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Abstract
In this paper, a coupled radiative transfer equation and diffusion approximation
model is extended for light propagation in turbid medium with low-scattering
and non-scattering regions. The light propagation is modelled with the radiative
transfer equation in sub-domains in which the assumptions of the diffusion
approximation are not valid. The diffusion approximation is used elsewhere in
the domain. The two equations are coupled through their boundary conditions
and they are solved simultaneously using the finite element method. The
streamline diffusion modification is used to avoid the ray-effect problem in the
finite element solution of the radiative transfer equation. The proposed method
is tested with simulations. The results of the coupled model are compared with
the finite element solutions of the radiative transfer equation and the diffusion
approximation and with results of Monte Carlo simulation. The results show
that the coupled model can be used to describe photon migration in turbid
medium with low-scattering and non-scattering regions more accurately than
the conventional diffusion model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diffuse optical tomography (DOT) is a relatively new non-invasive imaging method in which
images of the optical properties within turbid medium are derived on the basis of measurements
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of visible or near-infrared light on the surface of the object (Arridge 1999). It has potential
applications in medical imaging, for example in breast cancer detection, monitoring of infant
brain tissue oxygenation level and functional brain activation studies; for a recent review see
Gibson et al (2005).

Image reconstruction in DOT is a nonlinear ill-posed inverse problem. There are no
direct methods for the solution of this problem, and thus it is typically stated as a minimization
problem such as regularized output least squares. The iterative solution of this problem requires
repetitive solutions of the forward problem. Therefore, it is essential to have a computationally
feasible forward model that describes light propagation in the medium accurately.

The radiative transfer equation (RTE) is widely accepted as an accurate model for photon
migration in turbid medium (Arridge 1999). The RTE does not have analytical solutions for
arbitrary geometries, and the numerical solutions with sufficiently dense discretizations lead
to computationally demanding problems. Therefore, the RTE has been used as a forward
model only in few applications of DOT (Dorn 1998, Klose et al 2002).

Due to the computationally intensive nature of the RTE problem, the typical approach
in DOT has been to derive approximate, computationally less demanding models based on
the RTE. The most typical approach has been to use the diffusion approximation (DA) to the
RTE as the forward model. The DA is basically a special case of the first-order spherical
harmonics approximation to the RTE, and thus it has some limitations. Firstly, the medium
must be scattering dominated, and secondly, light propagation cannot be modelled accurately
in the proximity of the collimated light sources and boundaries (Arridge 1999). Due to these
limitations, the DA fails to produce accurate estimates for light propagation in the proximity of
the source and boundaries, and in the cases in which the turbid medium contains low-scattering
or non-scattering regions (Wang and Jacques 1993, Arridge et al 2000, Hayashi et al 2003).
These limitations of the DA can lead to large errors in the reconstructed images; see, e.g.,
Dehghani et al (2000). In medical applications of DOT, a typical low-scattering region is the
cerebrospinal fluid layer around the brain.

To overcome the limitations of diffusion theory in the proximity of the light sources, hybrid
methods which combine Monte Carlo simulation with diffusion theory have been reported
(Wang and Jacques 1993, Alexandrakis et al 2000). Monte Carlo is known to describe light
propagation accurately. However, it has the disadvantage of requiring a long computation
time. Moreover, the hybrid Monte Carlo-diffusion methods often require iterative mapping
between the models which increases computation times even more. The hybrid radiative
transfer-diffusion approach (Tarvainen et al 2005a) can be used to describe light propagation
accurately in the proximity of the sources and within turbid medium, but it does not describe
photon migration accurately within low-scattering or non-scattering regions. The Focker–
Planck equation, which has been found to describe light propagation accurately when the
scattering is strongly peaked in the forward direction, can be utilized at the small depths
below highly collimated light sources (Kim and Keller 2003). However, it does not describe
light propagation accurately at greater depths in biological tissues nor within low-scattering
or non-scattering regions.

The radiosity-diffusion model (Arridge et al 2000, Dehghani et al 2000) has been applied
for turbid media with non-scattering regions. However, it does not model light propagation
accurately in low-scattering regions or in the proximity of the collimated light sources.
Methods that combine Monte Carlo simulation with diffusion theory have also been applied
for media with low-scattering and non-scattering regions (Hayashi et al 2003). However, also
in this case, the approach suffers from the time-consuming nature of the Monte Carlo methods.
The coupled transport and diffusion model (Bal and Maday 2002) is also an iterative method
which can be utilized in media which contains strongly absorbing and low-scattering regions.
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A coupled radiative transfer equation and diffusion approximation model was proposed
by the authors in a previous paper (Tarvainen et al 2005b) to describe light propagation in
turbid medium containing highly collimated light sources. In this paper, the coupled model
is extended to take into account low-scattering and non-scattering regions. In this approach,
the RTE is used as a forward model in sub-domains in which the assumptions of the DA
are not valid. This includes the regions in the proximity of the source and boundary and the
low-scattering and non-scattering regions. The DA is used as a forward model elsewhere in
the domain. The RTE and DA are coupled through boundary conditions between the RTE and
DA sub-domains and they are solved simultaneously using the finite element method (FEM).
In the finite element (FE) solution of the RTE in low-scattering or non-scattering regions,
the ray-effect may become visible (Lathrop 1968, 1971). Therefore, the streamline diffusion
modification is utilized in the FE-solution of the coupled RTE–DA model. The coupled RTE–
DA model is designed to overcome the limitations of diffusion theory. It can describe photon
migration almost with the same accuracy as the RTE but with less computational burden.

The rest of the paper is organized as follows. The light transport models are described in
section 2 and the corresponding numerical methods are given in section 3. The results of the
two-dimensional example cases are shown in section 4, and finally, conclusions are given in
section 5.

2. Light transport models

2.1. The radiative transfer equation

Let � ⊂ R
n, n = 2 or 3 denote the physical domain which is considered isotropic in the

sense that the probability of scattering between two directions depends only on the relative
angle between those directions, not on an absolute direction. Furthermore, let ∂� denote the
boundary of the domain and ŝ ∈ Sn−1 denote a unit vector in the direction of interest. The
radiative transfer equation treats photons as particles which undergo elastic collisions until
they are absorbed or leave the domain, ignoring the wave nature of light. The frequency
domain version of the RTE is of the form( iω

c
+ ŝ · ∇ + µs + µa

)
φ(r, ŝ) = µs

∫
Sn−1

φ(r, ŝ ′)�(ŝ · ŝ ′) dŝ ′ + q(r, ŝ) (1)

where i is the imaginary unit, ω is the angular modulation frequency of the input signal, c is
the speed of light in the medium, µs and µa are the scattering and absorption coefficients of
the medium, respectively, φ(r, ŝ) is the radiance, and q(r, ŝ) is the source inside � (Arridge
1999). The kernel �(ŝ · ŝ ′) is the scattering phase function which describes the probability
that a photon with an initial direction ŝ ′ will have a direction ŝ after a scattering event. In
DOT, the most usual phase function for isotropic material is the Henyey–Greenstein scattering
function (Henyey and Greenstein 1941) which in a three-dimensional (3D) case is of the form

�(ŝ · ŝ ′) = 1

4π

1 − g2

(1 + g2 − 2g cos γ )3/2
(2)

and in a two-dimensional (2D) case is of the form

�(ŝ · ŝ ′) = 1

2π

1 − g2

(1 + g2 − 2g cos γ )
. (3)

In equations (2) and (3), γ is the angle between the directions ŝ ′ and ŝ. The scattering shape
parameter g defines the shape of the probability density and it gets values between −1 < g < 1.
With the value g = 0, the scattering probability density is a uniform distribution. For forward
dominated scattering g > 0 and for backward dominated scattering g < 0.
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In DOT, we use the boundary condition for the RTE which assumes that no photons travel
in an inward direction at the boundary ∂� except at source locations, thus

φ(r, ŝ) =
{

φ0(r, ŝ), r ∈ ∪j εj , ŝ · n̂ < 0

0, r ∈ ∂�\ ∪j εj , ŝ · n̂ < 0
(4)

where n̂ is the outward unit normal on ∂� and φ0(r, ŝ) is a boundary source at the source
position εj ⊂ ∂� (Arridge 1999, Tarvainen et al 2005a).

In the case of DOT, the measurable quantity is the exitance X(r) on the boundary of the
domain. It is defined as (Arridge and Hebden 1997)

X(r) =
∫

Sn−1
φ(r, ŝ)(ŝ · n̂) dŝ. (5)

Another quantity of interest is the photon density 	(r) which is of the form

	(r) =
∫

Sn−1
φ(r, ŝ) dŝ. (6)

2.2. The diffusion approximation

In DOT, the light propagation in tissues is usually modelled with the diffusion approximation
to the RTE. In the diffusion approximation framework, the approximation that is used for the
radiance is of the form

φ(r, ŝ) ≈ 1

|Sn−1|	(r) − n

|Sn−1| ŝ · (κ∇	(r)) (7)

where n is the dimension of the domain (n = 2, 3). The parameter κ = (n(µa + µ′
s))

−1 is the
diffusion coefficient where µ′

s = (1 − g1)µs is the reduced scattering coefficient, and g1 is the
mean of the cosine of the scattering angle (Arridge 1999, Heino and Somersalo 2002, Kaipio
and Somersalo 2005). In the case of the Henyey–Greenstein scattering function, equations (2)
and (3), we have g1 = g. The DA is basically a first-order angular approximation for the RTE.
Therefore it has some limitations. Firstly, the medium must be scattering dominated, and
secondly, light propagation cannot be modelled accurately in the proximity of the collimated
light sources and boundaries. The frequency domain version of the DA is of the form

−∇ · κ∇	(r) + µa	(r) +
iω

c
	(r) = q0(r) (8)

where q0(r) is the source inside �.
The diffusion approximation cannot satisfy the boundary condition (4). Instead it is often

replaced by an approximation that the total inward directed photon current is zero. Further, by
taking into account the mismatch between the refractive indices of the medium and surrounding
medium, a Robin-type boundary condition can be derived. It is of the form

	(r) +
1

2γn

κA
∂	(r)

∂n̂
= 0, r ∈ ∂� (9)

where γn is a dimension-dependent constant which takes the values γ2 = 1/π and γ3 = 1/4
and A is a parameter governing the internal reflection at the boundary ∂� (Arridge 1999,
Kaipio and Somersalo 2005), with A = 1 for the case of matched refractive index.

The light sources at ∂� are usually modelled in the DA either by the collimated source
model or the diffuse boundary source model. In the case of the collimated source model, the
light source is modelled as an isotropic point source located at a depth 1/µ′

s below the source
site (Schweiger et al 1995). In the case of the diffuse boundary source model, the source is
modelled as a diffuse boundary current at the source position εj ⊂ ∂� (Schweiger et al 1995).
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Figure 1. Two examples of domain � with an inclusion (dark grey). On the left, the inclusion is
a ring-like gap close to the boundary, and on the right, the inclusion is a hole at the centre. The
source is located on the left. The RTE is used as a forward model in the sub-domain �rte (light
grey colour), the DA is used as a forward model in the sub-domain �da (white colour), and the
interface � separates the RTE and DA sub-domains (dashed line).

The exitance, which is the measurable quantity, can be derived to have the following
formulation:

X(r) = −κ
∂	(r)

∂n̂
= 2γn

A
	(r). (10)

2.3. The coupled RTE–DA model

Let us now consider a circular domain � similar to the example images illustrated in
figure 1. The domain contains an inclusion which is a low-scattering or non-scattering region
as marked with dark grey colour in the images of figure 1. In the left image, the inclusion
is a ring-like gap close to the boundary, and in the right image, the inclusion is a hole at the
centre. The refractive index is assumed to be constant within the whole domain, and thus it
is assumed that there are no refraction or reflection effects between the background medium
and the inclusions.

In the coupled RTE–DA model, the RTE is used as a forward model in sub-domain
�rte in which the assumptions of the DA are not valid. The sub-domain �rte includes the
regions in the proximity of the source and boundary and the inclusion, and it is illustrated in
figure 1 with light grey colour. The DA is used as a forward model in sub-domain �da. The
DA sub-domain �da includes the remaining domain and it is illustrated in figure 1 with white
colour. Let ∂�rte denote the boundary of the domain �rte, and ∂�da denote the boundary
of the domain �da. Furthermore, let � denote the interface that separates the sub-domains
�rte and �da. In the cases considered in this paper, � = ∂�da. The interface � is marked
in the images of figure 1 with a dashed line. We note that the interface � should be located
within the region in which the assumptions of the DA are valid. Thus, for example in the
case of a turbid medium which contains a low-scattering or non-scattering region, � should be
located inside the highly scattering region. The location of the interface � can be, for example,
determined by comparing the deviation of the angular distribution of the radiance from the
first-order approximation. The location should be chosen such that the angular distribution
of the radiance is ‘smooth’ enough to be well approximated by the first-order approximation.
The external boundary ∂� is included into the RTE sub-domain �rte, and therefore, we use
the following notation ∂�rte,out = ∂�rte\� for the external boundary. The coupled RTE–DA
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model is derived by coupling the RTE (1) and the DA (8) on the interface � using relations (6)
and (7). The coupled RTE–DA model can now be written in the form (Tarvainen et al 2005b)

( iω

c
+ ŝ · ∇ + µs + µa

)
φ(r, ŝ) = µs

∫
Sn−1

φ(r, ŝ ′)�(ŝ · ŝ ′) dŝ ′ + q(r, ŝ), r ∈ �rte (11)

φ(r, ŝ) =
{
φ0(r, ŝ), r ∈ ∪j εj , ŝ · n̂ < 0
0, r ∈ ∂�rte,out\ ∪j εj , s · n̂ < 0

(12)

φ(r, ŝ) = 1

|Sn−1|	(r) − n

|Sn−1| ŝ · (κ∇	(r)) , r ∈ � (13)

−∇ · κ∇	(r) + µa	(r) +
iω

c
	(r) = q0(r), r ∈ �da (14)

	(r) =
∫

Sn−1
φ(r, ŝ) dŝ, r ∈ � (15)

where the parameters are as described earlier.

3. Numerical methods

In this study the RTE, the DA and the coupled RTE–DA model are numerically solved using
the finite element method. The finite element solutions are compared with the results of Monte
Carlo simulation.

3.1. Finite element method

In the finite element method, a variational formulation is derived for the original problem.
Then, a finite-dimensional approximation for the variational formulation is constructed using
suitably chosen basis and test functions in the solution space.

3.1.1. FE-approximation of the RTE. In this study, the FE-approximation of the RTE is
based on the model in Tarvainen et al (2005a). Both the spatial and angular discretizations
are implemented in piecewise linear bases. Further, the streamline diffusion modification
described by Richling et al (2001) is applied. The streamline diffusion modification has
been found to stabilize FE-solutions in situations in which standard FE-techniques produce
oscillating results. One example of such situation is the FE-solution of the RTE in a low-
scattering medium, where the ray-effect may become visible. In the streamline diffusion
modification, the test function is of the form (v + δŝ · ∇v) instead of the standard method in
which the test function is v. The parameter δ is the ‘smoothing’ parameter which is a spatially
varying constant that depends on the local absorption and scattering. In this study, it is chosen
as δ = min

{
1

2(µa+µs)
, 5

(µa+µs)rj

}
, where rj is the distance from the source.

The FE-approximation of the RTE can be written in the form

(A0 + A1 + A2 + A3 + A4)α = bψ0 (16)

where α = (α1,1, α1,2, . . . , α1,Na , α2,1, . . . , α2,Na , . . . , αNn,1 . . . , αNn,Na)
T ∈ C

NnNa is the
radiance in nodal points of the spatial and angular meshes, Nn is the number of spatial nodes,
and Na is the number of angular directions. Further, ψ0 = (

ψ0
1,1, . . . , ψ

0
Nn,Na

)T ∈ R
NnNa is

the source strength vector having nonzero elements for spatial nodes ri ∈ εj ⊂ ∂� such that
ψ0

i,� is the source power at the node i in the ‘direction’ �. The components of the matrix
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equation (16) are of the form

A0(h, s) = iω

c

(∫
V

ψi(r)ψj (r) dr

∫
Sn−1

ψ�(ŝ)ψm(ŝ) dŝ

+
∫

V

δ

∫
Sn−1

ŝ · ∇ψj(r)ψm(ŝ)ψ�(ŝ) dŝψi(r) dr

)
(17)

A1(h, s) = −
∫

V

∫
Sn−1

ŝ · ∇ψj(r)ψm(ŝ)ψ�(ŝ) dŝψi(r) dr

+
∫

V

δ

∫
Sn−1

(ŝ · ∇ψj(r)ψm(ŝ))(ŝ · ∇ψi(r)ψ�(ŝ)) dŝ dr (18)

A2(h, s) =
∫

∂V

ψi(r)ψj (r) dS

∫
Sn−1

(ŝ · n̂)+ψ�(ŝ)ψm(ŝ) dŝ (19)

A3(h, s) =
∫

V

(µs + µa)ψi(r)ψj (r) dr

∫
Sn−1

ψ�(ŝ)ψm(ŝ) dŝ

+
∫

V

δ(µs + µa)

∫
Sn−1

ŝ · ∇ψj(r)ψm(ŝ)ψ�(ŝ) dŝψi(r) dr (20)

A4(h, s) = −
∫

V

µsψi(r)ψj (r) dr

∫
Sn−1

∫
Sn−1

�(ŝ · ŝ ′)ψ�(ŝ
′) dŝ ′ψm(ŝ) dŝ

−
∫

V

δµs

∫
Sn−1

ŝ · ∇ψj(r)ψm(ŝ)

∫
Sn−1

�(ŝ · ŝ ′)ψ�(ŝ
′) dŝ ′dŝψi(r) dr (21)

b(h, s) =
∫

∂V

ψi(r)ψj (r) dS

∫
Sn−1

(ŝ · n̂)−ψ�(ŝ)ψm(ŝ) dŝ (22)

where V is the domain � and ∂V is its boundary ∂�, and h = Na(j −1)+m, s = Na(i−1)+�

(j, i = 1, . . . , Nn,m, � = 1, . . . , Na, h, s = 1, . . . , NnNa). Further, ψi(r), ψ�(ŝ), ψj (r) and
ψm(ŝ) are the basis functions and (ŝ · n̂)± denotes the positive and negative parts of (ŝ · n̂).

3.1.2. FE-approximation of the DA. The FE-approximation of the DA is of the form

(K + C + R + Z) a = E (23)

where a = (a1, . . . , aN)T ∈ C
N is the photon density in nodal points of the FE-mesh and N

is the number of nodal points. The components of the matrix equation (23) are of the form

K(p, k) =
∫

V

κ∇ϕk(r) · ∇ϕp(r) dr (24)

C(p, k) =
∫

V

µaϕk(r)ϕp(r) dr (25)

Z(p, k) = iω

c

∫
V

ϕk(r)ϕp(r) dr (26)

R(p, k) =
∫

∂V

2γn

A
ϕk(r)ϕp(r) dS (27)

where V is the domain, ∂V is the boundary of the domain, k, p = 1, . . . , N , and ϕk(r) and
ϕp(r) are the basis functions. In this study, the collimated source model is used. Thus, the
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source vector E is of the form

E(p) =
∫

V

q0ϕp(r) dr, r ∈ ∪j εj . (28)

For further details, see e.g. Tarvainen et al (2005a).

3.1.3. FE-approximation of the coupled RTE–DA model. The FE-approximation of the
coupled RTE–DA model is based on the method described by Tarvainen et al (2005b), with the
streamline diffusion modification (Richling et al 2001) being applied. The FE-approximation
of the coupled RTE–DA model, equations (11)–(15), can be written in the form(

Arte D

F Ada

)(
α

a

)
=

(
brte

0

)
(29)

where vector α is the radiance in nodal points of the FE-mesh in �rte and vector a is the photon
density in nodal points of the FE-mesh in �da. The components of the matrix equation (29)
are of the following form. The block Arte is of the form

Arte = A0 + A1 + A2 + A3 + A4 (30)

where A0, A1, A2, A3 and A4 are as in (17)–(21), where V = �rte and ∂V = ∂�rte. The block
Ada is of the form

Ada = K + C + Z (31)

where K,C and Z are as in (24)–(26), where V = �da. Furthermore, the matrices D and F,
which contain the boundary conditions on the interface �, are of the form

D(h, k) = − 1

|Sn−1|
∫

�

ϕk(r)ψj (r) dS

∫
Sn−1

(ŝ · n̂)−ψm(ŝ) dŝ

+
n

|Sn−1|
∫

�

κ

∫
Sn−1

(ŝ · n̂)− (ŝ · ∇ϕk(r)) ψm(ŝ) dŝψj (r) dS (32)

F(p, s) = −
∫

�

κ (n̂ · ∇ψi(r)) ϕp(r) dS

∫
Sn−1

ψ�(ŝ) dŝ (33)

where h = Na(j − 1) + m, s = Na(i − 1) + � (j, i = 1, . . . , Nn,m, � = 1, . . . , Na, h, s =
1, . . . , NnNa), and k, p = 1, . . . , N . The source vector brte ∈ R

NnNa is of the form brte = bψ0,
where ψ0 is the source strength vector and the matrix b is as in (22), where ∂V = ∂�rte,out.

3.2. Monte Carlo simulation

Monte Carlo is a statistical simulation method in which paths of photons are traced as the
photons are scattered and absorbed within the medium. Monte Carlo is known to produce
accurate estimates for light propagation in tissues. However, due to its statistical nature, it has
the disadvantage of requiring long computation time. Therefore, Monte Carlo is usually used
as a reference method for other approaches.

The Monte Carlo code used here is a similar to the anisotropic codes described in Heino
et al (2003) and Heiskala et al (2005). In this study, a 2D situation is considered and the
medium is isotropic. The photon packet method (Prahl et al 1989) is used. The Monte Carlo
code proceeds in the following way. First, a photon packet is launched into the domain at the
source position with an initial weight w. The step size L of the photon packet is calculated
using exponential probability density function. At each step, a part of the packet is absorbed.
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Table 1. The optical properties of the background medium and the inclusion for different tests.

Background Inclusion

µa (mm−1) µs (mm−1) g µa (mm−1) µs (mm−1) g

A 0.025 2 0 0.025 0.02 0
B 0.025 2 0 0.025 0 –
C 0.025 2 0.8 0.025 0.02 0.9

The absorption is handled by reducing the weight w of the photon packet by exp(−µaL).
After a scattering event, a new direction is calculated using the Henyey–Greenstein scattering
function (3). Thus, if the photon direction before the scattering event is ŝ ′ = (cos θ ′, sin θ ′),
the new direction ŝ = (cos θ, sin θ) is obtained by

θ = θ ′ + θ̃ (34)

where

θ̃ = 2 tan−1

(
1 − g

1 + g
tan(πξ)

)
(35)

where g is the scattering shape parameter as in equation (3), and ξ is a random variable
uniformly distributed between zero and one. Thus, if g = 0 the scattering angle θ̃ is obtained
from a uniform distribution from 0 to 2π . The photon packet propagation is continued until
the packet either escapes the domain or the weight falls below a predefined minimum. If the
photon packet escapes the domain, the weight of the packet is saved and contributes to the
boundary data (exitance).

4. Results

The performance of the coupled RTE–DA approach was tested with 2D simulations. For
comparison, the FE-solutions of the RTE and the DA were computed. The FE-solutions
were also compared with the results of Monte Carlo simulation. The finite element
calculations and the Monte Carlo simulations were performed as described in section 3. The
quantities that were investigated were the photon density inside the domain and the exitance,
equations (5) and (10), on the boundary of the domain. Both the photon density within the
domain and exitance on the boundary of the domain were obtained from the results of the
finite element calculations. As the result of the Monte Carlo simulation, the exitance on
the boundary of the domain was obtained.

In simulations, a highly scattering circular domain � which contained a low-scattering
or non-scattering inclusion was examined. Similar domains are illustrated in the images of
figure 1. The radius of the circle was 25 mm and the centre was located at the origin. The
collimated light source was located at (−25 0) with the direction perpendicular to ∂�. The
modulation frequency of the input signal was chosen as 50 MHz. The refractive indices of
the background medium, inclusion and the surrounding medium were chosen as nin = 1.4,
and thus the reflection parameter was A = 1 when solving the DA in the whole domain. Two
types of inclusions were investigated: a ring-like gap close to the boundary and a hole at the
centre. Different inclusion sizes were tested as well as different optical properties. The optical
properties of the test cases are summarized in table 1.

The finite element solution of the RTE, the coupled RTE–DA model and the DA were
computed in the same spatial mesh. In the case of the ring-like gap, the spatial FE-discretization
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Figure 2. Logarithm of amplitude (top row) and phase shift (bottom row) of photon density within
a domain which contained a 1 mm wide low-scattering gap (case 1.A). From left to right: the RTE
solution, the coupled RTE–DA solution and the DA solution.

contained 3954 nodal points and 7731 triangular elements. In the case of the hole at the centre,
the FE-discretization contained 4134 nodal points and 8046 triangular elements. The angular
discretization for the RTE contained 16 (tests A and B) or 32 (test C) directions. In the
FE-discretization of the coupled RTE–DA model, the interface � which separates the RTE and
DA sub-domains is located at a distance 20 mm from the source and 2 mm from the external
boundary and the boundary of the inclusion.

4.1. Case 1: ring-like gap

As the first case, we investigated a situation in which the domain contained a ring-like gap close
to the boundary (left image of figure 1). The width of the gap was 1 mm and its outer boundary
located 3 mm from the boundary. The optical properties of the test cases are summarized in
table 1. In all of the test cases, the background absorption and scattering coefficients were
µa = 0.025 mm−1 and µs = 2 mm−1, respectively, and the absorption coefficient of the gap
was µa = 0.025 mm−1. In the first test case (case 1.A), the gap consisted of low-scattering
medium with µs = 0.02 mm−1. The scattering probability was a uniform distribution, and
thus the scattering shape parameters of the background medium and gap were g = 0. In
the second test case (case 1.B), the gap consisted of non-scattering medium (µs = 0 mm−1)

and the scattering probability of the background medium was a uniform distribution (g = 0).
Further, in the third test case (case 1.C), the gap consisted of low-scattering medium and the
scattering probability was a non-uniform distribution. The scattering coefficient of the gap
was µs = 0.02 mm−1 and the scattering shape parameters of the background medium and the
gap were g = 0.8 and g = 0.9, respectively.

First, the photon densities inside the domain were investigated. The results of the low-
scattering gap test (case 1.A) are shown in figure 2 which shows the photon densities within
the domain solved with the RTE, the coupled RTE–DA model and the DA (images from left to
right in the respective order). The logarithms of amplitudes are shown on the top row and the
phase shifts are shown on the bottom row. The photon densities along the source direction for
all of the test cases are shown in figure 3. The logarithms of amplitudes against the distance
from the source are shown on the left and the phase shifts against the distance from the source
are shown on the right. The images from top to bottom are from the following test cases:
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Figure 3. Logarithm of amplitude (left column) and phase shift (right column) of photon density
against the distance from source in a domain with a 1 mm wide gap. From top to bottom:
a low-scattering gap (case 1.A), a non-scattering gap (case 1.B) and non-uniform scattering
(case 1.C). The locations of the gap are marked with thin grey lines.

a low-scattering gap (case 1.A), a non-scattering gap (case 1.B) and non-uniform scattering
(case 1.C) where the optical properties are as shown in table 1. The results in figures 2
and 3 are in the same scale. The amplitude data were scaled with respect to the source
strength. The phase data do not depend on the source strength and therefore it did not need to
be scaled.

The exitance, which is the measurable quantity on the boundary of the domain, was also
examined. The exitances that were calculated with the different approaches are shown in
figure 4. The logarithms of amplitudes against the detection angle are shown on the left and
the phase shifts against the detection angle are shown on the right. The images from top to
bottom are from the following test cases: a low-scattering gap (case 1.A), a non-scattering gap
(case 1.B) and non-uniform scattering (case 1.C). The results in figure 4 are in the same scale.



4924 T Tarvainen et al

RTE
RTE−DA
DA
Monte Carlo

10 50 90 130 170

−15

−10

−5

0

Detection angle (deg)

Lo
g(

am
pl

itu
de

 o
f e

xi
ta

nc
e)

10 50 90 130 170

−20

−15

−10

−5

0

Detection angle (deg)

P
ha

se
 s

hi
ft 

of
 e

xi
ta

nc
e 

(d
eg

)

10 50 90 130 170

−15

−10

−5

0

Detection angle (deg)

Lo
g(

am
pl

itu
de

 o
f e

xi
ta

nc
e)

10 50 90 130 170

−20

−15

−10

−5

0

Detection angle (deg)

P
ha

se
 s

hi
ft 

of
 e

xi
ta

nc
e 

(d
eg

)

10 50 90 130 170

−8

−6

−4

−2

0

Detection angle (deg)

Lo
g(

am
pl

itu
de

 o
f e

xi
ta

nc
e)

10 50 90 130 170
−12

−8

−4

0

Detection angle (deg)

P
ha

se
 s

hi
ft 

of
 e

xi
ta

nc
e 

(d
eg

)

Figure 4. Logarithm of amplitude (left column) and phase shift (right column) of exitance against
the detection angle in a domain with a 1 mm wide gap. From top to bottom: a low-scattering gap
(case 1.A), a non-scattering gap (case 1.B) and non-uniform scattering (case 1.C).

The amplitude data were scaled with respect to the amplitude of the measurement position
closest to the source.

Examining the photon densities within the domain (figures 2 and 3) shows that the
proposed coupled RTE–DA model gives almost the same results as the RTE. The photon
densities solved with the DA, however, differ clearly from the RTE solution. As can be seen
from figure 2, the photon density within the gap is higher than the photon density within
the surrounding background medium. Thus, the photons tend to propagate further within the
gap. The amplitudes and phase shifts of photon densities obtained with the RTE and the
coupled RTE–DA model are almost equal which can be seen from figure 3. All the solutions
show almost a flat region in the amplitude and phase data on the location of the gap. The
shape of the DA solution, however, differs from the other approaches at this point. According
to our tests if the size of the gap is made wider, the flat region widens as well and the



Coupled RTE–DA 4925

Figure 5. Logarithm of amplitude (top row) and phase shift (bottom row) of photon density within
a domain which contained a low-scattering hole with a radius of 10 mm (case 2.A). From left to
right: the RTE solution, the coupled RTE–DA solution and the DA solution.

Table 2. FE-matrix sizes, number of nonzero elements and the forward solution computation times
for the RTE, the coupled RTE–DA model and the DA in the low-scattering gap test (case 1.A). The
number of angular directions in the RTE discretization was 16.

Matrix size Nonzeros Time (s)

RTE 63 264 × 63 264 6994 432 1365.4
RTE–DA 41 799 × 41 799 4381 981 754.1
DA 3 954 × 3 954 27 322 6.4

difference between the DA solution and other approaches increases. As can be seen from
figure 3, the DA solution differs clearly from the other approaches especially farther from the
source.

Examining the exitances on the boundary of the domain and comparing the FE-solutions
with Monte Carlo simulations supports the results. The coupled RTE–DA model and the RTE
give almost the same results as Monte Carlo. The DA, however, differs clearly from the Monte
Carlo solution. This can be seen from figure 4 in which the logarithms of amplitudes and phase
shifts of exitances against the detection angle are shown. The amplitudes and phase shifts
solved with the RTE, the coupled RTE–DA and Monte Carlo are almost the same whereas
the DA solution differs clearly from the other solutions. The similar ‘kink’ that was noted by
Arridge et al (2000) can be seen both in amplitude and phase data of our results as well, and
it is located around a detection angle 15◦. It was noted that as the width of the gap increases,
the location of the ‘kink’ is displaced.

Information about FE-matrix sizes and number of nonzero elements in them as well as the
computation times for the low-scattering gap test (case 1.A) are summarized in table 2.
All the FE-solutions were computed using the biconjugate gradient method in Matlab
environment. The iterations were proceeded until they converged. As can be seen from
table 2, the FE-discretization of the RTE is 162 times bigger than FE-discretization of the
DA. The coupled RTE–DA model includes both the RTE and DA sub-domains and the size
of the FE-discretization depends on the amount and size of the low-scattering and non-
scattering regions. As can be seen from table 2, the computation times for the RTE and the
coupled RTE–DA model are both longer than for the whole domain DA. However, the coupled



4926 T Tarvainen et al

RTE
RTE−DA
DA

0 10 20 30 40 50

−15

−10

−5

0

Distance (mm) 

Lo
g(

am
pl

itu
de

 o
f p

ho
to

n 
de

ns
ity

)

0 10 20 30 40 50

−15

−10

−5

0

Distance (mm) 

P
ha

se
 s

hi
ft 

of
 p

ho
to

n 
de

ns
ity

 (
de

g)

0 10 20 30 40 50

−15

−10

−5

0

Distance (mm) 

Lo
g(

am
pl

itu
de

 o
f p

ho
to

n 
de

ns
ity

)

0 10 20 30 40 50

−15

−10

−5

0

Distance (mm) 

P
ha

se
 s

hi
ft 

of
 p

ho
to

n 
de

ns
ity

 (
de

g)

0 10 20 30 40 50

−8

−4

0

Distance (mm) 

Lo
g(

am
pl

itu
de

 o
f p

ho
to

n 
de

ns
ity

)

0 10 20 30 40 50

−8

−6

−4

−2

0

Distance (mm) 

P
ha

se
 s

hi
ft 

of
 p

ho
to

n 
de

ns
ity

 (
de

g)

Figure 6. Logarithm of amplitude (left column) and phase shift (right column) of photon density
against the distance from the source in a domain with a 10 mm radius hole at the centre. From
top to bottom: a low-scattering hole (case 2.A), a non-scattering hole (case 2.B) and non-uniform
scattering (case 2.C). The location of the hole is marked with thin grey lines.

RTE–DA solution is obtained almost two times faster than the solution using the RTE in the
whole domain.

4.2. Case 2: hole at the centre

As the second case, we investigated a situation in which the domain contained a hole at the
centre (right image of figure 1). The radius of the hole was 10 mm. The optical properties of
the test cases are summarized in table 1. In all of the test cases, the background absorption
and scattering coefficients were µa = 0.025 mm−1 and µs = 2 mm−1, respectively, and the
absorption coefficient of the hole was µa = 0.025 mm−1. In the first test case (case 2.A), the
hole consisted of low-scattering medium (µs = 0.02 mm−1) and the scattering probability
within the background medium and hole was a uniform distribution (g = 0). In the second
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Figure 7. Logarithm of amplitude (left column) and phase shift (right column) of exitance against
the detection angle in a domain with a 10 mm radius hole at the centre. From top to bottom:
a low-scattering hole (case 2.A), a non-scattering hole (case 2.B) and non-uniform scattering
(case 2.C).

test case (case 2.B), the hole consisted of non-scattering medium (µs = 0 mm−1) and the
scattering probability of the background medium was a uniform distribution (g = 0). In the
third test case (case 2.C), the hole consisted of low-scattering medium, µs = 0.02 mm−1,
and the scattering probability was a non-uniform distribution with the background and hole
scattering shape parameters g = 0.8 and g = 0.9, respectively.

The photon densities inside the domain for the low-scattering hole test (case 2.A) are
shown in figure 5. The FE-solutions from left to right are the RTE solution, the coupled
RTE–DA solution and the DA solution. The logarithms of amplitudes are shown on the top
row and the phase shifts are shown on the bottom row. The photon densities along the source
direction for all of the test cases are shown in figure 6. The logarithms of amplitudes against
the distance from the source are shown on the left, and the phase shifts against the distance
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from the source are shown on the right. The images from top to bottom are from the following
test cases: a low-scattering hole (case 2.A), a non-scattering hole (case 2.B) and non-uniform
scattering (case 2.C) where the optical properties are as shown in table 1. The results in
figures 5 and 6 are in the same scale.

The exitances on the boundary of the domain are shown in figure 7. The logarithms of
amplitudes against the detection angle are shown on the left, and the phase shifts against the
detection angle are shown on the right. The images from top to bottom are from the following
test cases: a low-scattering hole (case 2.A), a non-scattering hole (case 2.B) and non-uniform
scattering (case 2.C) where the optical properties are as shown in table 1.

Examining the photon densities inside the domain shows again that the photons tend to
propagate further within the low-scattering or non-scattering hole. This can clearly be seen
from figure 5 in which the logarithms of amplitudes and phase shifts of photon densities
inside the domain are shown for the low-scattering hole case. The amplitudes and phase shifts
of photon densities obtained with the coupled RTE–DA model are almost equal to the RTE
solution. This can be seen from figure 6 in which the photon densities against the distance
from the source are shown. The photon densities solved with the DA, however, differ from
the RTE solution especially on the location of the hole.

Examining the exitances on the boundary of the domain and comparing the FE-solutions
with the Monte Carlo simulations supports the results. The coupled RTE–DA model and
the RTE give almost the same results as Monte Carlo. This can be seen from figure 7 in
which the logarithms of amplitudes of exitances against the detection angle are shown on the
left, and the phase shifts of exitances against the detection angle are shown on the right. As
can be seen from figure 7, the DA solution does not show a clear difference from the other
approaches when the scattering probability is a uniform distribution (g = 0 in cases 2.A and
2.B). However, when g = 0.8 and g = 0.9 (case 2.C) the DA solution differs from the other
approaches.

5. Discussion and conclusions

In this paper, a coupled RTE–DA model was extended for light propagation in turbid
medium with low-scattering and non-scattering regions. The RTE is used as a model for
light propagation in sub-domains in which the assumptions of the DA are not valid. These
sub-domains include the regions in the proximity of the source and boundary and the low-
scattering and non-scattering regions. The DA is used as a forward model elsewhere in the
domain. The two equations are coupled through their boundary conditions and they are solved
simultaneously using the FEM.

The proposed method was tested with 2D simulations in a circular domain. Two types of
inclusions were investigated: a ring-like gap close to the boundary and a hole at the centre.
Both geometries were tested with different optical properties including low-scattering and
non-scattering inclusions. The results of the coupled RTE–DA model were compared with the
FE-solutions of the RTE and the DA and with the results of the Monte Carlo simulation.

The results show that in the case of a low-scattering or a non-scattering gap close to the
boundary, the coupled RTE–DA model gives almost the same results as the finite element
solution of the RTE. Moreover, the FE-solutions of the coupled RTE–DA model and the RTE
are similar to the results of the Monte Carlo simulation. The DA solution, however, differs
clearly from the other approaches. This is especially evident for the phase data. In the case
of the hole at the centre, the coupled RTE–DA model gives almost the same results as the
FE-solution of the RTE and the Monte Carlo simulation. The DA solution does not show a
clear difference from the other approaches in the cases in which the scattering probability is a
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uniform distribution. However, when the scattering probability is a non-uniform distribution,
the DA solution differs from the other approaches clearly.

When comparing the memory requirements of the finite element solutions, it should be
noted that the FE-discretization of the RTE includes both the spatial and angular discretizations.
Thus, compared to the DA with the same spatial FE-discretization, the RTE problem is bigger
than the DA problem. The coupled RTE–DA model includes both the RTE and DA sub-
domains, and thus the angular discretization is needed in the RTE sub-domain only. This
makes the coupled RTE–DA problem smaller than the RTE problem in the whole domain
and the computation times are shorter as well. This difference in computational burden is
even more significant in larger domains and in the three-dimensional case of DOT where the
angular RTE discretization includes both azimuth and zenith angles.

In conclusion, the results show that the coupled RTE–DA model can be used to describe
photon migration in turbid medium with low-scattering and non-scattering regions accurately.
Further, the results show that the coupled RTE–DA model gives better results than the
conventional diffusion model. Furthermore, the FE-discretization of the coupled RTE–DA
model can be smaller than the FE-discretization of the RTE in the whole domain, and thus the
computation times are shorter as well.
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Richling S, Meinköhn E, Kryzhevoi N and Kanschat G 2001 Radiative transfer with finite elements: I. Basic method

and tests Astron. Astrophys. 380 776–88
Schweiger M, Arridge S R, Hiraoka M and Delpy D T 1995 The finite element model for the propagation of light in

scattering media: boundary and source conditions Med. Phys. 22 1779–92
Tarvainen T, Vauhkonen M, Kolehmainen V and Kaipio J P 2005a Hybrid radiative–transfer–diffusion model for

optical tomography Appl. Opt. 44 876–86
Tarvainen T, Vauhkonen M, Kolehmainen V and Kaipio J P 2005b Finite element model for the coupled radiative

transfer equation and diffusion approximation Int. J. Numer. Methods Eng. at press (doi: 10.1002/nme.1451)
Wang L and Jacques S L 1993 Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by

turbid media J. Opt. Soc. Am. A 10 1746–52


	1. Introduction
	2. Light transport models
	2.1. The radiative transfer equation
	2.2. The diffusion approximation
	2.3. The coupled RTE--DA model

	3. Numerical methods
	3.1. Finite element method
	3.2. Monte Carlo simulation

	4. Results
	4.1. Case 1: ring-like gap
	4.2. Case 2: hole at the centre

	5. Discussion and conclusions
	Acknowledgments
	References

