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Abstract. This paper presents two automatic fairing algorithms for para-

metric C2-continuous bi-cubic B-spline surfaces. The fairing method consists

of a knot removal and knot reinsertion step which locally smooths the surface.

Search strategies like best-first-search and simulated-annealing are searching

for the global minimum of the fairing measure. The best-first-search algorithm

constructs only partially a search tree and reduces significantly the complex-

ity of a systematic search. Simulated annealing is a heuristic algorithm which

needs a probability function and some further parameters as input. Both

methods can satisfy end constraints and tolerances. Their performance is

discussed for two numerical experiments.

Keywords: B-spline surfaces, fairness, knot insertion, knot removal, simu-

lated annealing, best-first-search

1. INTRODUCTION

The free form surface has been becoming an indispensable part of powerful CAD-systems.
Bicubic tensor product B-splines, which are the subject of this paper, are often used in
geometric modelling due to their well known advantages which result basicly from the
local support of the basis splines and their dependence on the knot vector. However, the
designer is not always satisfied with the fairness or smoothness of the resulting surface
obtained from interpolation or approximation of some data sets.
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In the literature a lot of different fairing criteria are offered which are either more
aesthetically or more technically based. Finally it’s the designer’s subjective decision to
accept a surface as fair or not. In most cases an appropriate graphical interrogation
method [14,16] is used, which has the capability to emphasize surface imperfections and
which allows a visual inspection of fairness or unfairness during the design process.

1.1 Principles of surface fairing

A fair surface can be obtained by two different ways:
• modelling surfaces with constraints
• post-processing surface fairing.

The first way includes the fairness criterion as a constraint in the design process. The
degrees of freedom of the surface geometry are used as parameters in an optimization
method. The so called variational design of smooth surfaces, consists of the minimization
of a physical based fairness criteria (i.e. minimal bending energy of torsion and flexure,
minimal jerk), which is incorporated in the interpolation or approximation process (see
[15,3] for examples and more details).

Non-linear surface smoothing methods can be found in [22,9,24,11]. These methods are
often time consuming due to the non-linear constraints, but they do not approximate the
physical criteria.

The other way to obtain fair surfaces is to apply a post-processing fairing method to
a given surface. Such a surface already has (approximatively) its final shape but some
imperfections occur (digitization errors e.g.). The fair surface is not allowed to change its
shape too much. (see [5,20,12] as examples).

1.2 Motivation

The fairing criteria are of very different kinds, like minimal energy criteria [13], criteria
based on the surface areas [27], or aesthetic criteria, as light reflection behaviour of a surface
[21]. We want to focus here first on a fairing principle special for cubic spline curves, which
was successfully used by Farin/Sapidis [29] as a local scheme, and by Kjellander [19] as a
global scheme. The method of Farin/Sapidis is based on the fairing principle that

(C) a C2-cubic B-spline curve is fair if the curvature function κ(s) is continuous, has

the appropriate sign, and is as close as possible to a piecewise monotone function

with as few as possible monotone pieces [29].

A curve x is therefore fairer than y at t ∈ (a, b) if

|κ′x(t+)− κ′x(t−)| ≤ |κ′y(t+)− κ′y(t−)|, (∗)
where κ′x, κ′y mean the derivative of the curvature of x and y with respect to the arc length.
(∗) is always an equality except at the interior knots of the B-spline curve. Farin/Sapidis
use then a knot-removal-reinsertion step at the most offending knot t∗, which makes the
curve momentarily C3-continuous at t∗ before proceeding at other knots. The iterations

2



continue as long as the global fairing measure (sum of the curvature discontinuities over
all knots) decreases.

In the present paper we introduce a new fairing method for bicubic tensor product
B-spline surfaces based on the knot-removal-reinsertion step combined with two search
strategies, the best-first-search and the simulated annealing. This fairing method will be
local in contrast to Kjellander’s method for bicubic surfaces. The principal reason for
incorporating search strategies into the fairing process is to overcome the drawback of
Farin/Sapidis’s algorithm which stops, when the global fairing measure achieves its first
local minimum.

Section 2 begins by fixing the notations, recalls some knot-removal-reinsertion algo-
rithms and describes Farin/Sapidis’ curve fairing algorithm. In order to solve the problems
mentioned above we want to present in section 3 two fairing algorithms for B-spline sur-
faces based on special search strategies like best-first-search and simulated-annealing. The
heuristic simulated-annealing algorithm for example, depends on a probability function
and some other parameters and searches for a global minimum of the fairness measure.
Both algorithms are searching for the global minimum of the fairness criterion and result
in an optimal surface. The paper then discusses with some examples the performance
of both fairing methods for bicubic B-spline surfaces. Some concluding remarks indicate
generalizations to preserve tolerances and end constraints.

2. KNOT REMOVAL FOR B-SPLINE CURVES AND SURFACES

2.1 Knot removal for curves

Given two positive integers n and k and ttt = (ti)n+k
i=0 a sequence of real numbers with

ti < ti+k (i = 0, . . . , n). The n + 1 B-spline basis functions of order k (degree k − 1)
associated with the knot vector ttt are denoted by (Ni,k,ttt)

n
i=0 (or simply by Ni,k) and are

assumed to be normalized to sum to one. They span a linear space of functions: Sk,ttt.
A parametric B-spline curve xxx in IR2 of order k, defined by a set of control points

dddi ∈ IR2 and a knot vector ttt, is given by

xxx(t) =
n∑

i=0

dddiNi,k(t) , t ∈ [tk−1, tn+1] (1)

where each component belongs to Sk,ttt. Note that the B-spline curve xxx(t) is only defined
over [tk−1, tn+1], i.e. over n − k + 2 intervals, tk, . . . , tn are called inner knots. xxx is a
piecewise spline which is at most Ck−2-continuous at the knots ti, (i = k, . . . , n).

The knot removal step consists of approximating a given spline xxx =
∑n

i=0 dddiNikttt by a
spline x̃xx =

∑n−1
i=0 d̃ddiNik

˜ttt on a knot vector t̃tt which is a subsequence of ttt with one knot less.
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It follows that x̃xx can be expressed in the same basis as xxx, because of S
k,

˜ttt ⊂ Sk,ttt, i.e.

x̃xx =
n−1∑

i=0

d̃ddiNi,k,
˜ttt =

n∑

i=0

DDDiNi,k,ttt . (2)

The control points DDD = (DDD0, . . . ,DDDn) are obtained from the control points d̃dd = (d̃dd0, . . . ,

d̃ddn−1) by
DDD := Ad̃dd , (3)

where A is the (n + 1, n)-matrix, called knot insertion matrix of order k from t̃tt to ttt. We
can assume without any restriction, that t̃tt = ttt\{tj+1}, (j+1) ∈ {k, . . . , n}, then A is given
by

A=



Ij−k+2

Aj

In−j


 with Aj =




(1− αj−k+2) αj−k+2

. . . . . .
(1− αj) αj


 (4)

αr = tr+1−t̃r

t̃r+3−t̃r
(t̃r = tr for r = 0, . . . , j; t̃r = tr+1 for r = j + 1, . . . , n − 1). Im being the

m-dimensional unit matrix [2].

While knot insertion does not change the shape of the curve, the “inverse” process of knot
removal cannot be carried out in general without changing the shape, except the case where
the curve is Ck−1 at tj+1, i.e. its continuity order is higher than it should be according to
its multiplicity). In the future we will use knot removal for bicubic surfaces, therefore we
restrict the following considerations to the cubic case, i.e. k = 4.

There are now different possibilities to determine approximated solutions of the knot
removal problem: Ad̃dd = ddd ( d̃dd unknown).

From the approximation point of view, knot removal can be solved by min ‖x̃xx − xxx‖ :
{x̃xx ∈ S

k,
˜ttt} with respect to some appropriate norm ‖ · ‖. For more details see [23]. In

general, all control points are involved in that knot removal procedure, which is therefore
a global one.

We want our fairing methods to work as locally as possible. This means, that after
reinsertion of the removed knot tj+1 (2), a minimum number of control points of the curve
x̃xx should differ from the original control points dddi. The knot removal problem can locally
be solved by calculating an approximate solution of the overdetermined (3,2)-subsystem
Ajd̃dd = ddd (4), which states as follows:




αj−2 0
(1− αj−1) αj−1

0 (1− αj)




[
d̃ddj−2

d̃ddj−1

]
=




dddj−2 − (1− αj−2)dddj−3

dddj−1

dddj − αjdddj+1


 (5)

and d̃ddi = dddi for (i = 0, . . . , j − 3) and d̃ddi = dddi+1 for (i = j + 1, . . . , n).
Different approximate solutions of this system are possible. A detailed description of these
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knot removal algorithms can be found in [7,6].
We want to focus on two of them, because they can also be used for knot removal in the
surface case:

Minimal region knot removal:
Solve the linear system (5) without the second equation. After reinsertion of tj+1 one
gets DDDj−2 = dddj−2 and DDDj = dddj and only the control point dddj−1 has moved. This knot-
removal-reinsertion step changes the curve only in the interval [tj , tj+4] and is therefore
the most local knot removal procedure, see [7]. Nevertheless it should be mentioned,
that the difference between both curves will generally be higher than in the following
case.

Least squares knot removal:
d̃ddj−2 and d̃ddj−1 are determined as least squares solution of system (5). Hence, three
control points have moved, such that

∑2
i=0 ‖DDDj−i−dddj−i‖ = min. The influence on the

curve is limited to 3 control points, i.e. to the interval [tj−2, tj+4], see [29].

2.2 Knot removal for surfaces

Let us now describe the classical way to remove and reinsert knots in the bivariate case.
To do so, the knot operations (section 2.1) have to be adapted to the tensor product
surface description. Note that it’s an inherent property of tensor products that a lot of
algorithms on surfaces (e.g. de Boor algorithm, degree elevation, ...) can be reduced to the
monodimensional curve algorithms with respect to one of the two parameters u and v.

Let k and l be two positive integers and let uuu = (ui)n+k
i=0 and vvv = (vj)m+l

j=0 be two knot
vectors with ui < ui+k and vj < vj+l. A parametric tensor product B-spline surface XXX in
IR3 of order (k, l) is then defined by

XXX(u, v) =
n∑

i=0

m∑

j=0

dddijNi,k,uuu(u)Nj,l,vvv(v) , (u, v) ∈ [uk−1, un+1]× [vl−1, vm+1] (6)

where the coefficients dddij ∈ IR3 form the control net, and where (ui, vj) (i = k, . . . , n; j =
l, . . . , m) are called inner knots. For more details about B-splines, see [4,30].
Knot removal for surfaces means removing knot lines from the underlying knot grid
(ui, vj)

n,m
i,j=k,l. Knot removal and reinsertion for example in v-direction (e.g. removing

the knot vs+1) therefore works as follows: One has to apply a univariate knot removal
algorithm (see (2) - (5)) successively to the following (n− k + 1) univariate B-splines:

xxxi(t) =
m∑

j=0

dddijNj,l,vvv(t) , t ∈ [vl−1, . . . , vm+1] , i = k, . . . , n , (7)

at the inner knot t = vs+1. After re-numbering the rows of control points one gets finally
the surface

X̃XX =
n∑

i=0

m−1∑

j=0

d̃ddijNi,k,uuuNj,l,ṽvv =
n∑

i=0

m∑

j=0

DDDijNi,k,uuuNj,l,vvv ,
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where ṽvv is the subsequence of vvv with one knot (vs+1) less. The control points DDDij are
obtained after reinsertion of the knot line vs+1 into ṽvv by

for i = k, . . . , n do Di := Aid̃ddi,

where DDDi = {DDDi0, . . . ,DDDim} and d̃ddi = {d̃ddi,0, . . . , d̃ddi,m−1} and Ai corresponds to the univari-
ate knot insertion matrix A (3), (4).
Note, that this knot removal step makes the surface cross derivatives of third order at the
patch boundaries at vs+1 continuous, i.e.

∂3XXX
∂v3

(u, v−s+1) =
∂3XXX
∂v3

(u, v+
s+1) .

Bivariate knot removal and re-insertion in u-direction works analogously. With knot re-
moval first in u-direction and then in v-direction, or vice-versa, it is generally not possible
to obtain C3-continuity at (ui, vj). Several variants and applications of knot insertion and
removal for B-spline surfaces can be found in [10].

2.3 Farin/Sapidis’ fairing algorithm

Farin/Sapidis’ fairing algorithm for cubic splines is based on the fact that after a knot-
removal-reinsertion step of the knot tj the new curve x̃xx(t) is C3 at tj . Hence, the local
fairness measure decreases to zero:

zj = |κ′(t+j )− κ′(t−j )| . (8)

By repeating this procedure several times, always at the most offending knot (i.e. tk with
zk = max(zi) : {i ∈ (4, . . . , n)}), they could expect, that the sum of the local measures

ξ =
n∑

i=4

zi (9)

decreases also. According to their fairness criterion (8), ξ is an appropriate global measure
to control the number of monotone pieces of the entire curve. Therefore Farin/Sapidis’
algorithm states as follows:

DO 1. compute ξ =
∑

zi

2. determine tj with zj = max(zi)
3. knot-removal-reinsertion step at tj

UNTIL (stop if a suitable criterion is fulfilled).

We want to close this section with the conclusion that a knot-removal-reinsertion step has
a local fairing effect and can therefore be used in a fairing method for the entire curve, or
tensor product surface resp. The main problem is to find a sequence of knots such that
repeated knot-removal-reinsertion at these knots leads to a global minimum of the fairness
measure ξ (9).
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3. FAIRING B-SPLINE SURFACES

The curve fairing method can easily be extended to bi-cubic tensor product surfaces. Sure,
one can simply apply the curve scheme to each row and each column of control points of
the surface control net (see [8]). This procedure has two main disadvantages: the fairness
measures are not adapted to the surface geometry and therefore do not justify the selection
of a knot as the most offending one. And the “stop”-criterion for the algorithm does not
guarantee finding the global minimum of the fairness measure ξ. The algorithm stops
when the first local minimum of that function is reached. And this is probably not the
lowest one. We present now two surface fairing algorithms which are based on knot-
removal-reinsertion (which is a very fast fairing step) and which use two search strategies
to optimize the fairing process.

Instead of performing the fairing step at the most offending knot while expecting the
global fairness measure to decrease (see [29]), we intend to perform the fairing step uniquely
at knots which ensure a decreasing fairness measure. The fairing methods are based on
the following parameters:

(A) fairing step: knot-removal-reinsertion
(B) fairness measure (local and global)
(C) visualization
(D) the scheduler (selection method) which determines the sequence of knot pairs

to be treated
(E) stop-condition of the iteration.

A so called search tree (see figure 1) describes all possible surfaces after a fixed number
k of fairing steps. The surface, which minimizes the fairness criterion is taken as the faired
surface.

... ...

kp1 kp2

kp1 kp2
kpq

Figure 1: search tree of the iterative fairing method

The search tree advises on the root the starting surface to be faired. Each vertex of
the tree represents a B-spline surface that results from one fairing step (knot removal
and reinsertion) at one knot of the parent vertex. The edges of the tree are marked
with the knot pair kpi which is treated by the knot operations. The search tree lists
systematically all possible steps of the fairing algorithm. Each path from the root to a leaf
of the tree describes the history of one algorithm call. The labels kpi in figure 1 stand for
the different inner knot pairs. As for the knot vectors uuu = (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4), vvv =
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(0, 0, 0, 0, 1, 5, 7, 7, 7, 7) we get kp0 = (u4, v4) = (1, 1), kp1 = (u4, v5) = (1, 5), . . . , kp6 =
(u6, v5) = (3, 5).

At least one of the leaves represents a surface with a global minimum of the fairing
measure. The global minimum (after k iterations) can only be found when performing
a polynomial number O((n · m)k) of fairing steps. The aim of the search strategies is
to find this path without constructing the whole tree because of the polynomial number
of vertices. The way the search tree is constructed and transversed, depends on the two
search strategies, best-first-search and simulated annealing. The five mean characteristics
(A) - (E) of our fairing methods are now presented:

(A) Fairing step

We use a knot-removal-reinsertion as a local fairing step for the surface and refer to it by
KRR. The bivariate method presented in section 2.2 has the drawback to be global. If one
knot line is removed, e.g. vs+1, then the whole columns of control points dddi,s−2,dddi,s−1,dddi,s,
(i = 0, . . . , n) is be modified.
Our knot-removal-reinsertion step (KRR) is a localized version of the classical method.
It locally performs a fairing step at the inner knot pairs (ur+1, vs+1) (r, s = 3, . . . , n, m)
by modifying only a small set of control points at each step. Removing and reinsertion
of the knot line vs+1 makes the third order partial derivative ∂3XXX

∂v3 (u, vs+1) continuous for
all u ∈ [u3, un+1]. We only need the surface to have this third order partial derivative
continuous at the knot (ur+1, vs+1). Therefore it is not necessary to remove and reinsert
the whole knot line. The following Lemma shows that it is sufficient to apply the univariate
(curve) KRR at vs+1 for only three curves which are defined by three columns of the surface
control points.

Lemma. Given a bi-cubic C2 B-spline surface XXX(u, v) as defined in (6). If the three

curves xxxi(v) =
∑m

j=0 dddijNj,4,vvv(v) (i = r − 2, r − 1, r) are C3-continuous in v = vs+1,

then the third partial derivative ∂3X
∂v3 (u, v) of the surface is continuous at (ur+1, vs+1).

(analogous for u).

Proof: Substituting the C3-continuity condition of the three curves at a point (vs+1) into
that for surfaces at a point (ur+1, vs+1) gives the desired result. ut
In the following we distinguish KRR in u- and v-direction. KRR in v-direction means that
we remove and reinsert a knot vs+1 from the knot vector vvv. Similar to the univariate case
we prefer the following two methods:

minimal region algorithm, called mr-KRR, in v-direction:
The univariate minimal region knot removal (sect. 2.1) is applied to remove and reinsert
the knot t = vs+1 from three curves xxxi(t) =

∑m
j=0 dddijNj,4,vvv(t), i = r − 2, r − 1, r The

same can be done in u-direction. The distance of the old control net from the new one
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can be relatively high, because only one control point per curve di,s−1 has been modified.
The surface is then C3-continuous with respect to v at the knot (ur+1, vs+1), see Lemma.
(analogous for u).

least squares algorithm, called ls-KRR, in v-direction:
Here also the univariate least-squares knot removal and reinsertion step (sect. 2.1) is applied
three times to xxxi(t) =

∑m
j=0 dddijNj,4,vvv(t) for i = r − 2, r − 1, r at the knot t = vs+1.

Analogous in u-direction. This method minimizes the squared distance between the old and
new control net by moving nine control points: dddij , i = r−2, r−1, r and j = s−2, s−1, s.
Therefore the shape of the surface does not change very abruptly.

Notice, that there is no symmetry in the KRR-steps. Changing u and v leads to different
results, because they depend on different control points. Applying KRR first in u-direction
and then in v-direction leads to a surface which is only C3-continuous with respect to v.

The general purpose of a fairing method is to obtain maximal fairing effect within a pre-

determined ‘tolerance’. For small tolerances the ls-KRR seems to be the most appropriate
method. Otherwise both methods lead to satisfying good results (see also section 4).

(B) Fairness measure

The local measures zu
ij , z

v
ij of a knot pair (ui, vj) from a surface XXX(u, v) which evaluate

the fairness of the knot pair are defined by the partial derivation of a curvature function
g(u, v) = g(κmin(u, v), κmax(u, v)) along one of the two parameters of the surface, where
κmin, κmax are the principal curvatures. The Gaussian curvature K = κmin · κmax or
κ2

min + κ2
max, . . . are appropriate candidates for g.

zu
ij =

| ∂g
∂u (ui, vj)|
‖∂X(u,v)

∂u ‖
, zv

ij =
|∂g
∂v (ui, vj)|
‖∂X(u,v)

∂v ‖
. (10)

According to the selected curvature function the automatic fairing algorithm will evaluate
all knot pairs.

Finally the sum of the curvature-slope discontinuities (local measures) from all knot
pairs will define the global fairing measure ξ which will be minimized by the fairing algo-
rithm:

ξ =
∑

i,j

zu
ij + zv

ij . (11)

Remark: If zu
ij > zv

ij , then the fairing step KRR will be applied in u-direction and
vice-versa. The local measure (zu

ij) or zv
ij which contributes the most to the C3-continuity

at the knot (ui, vj) determines whether KRR is done in u- or v-direction.
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(C) Visualization

An appropriate technique for emphasizing visually the fairing effect is a light reflection
method. The fairing method reduces surface irregularities and provides a more pleasing
shape. Those aesthetic aspects are well captured by isophotes, reflection line or highlight
lines [26,21,1], because they are very sensitive to changes in the surface normals. Therefore
we chose the isophote method.

(D) and (E) Scheduler and termination condition

The selection of the knot pair and the search for the global minimum of the fairing measure
can be done in two ways.

Best-First-Search Fairing

The first method which is using the best-first-search strategy, tries to minimize the polyno-
mial effort of a systematic search for the global minimum in the search tree. Here we begin
with the initial surface on the root of the search tree an try to span only the interesting
paths of the tree.

...

...

...

kp1 kp2 kp

kp1 kp2
kpq

q

Figure 2: Possible search tree for the best-first-search algorithm

Starting with the initial surface the first level of the tree is spanned after performing KRR
for each inner knot pair (q = (n−3)(m−3) new surfaces are produced). All these surfaces
are sorted in order to build a ranking list with respect to their increasing global fairness
measure. The same operations are now repeated with only the first surface of the ranking
list. The new q surfaces are also added into the ranking list. And so on . . .

Under the assumption that the optimal surface (in the sense of the smallest global
measure) is found when the KRR step is only performed on the first surface of the ranking
list, the algorithm stops after a fixed number k (fixed before by the user) of fairing levels
in the tree (see figure 2).

The resulting algorithm counts in the best case O(k · n ·m) fairing steps (i.e. is linear
in the number of control points) and in the worst case O((n · m)k) steps which is the
same for a systematic search with k tree levels. For more details about the best-first-seach
technique, see artificial intelligence literature, like [28].
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Simulated Annealing Fairing

Simulated annealing is a heuristic method to solve large optimization problems. It ensures
“with high probability” finding a global minimum of the function of interest, where iterative
methods often get stuck at a local minimum. In 1983, IBM researchers [17,18] found an
interesting analogy in material physics, where the heuristic process of an optimal annealing
of metal is a quite difficult task.

Simulated annealing is a stepwise algorithm which is allowed to make good steps (i.e.
steps which improve some measure of quality) and to make bad steps (those that do not).
Those bad steps are necessary in order to leave a valley of a local minimum. The probability
that bad steps are accepted decreases while the algorithm proceeds.

This algorithm can be compared with the hill climbing model : searching in this case
the maximum of a function one can imagine that a hill climber is searching for the highest
top. Depending of the departure point, he has to walk on tops (good steps) and valleys
(bad steps) in order to reach the highest summit. Therefore he must not stop walking when
he arrives at the first top. In this case he would only find a local maximum. Sometimes
the climber ought to take a descending path. This helps to avoid a local maximum. In
general the topography of the problem is not known in advance. Hence it is natural to use
a probability for the acceptance of bad steps and in order to ensure that the algorithm
stops.

In our fairing context, a function has to be minimized in contrast to the hill climbing
model. The measure of quality is the global fairness measure ξ (11), which has to be
minimized by a sequence of fairing steps, the knot-removal-reinsertion (KRR)-step. A
topography of a simulated annealing optimization process is shown in figure 3.

startposition

local minimum

Figure 3: Topography of an optimization process

At each stage of the algorithm a knot pair (ui, vj) of the current surface is chosen either
randomly or by a ranking list with respect to the local fairness measure zu

ij+zv
ij at each knot

pair. While the KRR-step increases ξ, the steps are accepted as good steps. Otherwise,
a random number ν ∈ [0, 1] is chosen for the bad steps and is accepted with a certain
probability. As the probability for bad steps gets smaller during the algorithm it gets less
and less possible to leave the current minimum of the fairness measure and the algorithm
stops there.
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Figure 4: Probability of accepting bad steps (d = 0.5, 1, 2).

Let max kp be the number of inner knot pairs. If the number of stages of the algorithm
in controlled by the integer max step, the probability function P at each stage tk (k = 1, . . . ,

max step) should be a monotonously decreasing function. Some examples are shown in
figure 4.

Algorithm: (Simulated annealing for fairing surfaces)

for k = 1 . . . ,end temp do
do

for r = 1 . . . ,max step do
choose randomly a knot pair kp

let X be the current surface, X̃ the faired surface after KRR
if ξX > ξX̃

then make KRR; X := X̃; b count = 1 /* good step
else choose a random number 0 ≤ ν ≤ 1

if ν < P (k)
then make KRR; X := X̃; b count = 1 /* bad step
else b count += 1 /* bad step refused

end for
until (b count ≥ blimit) /* no more improvement

end for

The decreasing sequence of real numbers t1 > t2 > · · · > tmax step is called annealing
schedule and controls the probability that bad steps will be done. The more they decrease,
the less probable is a bad step. Once the annealing schedule is fixed, for example as a
linear schedule tk = max kp

k , an appropriate factor d in the probability function P has to
be chosen. Two examples are shown in figure 4.

At each stage k the number of good steps is limited by maxstep, in order to avoid to
make too many good steps at the beginning and to get stuck at a local minimum. A
general suggestion we can make for the choice of the parameter maxstep is to take it half
that of max kp.
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There are two possibilities for the algorithm to stop. In general the algorithm should
stop when blimit times in succession the making of a bad step was refused (due to the
decreasing probability of making bad steps). In this case there is no more way out of the
current valley. The actual minimum is accepted as the optimal one. When the algorithm
seems to be in an infinity loop, it stops after a maximal number of stages end temp (final
temperature). This should be an emergency stop, and a large enough end temp has to be
chosen to allow a regular stop.

The simulated annealing algorithm does not guarantee finding a global minimum, but
it’s well known that it’s an effective way for searching one. This algorithm has f.ex. been
used in CAGD by L. Schumaker [31] for computing optimal triangulations.

4. EXAMPLES

Before comparing the two fairing algorithms based on best-first-search and Simulated An-
nealing, we first want to illustrate the different fairing effects of the two KRR-strategies:
least-squares KRR and minimal region KRR, see Figure 5.

Figure 5: Fairing effect of the two different KRR-steps: (a) Initial surface. (b) Fairing with

least-squares KRR. (c) Fairing with minimal-region KRR

Figure 5a shows an unfair surface which is an academic example with only 25 inner
knots. One now expects from a fairing method that the high variations of curvature,
which occur in the middle of the patch and on the boundary, become smaller or disappear.
We then run the simulated annealing fairing (parameters: g(u, v) := κ2

max + κ2
min (10),

max step = blimit = 10) once with the least-squares KRR-step (figure 5b) and once with
the minimal-region KRR-step (figure 5c). The global fairness measure ξorigin = 1.3 · 10−4

decreases to ξfair ls = 2.1 · 10−6 and ξfair mr = 1.8 · 10−7 in 32 and 71 steps. As it was
assumed above, the ls-KRR is better adapted for shape preserving fairing, while a more
flattening fairing effect is achieved with the mr-KRR.

The following two experiments are based on test surfaces close to the real CAD/CAM
world because they represent noisy data sets (slightly (1% and 2%) perturbed data). From
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the definition of both search strategies it is clear, that they apply to different kinds of sur-
faces. The complexity of the best-first-search algorithm is linear (with respect to the num-
ber of inner knots) in the best case, otherwise it has polynomial complexity. If one claims
from both algorithms to run in “reasonable” time (i.e. some cpu seconds) it is obvious
that only the simulated-annealing-algorithm can run on surfaces with several (hundreds)
of control points. Various experiments show that the Best-First-Search algorithm works
better for surfaces with less than 50 control points, because it is nearer to a systematic
search than the simulated-annealing algorithm. For both experiments g = κmax ·κmin was
used.

The first example is an application of the best-first-search (BFS) algorithm, shown
in figure 6a,b. The unfair surface has 25 inner knots (i.e. 81 control points). The depth
(maximum number of levels) of the BFS-tree is k = 20 in this experiment which results in
a relatively high running time of 15s (IBM RS6000). k decides finally about the number of
fairing steps and has to be chosen by the user. The total fairness measure decreased from
ξorigin = 1.88 · 10−6 to ξfair mr = 1.72 · 10−7 when applying the minimum-region KRR
as fairing step (this example is shown in figure 6,7), and to ξfair ls = 2.25 · 10−7 when
applying the least-squares KRR step.

Figure 6: (a) Initial B-spline surface with 25 inner knot pairs. (b) Isophote analysis

Figure 7:(a) The faired surface provided by the best-first-search algorithm. (b) Isophote analysis

14



We a posteriori measured the maximal distance

τmax =
max ‖dij −Dij‖
size of surface

(of corresponding control points) between the original and the faired surface of figure
7. After normalization we obtained τmax = 0.013. The lines mapped on the surface are
isophotes (fig. 6b, 7b). They indicate the degree of fairness visually before and after fairing.

The second numerical experiment uses the simulated annealing algorithm. The
initial (unfair) test surface has 256 inner knots, see figures 8a,b. This is an appropriate
example for the simulated annealing algorithm, because it has more than 50 control points.
The global fairness measure decreases from ξorigin = 3.92 · 105 to ξfair mr = 1.59 · 104 for
this surface using the mr-KRR step. The normalized maximal distance in this case gives
τmax = 0.037. Simulated annealing is a non deterministic process, which means that
several runs of the algorithms with always the same input have different output. This is
usually a negative point of this algorithm. In the field of surface fairing it is an advantage,
because fairness is basically a subjective criterion and depends on the designer’s point of
view. It can be observed that several runs of the simulated annealing algorithm always
stop after ca. 400 steps with nearly the same result, i.e. a faired surface, like in figure 9a,b
(running time 20s). Isophotes are used to visually control the fairing.

Figure 8: (a) Initial B-spline surface with 256 inner knot pairs. (b) Isophote analysis
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Figure 9: (a) The faired surface provided by the simulated annealing algorithm. (b) Isophote

analysis

If the user is not satisfied by the result, the algorithm has to be run again. Perhaps
he has to adjust the annealing parameters in order to increase or decrease the number of
steps. In practice, the designer only needs a few runs to see which parameters fit well for
the given surface. The running time of our prototype program varies between 2s and 20s,
depending on the number of surface control points and the number of fairing steps. The
example presented here in a certain sense a worst case with respect to running time.

In comparison to the BFS algorithm, 400 fairing steps for the simulated annealing algo-
rithm are equivalent to only depth k = 2 in the BFS-tree for the second test surface.
Remember that for one level of the BFS algorithm 256 fairing steps are evaluated and
produce 256 different surfaces. Each of them was faired at one knot pair. Depth 2 means
therefore that the final surface only differs by 2 KRR steps from the original one (only
the first surface of the ranking list after 2 steps is retained). As a conclusion we can state
that the heuristic simulated annealing fairing method is a very effective way to search for
a minimum of the fairness measure when the initial surface has a lot of control points..
Finally notice that a systematic search for the global minimum of the fairness measure
(after only 20 KRR-steps = 20 search tree levels) would have needed 25620(!) KRR-steps.

CONCLUSION and REMARKS

Two fully automatic and locally working surface faring algorithms were developed in this
paper. They are based on knot removal and knot insertion as fairing steps combined with
two search strategies which search for the global minimum of the fairness function. Only
the basic functionality of these algorithm was illustrated with the help of two examples.

16



It is important for fairing methods to preserve some shape properties and to keep in
tolerances. With little programming effort we were able to improve the present algorithms
in the following way:

Preservation of end constrains:
If all inner knots are involved in the fairing process, only the corner points of the surface
are not modified. But the algorithm can be restricted to work only on a subset of knots.
On one hand this limits the fairing to a local area on the surface. On the other hand, end
constraints, like border curves and border derivative, can be preserved by excluding some
rows and columns near the border from the fairing process.

Preservation of tolerances:
A given tolerance τ can be preserved a posteriori by allowing only such fairing steps
which keep the new surface X̃(u, v) into the prescribed tolerance: ‖X − X̃‖L∞ < τ . In
practice the usual L∞-norm can be approximated by the discrete l∞, u, v-norm on the
control points, because the following estimation holds (for each component c = 1, 2, 3 of a
parametric B-spline surface):

‖Xc − X̃c‖L∞ ≤ ‖Xc − X̃c‖l∞,u,v = max
i,j

|dc
ij − d̃c

ij | .

Further details about this estimation and its application to curve fairing with knot removal
can be found in [23,25].
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