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GENERAL LINEAR METHODS FOR VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS WITH MEMORY∗

CHENGJIAN ZHANG† AND STEFAN VANDEWALLE‡

Abstract. A new class of numerical methods for Volterra integro-differential equations with
memory is developed. The methods are based on the combination of general linear methods with
compound quadrature rules. Sufficient conditions that guarantee global and asymptotic stability of
the solution of the differential equation and its numerical approximation are established. Numerical
examples illustrate the convergence and effectiveness of the numerical methods.
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1. Introduction. Volterra integro-differential equations (VIDEs) arise widely
in the mathematical modeling of physical and biological phenomena. Significant ad-
vances in the theoretical analysis of such equations and in the numerical analysis and
implementation of time-integration techniques for these problems have been made in
the last few decades. For a survey of early results we refer the reader to the books
[9, 26]. More recently, one has found that VIDEs with memory (MVIDEs), also
called Volterra delay-integro-differential equations (VDIDEs), can be even more effec-
tive than standard VIDEs for the modeling of real-life problems; see, e.g., [8, 22]. This
fact has led researchers to develop a theory and numerical analysis for MVIDEs. For
example, numerical time-integration techniques of one-step collocation and Runge–
Kutta (RK) type were investigated in [10, 17, 11, 23, 34, 21]. Linear multistep based
methods were studied in [1, 2, 3, 27, 33].

So far, very few papers have discussed the nonlinear stability of MVIDEs. This is
quite different from the case of delay differential equations (DDEs) without distributed
delay, for which many results have been reported. For example, linear stability results
for DDEs from [28] were extended in [29] to the nonlinear DDE case. In that paper it
was proved that certain RK methods satisfy a so-called Bρ-stability property. For the
implicit Euler rule, [30] shows a contractivity result, which is a quite strong nonlinear
stability property. Based on the concept of BNf -stability, the authors of [6, 7, 31, 32]
obtained a series of stability and contractivity results for continuous RK methods.
In [32] it was shown that the requirement of BNf -stability for a numerical method is
a very strong requirement that leads to an order barrier. In order to avoid that order
barrier, in [19, 20] numerical stability results have been derived for nonlinear DDEs
based on the concept of algebraic stability of the underlying methods.

Stability results for MVIDEs were obtained in [5, 33, 34], where the authors in-
vestigated the nonlinear stability of continuous RK methods, discrete RK methods,
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and backward differentiation (BDF) methods, respectively. For a study of MVIDEs of
neutral type we refer the reader to [12], where the concept of BNf -stability is used as
the basic assumption. For adaptations of RK methods towards general Volterra func-
tional differential equations, we would like to point out the recent paper [25]. There,
stability results have been derived based on B-stability of the underlying schemes.
These results are applicable for time-integration on a finite time interval. Here, we
will study the nonlinear stability of numerical schemes for MVIDEs based on the use
of general linear (GL) methods. Our stability results will be applicable on infinite
time intervals.

This paper is organized as follows. In section 2, a fairly general class of MVIDEs is
defined. This class contains the problems considered in [33, 34]. We present a stability
criterion for such problems, which generalizes the criteria in the above references. In
section 3, a class of extended GL methods is derived for solving MVIDEs. They are
obtained by combining classical GL methods with compound quadrature rules. In
section 4, some technical lemmas are derived. These lemmas will play a key role in
the derivation of the numerical stability results. In sections 5 and 6, we study the
global and asymptotic stability of the extended GL methods. In section 7 we present
some numerical examples in order to illustrate the convergence of the methods. These
results show that the new methods are quite effective. Finally, in section 8, we end
with some concluding remarks.

2. A class of MVIDEs and its stability.

2.1. A general stability result. We consider a complex N -dimensional system
of MVIDEs with constant delay τ > 0 of the form{

y′(t) = f(t, y(t), y(t− τ),
∫ t

t−τ
g(t, v, y(v))dv), t ∈ [t0,+∞),

y(t) = ϕ(t), t ∈ [t0 − τ, t0],
(2.1)

where the functions f , g, and ϕ are smooth enough such that system (2.1) has a unique
solution y(t). We assume in particular that the following conditions are satisfied:

�〈f(t, x, y, z) − f(t, x̃, ỹ, z̃), x− x̃〉 ≤ α‖x− x̃‖2 + β‖y − ỹ‖2 + σ‖z − z̃‖2,(2.2)

‖g(t, v, x) − g(t, v, x̃)‖ ≤ γ‖x− x̃‖, (t, v) ∈ D,(2.3)

for t ∈ [t0,+∞), D = {(t, v) : t ∈ [t0,+∞), v ∈ [t−τ, t]}, and x, y, z, x̃, ỹ, z̃ ∈ C
N . The

notations 〈·, ·〉 and ‖·‖ denote a given inner product in C
N and its induced norm. The

constants (−α), β, σ, and γ are nonnegative. Problems of type (2.1) with (2.2) and
(2.3) will be called problems of class GRI(α, β, σ, γ). Some examples will be given in
section 7. For problems of class GRI(α, β, σ, γ), we can derive the following stability
result.

Theorem 2.1. Assume that system (2.1) belongs to the class GRI(α, β, σ, γ) with
β + σγ2τ2 < −α. Then the following global and asymptotic stability properties hold:

‖y(t) − ỹ(t)‖ ≤ max
θ∈[t0−τ, t0]

‖ϕ(θ) − ψ(θ)‖ ∀t ≥ t0,(2.4)

lim
t→+∞

‖y(t) − ỹ(t)‖ = 0,(2.5)

where ỹ(t) is the solution of (2.1) with ϕ(t) replaced by ψ(t).

Proof. Denote by Δy(t) the difference y(t) − ỹ(t). Using (2.2) and (2.3), we find
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d

dt
(‖Δy(t)‖2) = 2�〈Δy(t), (Δy(t))′〉

≤ α‖Δy(t)‖2 + β‖Δy(t− τ)‖2 + σ

∥∥∥∥
∫ t

t−τ

[g(t, v, y(v)) − g(t, v, ỹ(v))]dt

∥∥∥∥
2

≤ α‖Δy(t)‖2 + β‖Δy(t− τ)‖2 + σγ2τ2 max
t−τ≤v≤t

‖Δy(v)‖2

≤ α‖Δy(t)‖2 + (β + σγ2τ2) max
t−τ≤v≤t

‖Δy(v)‖2.

Application of the generalized Halanay inequality from [4] leads to

‖Δy(t)‖2 ≤ max
θ∈[t0−τ, t0]

‖ϕ(θ) − ψ(θ)‖2 ∀t ≥ t0 and lim
t→+∞

‖Δy(t)‖2 = 0.

Thus, (2.4) and (2.5) are satisfied.
Remark 2.2. The GRI class includes the DI and RI problem classes that were

investigated in [33, 34]. The relation among these classes is as follows:

DI(α, β, (σ1, σ2), γ) ⊂ RI(α, βσ1, βσ2, γ) ⊂ GRI(α + β(σ1 + σ2)/2, βσ1/2, βσ2/2, γ).

The research in the framework of class GRI extends the results from [33, 34].
Remark 2.3. When the distributed delay argument is absent from (2.1), the

problem becomes a DDE. In that case, Theorem 2.1 can be applied with γ = σ = 0,
which leads to the stability condition β < −α.

2.2. Relation to earlier work. The result from Remark 2.3 can be related to
earlier results on analytical stability of DDEs. In [28, 29], Reverdy dealt respectively
with linear and nonlinear DDEs of class GRI(−ρ, ρ, 0, 0), with ρ > 0. This class
contains, for example, the linear DDE{

y′(t) = py(t) + qy(t− τ), t ∈ [t0,+∞),

y(t) = ϕ(t), t ∈ [t0 − τ, t0],
(2.6)

with �(p) ≤ −|q|, by setting ρ = −�(p)/2. It was proved for GRI(−ρ, ρ, 0, 0) that

N [y(t) − ỹ(t)] ≤ N [y(t0) − ỹ(t0)] ∀t ≥ t0,(2.7)

where N [y(t)] = 1
2‖y(t)‖2+ρ

∫ t

t−τ
‖y(θ)‖2dθ. Note that stability property (2.7) follows

from our somewhat stronger result (2.4).
In [30] Torelli considered DDEs with a variable delay τ(t):⎧⎪⎨

⎪⎩
y′(t) = f(t, y(t), y(t− τ(t))), t ∈ [t0,+∞),

y(t) = ϕ(t), t ∈
[

inf
t≥t0

{t− τ(t)}, t0
]
,

(2.8)

with β(t) ≤ −α(t) and α(t) < 0 for t ≥ t0, where α(t) and β(t) are defined as

α(t) = sup
x,x̃,y,∈Cn, x 
=x̃

�〈f(t, x, y) − f(t, x̃, y), x− x̃〉/‖x− x̃‖2,(2.9)

β(t) = sup
x,y,ỹ∈Cn, y 
=ỹ

‖f(t, x, y) − f(t, x, ỹ)‖/‖y − ỹ‖.(2.10)

In that paper it was proven that (2.8) satisfies the global stability property (2.4).
System (2.8) was analyzed by Zennaro in [32] under a different set of conditions:
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(I) there exists a constant τ0 such that τ(t) ≥ τ0 for all t ≥ t0;
(II) the delayed argument t− τ(t) is a strictly increasing function for all t ≥ t0;

(III) limt→+∞ t− τ(t) = +∞;

(IV) there are two continuous functions, α̂(t) and β̂(t), and two real numbers,

0 ≤ r < 1 and α0 < 0, such that α(t) ≤ α̂(t) ≤ α0 and β(t) ≤ β̂(t) ≤ −rα̂(t)
for t ≥ t0.

It was proven in [32] that, under those conditions, system (2.8) satisfies the asymp-
totic stability (2.5).

The above results by Torelli and by Zennaro can be applied to the constant delay
case, i.e., with τ(t) ≡ τ . Assume there exists an α and β such that α := supt≥t0 α(t) <
0 and β := supt≥t0 β(t) < −α. Then, system (2.8) satisfies the stability properties
(2.4) and (2.5) by the results from [30] and [32], respectively. This conclusion, however,
is just the special case from our results, as expressed in Remark 2.3.

3. The extended GL methods. The numerical methods we suggest for (2.1)
will be based on GL methods for ODEs of the form y′(t) = f(t, y(t)) with y(t0) = y0;
see [13, 15, 16]. A GL method can be formulated as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Y
(n)
i = h

s∑
j=1

c
(11)
ij f(tn + cjh, Y

(n)
j ) +

r∑
j=1

c
(12)
ij y

(n−1)
j , i = 1, 2, . . . , s,

y
(n)
i = h

s∑
j=1

c
(21)
ij f(tn + cjh, Y

(n)
j ) +

r∑
j=1

c
(22)
ij y

(n−1)
j , i = 1, 2, . . . , r,

(3.1)

with real coefficients c
(IJ)
ij for I, J = 1, 2, with a step size h > 0, and with tn = t0 +nh

for n ≥ 0. The vector Y
(n)
i approximates y(tn+cih). The precise nature of vector y

(n)
i

differs from method to method; generally, it contains the necessary information for
doing the next time-integration step. For use in the subsequent analysis, we introduce

the coefficient matrices CIJ = (c
(IJ)
ij ) and the abscissa vector c = (c1, c2, . . . , cs)

T .
An important subclass of the GL methods, which will be considered further on,

is the multistep Runge–Kutta (MRK) methods (see, e.g., [14, 24]):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y
(n)
i = h

s∑
j=1

aijf(tn + cjh, Y
(n)
j ) +

r∑
j=1

âijyn+j−1, i = 1, 2, . . . , s,

yn+r = h

s∑
j=1

bjf(tn + cjh, Y
(n)
j ) +

r∑
j=1

b̂jyn+j−1.

(3.2)

These methods can be written in the form (3.1) when setting yn+i = y
(n)
i . With

b = (b1, b2, . . . , bs)
T and b̂ = (b̂1, b̂2, . . . , b̂r)

T , we can identify the coefficient matrices:

C11 = (aij), C12 = (âij), C21 =

[
0

bT

]
, C22 =

[
0 Ir−1

b̂T

]
.

For the formulation of other numerical methods as a GL method, we refer the reader
to [16].

First, we recall a number of elementary concepts of GL methods that will be
important for our stability analysis.
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Definition 3.1. Let R(z) = C22+zC21(Is−zC11)
−1C12, where z ∈ C and where

Is denotes the s× s identity matrix. A GL method is called strictly stable at infinity
if R(∞) := limz→∞ R(z) exists and if its spectral radius satisfies ρ(R(∞)) < 1.

Definition 3.2 (cf. [13]). A GL method is called (k, l)-algebraically stable if there
exist real constants k and l, a symmetric positive-definite matrix G = (gij) ∈ R

r×r,
and a nonnegative diagonal matrix D = diag(d1, d2, . . . , ds) ∈ R

s×s such that matrix
M = (mij) ∈ R

(r+s)×(r+s) is nonnegative definite, with

M =

[
kG− CT

22GC22 − 2lCT
12GC12 CT

12D − CT
22GC21 − 2lCT

12DC11

DC12 − CT
21GC22 − 2lCT

11DC12 DC11 + CT
11D − CT

21GC21 − 2lCT
11DC11

]
.

In particular, a (1, 0)-algebraically stable method is called algebraically stable.
Adapting method (3.1) to MVIDE (2.1) and considering the case where the step

size h = τ/m for m a given positive integer yield the following numerical scheme:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y
(n)
i = h

s∑
j=1

c
(11)
ij f(tn + cjh, Y

(n)
j , Y

(n−m)
j , Z

(n)
j ) +

r∑
j=1

c
(12)
ij y

(n−1)
j , i = 1, 2, . . . , s,

y
(n)
i = h

s∑
j=1

c
(21)
ij f(tn + cjh, Y

(n)
j , Y

(n−m)
j , Z

(n)
j ) +

r∑
j=1

c
(22)
ij y

(n−1)
j , i = 1, 2, . . . , r.

(3.3)

Z
(n)
j is an approximation to

Z(tn + cjh) :=

∫ tn+cjh

tn−m+cjh

g(tn + cjh, v, y(v))dv

and is computed by a convergent, compound quadrature formula

Z
(n)
j = h

m∑
q=0

νqg(tn + cjh, tn−q + cjh, Y
(n−q)
j ), j = 1, 2, . . . , s.(3.4)

Such a quadrature formula can be derived from a uniform repeated rule (cf. [3, 9, 33]).
For our stability analysis we need the rule to satisfy the following condition:

h

√√√√(m + 1)

m∑
q=0

|νq|2 < ν with mh = τ and a positive constant ν.(3.5)

This condition holds for many of the common quadrature rules. For example, the
compound trapezoidal (CT) rule of second order,∫ τ

0

Φ(s)ds ∼= h

[
1

2
Φ(0) +

m−1∑
q=1

Φ((m− q)h) +
1

2
Φ(mh)

]
, where mh = τ,

satisfies

h

√√√√(m + 1)

m∑
q=0

|νq|2 = h
√

(m + 1)[(1/2)2 + m− 1 + (1/2)2] ≤ h(m + 1) ≤ 2mh = 2τ.

The compound Gregory (CG) rule of order 3 (cf. [9]),∫ τ

0

Φ(s)ds ∼=
h

12

[
5Φ(0) + 13Φ(h) + 12

m−2∑
q=2

Φ((m− q)h) + 13Φ((m− 1)h) + 5Φ(mh)

]
,
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Table 1

Value for the bound ν in (3.5) for different compound quadrature rules.

CT rule CG rule CS rule CN rule

ν 2 τ 2 τ
√

20 τ/3 2
√

1194 τ/45

with mh = τ , satisfies

h

√√√√(m + 1)

m∑
q=0

|νq|2 = h

√
(m + 1)

[
52 + 132 + (m− 3)122 + 132 + 52

122

]

= h

√
(m + 1)

(
m− 11

36

)
≤ h(m + 1) ≤ 2mh = 2τ.

The values for ν for the fourth order compound Simpson (CS) rule and for the sixth
order compound Newton–Cotes (CN) rule have been derived in [33]; see Table 1.

We end this section with some more notational conventions. When the extended
GL method is applied to system (2.1) with the initial function ϕ(t) replaced by ψ(t),

the resulting numerical approximations will be denoted by Ỹ
(n)
j , Z̃

(n)
j , and ỹ

(n)
i . Also,

when a time point tn or tn + cjh falls in the initial interval [t0 − τ, t0], we set the
approximation at that point equal to the corresponding (known) true solution.

4. Some elementary lemmas. In this section, we will derive some technical
lemmas, which are important for the derivation of the main results in the subsequent
sections. First, we introduce some more notation:

Δy
(n)
j = y

(n)
j − ỹ

(n)
j , ΔY

(n)
j = Y

(n)
j − Ỹ

(n)
j , ΔZ

(n)
j = Z

(n)
j − Z̃

(n)
j ,

Δf
(n)
j = f(t

(n)
j , Y

(n)
j , Y

(n−m)
j , Z

(n)
j ) − f(t

(n)
j , Ỹ

(n)
j , Ỹ

(n−m)
j , Z̃

(n)
j ),

Δy(n) =

⎛
⎜⎜⎜⎜⎝

Δy
(n)
1

Δy
(n)
2
...

Δy(n)
r

⎞
⎟⎟⎟⎟⎠, ΔY (n) =

⎛
⎜⎜⎜⎜⎝

ΔY
(n)
1

ΔY
(n)
2
...

ΔY (n)
s

⎞
⎟⎟⎟⎟⎠, Δf (n) =

⎛
⎜⎜⎜⎜⎝

Δf
(n)
1

Δf
(n)
2
...

Δf (n)
s

⎞
⎟⎟⎟⎟⎠.

With (3.3) we can write the relation between the above quantities compactly as{
ΔY (n) = h(C11 ⊗ IN )Δf (n) + (C12 ⊗ IN )Δy(n−1),

Δy(n) = h(C21 ⊗ IN )Δf (n) + (C22 ⊗ IN )Δy(n−1),
(4.1)

where the symbol ⊗ denotes the Kronecker product. We will use the following inner
product and norms on C

Ns:

〈U, V 〉 =

s∑
i=1

〈ui, vi〉, ‖U‖ =
√
〈U,U〉, ‖U‖G =

√
〈U,GU〉,

where vectors U = (uT
1 , u

T
2 , . . . , u

T
s )T , V = (vT1 , v

T
2 , . . . , v

T
s )T ∈ C

Ns, and ui, vi ∈ C
N .
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Lemma 4.1. Suppose that the GL method (3.1) is (k, l)-algebraically stable with
0 < k ≤ θ ≤ 1. Suppose that the quadrature formula (3.4) satisfies (3.5) and that the
conditions (2.2) and (2.3) hold. Set d =

∑s
j=1 dj. Then, method (3.3) satisfies

‖Δy(n)‖2
G ≤ θn‖Δy(0)‖2

G + 2βτθn−md max
−m≤i≤−1

max
1≤j≤s

{‖ΔY
(i)
j ‖2}

+ 2[(hα− l)θm + hβ]

n−1∑
i=0

θn−m−i−1
s∑

j=1

dj‖ΔY
(i)
j ‖2

+
2hσ(νγ)2

m + 1

n−1∑
i=0

θn−i−1
s∑

j=1

m∑
q=0

dj‖ΔY
(i−q)
j ‖2, n ≥ 1.(4.2)

Proof. It follows from a fairly straightforward (but tedious) computation and
(k, l)-algebraic stability that (compare also [13, 20])

‖Δy(n)‖2
G − k‖Δy(n−1)‖2

G − 2

s∑
j=1

dj�〈ΔY
(n)
j , hΔf

(n)
j − lΔY

(n)
j 〉 = −

r+s∑
i=1

r+s∑
i=1

mij〈ωi, ωj〉

≤ 0,

where M = (mij), as defined in Definition 3.2, and

ωi =

{
y
(n−1)
i , 1 ≤ i ≤ r,

hΔf
(n)
i , r + 1 ≤ i ≤ r + s.

This, together with the condition 0 < k ≤ θ, implies

‖Δy(n)‖2
G ≤ θ‖Δy(n−1)‖2

G + 2

s∑
j=1

dj�〈ΔY
(n)
j , hΔf

(n)
j − lΔY

(n)
j 〉.(4.3)

By condition (2.2) one has

s∑
j=1

dj�〈ΔY
(n)
j , hΔf

(n)
j 〉 ≤ h

s∑
j=1

dj [α‖ΔY
(n)
j ‖2 + β‖ΔY

(n−m)
j ‖2 + σ‖ΔZ

(n)
j ‖2].

When this bound is inserted into (4.3), one finds

‖Δy(n)‖2
G ≤ θ‖Δy(n−1)‖2

G + 2(hα− l)

s∑
j=1

dj‖ΔY
(n)
j ‖2

+ 2hβ

s∑
j=1

dj‖ΔY
(n−m)
j ‖2 + 2hσ

s∑
j=1

dj‖ΔZ
(n)
j ‖2.(4.4)

An induction argument applied to (4.4) yields

‖Δy(n)‖2
G ≤ θn‖Δy(0)‖2

G + 2(hα− l)

n−1∑
i=0

θn−i−1
s∑

j=1

dj‖ΔY
(i)
j ‖2

+ 2hβ

n−1∑
i=0

θn−i−1
s∑

j=1

dj‖ΔY
(i−m)
j ‖2 + 2hσ

n−1∑
i=0

θn−i−1
s∑

j=1

dj‖ΔZ
(i)
j ‖2.(4.5)
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With (2.3), (3.5), and the Cauchy inequality, we have

‖ΔZ
(i)
j ‖2 ≤ (hγ)2

(
m∑
q=0

|νq|‖ΔY
(i−q)
j ‖

)2

≤ (hγ)2

(
m∑
q=0

|νq|2
)(

m∑
q=0

‖ΔY
(i−q)
j ‖2

)

≤ (γν)2

m + 1

m∑
q=0

‖ΔY
(i−q)
j ‖2.(4.6)

Moreover, we have

h

n−1∑
i=0

θn−i−1
s∑

j=1

dj‖ΔY
(i−m)
j ‖2

= h

n−m−1∑
i=0

θn−m−i−1
s∑

j=1

dj‖ΔY
(i)
j ‖2 + h

−1∑
i=−m

θn−m−i−1
s∑

j=1

dj‖ΔY
(i)
j ‖2

≤ h

n−1∑
i=0

θn−m−i−1
s∑

j=1

dj‖ΔY
(i)
j ‖2 + τθn−md max

−m≤i≤−1
max
1≤j≤s

{‖ΔY
(i)
j ‖2}.(4.7)

Substituting (4.6) and (4.7) into (4.5) results in (4.2).
The second lemma gives an existence condition for the stability function R(z)

that is referred to in Definition 3.1.
Lemma 4.2. Suppose that a GL method is (k, l)-algebraically stable for a sym-

metric positive-definite matrix G ∈ R
r×r and a positive diagonal matrix D ∈ R

s×s.
Then the limit R(∞) := limz→∞ R(z) exists.

Proof. It suffices to prove the existence of C0 := limε→0 C21(C11 + εIs)
−1. This

can be shown in a similar way as Lemma 3.8 of [20] is proven (compare also [18]), i.e.,
by considering the nonnegative definiteness of the bottom right-hand principal minor
DC11 + CT

11D − CT
21GC21 − 2lCT

11DC11 of matrix M .
Remark 4.3. In [18, 20] the positivity of the diagonal matrix D is guaranteed

by requiring the underlying methods to be irreducible and algebraically stable. Here,
we loosen these conditions by requesting positivity for D explicitly. This allows us to
consider more general (k, l)-algebraically stable GL methods.

Remark 4.4. When the conditions in Lemma 4.2 are satisfied, it holds that

R(∞) =

{
C22 − C21C

−1
11 C12 if C11 is invertible,

C22 − C0C12 if C11 is singular.

Two inequalities from [34] will also play important roles in the subsequent sec-
tions.

Lemma 4.5. Suppose that {Ai}ni=0 and {Bi}ni=−m are two arbitrary nonnegative
real sequences. Then the following two inequalities hold for all n,m ≥ 0:

n∑
i=0

⎛
⎝Ai

m∑
j=0

Bi−j

⎞
⎠ ≤

m∑
j=0

n∑
i=0

Ai+jBi +

⎛
⎝ m∑

j=1

j∑
i=1

Aj−i

⎞
⎠ max

−m≤q≤−1
{Bq},(4.8)

n∑
i=0

m∑
j=0

Bi−j ≤ (m + 1)

n∑
i=0

Bi +
m(m + 1)

2
max

−m≤q≤−1
{Bq}.(4.9)
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Finally, we mention an asymptotic property of vector difference equations that
can be derived easily from a combination of Theorems 105B and 123D of [16].

Lemma 4.6. Given a matrix A ∈ C
Q×Q and a sequence Vn ∈ C

Q, the solution
sequence {Xn} ⊆ C

Q of the linear difference equation Xn = AXn−1 + Vn satisfies
limn→∞ ‖Xn‖ = 0 if and only if ρ(A) < 1 and limn→∞ ‖Vn‖ = 0.

5. Global stability of the extended GL methods. Numerical stability is an
important feature of an effective numerical method. An unstable numerical method
may be consistent of high order, yet arbitrarily small perturbations will eventually
cause large deviations from the true solution. In this section, we will focus on the
global stability of the extended GL methods.

Definition 5.1. The extended GL method (3.3) and (3.4) is called globally stable
for problems of class GRI(α, β, σ, γ) if there exists a constant H > 0, which depends
only on α, β, σ, γ, τ, ν, and the method, such that

‖Δy(n)‖ ≤ Hmax

{
‖Δy(0)‖, max

−m≤i≤−1
max
1≤j≤s

{‖ΔY
(i)
j ‖}

}
∀n ≥ 1.(5.1)

Remark 5.2. For the extended one-step RK methods, we have Δy(n) = Δyn :=
yn+1 − ỹn+1. Also, under the usual assumption that 0 ≤ ci ≤ 1, it holds that

max

{
‖Δy0‖, max

−m≤i≤−1
max
1≤j≤s

{‖ΔY
(i)
j ‖}

}
≤ max

t0−τ≤t≤t0
‖ϕ(t) − ψ(t)‖.

Hence, we have for (5.1) the following equivalent formulation:

‖Δyn‖ ≤ H max
t0−τ≤t≤t0

‖ϕ(t) − ψ(t)‖.

Thus, the concept of global stability in Definition 5.1 is slightly stronger than that
in [34].

Theorem 5.3. Suppose that the GL method (3.1) is (k, l)-algebraically stable
for a nonnegative diagonal matrix D = diag(d1, d2, . . . , ds) ∈ R

s×s and a symmetric
positive-definite matrix G = (gij) ∈ R

r×r, where 0 < k ≤ 1, and suppose the quadra-
ture formula (3.4) satisfies condition (3.5). Then the extended GL method (3.3) and
(3.4) is globally stable for the class GRI(α, β, σ, γ) with stability constant

H =

√
λG
max + dτ(2β + σγ2ν2)

λG
min

,(5.2)

where λG
min and λG

max denote the minimum and maximum eigenvalues of matrix G
and d =

∑s
j=1 dj, when the following condition holds:

h(α + β + σγ2ν2) ≤ l.(5.3)

Proof. Setting θ = 1 in (4.2) gives

‖Δy(n)‖2
G ≤ ‖Δy(0)‖2

G + 2βτd max
−m≤i≤−1

max
1≤j≤s

{‖ΔY
(i)
j ‖2}

(5.4)

+ 2[h(α + β) − l]

n−1∑
i=0

s∑
j=1

dj‖ΔY
(i)
j ‖2 +

2hσ(νγ)2

m + 1

n−1∑
i=0

s∑
j=1

m∑
q=0

dj‖ΔY
(i−q)
j ‖2.
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Also, by virtue of inequality (4.9), we have for n ≥ 1

n−1∑
i=0

m∑
q=0

‖ΔY
(i−q)
j ‖2 ≤ (m + 1)

n−1∑
i=0

‖ΔY
(i)
j ‖2 +

m(m + 1)

2
max

−m≤i≤−1
{‖ΔY

(i)
j ‖2}.

(5.5)

Inserting (5.5) into (5.4) and using the condition that mh = τ yield

‖Δy(n)‖2
G ≤ ‖Δy(0)‖2

G + dτ(2β + σγ2ν2) max
−m≤i≤−1

max
1≤j≤s

{‖ΔY
(i)
j ‖2}

+ 2[h(α + β + σγ2ν2) − l]

n−1∑
i=0

s∑
j=1

dj‖ΔY
(i)
j ‖2.(5.6)

With condition (5.3) this leads to

‖Δy(n)‖2
G ≤ ‖Δy(0)‖2

G + dτ(2β + σγ2ν2) max
−m≤i≤−1

max
1≤j≤s

{‖ΔY
(i)
j ‖2}.

Considering that λG
min‖Δy(n)‖2 ≤ ‖Δy(n)‖2

G and that ‖Δy(0)‖2
G ≤ λG

max‖Δy(0)‖2, we
arrive at stability inequality (5.1) with stability constant (5.2).

Example 5.1. As an application of Theorem 5.3, we consider an extended GL
method with s = 1 and r = 2, induced by the combination of the two-step BDF
method and the CT rule:⎧⎪⎪⎨

⎪⎪⎩
Y (n) = 2

3hF
(n) +

[(
4
3 ,−

1
3

)
⊗ IN

]
y(n−1),

y(n) = h

[(
2
3

0

)
⊗ IN

]
F (n) +

[(
4
3 − 1

3

1 0

)
⊗ IN

]
y(n−1),

(5.7)

where Y (n) = yn+2, yn ∼= y(tn), y(n) = (yTn+2, y
T
n+1)

T , and

F (n) = fn+2 := f
(
tn+2, Y

(n), Y (n−m), Z(n)
)
,

Z(n) = h

m∑′′

q=0

g
(
tn+2, tn+2−q, Y

(n−q)
)
,(5.8)

where the special summation symbol stands for a sum with the first and last term
halved. By Table 1 we know that (5.8) satisfies (3.5) with ν = 2τ . In [15], it was
shown that the two-step BDF method is (1/(1− 2l), l)-algebraically stable with l ≤ 0
for D = 1 and the 2 × 2 real symmetric positive-definite matrix

G :=

(
(5 − 2l)/2 −1

−1 1/2

)
.

Note that 0 < k ≤ 1 whenever l ≤ 0 and that there always exists an l such that (5.3)
holds whenever β+σγ2ν2 ≤ −α. Hence, we may conclude that the method is globally
stable for the class GRI(α, β, σ, γ) whenever β + σγ2ν2 ≤ −α. For the parameters in
the formula of the stability constant, the following values are used:

d = 1, ν = 2τ , λG
min =

3 − l −
√

(l − 2)2 + 4

2
, λG

max =
3 − l +

√
(l − 2)2 + 4

2
.
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Table 2

l-value minimizing (5.9) and corresponding stability constant H of the extended two-step BDF
method for the MVIDEs in (7.1) and (7.2).

MVIDE (7.1) MVIDE (7.2)

m l H l H
8 −0.2224 6.4650 −0.0554 7.1616

16 −0.1112 6.8497 −0.0277 7.2997

32 −0.0556 7.0912 −0.0138 7.3733

64 −0.0278 7.2279 −0.0069 7.4116

The range of l is given by h(α+β+σγ2ν2) ≤ l ≤ 0. In particular, when the extended
two-step BDF method with a fixed step size h is applied to a concrete problem of
class GRI(α, β, σ, γ), one should look for the value of l that minimizes the stabil-
ity constant H. This leads one to consider the following constrained minimization
problem: ⎧⎪⎨

⎪⎩
minimize H :=

√
3−l+

√
(l−2)2+4+4τ(β+2σγ2τ2)

3−l−
√

(l−2)2+4

subject to h(α + β + σγ2ν2) ≤ l ≤ 0.

(5.9)

In section 7 results of numerical experiments will be reported for two concrete MVIDEs.
The first of those, specified in (7.1), belongs to class GRI(−4, 1

2 ,
1
2 , 1); the second one,

specified in (7.2), belongs to class GRI(−4 +
√

2
2 ,

√
2

4 ,
√

2
4 , 2). We have numerically

solved problem (5.9) for these two examples. The l-value at which the minimum is
obtained and the corresponding H-value are given in Table 2 as a function of the
parameter m, with h = τ/m.

The method in the above example is also algebraically stable. For such methods,
a general result can be derived immediately from Theorem 5.3.

Corollary 5.4. Suppose that GL method (3.1) is algebraically stable for a non-
negative diagonal matrix D = diag(d1, d2, . . . , ds) ∈ R

s×s and a symmetric positive-
definite matrix G = (gij) ∈ R

r×r, and suppose the quadrature formula (3.4) satisfies
condition (3.5). Then the extended GL method (3.3) and (3.4) is globally stable for the
class GRI(α, β, σ, γ) with stability constant (5.2) when the following condition holds:

β + σγ2ν2 ≤ −α.(5.10)

In [14], Burrage has derived a class of s-stage MRK methods of order 2s of the
form (3.2) that satisfy⎧⎪⎪⎨

⎪⎪⎩
B(2s), C(s), E(s); ci �= cj whenever i �= j;

r∑
j=1

b̂j = 1, i = 1, 2, . . . , s; b̂1 > 0, b̂j ≥ 0, j = 2, 3, . . . , r,
(5.11)

where B(2s), C(s), and E(s) denote the usual order conditions. It was shown that
these methods are algebraically stable for the matrices

G := diag

⎛
⎝b̂1, b̂1 + b̂2, . . . ,

r∑
j=1

b̂j

⎞
⎠ , D := diag(b1, b2, . . . , bs).(5.12)
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Table 3

Coefficients of the fourth order MRK method from Example 5.2.

a11 a12 a21 a22

0.47790690818421 0.87165188291653 −0.08663699023763 0.50361252124048

â11 â12 â21 â22

0.75576439912123 0.24423560087877 0.97380878183171 0.02619121816829

b1 b2 b̂1 b̂2

0.95532987568936 0.79063681672548 2
√

15 − 7 8 − 2
√

15

c1 c2

1.59379439197950 0.44316674917114

Obviously, those are positive-definite. Hence, (5.10) is sufficient as a condition for
global stability of the corresponding extended GL method.

Example 5.2. By combining the fourth order MRK method from [14] with the
CS quadrature rule of order 4, we can obtain an extended GL method with r = 2 and
s = 2. It is written schematically below; for the values of the coefficients we refer the
reader to Table 3.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Y (n) = h

[(
a11 a12

a21 a22

)
⊗ IN

]
F (n) +

[(
â11 â12

â21 â22

)
⊗ IN

]
y(n−1),

y(n) = h

[(
0 0

b1 b2

)
⊗ IN

]
F (n) +

[(
0 1

b̂1 b̂2

)
⊗ IN

]
y(n−1),

(5.13)

where Y (n) = (Y
(n)
1

T
, Y

(n)
2

T
)T and y(n) = (yn+1

T , yn+2
T )T , with Y

(n)
i

∼= y(tn + cih)
and yn ∼= y(tn), and

F (n) =

(
f
(
tn + c1h, Y

(n)
1 , Y

(n−m)
1 , Z

(n)
1

)T
, f
(
tn + c2h, Y

(n)
2 , Y

(n−m)
2 , Z

(n)
2

)T)T

.

Z
(n)
j is computed by the CS rule with an even integer m ≥ 4:

Z
(n)
j =

h

3

⎡
⎣g (tn,j , tn,j , Y (n)

j

)
+ 4

m/2∑
q=1

g
(
tnj , tn−2q+1,j , Y

(n−2q+1)
j

)

+ 2

(m−2)/2∑
q=1

g
(
tn,j , tn−2q,j , Y

(n−2q)
j

)
+ g

(
tn,j , tn−m,j , Y

(n−m)
j

)⎤⎦ .(5.14)

Here the notation tn,j is used as shorthand for tn + cjh. This rule satisfies (3.5) for

ν =
√

20
3 τ . Under condition (5.10) this extended MRK method is globally stable.

The stability constant (5.2) can be computed using d = 1.7460, ν =
√

20
3 τ , λG

min =

2
√

15 − 7, and λG
max = 1.

In [24], the MRK methods that satisfy (5.11) are called MRK methods of the first
class. Five more classes of MRK methods are identified by Li in the above reference.
All of those are proven to be algebraically stable for the matrices (5.12). Hence,
Corollary 5.4 is immediately applicable to the corresponding extended GL methods.
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Table 4

Coefficients of the third order MRK method from Example 5.3.

a11 a12 a21 a22

0.41623635782678 0.43372361014760 −0.22963576074350 0.62694215804990

â11 â12 â21 â22

0.04995996797438 0.95004003202562 0.48484848484848 0.51515151515152

b1 b2 b̂1 b̂2

0.59227996965099 0.55772003034901 0.15 0.85

c1 c2

1.80000000000000 0.91245791245791

Example 5.3. We present an example of the second MRK class. Using formulas
(3.11)–(3.16) of [24], we compute the coefficients for a two-stage third order MRK
method. Its combination with the CG rule of order 3 (cf. [9]) yields another extended

GL method of the form (5.13). The coefficients are given in Table 4. The Z
(n)
j -values

are computed as follows:

Z
(n)
j =

h

12

[
5 g(tn,j , tn,j , Y

(n)
j ) + 13 g(tn,j , tn−1,j , Y

(n−1)
j )

+ 12

m−2∑
q=2

g(tn,j , tn−q,j , Y
(n−q)
j ) + 13 g(tn,j , tn−m+1,j , Y

(n−m+1)
j )

+ 5 g(tn,j , tn−m,j , Y
(n−m)
j )

]
.(5.15)

Since the corresponding underlying method is algebraically stable, and since the CG
rule satisfies (3.5) with ν = 2τ , we immediately have global stability of the extended
GL method under condition (5.11). The stability constant (5.2) can be computed
using d = 1.1500, ν = 2τ , λG

min = 0.15, and λG
max = 1.

6. Asymptotic stability of the extended GL methods. In this section, we
focus on the concept of asymptotic stability.

Definition 6.1. The extended GL method (3.3) and (3.4) is called asymptotically
stable for problems of class GRI(α, β, σ, γ) if limn→∞ ‖Δy(n)‖ = 0.

Theorem 6.2. Suppose that GL method (3.1) is (k, l)-algebraically stable for
a nonnegative diagonal matrix D = diag(d1, d2, . . . , ds) ∈ R

s×s and a real symmet-
ric positive-definite matrix G = (gij) ∈ R

r×r, where 0 < k < 1, and suppose the
quadrature formula (3.4) satisfies (3.5). Then the extended GL method (3.3) and
(3.4) is asymptotically stable for the class GRI(α, β, σ, γ) when the following condi-
tion holds:

h(α + β + σγ2ν2) < l.(6.1)

Proof. Define the quantity θ = max{k, [h(β+σγ2ν2)
l−hα ]

1
m }. From 0 < k < 1 and (6.1)

it follows that 0 < k ≤ θ < 1. Hence, bound (4.2) from Lemma 4.1 holds. We will
simplify its right-hand side. By using (4.8), we can derive the following bound:
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h

n−1∑
i=0

θ−i
m∑
q=0

‖ΔY
(i−q)
j ‖2

≤ h

[
m∑
q=0

n−1∑
i=0

θ−(i+q)‖ΔY
(i)
j ‖2 +

(
m∑
q=1

q∑
i=1

θ−(q−i)

)
max

−m≤q̂≤−1
{‖ΔY

(q̂)
j ‖2}

]

≤ (m + 1)h

n−1∑
i=0

θ−(i+m)‖ΔY
(i)
j ‖2 + mτθ1−m max

−m≤i≤−1
{‖ΔY

(i)
j ‖2}.(6.2)

Substituting (6.2) into the last term of the right-hand side of (4.2) yields

‖Δy(n)‖2
G ≤ θn‖Δy(0)‖2

G + 2τθn−md

[
β +

mσγ2ν2

m + 1

]
max

−m≤i≤−1
max
1≤j≤s

{‖ΔY
(i)
j ‖2}

+ 2[(hα− l)θm + h(β + σγ2ν2)]

n−1∑
i=0

θn−m−i−1
s∑

j=1

dj‖ΔY
(i)
j ‖2.(6.3)

By the definition of θ and with the inequalities hα ≤ h(α+ β + σγ2ν2) < l, one finds

(hα− l)θm + h(β + σγ2ν2) ≤ 0.

This inequality, together with the knowledge that 0 < θ < 1 and (6.3), leads to
limn→∞ ‖Δy(n)‖G = 0 or limn→∞ ‖Δy(n)‖ = 0.

Remark 6.3. The major difference between Theorems 6.2 and 5.3 lies in the
strict inequalities present in both k < 1 and (6.1).

Example 6.1. As an illustration we consider the method (5.7) and (5.8) again.
Recall that (5.8) satisfies (3.5) with ν = 2τ and that the underlying GL method (5.7)
is (1/(1− 2l), l)-algebraically stable for any l ≤ 0. Thus, we have 0 < k < 1 whenever
l < 0. Moreover, there always exists an l (< 0) such that h(α+β+σγ2ν2) < l whenever
β+σγ2ν2 < −α. Hence, the latter is sufficient as a condition for asymptotic stability.

From Theorem 6.2, it is not immediately possible to derive a corollary that applies
specifically for algebraically stable methods because of the condition k < 1. To remedy
this situation, we present an alternative approach for proving asymptotic stability,
where the parameter k will be allowed to take the value 1.

Theorem 6.4. Suppose that the GL method (3.1) is strictly stable at infinity and
(k, l)-algebraically stable for a positive diagonal matrix D = diag(d1, d2, . . . , ds) ∈
R

s×s and a real symmetric positive-definite matrix G = (gij) ∈ R
r×r, where 0 < k ≤

1. Suppose the quadrature formula (3.4) satisfies (3.5). Then the extended GL method
(3.3) and (3.4) is asymptotically stable for the class GRI(α, β, σ, γ) when (6.1) holds.

Proof. Inequality (5.6) can be written as

‖Δy(n)‖2
G + 2[l − h(α + β + σγ2ν2)]

n−1∑
i=0

s∑
j=1

dj‖ΔY
(i)
j ‖2

≤ ‖Δy(0)‖2
G + dτ(2β + σγ2ν2) max

−m≤i≤−1
max
1≤j≤s

{‖ΔY
(i)
j ‖2}.(6.4)

Since D is a positive diagonal matrix and since (6.1) holds, we may conclude from

(6.4) that limn→∞ ‖ΔY
(n)
j ‖2 = 0 for j = 1, 2, . . . , s, and thus

lim
n→∞

‖ΔY (n)‖ = lim
n→∞

√√√√ s∑
j=1

‖ΔY
(n)
j ‖2 = 0.(6.5)
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The remainder of the proof is divided into two parts. First, we consider the case
where matrix C11 is invertible. Then, by (4.1), we have

Δy(n) = [R(∞) ⊗ IN ]Δy(n−1) + [C21C
−1
11 ⊗ IN ]ΔY (n),(6.6)

where R(∞) = C22 − C21C
−1
11 C12. Because of the strict stability at infinity, one has

ρ[R(∞) ⊗ IN ] = ρ[R(∞)] < 1.(6.7)

Therefore, applying Lemma 4.6 to (6.6) yields limn→∞ ‖Δy(n)‖ = 0.
Next, we consider the case that matrix C11 is singular. We replace it in (6.6) by

the invertible matrix (C11 + εIs) and let ε → 0. This gives

Δy(n) = [R(∞) ⊗ IN ]Δy(n−1) + (C0 ⊗ IN )ΔY (n),(6.8)

where R(∞) = C22 − C0C12 and C0 = limε→0 C21(C11 + εIs)
−1, whose existence is

ensured by Lemma 4.2. Another application of Lemma 4.6 completes the proof.
When the GL method satisfies algebraic stability, Theorem 6.4 can be simplified.
Corollary 6.5. Suppose that the GL method (3.1) is strictly stable at infinity

and algebraically stable for a positive diagonal matrix D = diag(d1, d2, . . . , ds) ∈ R
s×s

and a real symmetric positive-definite matrix G = (gij) ∈ R
r×r, and suppose the

quadrature formula (3.4) satisfies (3.5). Then the extended GL method (3.3) and
(3.4) is asymptotically stable for the class GRI(α, β, σ, γ) when the following condition
holds:

β + σγ2ν2 < −α.(6.9)

Example 6.2. Consider the extended GL method from Example 5.2. A computa-
tion shows that ρ[R(∞)] ∼= 0.9816 < 1, which implies strict stability. So, the method
is asymptotically stable for problem class GRI(α, β, σ, γ) under condition (6.9).

Example 6.3. Consider the extended GL method from Example 5.3. Now, we
find that ρ[R(∞)] ∼= 0.6158 < 1. Hence, also for this method (6.9) is a sufficient
condition to guarantee asymptotic stability.

7. Numerical experiments and convergence. In the previous sections we
have proven that the extended GL methods possess an excellent stability behavior
under a set of suitable conditions. Naturally, one also wishes to find out the actual
computational performance and their accuracy in particular. Therefore, we will apply
the methods from Examples 5.1, 5.2, and 5.3 to two MVIDE systems. In order to
measure the quality of the numerical methods, we introduce the following:

err := ‖y(tn) − yn‖∞, ε := max
0≤n≤Nf

‖y(tn) − yn‖∞, p := ln(ε) / ln(h),

where Nf is a positive integer such that Nfh = T with T being the length of the
solution interval. The symbols err, ε, and p denote the error at time point tn, the
maximum error over the interval, and the convergence order of the method, respec-
tively.

We will pay particular attention to the estimate of the convergence order. Our
numerical results will seem to indicate that the convergence order of the extended
GL method equals the minimum of the orders of the underlying GL method and the
quadrature rule. These results are not entirely unexpected (see, e.g., the discussion of
the combined order problem in [9, section 3.4]), and will be verified through a number
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Fig. 7.1. Error of the method from Example 5.1 with m = 8, 16, 32, 64 for (7.1) on [0, 9π].

of examples. In the first two examples, the methods of Examples 5.1, 5.2, and 5.3 will
be used. Those are characterized by a correct match between the orders of the GL
method and the quadrature rule (order 2 for Example 5.1, order 3 for Example 5.3,
and order 4 for Example 5.2). Further on, we will also consider methods where the
order of the GL method is different from that of the quadrature rule.

Example 7.1. Consider the linear system with partially variable coefficients:

y′(t) = −(6 + sin t)y(t) + y
(
t− π

4

)
−
∫ t

t−π
4

sin(v)y(v)dv + 5 exp(cos t), t ≥ 0,(7.1)

with an initial condition on [−π/4, 0] such that the exact solution is given by y(t) =
exp(cos t). One may check that the problem belongs to class GRI(−4, 1

2 ,
1
2 , 1). With

Theorem 2.1 we conclude that system (7.1) satisfies stability properties (2.4) and
(2.5). Moreover, based on our earlier discussions, we deduce that the numerical meth-
ods from Examples 5.1, 5.2, and 5.3 retain the stability properties of the analytical
solution; for this problem they are also globally and asymptotically stable.

In order to check the convergence behavior and accuracy of the extended GL
methods, they will be applied using a sequence of step lengths characterized by the
parameter m on the time interval [0, 9π]. The accuracy of the obtained numerical
solutions is displayed in Figures 7.1–7.3. The numerically estimated convergence
orders are given in Table 5. The numerical results show that the methods are quite
effective and preserve the inherent order of accuracy of the underlying components.

Example 7.2. Consider the following two-dimensional nonlinear system:

d

dt

(
y1(t)

y2(t)

)
= −4

(
y1(t)

y2(t)

)
+

(
0 sin t

cos t 0

)(
y1(t− π

5 )

y2(t− π
5 )

)
(7.2)

+
1√
2

∫ t

t−π
5

⎛
⎝ (1+sin2 v)y2

1(v)

1+y2
1(v)

(1+cos2 v)y2
2(v)

1+y2
2(v)

⎞
⎠ dv +

(
f(t)

g(t)

)
, 0 ≤ t.

Functions f(t) and g(t) and the initial condition on [−π/5, 0] are chosen in such a
way that the solution equals y(t) = (sin t, cos t)T . This problem belongs to class

GRI(−4 +
√

2
2 ,

√
2

4 ,
√

2
4 , 2). It follows that (7.2) satisfies stability properties (2.4) and
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Fig. 7.2. Error of the method from Example 5.3 with m = 8, 16, 32, 64 for (7.1) on [0, 9π].
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Fig. 7.3. Error of the method from Example 5.2 with m = 8, 16, 32, 64 for (7.1) on [0, 9π].

Table 5

Convergence order of extended GL methods for system (7.1). Example 5.1: 2nd order BDF +
2nd order quadrature; Example 5.3: 3rd order MRK + 3rd order quadrature; Example 5.2: 4th
order MRK + 4th order quadrature.

m Example 5.1 Example 5.3 Example 5.2

8 2.5666 3.7821 4.0022

16 2.4327 3.5499 3.9982

32 2.3510 3.4254 3.9964

64 2.2956 3.3491 3.9960

(2.5) and that our three GL methods are globally and asymptotically stable. We
consider the numerical results obtained when these methods are applied to (7.2).
Note that a nonlinear equation is to be solved in every time-step. To that end, we
adopted a Newton iteration, with initial values obtained by a backward interpolation
formula

Ŷ
(n)
i = yn+1 +

Q∑
j=1

1

j!
(ci − 1)ci(ci + 1)(ci + 2) · · · (ci + j − 2)∇jyn+1, i = 1, 2, . . . ,
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Fig. 7.4. Error of the method from Example 5.1 with m = 8, 16, 32, 64 for (7.2) on [0, 9π].
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Fig. 7.5. Error of the method from Example 5.3 with m = 8, 16, 32, 64 for (7.2) on [0, 9π].

where Ŷ
(n)
i

∼= y(tn + cih) (= y(tn+1 + (ci − 1)h)), 0 < ci ≤ 2. More precisely, in
order to get a starting value with accuracy order matching the estimated order of
the extended GL methods, we take Q = 2, 3, 4 for the methods of Example 5.1,
5.3, and 5.2, respectively. This proved to provide a great savings in computational
cost. The accuracy of the numerical solutions are shown in Figures 7.4–7.6, and the
estimated convergence orders are given in Table 6. As in the previous example, the
methods again seem to preserve the inherent accuracy of the underlying components.

Example 7.3. Naturally, one also wishes to know what happens to an extended GL
method when the order of the underlying method differs from that of the quadrature
formula. In order to gain some insight, we considered the third order MRK method
from Example 5.3 combined with the first order quadrature formula

Z
(n)
j = h

m∑
q=0

g(tn,j , tn−q,j , Y
(n−q)
j ), j = 1, 2,(7.3)

combined with the second order quadrature formula

Z
(n)
j = h

m∑′′

q=0

g
(
tn,j , tn−q,j , Y

(n−q)
j

)
, j = 1, 2,(7.4)
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Fig. 7.6. Error of the method from Example 5.2 with m = 8, 16, 32, 64 for (7.2) on [0, 9π].

Table 6

Convergence order of extended GL methods for system (7.2). Example 5.1: 2nd order BDF +
2nd order quadrature; Example 5.3: 3rd order MRK + 3rd order quadrature; Example 5.2: 4th
order MRK + 4th order quadrature.

m Example 5.1 Example 5.3 Example 5.2

8 2.9132 4.1053 4.7479

16 2.7183 3.8449 4.5847

32 2.5918 3.6858 4.4804

64 2.5029 3.5787 4.4078

Table 7

Convergence order of extended GL methods for (7.2): 3rd order MRK method combined with
1st order method (7.3), combined with 2nd order method (7.4), combined with 3rd order method
(5.15), and combined with 4th order method (5.14).

m (7.3) (7.4) (5.15) (5.14)

8 1.6318 3.5703 4.1053 4.2630

16 1.4976 3.2562 3.8449 3.9556

32 1.4102 3.0393 3.6858 3.7715

64 1.3489 2.8821 3.5787 3.6492

and combined with the fourth order quadrature formula (5.14). The estimated con-
vergence orders are given in Table 7. For completeness, we also added the second
column from Table 6, where the method was combined with a third order quadrature
method. Finally, in Table 8, we present similar results for the fourth order MRK
method from Example 5.2 combined with four quadrature rules of different orders.

All of these results seem to indicate that the order of the extended GL method
is equal to the minimum of the orders of its two components: the underlying GL
method and the quadrature rule. A proof for this observation and a derivation of the
conditions under which it would hold for class GRI(α, β, σ, γ) remain to be found.

8. Concluding remarks. We have investigated the stability of extended
GL methods for a class of nonlinear MVIDEs. Numerical examples illustrate the
convergence and the effectiveness of the methods. Our findings extend and improve
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Table 8

Convergence order of extended GL methods for (7.2): 4th order MRK method combined with
1st order method (7.3), combined with 2nd order method (7.4), combined with 3rd order method
(5.15), and combined with 4th order method (5.14).

m (7.3) (7.4) (5.15) (5.14)

8 1.6320 3.5895 4.3429 4.0022

16 1.4976 3.2555 4.1125 3.9982

32 1.4102 3.0354 3.9351 3.9964

64 1.3489 2.8804 3.8030 3.9960

our earlier results reported in [33]. Specializing our results to the DDE y′(t) = f(t, y(t),
y(t− τ)), we find our results to be consistent with those in [20], slightly weaker than
those in [30], and substantially different from those in [28, 29, 6, 7, 31, 32, 25]. As a
conclusion, we would like to point out the precise differences.

In [30], the author studied the implicit Euler method for DDEs and proved that
this method satisfies the following stability property:

‖yn − ỹn‖ ≤ max
t0−τ≤t≤t0

‖ϕ(t) − ψ(t)‖ ∀n ≥ 0.(8.1)

This strong property could be derived thanks to the relatively simple structure of the
Euler scheme. The approach cannot be generalized to more complex methods.

In [28, 29], linear and nonlinear DDEs of class GRI(−ρ, ρ, 0, 0) with ρ > 0 are
considered. When an A-stable RK method is used in the linear case or an algebraically
stable RK method is used in the nonlinear case, a specialized stability result can be
derived, called Bρ-stability. In particular, it is shown that

�yn+1 − ỹn+1� ≤ �yn − ỹn�,(8.2)

where the notation �·� is defined as follows:

�yn�2 =
1

2
‖yn‖2 + hρ

∑
n−m≤j≤n−1

s∑
i=1

bi‖y(j)
i ‖.

This clearly shows the perturbation behavior of a combination of the numerical solu-
tion and the stage value approximations. In practice, however, one usually wishes to
check the perturbation behavior of the numerical solution only.

In [6, 31], based on the concept of (semi-) BNf -stability of the underlying contin-
uous RK methods, the authors derived (RN -) GRN -stability results for RK methods
for DDEs, with a stability inequality characterized by (8.1). The special cases of con-
tinuous RK methods applied to linear autonomous and nonautonomous DDE prob-
lems are also considered. The concept of BNf -stability is then specialized into that
of Af -stability and that of ANf -stability, respectively. Under those conditions, (8.1)
is obtained again. For more details and some extensions we refer the reader to [7].
The assumption of (semi-) BNf -stability is rather strong, however, as it leads to an
order barrier for the underlying RK methods. Indeed, in [32] it is shown that four is
a sure order barrier for any BNf -stable RK method. Moreover, at this moment, only
two BNf -stable RK methods have been found: the implicit Euler method and the
Lobatto IIIC method with linear interpolation. Our research on the contrary is based
on algebraic stability, which does not usually suffer from such a strong order barrier.
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In [25], Li studies RK methods applied to general Volterra functional differential
equations. Under the condition of B-stability, it is shown that the numerical solutions
yn and ỹn obtained from two different sets of initial data {ϕ(t), y1, y2, . . . , yk} and
{ψ(t), ỹ1, ỹ2, . . . , ỹk} satisfy the following stability inequality:

‖yn − ỹn‖ ≤ exp(c(tn − tk)) max

{
max
1≤i≤k

‖yi − ỹi‖, max
t0−τ≤t≤t0

‖ϕ(t) − ψ(t)‖
}
,(8.3)

where c is a positive constant and hn a variable step size. Note that the stability
function H(t) := exp(c(t− tk)) in (8.3) is increasing for t ≥ t0 and will tend to infinity
when t → +∞. Hence, (8.3) is applicable only on a finite time interval. Our stability
results on the contrary can be applied on the infinite time interval since the stability
function is a constant H and is independent of the time variable t.
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