard, C. Pecheur, and D. Zanetti. Specification
and verification of a ttp protocol for the conditional access to services. In Proceedings of
the 12th Workshop on the Application of Formal Methods to System Development (Univ
Montreal), 1996.

[11] G.Towe. An attack on the needham-schroeder public-key protocol. In Information Processing
Letters, 1995.

[12] MasterCard and VISA. Secure electronic transactions specification (books 1, 2, 3). June
1996.

[13] C. Meadows. Applying formal methods to the analysis of a key management protocol. In
Journal of Computer Security, 1992.

[14] Paul-André Pays. An intermediation and payment system technology. In ”Fifth International
World Wide Web Conference May 6-10, 1996, Paris, France”, May 1996.

20

