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Abstract— This paper describes two differents control strategy

for a fuel cell based hybrid electric vehicle (FCHEV). The offline

strategy is based on dynamic programming and the online one is

based on an optimized fuzzy logic controller. Theses two strategies

are then compared. Finally, the fuzzy logic controller is validated

using a real FCHEV.

I. INTRODUCTION

Proton Exchange Membrane Fuel Cells (PEMFC) appear

to be suitable for vehicular applications [1]–[3] due to their

low operating temperature range (60-90 °C) [4] and their high

power density. A Hybrid Electric Vehicule (HEV) based on

PEMFC and batteries leads to zero emission and enables

kinetic energy recovery during braking phases [5], [6]. The

control strategy of these two sources is directly linked to

hydrogen consumption [7]. Two kinds of control are found

in the litterature: on the one hand, offline controls aim at

optimizing the power split between the two sources for a
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known driving cycle; on the other hand, online controls are

based on real time controller such as fuzzy logic [8]–[10],

neural network [11] or predictive control [12], [13] . This

paper compares theses strategies on differents scenarios of

driving cycles [14], [15]. The comparison will permit to the

online controller to be adapted based on the driving cycle

using, for example, learning algorithms. In a first part, the

model of a fuel cell based hybrid electric vehicle (FCHEV)

is described. Then, an offline control based on a dynamic

programming (DP) algorithm is used to obtain the best fuel

economy for a known driving cycle. A fuzzy logic controller

is then defined for the same driving cycle and both strategy

are compared. Then, a genetic algorithm is used to improve

the online strategy in order to approach as best as possible

the offline control strategies results. Finally, the last section

presents the experimental validation of the online control on a

fuel cell hybrid vehicle with fuzzy logic implementation will

be presented in order to validate the simulated results. The

experimental results show that the optimized controler is really

close to optimal results obtained with DP.
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II. VEHICLE’S CHARACTERISTICS

A. Vehicle model

The vehicule considered for this study is a series hybrid

electric vehicule based on a PEM fuel cell and batteries as

shown in Figure 1 .
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Fig. 1. Vehicle’s architecture

The PEMFC is connected to the DC bus via a DC-DC

converter whereas the batteries are directly linked to the bus.

Only one degree of freedom for the control strategy is possible:

only the fuel cell current iFC can be controlled. The vehicle

power as a function of the speed is given by (1) [16]:

Pv(t) = v

(
mv(t)

d
dt
v(t) + Fa(t) + Fr(t) + Fg(t) + Fd(t)

)
(1)

where Fa is the drag force, Fr the rolling friction, Fg the

force caused by gravity when driving on non-horizontal roads

and Fd the disturbance force that summarizes all other effects.

The power split between the fuel cell PFC and the batteries

Pb is given by (2).

Pv(t) = ηFC PFC(t) + ηb Pb(t) (2)

where ηFC is the fuel cell efficiency and ηb is the battery

efficiency.

Due to the architecture, only the fuel cell can be actively

controlled.

B. Fuel cell model

The PEMFC is used as the primary source of energy and

the objective of the strategy is to minimize the hydrogen

consumption given by (3) [17], [18] :

mH2 =

∫ t

0

MH2 nc

2F
IFC(t) dt (3)

where mH2 is the hydrogen mass, MH2 is the hydrogen

molar mass, nc is the number of cells, IFC the fuel cell current

and F the faraday constant (96, 487C). The fuel cell current

IFC is calculated based on the polarization curve given by

Figure 2.
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Fig. 2. Fuel cell power

III. OFFLINE CONTROL STRATEGY

The offline control strategy objective is to find the minimum

hydrogen consumption for a known driving cycle [19], [20].

The consumption minimization problem can be written as a

problem of optimal control for discrete system [12].

A. Problem formulation

The battery’s state of charge (SoC) x(k) can be considered

as a dynamic system. The system can be written as:

x(k + 1) = x(k) + Pb ηb Ts (4)

ηb =


0.95 if Pb(t) < 0

1 if Pb(t) ≥ 0

(5)
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where Pb is the battery power level defined by (2), ηb the

battery efficiency (0.95 for charge and 1 for discharge) and Ts

the sampling time. The chosen criterion for N samples can be

written as:

J =

N−1∑
k=0

∆mH2(PFC , k)Ts (6)

where mH2(PFC , k) is the hydrogen mass consummed for the

power PFC between two sampling times. According to fig 2,

the fuel cell power is obviously limited:

µFC = PFCmin < PFC < PFCmax (7)

where PFCmin = 0 kW and PFCmax = 5 kW.

Morever, the FCHEV studied here is not plugin, so the

remaining state of charge at the end of the cycle needs to

be the same as the one at the begining [21], and the state

of charge’s boundaries on x must be limited by the batteries

charge, and discharge efficiencies. The discrete-time optimal

problem can be then formuled as following:

min
PFC∈µFC

N−1∑
k=0

∆mH2(PFC , k)Ts (8)

x(k + 1) = x(k) + Pb ηb Ts (9)

x0 = SoCinit (10)

xN = SoCfinal = SoCinit (11)

xk ∈ [0.4 , 0.9] (12)

N =
Tdc

Ts
(13)

B. Dynamic programming algorithm

To solve this optimisation problem, a dynamic programming

algorithm is used. This algorithm has been proposed

by Sundstorm and Guzzella in [22]. The control input

variable PFC is discretized by step of 100 W such that

PFC = [0 , 100 , 200... 4900 , 5000] and the algorithm

calculates the minimum cost-to-go function C = min(mh2)

at every node in the discretized state-time space with the

constraint x(k) given by (8) and the feasible inputs solutions

give by (7).

IV. ONLINE CONTROL STRATEGY

A. Real time control strategy definition

The previous offline control strategy is only relevant for

a known driving cycle. The online control strategy focuses

on real time strategy without predictive informations. This

strategy aims at reducing the hydrogen consumption and

maintain the final state of charge in an optimal zone chosen by

the controller. In the offline control strategy, the input control

variable PFC can be chosen between 0 W and 5,000 W with

a step of 100 W. Due to the lack of predictive information in

real time strategy, the controller will focus on four working

modes (states) forced by the battery’s state of charge (SoC):

• Low SoC: the fuel cell needs to operate upper to its

optimal running point;

• Optimal SoC: the fuel cell can run within its optimal

power zone, the batteries absorb or provide the peaks of

power;

• High SoC: the fuel cell can work around its optimal

running zone;

• Very high SoC: the fuel cell is switched off and the vehicle

runs in pure electric mode.

B. Fuzzy logic controller

To implement the following states, a fuzzy logic controller

develloped by Blunier and al. is used [23]. Fig 3 gives the

membership functions of the controller for different fuel cell

power levels.

Figure 4 shows the simulation results of the fuzzy logic

controller for the LA92 driving cycle. The state of charge

varies in its optimal state of charge window. The fuel cell

current is sometimes reduced when the state of charge is too
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Fig. 4. Simulation results

TABLE I
HYDROGEN CONSUMPTION FOR SEVERAL ARCHITECTURES AND CONTROLS

Fuel cell power (kW) Battery capacity (Ah) H2 consumption (g)
Stand alone fuel cell vehicule 13 0 102

Fuzzy logic controller 5 65 63
Optimised Fuzzy logic controller 5 65 49

Dynamic programming 5 65 40

reahedNever

Low Optimal
Fuel ell urrent membership funtion

Ze High
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InterpolationExperimental
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Fig. 3. Fuel cell fuzzy logic controller

high. Table I shows the hydrogen consumption for the driving

cycle using the non optimized controller.

V. STRATEGY COMPARISON

According to fig 4, the dynamic programming strategy

allows to find the optimum fuel economy while keeping the

final state of charge at its initial value. Knowing the driving

cycle allows the strategy to keep a constant fuel cell current

value minimizing the hydrogen consumption and charging the

battery during stop phases of the driving cycle. However,

the online strategy cannot predict the power needed during

the cycle and keep the state of charge in its optimal zone,

decreasing the fuel cell when the state of charge is to high.

Table I shows the hydrogen consumption for both strategies
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and for a stand alone fuel cell vehicle without batteries.

Hybridization and control strategy permit to improve the fuel

cell economy up to 40 % for a fuzzy controller and up to 60 %

for dynamic programming. The offline strategy can be used as

a reference to compare others controls strategies to the optimal

power split profile for a selected driving cycle. The fuzzy logic

controller used here is not optimal: the final state of charge is

higher than the initial, and the hydrogen consumption is also

higher than the DP results. However, this strategy allow to run

others driving cycles by the vehicle with the same results [24]

(SoC remaining in the optimal zone) compare to the offline

strategy which have to run the DP algorithm to find the optimal

power split profile, which is not able to be done on real time.

Consequently, the offline strategy cannot be applied in vehicle

if the driving cycle is not known or predicted [25]. In the

next section, the membership functions of the online fuzzy

logic controller will be tuned in order to improve the online

controller and approach DP results.

VI. FUZZY LOGIC CONTROLLER’S OPTIMISATION USING

GENETIC ALGORITHM

A. Problem formulation

The previously described fuzzy logic controller focused

on maintaining the state of charge of the battery in the

optimal zone (around 0.7) in order to respect the constraint

given by (11). In order to reduce the hydrogen consumption,

the memberships functions defining the fuel cell current (as

described in Figure 3), are tuned. Fig 5 gives an example

of the configuration of the four membership function. Each

functions are trapezoidal and four variables x (i , j) can be

associated where i is the number of the function (1 for Ze, 2

for Low, 3 for Optimal and 4 for High) and j is the number

of the variable, as described in the figure (j ∈ [1 , 4]).

The optimisation aims at reducing the hydrogen consump-

tion by varying theses parameters while respecting the follow-

ing constraint:

x (i , (j − 1)) ≤ x (i , j) (14)

x ((i− 1) , 3) < x (i , 2) (15)

x (i , j) ∈ [0 , 130] (16)

SoCfinal = SoCinit (17)

B. Genetic algorithm

To solve this optimisation problem, a genetic algorithm

is used. A candidate solution is composed of the sixteen

variables x (i , j) defined previously and the population is

set to a hundred of candidate solutions. The population is

randomly initialised, respecting the constraint given by (14)

and the number of iterations is set to ten thousands. The fitness

function run the fuzzy logic controller tuned by each candidate

solution on the LA92 driving cycle and return the hydrogen

consumption and the SoCfinal. Figure 4 and Table I show

the result of the optimised fuzzy logic controller by the best

candidate solution. The hydrogen can be reduced by 22 % from

the standard fuzzy controller. heas shown on Fig 4 fuel cell

current and SoC profile are close to the dynamic programming

ones, which are the optimum for this driving cycle.

VII. EXPERIMENTAL VALIDATION ON A REAL FUEL CELL

HYBRID ELECTRIC VEHICLE

The designed fuzzy logic controller presented in section

IV-B is implemented in a FCHEV which has the following

caracteristics:

• Vehicle mass: 578 kg;

• Front surface: 2 m²;

• Drag coefficient: 0.7;

• Rolling coefficient: 0.015;

• Battery technology: Lead acid;

• Battery capacity: 40 Ah;

• Battery cells number: 6;
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Fig. 5. Fuzzy membership’s variables

• DC-bus voltage: 72 V;

• Fuel cell power: 2 kW.

Fig. 6. Vehicle architecture

Fig. 7. Fuel cell hybrid electric vehicle

Fig 7 shows a picture of the vehicle and fig 6 shows the

architecture of the vehicle. The fuel cell current is controlled

using a buck DC-DC buck converter [26], [27] from 120 V

to 72 V. The batteries are directly linked to the DC-bus.

Current and voltage sensors give informations to the DSPACE

Microautobox controller where fuzzy logic is implemented,

and the analog output controls the DC/DC converter. The

power needed by the motor is emulated by an active load

running the LA92 driving cycle with vehicle parameters.

Since lead acid batteries does not have battery management

system [28], the state of charge needs to be evaluated using

the current and voltage given by sensors.

A. Experimental state of charge determination

The state of charge of the batteries is given by (18) :

SoC(t) =
Cbattery∫ t

x0
imotor(t)− iFC(t) dt

(18)

Where SoC(t) is the state of charge at each time t, Cbattery

is the battery capacity in Ah, imoto and iFC are the current

needed by the motor (active load) and given by the fuel cell

and x0 is the initial battery capacity.

To determine the initial battery capacity, a charge/discharge

experimentation is run in order to determine the relation

between the SoC and the open circuit voltage (OCV). Fig 8

shows the results of this experimentation for a discharge at

50 Ah from 100 % to 0 %

When the vehicle start, OCV is given by the voltmeter and

the initial state of charge is calculated. The state of charge is

then computed at each time step t of the fuzzy controller.
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Fig. 8. Remaining battery capacity as a function of OCV

B. Fuzzy controller implementation

The fuzzy controller is implemented in a DSPACE microau-

tobox which is runs at 10kHz. As describe in fig 6, the fuzzy

controller controls the DC-DC converter through analog output

from 0 V to 10 V corresponding to a fuel cell current range

between 0 A and 30 A. the fuzzy zone is defined as:

• Low SoC: Below 50 % SoC, fuel cell is running at

maximum power (2 kW);

• Optimal SoC: from 60 % to 70 % SoC, fuel cell is running

at optimal point (1,4 kW);

• High SoC: from 70 % to 60 % SoC, fuel cell is low

(0.7 kW);

• Very high SoC: up to 80 % SoC, fuel cell is switched off.

Fig 9 shows the results for LA92 driving cycle emulated by

the active load for the experimentation and the results for the

simulation with the same fuzzy logic parameters. The initial

state of charge is 80 %. In a first part, the fuel cell is switched

off in order to decrease the SoC in its optimal zone. The

state of charge is then in the High zone, the fuel cell running

point (20 A) is under the optimal working point (where the

efficiency is the best) and the SoC keep decreasing steadily

to reach the optimal zone. Finally the fuzzy logic controller

maintains the state of charge in this zone (between 60 % and

70 %). The simulation results fit with the experimentation: the

fuel cell current is almost the same during all the cycle, but

the state of charge shows some small differences: in fact,

the experimental state of charge determination amplify the

measurement errors. However, this error is acceptable. The

hydrogen consumption is 31 g for experimentation and 25 g for

simulation. Experimentation consumption is higher because

the fuel cell model does not take into account the hydrogen

purges of the fuel cell.

VIII. CONCLUSION

Both offline and online control strategy allow to improve the

fuel economy of a fuel cell hybrid vehicule. Such a controler

can also be applied to an internal combustion engine based

hybrid vehicles. Each strategy must be used in particular case:

the offline can predict the control knowing, a priori, the driving

cycle whereas the online control strategy is adapted for real

time energy management. Optimising the online controller and

comparing it to the offline results, which are the optimum,

allows to tune the online controller for a particular driving

cycle. Future works will aim at applying this methodology for

several patterns of driving cycles to create a macro controller

which can recognize, based on a neural-network based learning

algorithm, the type of cycle (urban, high-way...) and adapts the

fuzzy logic controller with the best parameters in real time.
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