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Abstract

The traffic classification problem has recently attracted the interest of both net-
work operators and researchers. Several machine learning (ML) methods have
been proposed in the literature as a promising solution to this problem. Sur-
prisingly, very few works have studied the traffic classification problem with
Sampled NetFlow data. However, Sampled NetFlow is a widely extended mon-
itoring solution among network operators. In this paper we aim to fulfill this
gap. First, we analyze the performance of current ML methods with NetFlow by
adapting a popular ML-based technique. The results show that, although the
adapted method is able to obtain similar accuracy than previous packet-based
methods (~=90%), its accuracy degrades drastically in the presence of sampling.
In order to reduce this impact, we propose a solution to network operators that
is able to operate with Sampled NetFlow data and achieve good accuracy in the
presence of sampling.
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1. Introduction

Traffic classification is crucial for classic network management tasks, such
as traffic engineering and capacity planning. However, traffic classification is a
difficult problem that requires the use of very complex identification techniques
due to the ever-changing nature of Internet traffic and applications. Conse-
quently, this problem has increasingly attracted the interest of both network
operators and researchers. In particular, a new class of applications (e.g., P2P,
VoIP and video streaming) has significantly increased its presence in the In-
ternet. These applications are particularly difficult to identify and, typically,
have severe resource demands, either in terms of bandwidth (e.g., P2P) or QoS
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requirements (e.g., low delay and jitter for VoIP applications), which pose an
additional challenge to network operators and to the classification problem.

Traditionally, the port numbers were used to classify the network traffic
(e.g., well-known ports registered by the IANA [1]). Nevertheless, nowadays it
is widely accepted that this method is no longer valid due to its inaccuracy and
incompleteness of its classification results [2-5].

The first alternatives to the well-known ports method relied on the inspection
of the packet payloads in order to classify the network traffic [3-6]. These meth-
ods, usually called deep packet inspection (DPI) techniques, consist of looking
for characteristic signatures (or patterns) in the packet payloads. Although this
solution could potentially be very accurate, its high resource requirements and
limitations with encrypted traffic make its use unfeasible in current high-speed
networks. In addition, some applications have started to implement sophisti-
cated protocol obfuscation techniques in order to camouflage their traffic, apart
from using non-standard ports or ports of other well-known applications, in an
attempt to evade detection or traverse firewalls.

In order to address these limitations, the research community has recently
proposed several machine learning (ML) techniques for traffic classification [7—
31]. Nguyen et al. survey and compare the complete literature in the field of
ML-based traffic classification in [32]. In general terms, most ML-based methods
study in an offline phase the relation between a pre-defined set of traffic features
(e.g., port numbers, flow sizes, interarrival times) and each application. This
set of features is used to build a classifier, which is later used to identify the
network traffic online.

Although there is a wide related work in the field of traffic classification, there
are some important issues that still remain unsolved. As a result, most ML-
based techniques had relatively limited success among network operators. For
example, most popular network monitoring systems still use the port numbers
or DPI techniques to classify the network traffic [33-35]. Some of these open
issues include the following:

1. Most ML-based techniques only operate with packet-level traces, which
requires the deployment of additional (often expensive) monitoring hard-
ware, increasing the burden on network operators.

2. The impact of sampling in traffic classification still remains unknown,
although traffic sampling (e.g., Sampled NetFlow) is a common practice
among network operators.

3. Most ML-based techniques rely on a costly and time-consuming train-
ing phase, which often involves manual inspection of a large number of
connections.

4. The lack of publicly available traffic traces makes it hard to understand
and compare the actual performance of existing traffic classification meth-
ods.

As a result, existing traffic classification techniques are seldom used by net-
work operators, which usually rely on Sampled NetFlow data for its monitoring



infrastructure. Surprisingly, the traffic classification problem with Sampled Net-
Flow has been scarcely investigated by the research community.

In this paper we aim to fulfill this gap by considering the four aforementioned
issues:

e We study the classification problem using NetFlow data instead of packet-
level traces (open issue 1). NetFlow is a widely extended protocol devel-
oped by Cisco to export IP flow information from routers and switches [36].
The main challenge when using NetFlow is the limited amount of infor-
mation available to be used as features of ML classification methods.

e We use the well-known C4.5 decision tree technique in order to analyze
the impact of traffic sampling on the classification accuracy with Sam-
pled NetFlow (open issue 2). The main limitation in this case is the low
sampling rates typically used by network operators (e.g., 1/1000) to allow
routers to handle worst-case traffic scenarios and network attacks. We
analyze this problem, both empirically and using sampling theory, and
find that packet sampling has a severe impact on the performance of the
classification method.

e We propose an automatic ML solution that does not rely on any human
intervention and significantly reduces the impact of traffic sampling on
the classification accuracy (open issues 2 and 3). The main novelty of our
solution is that our training set consists of sampled instances that can
better capture the properties of the sampled traffic that will be processed
in the classification phase. In contrast, previous works used the same
training set for both sampled and unsampled scenarios.

e We evaluate the performance of the method using a wide set of traffic
traces collected in a large research and education network (4 hours) and
validate the results using traces from different environments (CAIDA [37]
and WITS [38]). In addition, we have published our traces [39] in order
to allow the research community to evaluate their classification techniques
using a common, publicly available base-truth (open issue 4).

The remainder of this paper is organized as follows. Section 2 describes
the NetFlow-based methodology and our publicly available traces. Section 3
presents an experimental evaluation of the traffic classification method with
Sampled NetFlow. Section 4 provides a theoretical analysis of the impact of
sampling using sampling theory. Section 5 proposes a variant of the classification
technique to reduce the impact of sampling. Section 6 reviews in greater detail
the related work. Finally, Section 7 concludes the paper.

2. Methodology

This section describes a ML-based classification method for Sampled Net-
Flow and its automatic training phase. We also present the methodology and
datasets used in the evaluation.



Table 1: Set of 10 NetFlow-based features used in this work

[ Feature [ Description Value ]
sport Source port of the flow 16 bits
dport Destination port of the flow 16 bits

protocol IP protocol value 8 bits
ToS Type of Service from the first packet 8 bits
flags Cumulative OR of TCP flags 6 bits
duration | Duration of the flow in nsec precision | tSeng — tSini
packets | Total number of packets in the flow %’fets
bytes Flow length in bytes byp#
pkt_size | Average packet size of the flow pgzze:ts
iat Average packet inter-arrival time d“Tk‘Iﬂ
packets/p

2.1. Traffic Classification Method

We decided to use the C4.5 supervised ML method [40] given its high ac-
curacy and low overhead compared to other ML techniques as will be further
discussed in Section 6. The C4.5 algorithm builds in an offline phase a decision
tree from a set of pre-classified examples (i.e., training set). The training set
consists of pairs <flow, application>, where the flow is represented as a vector
of features and the application is a label that identifies the network application
that generated the flow. In our case, the training set contains real traffic flows
collected at a large university network (described in Section 2.5), and the vec-
tor of features includes those features of a flow that are relevant to predict its
application.

The main difference between our method and those proposed in previous
works is that, when using Sampled NetFlow data, the potential number of fea-
tures is significantly reduced due to the limited amount of information available
in NetFlow version 5 records (i.e., the most extended version). Table 1 presents
the set of features used in this work. Based on this basic information, we also
compute some additional features, such as the average packet size or average
inter-arrival time, resulting in 10 features in total. Unlike in some previous
works (e.g., [10]), we do not use information about the IP addresses. This deci-
sion can negatively impact the final accuracy of the classification method but it
allows us to build a classification model less dependent on the particular network
scenario used in the training phase. In addition, in the presence of sampling,
we correct some features (e.g., number of packets and bytes) by multiplying
their sampled values by the inverse of the sampling rate. Table 1 shows how
each feature is computed according to the sampling rate (p) being applied. In
Section 4, we provide a theoretical analysis of the error in the estimated features
under sampling.

2.2. Training Phase and Base-truth

One of the main limitations of existing ML methods is that they require
a very expensive training phase, which usually involves manual inspection of
a potentially very large number of connections. In order to automatize the



training phase, we developed an automatic training tool based on L7-filter. L7-
filter [41] is an open source DPI tool that looks for characteristic patterns in
the packet payloads and labels them with the corresponding application. This
computationally expensive process is possible during the training phase given
that it is executed offline. Finally, the training phase ends with the generation
of a C4.5 decision tree as described in Section 2.1. Although the training phase
must be performed using packet-level traces, only the NetFlow traffic features
listed in Table 1 are considered to build the decision tree and to evaluate its
performance.

The establishment of the base-truth is one of the most critical phases of any
ML traffic classification method, since the entire classification process relies on
the accuracy of the first labeling. Although L7-filter is probably not as accurate
as the manual inspection methods used in previous works, it is automatic and
does not require human intervention. This is a very important feature given
that manual inspection is often not possible in an operational network. For
example, each of the traces used in this paper contains more than 2 million
flows (see Table 3). However, our method can also be trained using manually
labeled datasets if more accurate results are needed or to avoid the limitations
of DPI techniques.

In order to reduce the inaccuracy of L7-filter we use 3 rules:

e We apply the patterns in a priority order depending on the degree of over-
matching of each pattern (e.g., skype patterns are in the latest positions
of the rule list).

e We do not label those packets that do not agree with the rules given by
pattern creators (e.g., packets detected as NTP with a size different than
48 bytes are not labeled).

e In the case of multiple matches, we label the flow with the application
with more priority, based on the quality of each pattern reported in the
L7-filter documentation. If the quality of the patterns is equal, the label
with more occurrences is chosen.

As already proposed in previous works (e.g., [15]), we also perform a saniti-
zation process in order to remove incorrect or incomplete flows that may confuse
or bias the training phase. The sanitization process removes those TCP flows
that are not properly formed (e.g., without TCP establishment or termination,
and flows with packet loss or with out-of-order packets) from the training set.
However, no sanitization process is applied to UDP traffic. Finally, because of
the limitations of L7-filter already mentioned, we removed those flows labeled as
unknown from the training set, assuming that they have similar characteristics
to other known flows. This assumption is similar to that of ML clustering meth-
ods, where unlabeled instances are classified according to their proximity in the
feature space to those that are known. More sophisticated labelling methods
have recently appeared [35, 42], which could be also used to reduce the number
of unknown flows.
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Figure 1: Overview of the machine learning and validation process

2.3. Machine Learning and Validation Process

Figure 1 summarizes the training phase presented in Section 2.2 and the
validation process used in the evaluation. First, we use a labeled dataset to
train our ML method. This dataset establishes the base-truth of our system
and is obtained with L7-filter as described in Section 2.2. Next, the NetFlow
feature extraction module extracts, from each flow in the dataset, the set of
NetFlow-based features listed in Table 1. After applying the sanitization pro-
cess described in Section 2.2, we obtain the training set. This training set is
then processed by the Model building module to generate the C4.5 decision tree
that will be used in the validation phase (classification model). We use the
WEKA ML software suite [43] to build the J48 decision tree, an open source
java extension of the original C4.5.

In the validation phase, we evaluate the performance of the classification
model obtained in the training phase. We included the resulting decision tree
in the SMARTxAC network monitoring system [44] and processed a large set
of traces described later in Section 2.5. Although these traces also contain the
application label, this information is only relevant to validate the accuracy of our
method. After extracting the NetFlow-based features from the evaluation traces
similarly to NetFlow, we classify each flow using the C4.5 decision tree generated
in the training phase. The quality of the model is measured by comparing the
output of the decision tree and the label obtained with L7-filter, according to
the performance metrics presented in Section 2.4.

2.4. Performance Metrics

In the evaluation, we use three representative performance metrics: overall
accuracy, precision and recall. In order to simplify the exposition of the results,
we show all performance results broken down by application group, according
to the groups presented in Table 2, which are based on those defined in the
L7-filter documentation [41].



Table 2: Application groups used by L7-filter

[ Group Applications ]

P2pP File-sharing applications based on peer-to-peer architecture (e.g., Bit-
torrent, Edonkey)

HTTP HyperText Transfer Protocol applications (e.g, http, hittpcachemiss,
httpcachehit)

VoIP Voice communications applications (e.g., Skype, TeamSpeak, Ventrilo)

Network Network applications (e.g, BGP, DHCP, Netbios, SSH, Telnet, VNC,
X11)

Streaming Stream media applications (e.g., Shoutcast, PPLive, Itunes, Quick-
Time)

DNS Domain Name System traffic

Others CVS, Hddtemp, IPP, LPD, Subversion, TSP...

Chat Instant messaging applications (e.g, Aim, IRC, Jabber, MSN Messen-
ger, Yahoo Messenger)

Email Email traffic (e.g, IMAP, POP3, SMTP)

FTP File transfer applications (e.g., FTP, Gopher, Tftp, UucP)

Games Massively multiplayer online games (e.g, Battlefield, Counter-Strike
Source, Day of Defeat Source, WoW)

The overall accuracy and precision are defined as TPTJF%, where TP (True
Positives) is the number of correctly classified flows and FP (False Positives)
is the number of incorrectly classified ones. The difference between overall
accuracy and precision is that, while precision refers to a particular application
group, overall accuracy considers the classification accuracy of the complete set
of flows. On the other hand, the recall of a particular application group is
defined as T;Jr%, where FN (False Negatives) stands for those flows of the
application group under study that are classified as belonging to another group.
Intuitively, this metric indicates how well the classification method identifies the
instances of a particular application group within a trace.

A flow is defined as the 5-tuple consisting of the source and destination IP
addresses, ports and protocol. In the evaluation we also present the accuracy
of the classification method per packets and bytes.

2.5. Evaluation Datasets

Our evaluation dataset consists of seven full-payload traces collected at the
Gigabit access link of the Universitat Politecnica de Catalunya (UPC), which
connects about 25 faculties and 40 departments (geographically distributed in 10
campuses) to the Internet through the Spanish Research and Education network
(RedIRIS). This link provides Internet access to about 50000 users. The traces
were collected at different days and hours trying to cover as much diverse traffic
from different applications as possible.

Table 3 presents the details of the traces used in the evaluation. Besides,
Table 4 shows the estimations of the percentage of elephant flows and the traffic
they generate. As we will show later in Section 3, this parameter has a significant
impact on our classification results. In order to identify elephant flows, we use
the metric proposed in [45], where a flow is considered as elephant when its size



Table 3: Characteristics of the traffic traces in our dataset

[ Name [ Date [ Day [ Start Time [ Duration [ Packets [ Bytes [ Avg. Util ]
UPC-1 11-12-08 Thu 10:00 15 min 95 M 53 G 482 Mbps
UPC-II 11-12-08 Thu 12:00 15 min 114 M 63 G 573 Mbps
UPC-III 12-12-08 Fri 16:00 15 min 102 M 55 G 500 Mbps
UPC-IV 12-12-08 Fri 18:30 15 min 90 M 48 G 436 Mbps
UPC-V 21-12-08 | Sun 16:00 1h 167 M 123 G | 279 Mbps
UPC-VI | 22-12-08 | Mon 12:30 1h 345 M | 256 G | 582 Mbps

UPC-VII | 10-03-09 | Tue 03:00 1h 114 M 78 G 177 Mbps

Table 4: Elephant flow distribution in our dataset

Name Flows Elephant Flows
% flows [ % bytes
UPC-I 2985 K | 0.035818% | 52.17%
UPC-II 3369 K | 0.048619% | 61.45%
UPC-IIT | 3474 K | 0.041587% | 59.58%
UPC-IV | 3020 K | 0.048149% | 59.79%
UPC-V 7146 K | 0.014151% | 66.08%
UPC-VI | 9718 K | 0.042271% | 54.51%
UPC-VII | 5510 K | 0.014075% | 72.44%

is greater than the mean flow size observed in the trace plus three times the
standard deviation.

Figure 2 plots the application breakdown according to L7-filter of the traces
in our evaluation dataset. The breakdown reflects the academic nature of the
monitored environment, with a large portion of HT'TP and network traffic. We
can also observe that L7-filter is not able to classify about 20% of the traffic
(labeled as unknown). This is a common problem of the current tools available to
establish the ground-truth, as already reported in previous works (e.g., [42]). In
order to improve the completeness of the classification, we remove the unknown
instances from the training set as discussed in Section 2.2. Therefore, those
flows that L7-filter would label as unknown can be classified with our model
assuming that they share similar characteristics with the flows that L7-filter
can identify, as described in Section 2.2.

Among the different traces in our dataset, we selected a single trace (UPC-
IT) for the training phase, which is the one that contains the highest diversity in
terms of instances from different applications. We limit our training set to one
trace in order to leave a meaningful number of traces for the evaluation that are
not used to build the classification model.

The set of seven labeled traces presented in Table 3 are publicly available in
an anonymized form to the research community at [39].
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Figure 2: Traffic breakdown of the traces in our evaluation dataset
3. Results

In this section, we first evaluate the performance of the traffic classification
method with unsampled NetFlow. These results are then used as a reference
to analyze the impact of traffic sampling on our method. In all experiments,
we use the UPC-II trace in the training phase, as described in Section 2.5, and
evaluate the accuracy of our method with the seven traces presented in Table 3,
using the performance metrics described in Section 2.4.

8.1. Performance with Unsampled NetFlow

Table 5 presents the overall accuracy (in flows, packets and bytes) broken
down by trace without applying traffic sampling. Compared to the related
work [7-31], our traffic classification method obtains similar accuracy to previous
packet-based machine learning techniques, despite the fact that we are only
using the features provided by NetFlow.

The C4.5 decision tree obtained in the training phase classifies in average
22057 flows/second with unsampled data using a 3GHz machine with 4GB of
RAM. This high classification speed is also reported in other works [27-29, 31].

While the overall flow accuracy is 90.59% in average, the classification accu-
racy in packets and bytes is, as in the related work, significantly lower (69.83%
and 60.32%, respectively). This is a common phenomenon with supervised
learning due to the heavy-tailed nature of current Internet traffic. This results
in much more instances of mice flows in the training set than of elephant flows,
which hinders the identification of a small number of flows that carry a large
fraction of the traffic. Table 3 confirms that, although the percentage of ele-
phant flows is less than 0.1%, they represent more than 50% of the traffic in our
traces. This explains the lower performance achieved in terms of packets and
bytes compared to that obtained in terms of flows. However, this effect can be
solved by artificially increasing the number of instances of elephant flows in the
training set, as we discuss in Section 5.3.



Table 5: Overall accuracy of our traffic classification method (C4.5) and a port-based technique
for the traces in our dataset

Overall accuracy

Name C4.5 Port-based
Flows | Packets [ Bytes Flows
UPC-I 89.17% | 66.37% | 56.53% 11.05%
UPC-II 93.67% | 82.04% | 77.97% 11.68%
UPC-III | 90.77% | 67.78% | 61.80% 9.18%
UPC-IV | 91.12% | 72.58% | 63.69% 9.84%
UPC-V 89.72% | 70.21% | 61.21% 6.49%
UPC-VI | 88.89% | 68.48% | 60.08% 16.98%
UPC-VII | 90.75% 61.37% 40.93% 3.55%
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Figure 3: Precision (mean with 95% CI) by application group (per flow) of our traffic classi-
fication method (C4.5) with different sampling rates

Table 5 shows that the overall accuracy is similar for all traces. As expected,
results for the UPC-II trace are slightly better than for the rest, given that
this trace was the one used in the training phase. However, the accuracy per
byte with the UPC-VII trace is significantly lower than with the other traces,
since this trace was collected at night, when the aggregated traffic mix was more
different than that of the training set (e.g., backup and file transfer applications).
An example of this different traffic profile can be observed in Table 3, which
shows that the percentage of elephant flows for those traces collected during
weekends (UPC-V) or at night (UPC-VII) is significantly lower (about 0.01%)
but, in contrast, they carry a much larger fraction of the traffic (between 60-
70%).

Table 5 also compares the overall accuracy of our method to a simple tech-
nique based on the destination port numbers [1]. As expected, even when using
only NetFlow-compatible features, the accuracy of supervised learning methods
is significantly higher than that of port-based techniques. It is also important to
note that, while in previous works the accuracy of port-based techniques was in
the 50-70% range [10], the accuracy of this method in our traces is only around
10%, which shows the important differences between the traces used in different

10
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studies.

Figure 3 presents the precision by application group. When sampling is not
applied (p = 1), the precision is around 90% for most application groups. Fig-
ure 4 also shows similar results for the recall by application group. Nevertheless,
the performance for some applications (e.g., Streaming, Chat and Others) is sig-
nificantly lower because L7-filter detected very few flows of these applications
in the training set (see Figure 2, UPC-II trace). As a result, this inaccuracy
has a very limited impact on the overall performance of our method. In order
to improve the classification accuracy for these groups, we could always include
more instances of these applications in the training set, as we further discuss in
Section 5.3.

3.2. Performance with Sampled NetFlow

So far, we have showed that our traffic classification method can achieve
similar accuracy than previous packet-based machine learning techniques, but
using only NetFlow data. Next, we study the impact of packet sampling on our
classification method using Sampled NetFlow.

Figure 5(a) shows that the flow classification accuracy degrades drastically
with sampling, decreasing from 90.59%, when all packets are analyzed, until
51.02%, when only one packet out of 1.000 is selected. The accuracy decreases
much faster for high sampling rates and stabilizes (and even slightly increases)
after p = 10%. This effect is inherent to packet sampling, since mice flows tend
to rapidly disappear with packet sampling, while the percentage of elephant
flows remains fairly stable at low sampling rates. For example, we checked
that the percentage of elephant flows in our traces increases by two orders
of magnitude (from around 0.05% to 5%) at low sampling rates. Recall that
NetFlow only supports static packet sampling and network operators tend to
set the sampling rate to very low values in order to allow routers to sustain
worst-case traffic mixes and network attacks.

The accuracy of the port-based technique remains almost constant in the
presence of sampling (about 10-30%). The accuracy per flow somewhat increases

11
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Figure 5: Overall accuracy (mean with 95% CI) of our traffic classification method (C4.5) and
a port-based technique as a function of the sampling rate

with the sampling rate, which indicates that large flows are easier to identify
using the port numbers than small flows. In contrast, the accuracy per packet
and byte tends to slightly decay compared to that per flow because, while the
percentage of flows stabilizes at low sampling rates, the percentage of packets
and bytes decreases in the same proportion as the sampling rate.

Figures 5(b) and 5(c) also show that our method is more resilient to sampling
for large flows than for small ones, since the accuracy per packet and byte
degrades more slowly with the sampling rate than per flow. On the one hand,
this is because missing a single packet of a small flow always has a larger impact
in the estimation of the flow features than in larger flows. On the other hand, as
previously discussed, while our method classifies small flows better than larger
ones, small flows tend to rapidly disappear in the presence of sampling.

Figure 3 presents the flow precision by application group at different sam-
pling rates. The precision for most applications, except for those with very few

12



instances in the training set (e.g., Streaming, Chat and Others), decreases with
the same proportion depicted in Figure 5. Figure 4 also shows similar results
for the recall by application group.

Both figures when interpreted together give us important information about
the quality of our classification method. For example, it can be observed that
the precision and recall for HTTP is around 70% and 35% (with p = 0.01)
respectively, which indicates that while 70% of the flows classified as HTTP are
actually HTTP traffic, more than 65% of the HTTP flows in the dataset are
incorrectly classified as belonging to another application. On the contrary, while
the precision for FTP applications is relatively low in the presence of sampling
(< 50%), the recall is very high (> 90%), which means that more than 90% of
the FTP flows in the dataset are correctly classified. However, more than 50%
of flows identified as FTP belong to other applications.

According to the results presented in this section, we can conclude that the
impact of traffic sampling on supervised learning solutions for traffic classifica-
tion is severe. We consider that an average accuracy of about 50% for sampling
rates below 10% is unacceptable to most network operators. Suprisingly, to the
best of our knowledge, this is the first work that shows such a drastic impact of
sampling in the field of traffic classification. The only previous work that stud-
ied the traffic classification problem in the presence of sampling [10] reported
instead a minimal decrease of accuracy. We attribute the different results to the
more complete datasets used in this study (4 hours of a gigabit link), which are
harder to classify using only the port numbers. As we later discuss in Section 4,
the port numbers are resilient to sampling, which explains the differences in
the results. As in this section, a complete, unsampled dataset was employed to
train the system in [10]. In contrast, Section 5 shows that by simply using a
sampled training set to build the classification model, the accuracy and recall
figures can be significantly improved.

4. Analysis of the Sources of Inaccuracy under Sampling

In Section 3.2, we have shown the large impact of packet sampling on the
accuracy of a supervised learning technique for traffic classification. However,
packet sampling can affect the classification accuracy in many different ways. In
particular, we have detected three different sources of error when using packet
sampling in NetFlow: (i) error in the estimation of the flow features, (i7) changes
in the flow size distribution, and (iii) splitting of sparse flows. In this section,
we analyze these sources of inaccuracy both theoretically and empirically.

4.1. Error in the Traffic Features

One of the main sources of inaccuracy under sampling is the estimation of
the traffic features. Most of the per-flow features provided by Sampled NetFlow
cannot be directly used by the classifier. Instead, they must be inverted prior
to the classification process in order to be comparable to the values observed
in the training set. We present a theoretical analysis, using sampling theory, of
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the error in the estimation of the features presented in Table 1. We show that,
although most of the features are fairly accurate for large flows and moderate
sampling rates, some features are clearly biased. For those features that are
unbiased, we find that the variance of the error is significant for small flows and
low sampling rates. We also present experimental evidence that indicates that
this source of error contributes most to the results presented in Section 3.2.

e Source port, destination port and protocol. These are the only
features in Table 1 that are not affected by packet sampling, because they
have exactly the same value in all the packets of a flow. Thus, their
inversion has no impact in the classification accuracy. If one or more
packets of the flow are sampled, then the error is 0, while if the flow is
not sampled at all it does not contribute to the error. The probability of
missing a flow with n packets is (1 — p)™, where p is the sampling rate.

e Flags and ToS. Under random sampling, the probability p of sampling
a packet is independent from the other packets. Let m be the number
of packets of a particular flow with the flag f set (i.e., f = 1), where
f €40,1}. The probability of incorrectly estimating the value of f under
sampling is (1 — p)™, independently of how the packets with the flag set
are distributed over the flow. The expected value of the absolute error is:

Elf =fl=f-Elfl=f-1-(0-p™=f-1+1-p" (1)

Eq. 1 shows that f is biased, since the expectation of the error is (1 —p)™
when f =1, and it is only 0 when f = 0. That is, with packet sampling,
f tends to underestimate f, especially when f =1 and m or p are small.
For example, if we have a flow with 100 packets with the flag ACK set
(m = 100) and p = 1%, the expectation of the error in the flag ACK
is (1 —0.01)!% ~ 0.37. The flag SYN and the ToS are particular cases,
where we are only interested in the first packet and, therefore, m € {0, 1}.

e Number of packets. With sampling probability p, the number of sam-
pled packets x from a flow of n packets follows a binomial distribution
x ~ B(n,p). Thus, the expected value of the estimated feature # = x/p
is:

E[n] = E[x] = 1E[:U] = 1np =n (2)
p p p
which shows that 7 is an unbiased estimator of n (i.e., the expected value
of the error is 0). The variance of 7 is:

A—arfziarx:in — zln—
Var[n] = V: L}} p2V [x] e p(1 —p) » (1-p) (3)

Hence, the variance of the relative error can be expressed as:

n? np

Var[l - Z] = Var[Z] — L Varfi] = n%pnu =1t
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Eq. 4 indicates that, for a given p, the variance of the error decreases
with n. That is, the variance of the error for elephant flows is smaller
than for mice flows. The variance also increases when p is small. For
example, with p = 1%, the variance of the error of a flow with 100 packets

is a7l = 0.99, which is not negligible.

Flow size. The original size b of a flow is defined as b = >, b;, where
n is the total number of packets of the flow and b; is the size of each
individual packet. Under random sampling, we can estimate b from a
subset of sampled packets by renormalizing their size:

=L

where w; € {0,1} are Bernoulli distributed random variables with proba-
bility p. We can show that b is an unbiased estimator of b, since E[b] = b:

(5)

’B\®

n

. "oy 1 | 1
¢ p p ; p :
= besz = szp—fpz:b—b (6)
The variance of b is obtained as follows:

w;— | = —=Var wibi = = Var|w;b;] =
- anV b2p(1 —Lﬁunb'2 7
= FZ ; var wz 2 Z - = D Z ? ( )

i=1 i=1

Var[b] Var

Thus, the variance of the relative error is:

b b .
Var [1 — b} = Var [b} —V r Z bi
l—p > bi

— = '2 8
b (3, b) )

which decreases with n, since Y bi? < (3.7 bi)2. This indicates that the
variance of the error can be significant for small sampling rates and short
flows. For example, if we have a flow with 100 packets of 1500 bytes each,

; : _ iq 1-0.01 100x1500%  _
the variance of the error with p = 1% is ~551— X (100X 1500)2 = 0.99.
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e Duration and interarrival time. The flow duration is defined as d =
t, —t1, where t1 and t,, are the timestamps of the first and last packets of
the original flow. Under sampling, this duration is estimated as d=t, —tq,
where t, and ¢, are the timestamps of the first and last sampled packets
respectively. Thus, the expected value of d is:

Eld = Elty—td]
= El[tp) — E[tq]
- E tn—zn:iati] ~E t1+iiati]

+E

Il
—
ﬂ.
|
~
=
/\

Z iat; Z iat; ] ) (9)

where iat; is the interarrival time between packets ¢ and ¢ — 1, and a is
a random variable that denotes the number of missed packets until the
first packet of the flow is sampled (i.e., the number of packets between t;
and t,). Therefore, the variable a follows a geometric distribution with
probability p, whose expectation is 1/p. By symmetry, we can consider
the number of packets between b and n to follow the same geometric
distribution. In this case, we can rewrite Eq. 9 as follows:

Bld = (t:—t) — (Bl — bl Eliat)) + (Ela] Efiat])
= (-t -2(2) (10)

where iat is the average interarrival time of the non-sampled packets.
Eq. 10 shows that the estimated duration is biased (i.e., E[d — d] > 0).
In other words, d always underestimates d. The bias is (2 x iat/p), if we
consider the average interarrival time to be equal between packets 1...a
and b...n. However, we cannot use the feature iat to correct this bias,
because this feature is obtained directly from d. In fact, Eq. 10 indicates

that the feature iaf is also biased, since iat = d/ .

In order to illustrate with empirical data the impact of packet sampling on
the estimated features, we present in Table 6 the average of the relative error
per flow of the features in the UPC-II trace as a function of the sampling rate.
We can observe that the error for almost all the features is significant, and it is
particularly large for 7 and b. These large errors are explained by the fact that
the average number of packets per flow in the UPC-II trace is only 6.67, given
that in NetFlow flows are unidirectional and the trace contains a large portion
of DNS traffic (i.e., single-packet flows). According to Eq. 4, the variance of
the error for small flows is very large. For example, with p = 0.01 and n = 1,
the variance of the error in the number of packets is 10%{)1 = 99. The same
observation holds for the flow size.

16



Table 6: Average of the relative error of the flow features as a function of p (UPC-II trace)

[ Feature [ p=0.5 [ p=10.1 [ p=0.05 [ p=0.01 [ p=0.005 [ p= 0.001 |

sport 0.00 0.00 0.00 0.00 0.00 0.00

dport 0.00 0.00 0.00 0.00 0.00 0.00

proto 0.00 0.00 0.00 0.00 0.00 0.00
f 0.05 0.16 0.18 0.22 0.23 0.24
d 0.22 0.60 0.66 0.77 0.79 0.81
n 0.66 3.66 6.90 29.69 55.17 234.61
b 0.76 3.86 7.05 29.71 55.09 234.24
iat 0.29 0.65 0.71 0.78 0.80 0.82
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Figure 6: Overall accuracy when removing the error introduced by the inversion of the features
(UPC-I trace, using UPC-II for training)

Given this large error, one would expect the error in the flow features to
be the main source of inaccuracy in the classification results presented in Sec-
tion 3.2. In order to confirm this intuition, we performed an experiment to
quantify the error introduced by the inverted features in the final classifica-
tion accuracy. We replaced the estimated features of each flow in the UPC-I
trace by their original values, which were directly obtained from the unsampled
trace. Note that this cannot be done in the general case, because under sam-
pling the original features are unknown. Figure 6 shows the accuracy obtained
with the UPC-I trace using the UPC-II trace for training. In particular, the
figure presents the classification accuracy removing the error introduced by the
inversion of the features. The results of this experiment confirm that this source
of error explains the bulk of the classification error, especially for low sampling
rates (from p = 0.1 to 0.001). The following subsections analyze other sources
of error that explain the rest of the error observed under sampling.

4.2. Changes in the Flow Size Distribution

A second source of inaccuracy is the impact of sampling on the flow size
distribution. When using Sampled NetFlow, short flows in terms of packets
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Figure 7: Validation of Eq. 11 against the empirical distribution of the original flow length
detected with p = 0.1 (UPC-II trace).

(i-e., mice) can be easily missed by the sampling process, while long flows (i.e.,
elephants) are usually sampled, even when using very low sampling rates. As a
result, the distribution of elephant and mice flows in a sampled trace is different
from that of an unsampled (complete) trace. As we will see, this impacts the
classification accuracy of sampled traffic when an unsampled trace is used for
training. Next, we present a theoretical analysis that shows that this distribu-
tion changes significantly, even when using high sampling rates.

Let X, be a discrete random variable that denotes the original size of the
sampled flows when using a sampling rate of p. Please note that X, represents
the original number of packets of the sampled flows, not the amount of sam-
pled packets. Let Y be a discrete random variable that denotes the original
flow length distribution, with probability mass function P[Y = y]. Then, the
probability mass function of X, can be expressed as:

iy Bylis2)P[Y =]
Z;i1 Zi:l Bp(kaj)P[X = ]]

where By, (k,n) is the binomial probability, defined as By(k,n) = (})p*(1 —

PX,=z]=

(11)

Figure 7 validates our model (Eq. 11) against the empirical flow length dis-
tribution of the detected flows with p = 0.1 in the UPC-II trace. In this case,
we used the probability mass function P[Y = y] obtained empirically from the
UPC-II trace (without sampling). The figure confirms that the model fits very
well the empirical distribution under sampling.

Figure 7 also confirms our hypothesis for our trace. In order to have a more
general result we approximate the original flow length with a Pareto distribu-
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Figure 8: Flow length distribution of the detected flows when using several sampling proba-
bilities. The figure was obtained combining Eq. 11 with Eq. 12

tion [46]. Thus, we can express the probability mass function of Y as:

OéLaJ,‘_a_l
L«

H

Figure 8 plots the flow length distribution of the detected flows for different
sampling probabilities. The figure was obtained by combining Eq. 11 with Eq.
12. The parameters of the Pareto distribution were approximated using the
empirical probability mass function of Y (« = 3.7003, 8 = 0.3650, L = 1 and
H = 1000).

The figure shows that the distribution of detected mice and elephant flows
changes significantly, even with very high sampling probabilities. For high sam-
pling rates (e.g., p = 0.1), the amount of mice flows is remarkably larger than
that for low sampling rates (e.g., p = 0.001). However, the probability of de-
tecting elephant flows remains highly unaffected with respect to the sampling
probability. This result confirms that the flow length distribution of the traffic
sampled during the classification phase is significantly different from that of the
(unsampled) training set. The use of such imbalanced datasets is known to be
an important source of inaccuracy of supervised learning methods [47].

Recall the previous experiment presented in Figure 6, where we analyzed
the impact of the inversion of the traffic features. When p = 1, the traffic clas-
sification method achieves an overall accuracy above 0.9, while under sampling
(even when the features are perfectly accurate), the accuracy drops below 0.8.
This decrease in accuracy can be mostly attributed to the different distribution
of the flows observed in the classification and training phases.

PIY =y = (12)

4.8. Flow Splitting
The last source of inaccuracy that we observed under sampling is flow split-
ting. NetFlow implements several flow expiration mechanisms [48]. One of them
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is the inactivity timeout, which expires the flows after a certain amount of time
of inactivity (TTL seconds). That is, if no packet is received for a given flow
during TTL seconds, NetFlow expires the flow and reports it. Under certain
circumstances, the packet inter-arrival time of an active flow may be larger than
the TTL, and this would result in several instances of the same flow reported,
instead of just one. Packet sampling aggravates this problem, since a set of
consecutive packets may be missed (not sampled), which may cause NetFlow to
incorrectly expire the flow while it is still active.

In this case, the flow is split and reported twice (or more times) to the traffic
classification method. This situation affects the classification accuracy, since the
features of split flows only reflect partial information of the actual flow (e.g.,
estimated size and duration of split flows is shorter).

In this section, we aim to model the flow splitting probability under sampling
and discuss its impact on the traffic classification method. First, we focus on
an analytical model for the probability of splitting a flow, either in one or more
parts, as a function of the sampling rate p. For this purpose, we consider
the average inter-arrival time of the packets within a flow (iat), the inactivity
timeout of NetFlow (TTL) and its length in packets (n).

We base our model in the well-known consecutive-k-out-of-n:F [49] theory,
which accounts for the reliability of a system composed of an ordered sequence of
n components, such that the system fails if, and only if, at least k& consecutive
components fail. In our case, the components are the packets of a flow, and
the flow is split if at least k consecutive packets are not sampled, where k =

[TTL/iat].

From the consecutive-k-out-of-n:F theory, we know that the probability P
of having at least one run of k missed packets out of n can be expressed with
the following recursive formula:

with the following base cases:

e if n <k then P=0
o if n =k then P =¢*

where ¢ is the probability of missing a packet (¢ = 1 — p). Since a flow cannot
be split unless at least 2 packets have been sampled, we can express the split
probability Pspi(n,p) as:

Pupiit(n,p) = P(n,1 —p, [TTL/iat])[1 - (Bp(0,n) + By(1,n))]  (14)
where By, (k, n) is again the binomial probability, defined as B, (k,n) = (})p*(1—
P

In order to validate our model, we plot in Figure 9 the actual number of
split flows in the UPC-II trace as a function of the sampling rate p, along with
the values obtained with our model using Eq. 14. The figure confirms that our
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Figure 9: Amount of split flows as a function of the sampling probability p. The figure shows
both the empirical results (UPC-II trace) and the analytical ones (Eq. 14)

model predicts remarkably well the number of split flows for all the sampling
rates. It is also interesting to observe that the amount of split flows is not
directly proportional to the sampling rate and shows a peak at p = 0.1.

In order to understand this relationship, we must introduce the notion of
sparse flow [50]. According to our results, split flows typically have very long
durations (in the order of hundreds of seconds), but contain very few packets (an
average of 16 in our traces). Such sparse flows are more prone to be split [50].
However, the probability of capturing more than one packet of a sparse flow is
very small for low sampling rates, which explains the decrease of split flows in
Figure 14 for sampling rates below 0.1.

Although this source of error decreases the classification accuracy of those
flows that have suffered a split (e.g., the accuracy of split flows is 8% below the
average for the UPC-II trace with p = 0.5), its impact in the overall classifica-
tion accuracy in our datasets was low. This is explained by the fact that the
percentage of split flows in our traces is small (about 1% with p = 0.5), since
they contain very few sparse flows. However, flow splitting can be an important
source of inaccuracy in other traffic profiles with a larger portion of sparse flows.

5. Dealing with Sampled NetFlow

Given the severe impact of packet sampling on the classification accuracy
observed in previous sections, this section presents a simple improvement in the
training process that significantly increases the performance of our traffic clas-
sification method in the presence of sampling (e.g., Sampled NetFlow). Finally,
we also review some of the limitations detected during the evaluation of our
method, which are common to most machine learning-based techniques.

5.1. Improving the Classification Method

Unlike in previous works, where a set of complete (unsampled) flows are used
in the training phase (e.g., [10]), we propose instead to apply packet sampling to
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Figure 10: Overall accuracy (mean with 95% CI) of our traffic classification method with a
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Figure 11: Precision (mean with 95% CI) by application group (per flow) of our traffic clas-
sification method with a sampled training set

the training process. This simple solution is possible because Sampled NetFlow
uses a static sampling rate [36], which must be set at configuration time by
the network operator. Therefore, we can use exactly the same sampling rate in
both the training and classification processes. This solution has the advantage
of circumventing the sources of inaccuracy discussed in Section 4, since in this
case the features do not need to be inverted, while the same flow distribution
and split probability is maintained in both the training and classification sets.

In particular, we repeat the training process described in Section 2 by apply-
ing a set of sampling rates commonly used by network operators, which range
from 50% to 0.1%, and then evaluate the accuracy of the classification process
under these static sampling rates.

Figure 10 shows the substantial improvement obtained in terms of classified
flows when applying sampling to the training set. Remarkably, we can observe
that the flow accuracy degrades much more gracefully compared to the original
technique. For example, with p = 0.01, the accuracy per flow increases from
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Figure 12: Recall (mean with 95% CI) by application group (per flow) of our traffic classifi-
cation method with a sampled training set

46.96% to 82.38%. Similar improvements are obtained for the other sampling
rates. According to the theoretical analysis presented to Section 4, this increase
of accuracy can be mostly attributed to the error introduced by the inversion of
the traffic features when using an unsampled training set. The enhancement is
also partially explained by the already mentioned elephant-mice phenomenon,
since now the proportion of elephant and mice flows is kept similar in the training
and classification phases. Although the results in terms of packets and bytes
are more modest, especially for p = 0.01, the improvement is still considerable.
This lower gain is expected since the accuracy in terms of packets and bytes
under aggressive sampling rates is mainly driven by large flows, which are less
affected by our enhancement in the training phase.

The precision (Figure 11) and recall (Figure 12) are also significantly higher
for all application groups and sampling rates. Note also that, while our initial
classification method was not able to identify almost any flow of some appli-
cation groups (e.g., Games, Chat or Others) in the presence of sampling (see
Figures 3 and 4), with the proposed improvement in the training process the
precision and recall of these applications are notably improved (e.g., precision
from 2.78% to 83.97% for Games applications with p = 0.01).

5.2. BEvaluation in Other Network Environments

In previous sections, we showed the performance of our traffic classification
method using different traces from a single network viewpoint (UPC). The ob-
jective of this section is to evaluate if similar results are also obtained in other
network environments.

For this purpose, we used 5 packet-level traces from two public repositories
(CAIDA [37] and WITS [38]). The traces from the CAIDA archive were collected
in two OC-192 backbone links from a Tier-1 ISP in the US. Conversely, the
Auckland-VIII trace from the WITS repository was collected in a 100 Mbps
access link of the University of Auckland to the global Internet. Details of the
traces are presented in Table 7.
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Table 7: Characteristics of the traces from other environments

‘ Name ‘ Date ‘ Day ‘ Start Time ‘ Duration ‘ Packets ‘ Bytes ‘ Avg. Util ‘
CAIDA _Chicago_08 18-12-08 Thu 14:00 1h 3.53 G 27T 6.1 Gbps
CAIDA _Chicago-09 | 16-07-09 | Thu 15:00 1h 428G | 42T | 9.3 Gbps
CAIDA SanJose 08 | 21-08-08 Thu 15:00 1h 2.32 G 13T 2.9 Gbps
CAIDA SanJose-09 | 17-09-09 | Thu 15:00 1h 3.67G | 24T | 5.4 Gbps

Auckland-VIII 10-12-03 | Wed 15:00 4 h 35 M 16 G 9.2 Mbps

A common problem when using public traces is that packet payloads are
usually not available for privacy reasons. However, packet payloads are needed
to build the ground truth used to measure the classification accuracy. In order to
address this limitation, we labeled the traces in Table 7 using our own classifier,
which we trained using the UPC-II trace as described in Section 2.5. Although
this approach assumes that the accuracy is 1 when p = 1, it is sufficient to
analyze the decrease of accuracy due to packet sampling.

Figure 13 presents the overall accuracy, in terms of classified flows, when us-
ing a normal (unsampled) and a sampled training set with the traces in Table 7.
The figure shows that similar improvements to those observed in Figure 10 with
the traces from UPC are also obtained with the traces from other network sce-
narios. In general, the accuracy when using a complete training set decreases
abruptly for moderate sampling rates and starts to recover slowly for low sam-
pling rates. This effect, which was already observed with the traces from UPC
in Figure 5, is explained by the fact that, as discussed in Section 4, the error in
the inversion of the flow features is much smaller for elephants flows, which are
the most predominant with low sampling rates (e.g., 1/1000). In contrast, the
accuracy when using the improvement presented in Section 5.1 is more stable
and is kept reasonably high for all sampling rates.

5.3. Lessons Learned and Limitations

In the course of this study, we have found that several limitations of most
machine learning techniques for traffic classification are directly related to the
base-truth used in the training phase. This explains the accuracy problems
observed in Sections 3 and 5 for some application groups and metrics. As a result
of such experience, we present some simple solutions that could help to improve
the quality of the training set in future works: (4) include a similar number
of instances of all application groups, (i¢) increase the number of instances of
elephant flows, for example by using longer traces that can better capture the
behavior of large flows, which have a high probability of being ignored in small
traces due to the sanitization process, (#i4) mix several instances of multiple
traces from different hours, days and network scenarios in the training set, (iv)
define alternative groups than those used by L7-filter, according to the actual
behavior of the applications, and avoid generic groups (e.g., Others), and (v)
investigate better, but still automatic, labeling techniques for the training phase
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Figure 13: Overall accuracy with a normal and sampled training set using the traces from
other environments

(e.g., [35, 42]).1

6. Related Work

Recently, several machine learning (ML) methods have been proposed as
an effective alternative to the classic traffic classification techniques based on
the port numbers [1] or deep packet inspection (DPI) [3-6]. The wide related
work in this field can be divided into two main areas, namely supervised and

INote that the accuracy of supervised learning methods is directly restricted by the label-
ing technique used in the training phase. For example, if DPI techniques are used for training,
it is improbable that the resulting classification method can identify encrypted traffic, unless
it exhibits similar behavior than the unencrypted traffic of the same application.
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unsupervised learning. Next, we briefly review the main proposals and ideas
behind these two research areas. We refer the interested reader to [32] for
an exhaustive survey of the complete literature in the field of ML for traffic
classification.

Supervised methods, also known as classification methods, extract, in an
offline phase, knowledge structures (e.g., decision trees) from a pre-classified
set of examples (i.e., labeled flows), which are later used to classify new in-
stances into a pre-defined set of classes (i.e., applications). Several works have
proposed the use of supervised techniques for traffic classification [7—14], which
reported a classification accuracy around 90%. However, proposed techniques
only operate with packet-level traces, which significantly limits their deploy-
ment in operational networks. In addition, they rely on an expensive training
phase that usually involves manual classification of a large number of example
flows. In this paper, we have adapted the well-known C4.5 supervised learning
technique [40] to operate with NetFlow data and have presented an automatic
training process that does not require manual inspection.

Unsupervised learning methods, also known as clustering methods, do not
need a complete labeled dataset. Instead, they automatically discover the nat-
ural clusters from previously unclassified data. Several clustering methods for
traffic classification have been also studied in the recent literature [15-25]. In
general, they achieved a slightly lower accuracy than supervised techniques, but
with a much more lightweight training phase. In this work, we try to com-
bine the high classification accuracy of supervised learning with an automatic
training phase, similar to that of unsupervised methods.

Although these previous works have reported different performance results,
it is difficult to draw sound conclusions about their relative performance, since
most studies were carried out using different, undisclosed datasets. As a result,
entire papers have been devoted to analyze and compare the performance of
some of these techniques [26-31]. In 2006, Williams et al. [27] compared five
supervised algorithms for traffic classification. They concluded that C4.5 was
the most accurate among the evaluated algorithms. C4.5 also outperformed
the rest in terms of classification time, being twice as fast as the second fastest
technique (Naive Bayes [11]). At the end of 2008, Kim et al. [31] analyzed seven
supervised methods, and compared them with BLINC [51] and the port-based
method implemented by CoralReef [33]. BLINC [51] is a classification technique
that analyzes the connection profile of end hosts based on their interaction with
the network. According to their results, all supervised techniques achieved much
better accuracy than BLINC and CoralReef. Among the supervised methods,
Support Vector Machines (SVM) slightly outperformed the rest in terms of
accuracy. C4.5 achieved almost the same accuracy, but with a classification
time hundred times faster than SVM. For this reason, in this work we decided
to use C4.5, which is the technique that, based on these previous results, offers
the best trade-off between classification accuracy and overhead.

To the best of our knowledge, only a workshop paper [10] has analyzed the
traffic classification problem in the presence of sampling. In particular, [10]
evaluated the impact of packet sampling on the Naive Bayes Kernel Estimation
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supervised machine learning technique. In this work, we analyze instead the
impact of sampling on the C4.5 classification method, which is faster in terms
of both training and classification time. Despite the similarities between both
techniques, we have observed a significantly higher impact of sampling in the
classification accuracy. While in [10] a complete, unsampled trace is used in the
training phase, in this work we show that this approach has a severe impact
on the classification accuracy in the presence of sampling. Since the trace used
in [10] is not publicly available to further analyze these differences, we attribute
them to the more complete datasets used in our study, which are more difficult
to classify using only the port numbers (note that port numbers are resilient
to sampling) and include a much larger volume of traffic and both TCP and
UDP connections. In contrast, [10] only used a single trace that did not contain
UDP traffic. In order to allow for further comparison of our results with other
classification techniques, we have made our datasets publicly available to the
research community. They can be obtained at [39].

The impact of sampling has also been studied in other, closely related re-
search areas. In the field of anomaly detection, several works have analyzed the
impact of different sampling techniques on the performance of portscan detec-
tion [52-54]. They also conclude that packet sampling has an important impact
on the detection accuracy, increasing both false negative and false positive ra-
tios. Although some studies reported lower impacts when using flow sampling
(e.g., [52, 53]), Sampled NetFlow only supports packet sampling (systematic
and random) [48]. Androulidakis et al. [55] show that systematic sampling is
especially problematic when the detection algorithms depend on the observation
of a particular packet (e.g., SYN flag). Brauckhoff et al. [56] also find that some
anomaly detection metrics are more resilient to sampling than others, especially
those based on entropy summarizations, and that detection algorithms based
on packet and byte counts are less affected than those based on flow counts.

Finally, in the field of bandwidth estimation, Davy et al. [57] explored the
problem of estimating the bandwidth demand from sampled network accounting
data for QoS-aware network planning. Their results show estimation errors in
the £10% range. They also find that the estimation error depends on the
particular class of traffic and that it is larger for short flows at low sampling
rates.

7. Conclusions

In this paper, we addressed the traffic classification problem with NetFlow
data using a well-known supervised learning technique. Our results allow us to
come to the conclusion that: (i) supervised methods (e.g., C4.5) can achieve high
accuracy (/=90%) with unsampled NetFlow data, despite the limited information
provided by NetFlow, as compared to the packet-level data used in previous
studies, and (i%) the impact of packet sampling on the classification accuracy of
supervised learning methods is severe.

Therefore, we proposed a simple improvement in the training process that
significantly increased the accuracy of our classification method under packet
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sampling. For example, for a sampling rate of 1/100, we achieved an overall
accuracy of 85% in terms of classified flows, while before we could not reach an
accuracy beyond 50%.

Given that Sampled NetFlow is the most widely extended monitoring solu-
tion among network operators, we hope that these encouraging results can in-
centivize the deployment of more accurate techniques in operational networks,
where the obsolete port-based method is often the unique real solution.

In the paper, we also identified several limitations, common to most machine
learning techniques, which constitute an important part of our future work.
Nevertheless, the main limitation in this research area is the lack of publicly
available traces to be used as a common reference for researchers working on
this topic. In this direction, an additional contribution of this paper is that
we have opened our traffic traces to the research community. These traces were
collected at a large university network and cover a wide range of days and hours.
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