
Introduction to Complexity TheoryNotes for a One{Semester CourseOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Israel.Email: oded@wisdom.weizmann.ac.ilSpring 2002 (revised: October 8, 2002)

cCopyright 2002 by Oded Goldreich.Permission to make copies of part or all of this work for personal or classroom use is granted without feeprovided that copies are not made or distributed for pro�t or commercial advantage and that new copiesbear this notice and the full citation on the �rst page. Abstracting with credit is permitted.I

PrefaceComplexity Theory is a central �eld of Theoretical Computer Science, with a remarkable list ofcelebrated achievements as well as a very vibrant present research activity. The �eld is concernedwith the study of the intrinsic complexity of computational tasks, and this study tend to aim atgenerality: It focuses on natural computational resources, and the e�ect of limiting those on theclass of problems that can be solved. Put in other words, Complexity Theory aims at understandingthe nature of e�cient computation.Topics: In my opinion, a introductory course in complexity theory should aim at exposing thestudents to the basic results and research directions in the �eld. The focus should be on conceptsand ideas, and complex technical proofs should be avoided. Speci�c topics may include� Revisiting NP and NPC (with emphasis on search vs decision);� Complexity classes de�ned by one resource-bound { hierarchies, gaps, etc;� Non-deterministic Space complexity (with emphasis on NL);� Randomized Computations (e.g., ZPP, RP and BPP);� Non-uniform complexity (e.g., P/poly, and lower bounds on restricted circuit classes);� The Polynomial-time Hierarchy;� The counting class #P, approximate-#P and uniqueSAT;� Probabilistic proof systems (i.e., IP, PCP and ZK);� Pseudorandomness (generators and derandomization);� Time versus Space (in Turing Machines);� Circuit-depth versus TM-space (e.g., AC, NC, SC);� Communication complexity;� Average-case complexity;Of course, it would be hard (if not impossible) to cover all the above topics (even briey) in asingle-semester course (of two hours a week). Thus, a choice of topics has to be made, and therest may be merely mentioned in a relevant lecture or in the concluding lecture. The choice maydepend on other courses given in the institute; in fact, my own choice was strongly e�ected by thisaspect. II

Prerequisites: It is assumed that students have taken a course in computability, and hence arefamiliar with Turing Machines.Model of Computation: Most of the presented material is quite independent of the speci�c(reasonable) model of computation, but some material does depend heavily on the locality ofcomputation of Turing machines.The partition of material to lectures: The partition of the material to lectures reects onlythe logical organization of the material, and does not reect the amount of time to be spent oneach topic. Indeed, some lectures are much longer than other.State of these notes: These notes provide an outline of an introductory course on complexitytheory, including discussions and sketches of the various notions, de�nitions and proofs. The latterare presented in varying level of detail, where the level of detail does not reect anything (except theamount of time spent in writing). Furthermore, the notes are neither complete nor fully proofread.Related text: The current single-semester introductory course on complexity theory is a propersubset of a two-semester course that I gave in 1998{99 at the Weizmann Institute of Science.Lectures notes for that course are availalbe from the webpagehttp://www.wisdom.weizmann.ac.il/�oded/cc.html

III

Contents
Preface III Things that should have been taught in previous courses 11 P versus NP 31.1 The search version : 31.2 The decision version : 41.3 Conclusions : 42 Reductions and Self-reducibility 52.1 The general notion of a reduction : 52.2 Self-reducibility of search problems : 63 NP-completeness 73.1 De�nitions : 73.2 The existence of NP-complete problems : 73.3 CSAT and SAT : 83.4 NP sets that are neither in P nor NP-complete : 83.5 NP, coNP and NP-completeness : 93.6 Optimal search algorithms for NP-relations : 10Historical Notes for the �rst series 11II The most traditional material 124 Complexity classes de�ned by a sharp threshold 144.1 De�nitions : 144.2 Hierarchies and Gaps : 145 Space Complexity 165.1 Deterministic space complexity : 165.2 Non-deterministic space complexity : 175.2.1 Two models of non-determinism : 175.2.2 Some basic facts about NSPACE : 185.2.3 Composition Lemmas : 195.2.4 NSPACE is closed under complementation : 20IV

6 The Polynomial-Time Hierarchy 236.1 De�ning PH via quanti�ers : 236.2 De�ning PH via oracles : 246.3 Equivalence of the two de�nitions of PH : 266.4 Collapses : 266.5 Comment: a PSPACE-complete problem : 277 Randomized Complexity Classes 297.1 Two-sided error: BPP : 307.2 One-sided error: RP and coRP : 317.3 No error: ZPP : 327.4 Randomized space complexity : 328 Non-Uniform Complexity 348.1 Circuits and advice : 348.2 The power of non-uniformity : 358.3 Uniformity : 358.4 Evidence that P/poly does not contain NP : 358.5 Reductions to sparse sets : 369 Counting Classes 399.1 The de�nition of #P : 399.2 #P-complete problems : 399.3 A randomized reduction of Approximate-#P to NP : : : : : : : : : : : : : : : : : : : 409.4 A randomized reduction of SAT to Unique-SAT : 42Promise problems : 4210 Space is more valuable than time 4311 Circuit Depth and Space Complexity 44Historical Notes for the second series 45III The less traditional material 4712 Probabilistic Proof Systems 4912.1 Introduction : 4912.2 Interactive Proof Systems : 5012.2.1 The De�nition : 5012.2.2 An Example: interactive proof of Graph Non-Isomorphism : : : : : : : : : : 5112.2.3 Interactive proof of Non-Satis�ability : 5112.2.4 The Power of Interactive Proofs : 5212.2.5 Advanced Topics : 5312.3 Zero-Knowledge Proofs : 5412.3.1 Perfect Zero-Knowledge : 5512.3.2 General (or Computational) Zero-Knowledge : : : : : : : : : : : : : : : : : : 5512.3.3 Concluding Remarks : 5612.4 Probabilistically Checkable Proof (PCP) Systems : 57V

12.4.1 The De�nition : 5712.4.2 The power of probabilistically checkable proofs : : : : : : : : : : : : : : : : : 5812.4.3 PCP and Approximation : 5912.5 The actual notes that were used : 6012.5.1 Interactive Proofs (IP) : 6012.5.2 Probabilistically Checkable Proofs (PCP) : 6013 Pseudorandomness 6413.1 Introduction : 6413.2 The General Paradigm : 6513.3 The Archetypical Case : 6613.3.1 The actual de�nition : 6613.3.2 How to Construct Pseudorandom Generators : : : : : : : : : : : : : : : : : : 6713.3.3 Pseudorandom Functions : 6913.3.4 The Applicability of Pseudorandom Generators : : : : : : : : : : : : : : : : : 7013.3.5 The Intellectual Contents of Pseudorandom Generators : : : : : : : : : : : : 7113.4 Derandomization of BPP : 7213.5 On weaker notions of computational indistinguishability : : : : : : : : : : : : : : : : 7413.6 The actual notes that were used : 7514 Average-Case Complexity 7914.1 Introduction : 7914.2 De�nitions and Notations : 8014.2.1 Distributional-NP : 8114.2.2 Average Polynomial-Time : 8114.2.3 Reducibility between Distributional Problems : : : : : : : : : : : : : : : : : : 8214.2.4 A Generic DistNP Complete Problem : 8314.3 DistNP-completeness of �BH : 8314.4 Conclusions : 86Appendix: Failure of a naive formulation : 8615 Circuit Lower Bounds 8915.1 Constant-depth circuits : 8915.2 Monotone circuits : 8916 Communication Complexity 9016.1 Deterministic Communication Complexity : 9016.2 Randomized Communication Complexity : 90Historical Notes for the second series 91Bibliography 93
VI

Lecture Series IThings that should have been taughtin previous courses

1

The �rst three lectures focus on material that should have been taught in the basic course oncomputability. Unfortunately, in many cases this material is covered but from a wrong perspectiveor without any (proper) perspective. Thus, although in a technical sense most of the material (e.g.,the class NP and the notion of NP-completeness) may be known to the students, its conceptualmeaning may not have been appreciated (and our aim is to try to correct this damage).In addition, we cover some topics that may be new to most students. These topics include self-reducibility (of search problems), the existence of NP-sets that are neither in P nor NP-complete,the e�ect of having coNP-sets that are NP-complete, and the existence of optimal search algorithmsfor NP-relations.

2

Lecture 1P versus NPWe assume that all students have heard of P and NP, but we suspect that many have not obtaineda good explanation of what the P vs NP question actually represents. This unfortunate situation isdue to using the standard technical de�nition of NP (which refers to non-deterministic polynomial-time) rather than more cumbersome de�nitions that clearly capture the fundamental nature of NP.Below, we take the alternative approach. In fact, we present two fundamental formulations of theP vs NP question, one in terms of search problems and the other in terms of decision problems.E�cient computation. Discuss the association of e�ciency with polynomial-time. (Polynomi-als are merely a \closed" set of moderately growing functions, where \closure" means closure underaddition, multiplication and composition.)1.1 The search versionWe focus on polynomially-bounded relations. The relation R � f0; 1g� � f0; 1g� is polynomially-bounded if there exists a polynomial p such that for every (x; y) 2 R it holds that jyj � p(jxj).For such a relation it makes sense to ask whether, given an \instance" x, one can e�ciently �nd a\solution" y such that (x; y) 2 R. The polynomially-bounded condition guarantees that intrinsicintractability may not be due to the length (or mere typing) of the required solution.P as a natural class of search problems. With each polynomially-bounded relation R, weassociate the following search problem: given x �nd y such that (x; y) 2 R or state that no such yexists. The class P corresponds to the class of search problems that are solvable in polynomial-time(i.e., there exists a polynomial-time algorithm that given x �nd y such that (x; y) 2 R or state thatno such y exists).NP as another natural class of search problems. A polynomially-bounded relation R iscalled an NP-relation if given an alleged instance-solution pair one can e�ciently verify whetherthe pair is valid; that is, there exists a polynomial-time algorithm that given x and y determineswhether or not (x; y) 2 R. It is reasonable to focus on search problems for NP-relations, becausethe ability to recognize a valid solution seems to be a natural prerequisite for a discussion regarding�nding such solutions. (Indeed, formally speaking, one can introduce non-NP-relations for whichthe search problem is solvable in polynomial-time; but still the restriction to NP-relations is verynatural.) 3

The P versus NP question in terms of search problems: Is it the case that the searchproblem of every NP-relation can be solved in polynomial-time? In other words, if it is easy to testwhether a solution for an instance is correct then is it also easy to �nd solutions to given instances?If P = NP then this would mean that if solutions to given instances can be e�ciently veri�edfor correctness then they can also be e�ciently found (when given only the instance). This wouldmean that all reasonable search problems (i.e., all NP-relations) are easy to solve. On the otherhand, if P 6= NP then there exist reasonable search problems (i.e., some NP-relations) that arehard to solve. In such a case, the world is more interesting: some reasonable problems are easy tosolve whereas others are hard to solve.1.2 The decision versionFor an NP-relation R, we denote the set of instances having solution by LR; that is, LR = fx :9y (x; y) 2 Rg. Such a set is called an NP-set. Intuitively, an NP-set is a set of valid statements(i.e., statements of membership of a given x in LR) that can be e�ciently veri�ed given adequateproofs (i.e., a corresponding NP-witness y such that (x; y) 2 R).NP-proof systems. Proof systems are de�ned in terms of their veri�cation procedures. Herewe focus on the natural class of e�cient veri�cation procedures, where e�ciency is represented bypolynomial-time computations. (We should either require that the time is polynomial in terms ofthe statement or con�ne ourselves to \short proofs" { that is, proofs of length that is boundedby a polynomial in the length of the statement.) An NP-relation R yields a natural veri�cationprocedure, which amounts to checking whether the alleged statement-proof pair is in R. This proofsystem satis�es the natural completeness and soundness conditions: every true statement (i.e.,x 2 LR) has a valid proof (i.e., an NP-witness y such that (x; y) 2 R), whereas false statements(i.e., x 62 LR) have no valid proofs (i.e., (x; y) 62 R for all y's).The P versus NP question in terms of decision problems: Is it the case that NP-proofsare useless? That is, is it the case that for every e�ciently veri�able proof system one can easilydetermine the validity of assertions without given suitable proofs. If that were the case, thenproofs would be meaningless, because they would have no fundamental advantage over directlydetermining the validity of the assertion. Recall that P is the class of sets that can be decidede�ciently (i.e., by a polynomial-time algorithm). Then the conjecture P 6= NP asserts that proofsare useful: there exists NP-sets that cannot be decided by a polynomial-time algorithm, and sofor these sets obtaining a proof of membership (for some instances) is useful (because we cannotdetermine membership by ourselves).1.3 ConclusionsVerify that P 6= NP in terms of search problems if and only if P 6= NP in terms of decisionproblems. Thus, it su�ces to focus on the latter (simpler) formulation.Note that NP is typically de�ned as the class of sets that can be decided by a �ctitious devicecalled a non-deterministic polynomial-time machine. The reason that this class of �ctitious devicesis important is because it captures (indirectly) the de�nition of NP-proofs. Verify that indeed the\standard" de�nition of NP (in terms of non-deterministic polynomial-time machine) equals ourde�nition of NP (in terms of the class of sets having NP-proofs).4

Lecture 2Reductions and Self-reducibilityWe assume that all students have heard of reductions, but again we fear that most have obtaineda conceptually-poor view of their nature. We present �rst the general notion of (polynomial-time)reduction among computational problems, and view the notion of a Karp-reduction as an importantspecial case that su�ces (and is more convenient) in some cases.2.1 The general notion of a reductionReductions are procedures that use functionally-speci�ed subroutines. That is, the functionality ofthe subroutine is speci�ed, but its operation remains unspeci�ed and its running-time is countedat unit cost. Analogously to algorithms, which are modeled by Turing machines, reductions can bemodeled as oracle (Turing) machines. A reduction solves one computational problem (which may beeither a search or decision problem) by using oracle (or subroutine) calls to another computationalproblem (which again may be either a search or decision problem). We focus on e�cient (i.e.,polynomial-time) reductions, which are often called Cook reductions.The standard case is of reducing decision problems to decision problems, but we will also considerreducing search problems to search problems or reducing search problems to decision problems.A Karp-reduction is a special case of a reduction (from a decision problem to a decision problem).Speci�cally, for decision problems L and L0, we say that L is Karp-reducible to L0 if there is areduction of L to L0 that operates as follows: On input x (an instance for L), the reductioncomputes x0, makes query x0 to the oracle L0 (i.e., invokes the subroutine for L0 on input x0), andanswers whatever the latter returns.Indeed, a Karp-reduction is a syntactically restricted notion of a reduction. This restricted casesu�ces for many cases (e.g., most importantly for the theory of NP-completeness), but not in casewe want to reduce a search problem to a decision problem. Furthermore, whereas each decisionproblem is reducible to its complement, some decision problems are not Karp-reducible to theircomplement (e.g., the trivial decision problem). Likewise, each decision problem in P is (trivially)reducible to any computational problem (i.e., by a reduction that does not use the subroutine atall), whereas such a trivial reduction is disallowed by the syntax of Karp-reductions.We comment that Karp-reductions may and should be augmented also in order to handlereductions of search problems to search problems. Such an augmented Karp-reduction of thesearch problem of R to the search problem of R0 operates as follows: On input x (an instance forR), the reduction computes x0, makes query x0 to the oracle R0 (i.e., invokes the subroutine for R0on input x0) obtaining y0 such that (x0; y0) 2 R0, and uses y0 to compute a solution y to x (i.e.,5

(x; y) 2 R). (Indeed, unlike in case of decision problems, the reduction cannot just return y0 as ananswer to x.)2.2 Self-reducibility of search problemsThe search problem for R is called self-reducible if it can be reduced to the decision problem ofLR = fx : 9y (x; y) 2 Rg. Note that the decision problem of LR is always reducible to the searchproblem for R (e.g., invoke the search subroutine and answer YES if and only if it returns somestring (rather than the \no solution" symbol)).We will see that all NP-relations that correspond to NP-complete sets are self-reducible, mostlyvia \natural reductions". We start with SAT, the set of satis�able Boolean formulae. Let RSATbe the set of pairs (�; �) such that � is a satisfying assignment to the formulae �. Note that RSATis an NP-relation (i.e., it is polynomially-bounded and easy to decide (by evaluating a Booleanexpression)).Proposition 2.1 (RSAT is self-reducible): The search problem RSAT is reducible to SAT .Proof: Given a formula �, we use a subroutine for SAT in order to �nd a satisfying assignmentto � (in case such exists). First, we query SAT on � itself, and return \no solution" if the answerwe get is `false'. Otherwise, we let � , initiated to the empty string, denote a pre�x of a satisfyingassignment of �. We proceed in iterations, where in each iteration we extend � by one bit. Thisis done as follows: First we derive a formula, denoted �0, by setting the �rst j� j+ 1 variables of �according to the values �0. Next we query SAT on �0 (which means that we ask whether or not �0is a pre�x of a satisfying assignment of �). If the answer is positive then we set � �0 else we set� �1 (because if � is a pre�x of a satisfying assignment of � and �0 is not a pre�x of a satisfyingassignment of � then �1 must be a pre�x of a satisfying assignment of �).A key point is that the formulae �0 can be simpli�ed to contain no constants such that they�t the canonical de�nition of SAT. That is, after replacing some variables by constants, we shouldsimplify clauses according to the straightforward boolean rules (e.g., a false literal can be omittedfrom a clause and a true literal appearing in a clause yields omitting the entire clause).A similar reduction can be presented also for other NP-complete problems. Consider, for ex-ample, 3-Colorability. Note that, in this case, the process of getting rid of constants (representingpartial solutions) is more involved. Details are left as an exercise. In general, if you don't seea \natural" self-reducibility process for some NP-complete relation, you should still know that aself-reduction process (alas maybe not a natural one) does exist.Theorem 2.2 Every NP-relation of an NP-complete set is self-reducible.Proof: Let R be an NP-relation of the NP-complete set LR. Then, we combine the followingsequence of reductions:1. The search problem of R is reducible to the search problem of RSAT (by the NP-completenessof the latter).2. The search problem of RSAT is reducible to SAT (by Proposition 2.1).3. The decision problem SAT is reducible to the decision problem LR (by the NP-completenessof the latter).The theorem follows. 6

Lecture 3NP-completenessThis is the third (and last) lecture devoted to material that the students have heard. Again, moststudents did see an exposition of the technical material in some undergraduate class, but theymight have missed important conceptual points. Speci�cally, we stress that the mere existence ofNP-complete sets (regardless if this is SAT or some other set) is amazing.3.1 De�nitionsThe standard de�nition is that a set is NP-complete if it is in NP and every set in NP is reducibleto it via a Karp-reduction. Indeed, there is no reason to insist on Karp-reductions (rather than usearbitrary reductions), except that the restricted notion su�ces for all positive results and is easierto work with.We say that a polynomially-bounded relation is NP-complete if it is an NP-relation and everyNP-relation is reducible to it.The mere fact that we have de�ned something (i.e., NP-completeness) does not mean that thisthing exists. It is indeed remarkable that NP-complete problems do exist!3.2 The existence of NP-complete problemsTheorem 3.1 There exist NP-complete relations and sets.Proof: The proof (as well as all NP-completeness) is based on the observation that some NP-relations are \rich enough" to encode all NP-relations. This is most obvious for the \universal"NP-relation, denoted RU (and de�ned below), which is used to derive the simplest proof of thecurrent theorem.The relation RU consists of pairs (hM;x; 1ti; y) such that M is a description of a (deterministic)Turing machine that accepts the pair (x; y) within t steps, where jyj � t. (Instead of requiringthat jyj � t, we may require that M is canonical in the sense that it reads its entire input beforehalting.) It is easy to see that RU is an NP-relation, and indeed LU def= fz : 9y (z; y) 2 RUg is anNP-set.We now turn to showing that any NP-relation is reducible to RU . As a warm-up, let us �rst showthat any NP-set is Karp-reducible to LU . Let R be an NP-relation, and LR = fx : 9y (z; y) 2 Rgbe the corresponding NP-set. Let pR be a polynomial bounding the length of solutions in R (i.e.,jyj � pR(jxj) for every (x; y) 2), let MR be a polynomial-time machine deciding membership (of7

alleged (x; y) pairs) in R, and let tR a polynomial bounding its running-time. Then the Karp-reduction maps an instance x (for L) to the instance hMR; x; 1tR(jxj+pR(jyj))i.Note that this mapping can be computed in polynomial-time, and that x 2 L if and only ifhMR; x; 1tR(jxj+pR(jyj))i 2 LU .To reduce the search problem of R to the search problem of RU , we use essentially the same re-duction. On input an instance x (for R), we make the query hMR; x; 1tR(jxj+pR(jyj))i to the search RUand return whatever the latter returns. (Note that if x 62 LR then the answer will be \no solution",whereas for every x and y it holds that (x; y) 2 R if and only if (hMR; x; 1tR(jxj+pR(jyj))i; y) 2 RU .3.3 CSAT and SATDe�ne Boolean circuits (directed acyclic graphs with vertices labeled by Boolean operation). Provethe NP-completeness of the circuit satisfaction problem (CSAT). The proof boils down to encodingpossible computations of a Turing machine by a corresponding layered circuit, where each layerrepresents a con�guration of the machine, and the conditions of consecutive con�gurations arecaptured by uniform local gadgets in the circuit.De�ne Boolean formulae (i.e., a circuit with tree structure). Prove the NP-completeness of theformula satisfaction problem (SAT), even when the formula is given in a nice form (i.e., CNF). Theproof is by reduction from CSAT, which in turn boils down to introducing auxiliary variables inorder to cut the computation of a deep circuit into a conjunction of related computations of shallow(i.e., depth-2) circuits (which may be presented as CNFs).3.4 NP sets that are neither in P nor NP-completeMany (to say the least) other NP-sets have been shown to be NP-complete. Things reach a situationin which people seem to expect any NP-set to be either NP-complete or in P. This naive view iswrong:Theorem 3.2 Assuming NP 6= P, there exist NP-sets that are neither NP-complete nor in P.The proof is by modifying a set in NP n P such that to fail all possible reductions (to this set)and all possible polynomial-time decision procedures (for this set). Speci�cally, we start with someL 2 NP n P and derive L0 � L (which is also in NP n P) by making each reduction (say of L) toL0 fail by dropping �nitely many elements from L (until the reduction fails), whereas all possiblepolynomial-time fail to decide L0 (which di�er from L only on a �nite number of inputs). We usethe fact that any reduction (of some set in NPnP) to a �nite set (i.e., a �nite subset of L) must fail(while making only a �nite number of possible queries), whereas any e�cient decision procedure forL (or L modi�ed on �nitely many inputs) must fail on some �nite portion of all possible inputs (ofL). The process of modifying L into L0 proceeds in iterations, alternatively failing a reduction (bydropping su�ciently many strings from the rest of L) and failing a decision procedure (by includingsu�ciently many strings from the rest of L). This can be done e�ciently because it is inessentialto determine the �rst location where we have enough strings as long as we determine some locationwhere we have enough.We mention that some natural problems (e.g., factoring) are conjecture to be neither solvablein polynomial-time nor NP-hard. See discussion following Theorem 3.3.8

3.5 NP, coNP and NP-completenessBy prepending the name of a complexity class (of decision problems) with the pre�x \co" we meanthe class of complement sets; that is,coC def= ff0; 1g� n L : L 2 CgSpeci�cally, coNP = ff0; 1g� n L : L 2 NPg is the class of sets that are complements of NP-sets. That is, if R is an NP-relation and LR = fx : 9y (x; y) 2 Rg is the associated NP-set thenf0; 1g� n LR = fx : 8y (x; y) 62 Rg is the corresponding coNP-set.It is widely believed that NP is not closed under complementation (i.e., NP 6= coNP). Indeed,this conjecture implies P 6= NP (because P is closed under complementation), and is implied bythe conjecture that NP \ coNP is a proper superset of P. The conjecture NP 6= coNP meansthat some coNP-sets (e.g., the complements of NP-complete sets) do not have NP-proof systems;that is, there is no NP-proof system for proving that a given formula is not satis�able.If indeed P 6= NP then some (non-trivial) NP-sets cannot be Karp-reducible to coNP-sets(exercise: why). (Recall that the empty set cannot be Karp-reducible to f0; 1g�.) In contrast,all NP-sets are reducible to coNP-sets (by a straightforward general reduction that just ips theanswer). A less obvious fact is that NP 6= coNP implies that some NP-sets cannot be reduced tosets in NP \ coNP (even under general reductions). Speci�cally,Theorem 3.3 If NP \ coNP contains an NP-hard set then NP = coNP.Recall that a set is NP-hard if every NP-set is reducible to it (possibly via a general reduction).Since NP \ coNP is conjectured to be a proper superset of P, it follows (using the conjectureNP 6= coNP) that there are NP-sets are neither in P nor NP-hard. Notable examples are setsrelated to the integer factorization problem (e.g., the set of pairs (N; s) such that s has a squareroot modulo N that is a quadratic residue modulo N and the least signi�cant bit of s equals 1).Proof: Suppose that L 2 NP \ coNP is NP-hard. Given any L0 2 coNP , we will show thatL0 2 NP . We will merely use the fact that L0 reduces to L (which is in NP \ coNP). Such areduction exists because L0 is reducible L0 def= f0; 1g�nL0 (via a general reduction), whereas L0 2 NPand thus is reducible to L (which is NP-hard).To show that L0 2 NP, we will present an NP-relation, R0, that characterizes L0 (i.e., L0 =fx : 9y (x; y) 2 R0g). The relation R0 consists of pairs of the form (x; ((z1; �1; w1); :::; (zt; �t; wt)),where on input x the reduction of L0 to L accepts after making the queries z1; :::; zt, obtaining thecorresponding answers �1; :::; �t, and for every i it holds that if �i = 1 then wi is an NP-witness forzi 2 L, whereas if �i = 0 then wi is an NP-witness for zi 2 f0; 1g� n L.We stress that we use the fact that both L and L def= f0; 1g� n L are NP-sets, and refer to thecorresponding NP-witnesses. Note that R0 is indeed an NP-relation: The length of solutions isbounded by the running-time of the reduction (and the corresponding NP-witnesses). Membershipin R0 is decided by checking that the sequence of (zi; �i)'s matches a possible query-answer sequencein an execution of the reduction1 (regardless of the correctness of the answers), and that all answers(i.e., �i's) are correct. The latter condition is easily veri�ed by use of the corresponding NP-witness.1That is, we need to verify that on input x, after obtaining the answers �1; :::; �i�1 to the �rst i� 1 queries, theith query made by the reduction equals zi. 9

3.6 Optimal search algorithms for NP-relationsActually, this section does not relate to NP-completeness, but rather to NP-relations.The title sounds very promising, but our guess is that the students will be less excited oncethey see the proof. We claim the existence of an optimal search algorithm for any NP-relation.Furthermore, we will explicitly present such an algorithm, and prove that it is optimal in a verystrong sense: for any algorithm correctly solving the same search problem, it holds that up-to some�xed additive polynomial term (which may be disregarded in case the NP-problem is not solvablein polynomial-time), our algorithm is at most a constant factor slower than the other algorithm.That is:Theorem 3.4 For every NP-relation R there exists an algorithm A that satis�es the following:1. A correctly solves the search problem of R.2. There exists a polynomial p such that for every algorithm A0 that correctly solves the searchproblem of R and for every x 2 LR it holds that tA(x) = O(tA0(x) + p(jxj)), where tA (resp.,tA0) denotes the number of steps taken by A (resp., A0) on input x.Interestingly, we establish the optimality of A without knowing what its (optimal) running-timeis. We stress that the hidden constant in the O-notation depends only on A0, but in the followingproof the dependence is exponential in the length of the description of algorithm A0 (and it is notknown whether a better dependence can be achieved).Proof sketch: Fixing R, we let M be a polynomial-time algorithm that decides membership inR, and let p be a polynomial bounding the running-time of M . We present the following algorithmA that merely runs all possible search algorithms \in parallel" and checks the results provided byeach of them (using M), halting whenever it obtains a correct solution.Since there are in�nitely many possible algorithms, we should clarify what we mean by \runningthem all in parallel". What we mean is to run them at di�erent rates such that the in�nite sumof rates converges to 1 (or any other constant). Viewed in di�erent terms, for any unboundedfunction � : N ! N, we proceed in iterations such that in the ith iteration we let each of the �rst�(i) algorithms run for at most 2i steps. In case some of these algorithms halts with output y,algorithm A invokes M on input (x; y) and output y if and only if M(x; y) = 1. The veri�cation ofa solution provided by an algorithm is also emulated at the expense of its step-count. (Put in otherwords, we augment each algorithm with a canonical procedure (i.e., M) that checks the validity ofthe solution o�ered by the algorithm.)(In case we want to guarantee that A also stops on x 62 LR, we may let it run an exhaustivesearch for a solution, in parallel to all searches, and halt with output ? in case this exhaustivesearch fails.)Clearly, whenever A(x) outputs y (i.e., y 6= ?) it must hold that (x; y) 2 R. Now supposeA0 is an algorithm that solves R. Fixing A0, for every x, let us denote by t0(x) the number ofsteps taken by A0 on input x, where t0(x) also accounts for the running time of M(x). Then,the t(x)-step execution of A on input x is \covered" by the i(x)th iteration of A, provided thati(x) = max(jA0j; log2 t0(x)), where jA0j denotes the length of the description of A0. Thus, therunning time of A on input x, denoted t(x), is at most Pi(x)j=1 �(j) � 2j , and for su�cintly large x itholds that t0(x) � jA0j. Using (say) �(j) = j, it follows that t(x) = O(t0(x) � log t0(x)), which almostestablishes the theorem (while we don't care about establishing it as stated).10

Historical NotesMany sources provide historical accounts of the developments that led to the formulation of theP vs NP Problem and the development of the theory of NP-completeness. We thus refrain fromattempting to provide such an account.One technical point that we mention is that the three \founding papers" of the theory of NP-completeness use the three di�erent terms of reductions used above. Speci�cally, Cook uses thegeneral notion of polynomial-time reduction [17], often referred to as Cook-reductions. The notionof Karp-reductions originates from Karp's paper [47], whereas its augmentation to search problemsoriginates from Levin's paper [57]. It is worth noting that unlike Cook and Karp's works, whichtreat decision problems, Levin's work is stated in terms of search problems.The existence of NP-sets that are neither in P nor NP-complete (i.e., Theorem 3.2) was provenby Ladner [55], and the existence of optimal search algorithms for NP-relations (i.e., Theorem 3.4)was proven by Levin [57].

11

Lecture Series IIThe most traditional material

12

The partition of the rest of the lectures into two lecture series is only due to historical reasons.We start with the more traditional material, most of it is due to the 1970's and the early 1980's.Notation: We will try to always use n to denote the length of the (main) input.

13

Lecture 4Complexity classes de�ned by asharp thresholdThere is something appealing in de�ning complexity classes according to a sharp threshold like theclass of problems that can be solved within time t, for some function t (e.g., t(n) = n3). Contrastthis de�nition with the class of problems that can be solved within some time t that belongs to aclass of functions T (e.g., polynomials). The problem with classes de�ned according to a (single)sharp threshold is that they are very sensitive to the speci�c model of computation and may not beclosed under natural algorithmic operations. Typically, these problems do not occur when de�ningcomplexity classes that correspond to a resource bounded by a class of functions, provided thisclass has some desirable closure properties.4.1 De�nitionsFocusing on two natural complexity measures (i.e., time and space), we may de�ne for each functionf : N! N classes such as Dtime(f) and Dspace(f) corresponding to the class of decision problemsthat are solvable within time and space complexity f , respectively. (That is, on input x the decidingalgorithm runs for at most f(jxj) steps or uses at most f(jxj) bits of storage.)We stress that when measuring the space complexity of the algorithm, we don't allow it to useits input and/or output device (i.e., tape in case of Turing machines) as temporary storage. (Thisis done by postulating that the input and output devices are read-only and write-only respectively.)Note that classes as above are very sensitive to the speci�c model of computation. For example,the time complexity of multiple-tape Turning machines may be quadratic (but not more) in thetime complexity of single-tape Turning machines (e.g., consider the set fxx : x 2 f0; 1gg).4.2 Hierarchies and GapsA natural property that we may expect from complexity measures is that more resources allow formore computations. That is, if g is su�ciently greater than f then the class of problems solvablein time (or space) g should be strictly larger than the class of problems solvable in time (or space)f . This property (corresponding to a time or space hierarchy) does hold in the natural cases, wherethe key question is what is su�ciently greater. The answer will be clari�ed from the way suchhierarchy theorems are proved, which is by using diagonalization.14

Speci�cally, suppose we want to prove that Dtime(g) is a strict superset of Dtime(f). Thisis done by \diagonalizing against all f -time machines". That is, we construct a set L along witha decision algorithm for it, such that no f -time machine can correctly decide L. In order to\e�ectively" de�ne L, we should be able to emulate the execution of each f -time machine. Sincewe cannot e�ectively enumerate all f -time machines, what we do instead is emulate each possiblemachine while using a time-up mechanism that stops the emulation at time f . In order to do thiswe need, in particular, to be able to compute f (relatively fast). Note that the running-time of ourdecision procedure for L is determined by the time it takes to compute f and the time it takes toemulate a given number of steps. Thus, time constructible functions, play a central rule in suchproofs, where f is time constructible if on input n the value f(n) can be computed within time f(n).As for the emulation overhead, it depends on the speci�c model of computation (typically, t stepscan be emulated within time t log t). Similar considerations apply to space hierarchies, but hereone talks about space constructible function and the emulation overhead is typically only linear.For simplicity, in case of multiple-tape Turing machines, we get:Theorem 4.1 (sketch): For any time-constructible function t, the class Dtime(t) is strictly con-tained in Dtime(!(t log t)). For any space-constructible function s, the class Dspace(s) is strictlycontained in Dspace(!(s)).The existence of functions that are not time (or space) constructible is the reason for so-calledgap theorems. Typically, such theorems say that there exist functions f (which are certainly nottime constructible) such that Dtime(f) = Dtime(f3) (or Dtime(f) = Dtime(22f)). The reasonfor this phenomena is that (for such a function f) there are no machines that run more than timef but less than time f3 (or 22f).

15

Lecture 5Space ComplexitySpace complexity is aimed to measure the amount of temporary storage required for a computationaltask. On one hand, we don't want to count the input and output themselves within the space ofcomputation, but on the other hand we have to make sure that the input and output devicecannot be abused to provide work space (which is uncounted for). This leads to the convention ofpostulating that the input device (e.g., a designated input-tape of a multi-tape Turing machine) isread-only, whereas the output device (e.g., a designated output-tape of a such machine) is write-only. Space complexity accounts for the amount of space on other (storage) devices (e.g., thework-tapes of a multi-tape Turing machine) that is used throughout the computation.5.1 Deterministic space complexityOnly regular languages can be decided in constant space. This follows by combining two facts.Firstly, constant-space Turing machines are equivalent to a generalization of �nite automata thatcan scan (parts of the) input back and forth (in both directions and for several times). Second, thelatter \sweeping automata" can be simulated by ordinary �nite automata (which scan the inputonly once, from left to right).At �rst glance one may think that sub-logarithmic (deterministic) space is not more useful thanconstant space, because it seems impossible to allocate a sub-logarithmic amount of space (sincemeasuring the input length requires logarithmic space). However, this intuition is wrong, becausethe input itself (in case it is of the proper form) can be used to determine its length, whereas incase the input is not of the proper form this fact may be detectable (within sub-logarithmic space).In fact:Theorem 5.1 Dspace(o(log n)) is a proper superset of Dspace(O(1)).One proof consists of presenting a double-logarithmic space algorithm for recognizing the non-regular set L = fxk : k 2 Ng � f0; 1; �g, where xk equals the concatenation of all k-bit long strings(in lexicographic order) separated by *'s (i.e., xk = 0k�200 � 0k�201 � 0k�210 � 0k�211 � � � � � 1k).Note that jxkj > 2k, and we claim that xk can be recognized in space O(log k) = O(log log jxkj).Furthermore, the membership of any x in L can be determined in space O(log log jxj), by iterativelychecking (in space O(log i)) whether x = xi, for i = 1; 2; :::. (Details are left as an exercise.) Incontrast to Theorem 5.1, double-logarithmic space is indeed the smallest amount of space that ismore useful than constant space; that is:Theorem 5.2 Dspace(o(log log n)) = Dspace(O(1)).16

The proof proceeds by considering, for each input location, the sequence of (storage) con�gurationsof the machine at all times that it crosses this input location. For starters, the length of this\crossing sequence" is upper-bounded by the number of possible storage con�gurations (i.e., incase of Turing machines, we consider the contents of the tape and the head location), which isat most t def= 2s(n) � s(n), where s is the machine's space complexity. Thus, the number of suchsequences is bounded above by tt. But if the latter is smaller than n=2 then there exist three inputlocations that have the same sequence of con�gurations. Using cut-and-paste, we get a shorterinput on which the machine used space s0 def= s(n), which is not possible in case the original n-bitlong input was the shortest one on which the machine uses space at least s0. We conclude thattt � n=2 must hold, and s(n) =
(log t) =
(log log n) follows.Logarithmic Space. Although Theorem 5.1 asserts that \there is life under log-space", log-arithmic space will be the lowest space-complexity class that we will care about. The classof sets recognizable by deterministic machines that use logarithmic space is denoted L; that is,L def= [cDspace(c log2 n).Theorem 5.3 L � P.In general, if s is at least logarithmic and is computable within time 2s then Dspace(s) �Dtime(2s). This follows as a special case from Theorem 5.6. (The phenomena that time relatesexponentially to space occurs also in other settings.)Another class of important log-space computations is the class of logarithmic space reductions;that is, reductions (or oracle machines) that use only logarithmic space (and as usual polynomial-time). In accordance with our conventions regarding input and outputs, we stress that the queries(resp., answers) are written on (resp., read from) a special device/tape that is write-only (resp.,read-only) for the calling algorithm and read-only (resp., write-only) for the invoked oracle. We ob-serve that all known (Karp-)reductions establishing NP-completeness results are in fact logarithmicspace. Observe that if L0 is log-space reducible to L00 and L00 2 L then so is L0. (See Section 5.2.3.)Polynomial Space. As stated above, we will rarely treat computational problems that requireless than logarithmic space. On the other hand, we will rarely treat computational problems thatrequire more than polynomial space. The class of decision problems that are solvable in polynomial-space is denoted PSPACE def= [cDspace(nc). A complete problem for PSPACE is presented inSection 6.5.5.2 Non-deterministic space complexity5.2.1 Two models of non-determinismWe discuss two models of non-deterministic machines. In the standard model, called the on-linemodel, the machine makes non-deterministic \on the y" (or alternatively reads a non-deterministicinput from a read-only tape that can be read only in a uni-directional way). Thus, if the machineswants to refer to such a non-deterministic choice at a latter stage then it must store the choiceon its storage device (and be charged for it). In the so-called o�-line model, the non-deterministicchoices (or the bits of the non-deterministic input) are read from a special read-only record (ortape) that can be scanned in both directions like the main input. Although the o�-line model �tsbetter the motivations to NP (as presented in the �rst lecture), the on-line model seems more17

adequate for the study of non-deterministic in the context of space complexity. The latter thesis isbased on observing that an o�-line non-deterministic tape can be used to code computations, andin a sense allows to \cheat" with respect to the \real" space complexity of the computation. Thisis reected in the fact that the o�-line model can simulate the on-line model while using space thatis logarithmic in the space used by the on-line model.1 This result is tight: the on-line model cansimulate the o�-line model using (only) exponentially more space.Theorem 5.4 (relating the two models, loosely stated:) For s : N ! N that is nice and at leastlogarithmic, Nspaceon-line(s) = Nspaceo�-line(log s).To simulate the on-line model on the o�-line model, use the non-deterministic input tape of thelatter to encode an accepting computation of the former (i.e., a sequence of consecutive con�gura-tions leading from the initial con�guration to an accepting con�guration). The simulating machine(which veri�es the legitimacy of the sequence of con�gurations recorded on the non-deterministicinput tape) needs only store its location within the current pair of con�gurations that it exam-ines, which requires space logarithmic in the length of a single con�guration. On the other hand,the simulation of the o�-line model by the on-line model uses a crossing-sequence argument. Forstarters, one shows that the length of such sequences is at most double-exponential in the spacecomplexity of the o�-line machine. Then the (on-line) non-deterministic input tape is used to en-code the sequence of crossing-sequences, and the on-line machine checks that each consecutive pairis consistent. This requires holding one (or two) crossing-sequences in storage, which require spacelogarithmic in the number of such sequences (which, in turn, is exponential in the space complexityof the o�-line machine).5.2.2 Some basic facts about NSPACEWe let Nspace(s) def= Nspaceon-line(s), and focus on NL def= Nspace(O(log n)). Suitable upwards-translation lemmas can be used to translate simulation results concerningNL (resp., L) into generalsimulation results concerning non-deterministic (resp., deterministic) space. Typically, the input ispadded till the concrete space allowance becomes logarithmic in the padded input (i.e., n-bit longinputs are padded to length N such that s(n) = logN). Next the simulation result is applied, and�nally the complexity of the obtained simulation is stated in terms of the original input length. Anotable property of NL is that this class has a very natural complete problem:Theorem 5.5 (Directed Connectivity is NL-complete:) Directed Connectivity is in NL, and everyproblem in NL is reducible to Directed Connectivity by a log-space reduction.Proof Sketch: A non-deterministic log-space machine may decide Directed Connectivity by guess-ing (and verifying) the directed path \on-the-y". To reduce L 2 NL to Directed Connectivity, weconsider the non-deterministic log-space machine that decides L. We observe that on input x, thismachine uses ` def= O(log jxj) space, and it may be in one out of 2` � jxj � ` possible con�gurations(accounting for the possible contents of its work-tape and its head locations (on the input tapeand work tapes)). Consider a directed graph with these con�guration as vertices, and directededges connecting ordered pairs of possibly-consecutive con�gurations (relating to a possible non-deterministic move). Indeed, unlike the vertices, the edges depend on the input x. Observe that1A related phenomenon is that Nspaceo�-line(s) is only known to be contained in Dtime(22s), whereas (as statedin Theorem 5.6) Nspaceon-line(s) � Dtime(2s). In fact, the power of the o�-line model emerges from the fact thatits running time is not bounded (even not \without loss of generality") by an exponent in the space-complexity.18

x 2 L if and only if there exists a directed path in this graph leading from the initial con�gurationto an accepting con�guration. Furthermore, this graph can be constructed in logarithmic space(from the input x). Thus, L is log-space reducible to Directed Connectivity.Theorem 5.6 (non-deterministic space versus deterministic time): If s is at least logarithmic andis computable within time 2s then Nspace(s) � Dtime(2s).Proof Sketch: By a suitable upwards-translation lemma, it su�ces to prove the result for log-arithmic s; that is, we need to show that NL � P. Using Theorem 5.5, we just need to showthat directed connectivity can be solved in polynomial-time. This fact is well known (e.g., by thedirected-DFS algorithm).Theorem 5.7 (Non-deterministic versus deterministic space): Nspace(s) � Dspace(s2) providedthat s : N! N is space-constructible and at least logarithmic.In particular, for any polynomial p, it holds that Nspace(p) � PSPACE , where the strict inclusionis due to the space hierarchy theorem (e.g., Dspace(nc) � Dspace(nc+1)). Contrast Theorem 5.7with the (trivial) fact that Ntime(t) � Dtime(2t), provided that t : N ! N is time-constructible(and at least logarithmic).Proof Sketch: Again, it su�ces to show that directed connectivity can be solved in deterministicO(log n)2 space. The basic idea is that checking whether or not there is a path of length at most` from u to v in G, reduces (in log-space) to checking whether there is an intermediate vertex wsuch that there is a path of length at most d`=2e from u to w and a path of length at most b`=2cfrom w to v. Let pG(u; v; `) def= 1 if there is a path of length at most ` from u to v in G andpG(u; v; `) def= 0 otherwise. Thus, pG(u; v; `) can be decided recursively by scanning all vertices win G, and checking for each w whether both pG(u;w; d`=2e) = 1 both pG(w; v; b`=2c) = 1 hold.Thus, suppose we are given a directed graph G and a pair of vertices (s; t), and should decidewhether or not there is a path from s to t in G. Let n denote the number of vertices in G, then weneed to compute pG(s; t; n). This is done by invoking a recursive procedure that computes pG(u; v; `)by scanning all vertices in G, and computing for each vertex w the value of pG(u;w; d`=2e) �pG(w; v; b`=2c). The amount of space taken by each level of the recursion is log n (for storingthe current value of w), and the number of levels is log n. The theorem follows.We stress that when computing pG(u; v; `), we make polynomially many recursive calls, but allthese calls re-use the same work space. That is, when we compute pG(u;w; d`=2e)�pG(w; v; b`=2c) were-use the space that was used for computing pG(u;w0; d`=2e) �pG(w0; v; b`=2c) (for the previous w0).Furthermore, when we compute pG(w; v; b`=2c) we re-use the space that was used for computingpG(u;w; d`=2e).5.2.3 Composition LemmasIndeed, as indicated by the proof of Theorem 5.7, space (unlike time!) can be re-used. In particular,if one machine makes many recursive calls to another machine then the cost in space of these callsis the maximum space used by a single call (whereas the cost in terms of time of these calls isthe sum of the time taken by all calls). Put in other words: Suppose that L1 is s1-space reducibleto L2 and that L2 is in XSPACE(s2), where X 2 fD;Ng. Then L1 is in XSPACE(s1 + s02),where s02(n) = s2(2s1(n)) (because 2s1(n) is an obvious bound on the length of queries made to L2).Proving this claim is less trivial than it seems (even in case of a single call to L2) because we cannot19

a�ord to store the query and the answer (which may have lengths 2s1 and 2s2�s1 , respectively) inthe working space of the resulting machine.For simplicity, we focus on the single-query case.2 Let M1 be the reduction of L1 to L2 andM2 a machine solving L2. We emulate them both as follows. We allocate each of the machines aseparate work-tape, and begin by emulating M2 without specifying its input. When M2 wishes toread the ith (e.g., �rst) bit of its input (which is the ith bit of the query of M1), we run machineM1 until it produces the ith bit of its query, which we hand to M2. We stress that we do not storeall previous bits of this query, but rather discard them. Thus, we run a new emulation of M1, pereach time that M2 wishes to read a bit of its input (i.e., the query directed to it by M1). WhenM2 outputs its decision, we store it, and emulate M1 for the last time. In this run we discard allthe query bits produced by M1, feed it with M2's answer, and output whatever M2 does.The treatment of reductions to search problems is more complex, because (unless postulateddi�erently) the calling algorithm may scan the answer provided by the oracle back and forth (ratherthan read it once from left to right). To treat this case we may keep two emulations of M1, one forproducing bits of the query and the other for using the bits of the answer. (Note that the secondemulation corresponds to the last emulation of M1 in the description above.) Handling of manyoracle calls is performed in a query by query manner, relying of the fact that the ith answer is notavailable after the i + 1st query is made. For i = 1; 2; :::, we handle the i + 1st query-answer bykeeping a record of the temporary con�gurations of M1 before it started making the ith and i+1stqueries. We maintain four emulations of M1, the �rst (resp., third) for producing bits of the ith(resp., i + 1st) query, and the second (resp., fourth) for using the bits of the ith (resp., i + 1st)answer. Each time we need to emulate the �rst or second (resp., third or fourth) copy, we startthe emulation from the recorded con�guration of M1 before making the ith (resp., i + 1st) query.Once the fourth copy starts to produce the i + 2th query, we refresh all con�gurations and moveto the next iteration. Speci�cally, the con�guration of the fourth copy will be used as the secondtemporary con�guration (as it corresponds to the con�guration before making the i + 2th query),and the current second con�guration (which corresponds to the con�guration before making thei+ 1st query) will be used as the �rst temporary con�guration (for iteration i+ 1).Teaching Note. In the next subsection we will (implicitly) use a composition result, but for thatspeci�c composition we do not need the power of the above strong composition lemma. Speci�cally,the reduction will make queries that are very related to its input (and thus the invoked subroutinecan form the query by itself from the input). Furthermore, the answers will be of logarithmic lengthand thus can be stored by the reduction (as in case of invoking a decision subroutine).5.2.4 NSPACE is closed under complementationPeople tend to be discouraged by the impression that \decades of research have failed to answerany of the famous open problems of complexity theory". In addition to the fact that substantialprogress towards the understanding of some open problems has been achieved, people tend to forgetthat some famous open problems were indeed resolved. The following result relates to a famousquestion that was open for three decades.32We leave the extension to the general multiple-query case as an exercise.3In particular, using the fact that the class of sets recognized by linear-space non-deterministic machines equalsthe set of context-sensitive languages, Theorem 5.8 resolves the question of whether the latter set is closed undercomplementation. This question has been puzzling researchers since the early days of research in the area of formallanguages (i.e., the 1950's). We mention that Theorem 5.8 was proven in the late 1980's.20

Theorem 5.8 NL = coNL, where coNL def= ff0; 1g� n L : L 2 NLg.Again, using an adequate upwards-translation lemma, one can derive the closure under comple-mentation of Nspace(s).Proof Sketch: It su�ces to show that directed unconnectivity (the complementation of directedconnectivity) can be decided in NL. That is, we will present a non-deterministic log-space machineM such that� If there is no directed path from s to t in G then there exists a computation ofM that acceptsthe input (G; s; t).� If there is a directed path from s to t in G then all possible computations of M reject (G; s; t).The above decision problem is log-space reducible to determining the number of nodes that arereachable from a given vertex in a given graph.4 Thus, we focus on providing a non-deterministiclog-space machine that compute the said quantity, where we say that a non-deterministicM computesthe function f : f0; 1g� ! f0; 1g� if the following two conditions hold:1. For every x, there exists a computation of M that halts with output f(x).2. For every x, all possible computation ofM either halt with output f(x) or halt with a special\dont know" symbol, denoted ?.Fixing an n-vertex graph G = (V;E) and a vertex v, we consider the set of vertices that arereachable from v by a path of length at most i. We denote this set by Ri, and observe thatR0 = fvg and that for every i = 1; 2; :::, it holds thatRi = Ri�1 [fu : 9w 2 Ri�1 s.t. (w; u) 2 Eg (5.1)Our aim is to compute jRnj. This will be done in n iterations such that at the ith iteration wecompute jRij. When computing jRij we rely on the fact that jRi�1j is known to us, which meansthat we'll store jRi�1j (but not previous jRj j's) in memory. Our non-deterministic guess, denotedg, for jRij will be veri�ed as follows:� jRij � g is veri�ed in the straightforward manner. That is, scanning V , we guess for g verticespaths of length at most i from v to them, and verify these \on-the-y". (Indeed, we also guessfor which g vertices to verify this fact.)(We use log2 n bits to store the currently scanned vertex, another log2 n bits to store anintermediate vertex on a path from v, and another log2 i � log2 n bits to store the distancetraveled so far.)� The veri�cation of jRij � g is the interesting part of the procedure. Here we rely on the factthat we know jRi�1j. Scanning V (again), we verify for n� g (guessed) vertices that they arenot reachable from v by paths of length at most i. Verifying that u 62 Ri is done as follows.{ We scan V guessing jRi�1j vertices that are in Ri�1, and verify each such guess in thestraightforward manner. (Implicit here is a procedure that given G, v, i and jRi�1j,produces Ri�1 itself.)4Exercise: provide such a reduction. 21

{ For each w 2 Ri�1, which was guessed and veri�ed above, we verify that both u 6= wand (w; u) 62 E.By Eq. (5.1), if u passes the above veri�cation then indeed u 62 Ri.(We use log2 n bits to store u, another log2 n bits to count the number of vertices veri�ed tobe in Ri�1, another log2 n bits to store such w, and another 2 log2 n bits for verifying thatw 2 Ri�1.)If any of the veri�cations fails, the machine halts outputting the \dont know" symbol. Exercise:assuming that the correct value of jRi�1j is used, prove that the above non-deterministic log-spaceprocedure computes the value of jRij.Observing that when computing jRij we only need to know jRi�1j (and do not need jRj j forany j < i � 1), the above yields a non-deterministic log-space machine for computing jRnj. Thetheorem follows.

22

Lecture 6The Polynomial-Time HierarchyThe Polynomial-Time Hierarchy (PH) is a hierarchy of complexity classes that extends NP . Wewill present two equivalent ways of de�ning this hierarchy, and discuss some of its properties.6.1 De�ning PH via quanti�ersRecall that L 2 NP if there exists a binary (polynomially-bounded) relation R such that R ispolynomial-time recognizable andx 2 L if and only if 9y s.t. (x; y) 2 R (6.1)IdentifyingNP with �1, we de�ne �2 as containing sets L such that there exists a 3-ary (polynomially-bounded)1 relation R such that R is polynomial-time recognizable andx 2 L if and only if 9y18y2 s.t. (x; y1; y2) 2 R (6.2)(Above and below, it is important to stress that the universal quanti�ers range only over strings ofthe adequate length.)In general, �i is de�ned as the class consisting of sets L such that there exists a (i + 1)-ary(polynomially-bounded)2 relation R such that R is polynomial-time recognizable andx 2 L if and only if 9y18y2 � � �Qiyi s.t. (x; y1; :::; yi) 2 R (6.3)where Qi is an existential (resp., universal) quanti�er in case i is odd (resp., even). That is, wehave i alternating quanti�ers, starting with an existential one, where each quanti�er ranges overstrings of length polynomial in the length of x. (Note that indeed �1 = NP .)Similarly, we can de�ne classes referring to alternating sequences of quanti�ers starting witha universal quanti�er. Speci�cally, L 2 �i if there exists a (i + 1)-ary (polynomially-bounded)relation R such that R is polynomial-time recognizable andx 2 L if and only if 8y19y2 � � �Qiyi s.t. (x; y1; :::; yi) 2 R (6.4)where Qi is an existential (resp., universal) quanti�er in case i is even (resp., odd).The polynomial-time hierarchy, denoted PH, is de�ned as [i�i. That is, L 2 PH means thatthere exists an i such that L 2 PH.1We say that R is polynomially-bounded if there exists a polynomial p such that for every (x; y1; y2) 2 R it holdsthat jy1j+ jy2j � p(jxj).2Indeed, we say that R is polynomially-bounded if there exists a polynomial p such that for every (x; y1; :::; yi) 2 Rit holds thatPij=1 jyj j � p(jxj). 23

Exercises: the following facts can be veri�ed by purely syntactic considerations:1. For every i � 1, it holds that �i = co�i (and, in particular, �1 = coNP).2. For every i � 1, it holds that �i � �i+1 and �i � �i+1. Thus, PH = [i�i.3. For every i � 1, it holds that �i � �i+1.It is widely believed that �i is a strict subset of �i+1. See further discussion in Section 6.4.Another Exercise: Prove that PH is contained in PSPACE . See further discussion in Sec-tion 6.5.Complete sets in PH: The above de�nition of �i (and �i) gives rise to (\semi-natural") com-plete sets for �i (and �i). For example, consider the set of Boolean circuits of the formC such that Ctakes as input i equal-length strings, denoted x1; :::; xi, and it holds that 9x18x2 � � �Qixi C(x1; :::; xi) =1, where Qi is an existential (resp., universal) quanti�er in case i is odd (resp., even). Clearly, thisset is in �i, and every set in �i is Karp-reducible to this set.3 (Hint: the xi's correspond to theyi's in the de�nition of �i, whereas C corresponds to x.)Natural Examples of sets in PH: Recall that natural NP-optimization problems are capturedby NP-sets that refer only to a (one-sided) bound on the value of the optimum. For example,whereas the optimization version of maxClique requires to �nd the largest clique in a given graph,the decision problem is to tell whether or not the largest clique has size greater than or equal toa given number.4 Clearly, the latter decision problem is in NP, whereas its complement (i.e.,determining whether the largest clique has size smaller than a given number) is in coNP . Butwhat about determining whether the largest clique has size equal to a given number? (That is, theset we refer to is the set of pairs (G;K) such that the size of the largest clique in G equals K.) Notethat this problem is unlikely to be in either NP or coNP (because this will imply NP = coNP),5but it is certainly in �2 (and in �2). (Exercise: Present adequate 3-ary relations for the above set.)See further discussion in the next section.6.2 De�ning PH via oraclesRecall that the general notion of a reduction is based on augmenting a (deterministic) polynomial-time machine with oracle access. A natural question is what languages can be recognized by suchmachines when the oracle is an arbitrary NP-set (or, equivalently an NP-complete set like SAT).6We denote this class by PNP , standing for an arbitrary "P-machine" given oracle access to someNP-set. (As indicated below, PNP is likely to be a proper superset of NP , whereas the class oflanguages that are Karp-reducible to NP equals NP .)3The reason that we insist on Karp-reductions here will become clear below.4Actually, the decision problem is typically phrased as determining whether there exists a clique of size greaterthan or equal to a given number.5If we could have given an NP-proof that the max-clique has size equal to a given number, then we could provethat it is strictly smaller than a given number, which is a coNP-complete problem (and NP = coNP would follow).6Exercise: Show that these two formulations are indeed equivalent.
24

Comment: The notation PNP is consistent with the standard notation for oracle machines. Thatis, for an oracle machine M , (oracle) set L and string x, we let ML(x) denote the output of M oninput x and oracle access to L. (Thus, when we said that L0 is reduced to L we meant that thereexists a polynomial-time oracle machine M such that for every x it holds that ML(x) = 1 if andonly if x 2 L0.) Thus, PNP = fL(MSAT) :M is a \P-machine"gwhere L(MSAT) denotes the set of inputs that are accepted byM when given oracle access to SAT .Exercises:1. Show that both NP and coNP are subsets of PNP .2. In contrast, prove that the class of languages that are Karp-reducible to NP equals NP .3. Following the above discussion, de�ne PcoNP and show that it equals PNP .4. Referring to the set of pairs (G;K) such that the size of the largest clique in G equals K,show that this set is in PNP .The de�nition of PNP suggests that we may de�ne also classes such as NPNP . Note that such ade�nition does not yield a natural notion of a reduction (to NP-sets), because the \reduction" isnon-deterministic. Still, a well-de�ned class does emerge. Speci�cally, NPNP is the class of setsthat are accepted by a non-deterministic polynomial-time oracle machine that is given access tosome NP-set. Observe that indeed PNP � NPNP .De�ning �i by oracles: As before, we let �1 def= NP . For i � 1, we de�ne�i+1 def= NP�i : (6.5)Indeed, �2 so de�ned equals NPNP . As we will show in the next section, the �i's as de�ned herecoincide with the classes de�ned in the previous section.A general perspective { what does C1C2 mean? By the above discussion it should be clearthat the class C1C2 can be de�ned for any two complexity classes C1 and C2, provided that C1 isassociated with a class of machines that extends naturally to access oracles. Actually, the classC1C2 is not de�ned based on the class C1 but rather by analogy to it. Speci�cally, suppose that C1 isthe class of sets recognizable by machines of certain type (e.g., deterministic or non-deterministic)with certain resource bounds (e.g., time and/or space bounds). Then we consider analogous oraclemachines (i.e., of the same type and with the same resource bounds), and say that L 2 C1C2 if thereexists such an oracle machine M1 and a set L2 2 C2 such that ML21 accepts the set L.Exercise: For C1 and C2 as above, prove that C1C2 = C1coC2 . Note that, in particular, NP�i =NP�i .
25

6.3 Equivalence of the two de�nitions of PHTo avoid confusion, let use denote by �0i the class de�ned via quanti�ers (i.e., in Eq. (6.3)), and by�00i the class de�ned by oracle machines (i.e., in Eq. (6.5)).Theorem 6.1 For every i � 1, it holds that �0i = �00i .Proof Sketch: The claim holds trivially for i = 1, Assuming that equality holds for i � 1, weshow that it holds also for i+ 1. (Each of the two inclusions uses only the induction hypothesis ofthe same direction.)Assuming that �0i � �00i , we prove that �0i+1 � �00i+1, by looking at an (i+2)-ary relation, R, fora set L 2 �0i+1. Recall that x 2 L i� 9y18y2 � � �Qi+1yi+1 such that (x; y1; :::; yi+1) 2 R. De�ne L0 asthe set of pairs (x; y) such that 8y2 � � �Qi+1yi+1 it holds that (x; y; y2; :::; yi+1) 2 R. Then, L0 2 co�0iand x 2 L i� there exists a y such that (x; y) 2 L0. By using a straightforward non-deterministicoracle machine, we obtain that L 2 NPco�0i = NP�0i . Using the induction hypothesis, it followsthat L 2 NP�00i = �00i+1.Assuming that �00i � �0i, we prove that �00i+1 � �0i+1, by looking at a non-deterministic oraclemachine M that accepts a set L 2 �00i+1 when using an oracle L0 2 �00i . By the de�nition ofnon-uniform acceptance, it follows that x 2 L i� there exists a computation of M on input x thataccepts, when the queries are answered according to L0. Let use denote by ML0(x; y) the output ofM on input x and non-deterministic choices y, when its queries are answered by L0. Then, x 2 Li� there exists a y such that ML0(x; y) = 1. We may assume, without loss of generality, that Mstarts its computation by non-deterministically guessing all oracle answers (and acting accordingto these guesses), and that it accept only if these guesses turned out to be correct. In other words,there exists a polynomial-time computable predicate P , such that ML0(x; y) = 1 i� P (x; y) = 1and the jth answer provided by the oracle in the computation ML0(x; y) equals the jth bit of y,denoted y(j). Furthermore, since M acts according to the guessed answers that are part of y, thejth query ofM is determined (in polynomial-time) by (x; y), and is denoted q(j)(x; y). We concludethat x 2 L i� there exists a y such that P (x; y) = 1 and y(j) = 1 i� q(j) 2 L0 for every j. Using theinduction hypothesis, it holds that L0 2 �00i = �0i, and we let R0 denote the corresponding (i+1)-aryrelation. Thus, x 2 L i�9y0@(P (x; y) = 1) ^ ĵ �((y(j) = 1), 9y(j)2 8y(j)3 � � �Qi+1y(j)i+1 (q(j)(x; y); y(j)2 ; :::; y(j)i+1)2R0)�1AThe proof is completed by observing that the above expression can be rearranged to �t the de�nitionof �0i+1. (Hint: we may incorporate the computation of all the q(j)(x; y)'s into the relation R0, andpull all quanti�ers outside.)76.4 CollapsesAs stated before, it is widely believed that PH is a strict hierarchy; that is, that �i is strictlycontained in �i+1 for every i � 1. We note that if a collapse occurs at some level (i.e., �i = �i+17Note that, for predicates P1 and P2, the expression 9y (P1(y) , 9zP2(y; z)) is equivalent to the expression9y ((:P1(y)_9zP2(y; z))^ ((P1(y)_:9zP2(y; z))), which in turn is equivalent to the expression 9y9z08z00 ((:P1(y)_P2(y; z0)) ^ ((P1(y) _ :P2(y; z00))). Note that pulling the quanti�ers outside in ^tj=19y(j)8z(j)P (y(j); z(j)) yields anexpression of the type 9y(1); :::; y(t)8z(1); :::; z(t) ^tj=1 P (y(j); z(j)).26

for some i � 1) then the entire hierarchy collapses to that level (i.e., �i = PH). (This fact isbest veri�ed from the oracle-based de�nition, and the veri�cation is left as an exercise.)8 In fact, astronger statement can be proven.Theorem 6.2 If �i = �i holds for some i � 1 then PH = �i.In particular, NP = coNP implies a total collapse (i.e., PH = NP). In light of the abovediscussion, it su�ces to show that �i = �i implies �i = �i+1. This is easiest to prove using thequanti�er-based de�nition, while relying on ideas used in the previous section. Speci�cally, forL 2 �i+1, we �rst derive a set L0 2 �i such that x 2 L if and only if there exists y such that(x; y) 2 L0. By the hypothesis L0 2 �i, and so x 2 L i�9y9y18y2 � � �Qiyi s.t. ((x; y); y1; y2; :::; yi) 2 R0where R0 is the (i + 1)-ary relation guaranteed for L0 (w.r.t the de�nition of �i). By joining thetwo leftmost existential quanti�ers and slightly modifying R0 (into R00 def= f(x; (y; y1); y2; :::; yi) :((x; y); y1; y2; :::; yi) 2 R0g), we conclude that L 2 �i.6.5 Comment: a PSPACE-complete problemRecall that the complete problem of �i referred to circuits that take i input strings (and to analternating existential and universal quanti�cation over these inputs). A natural question thatarises is what happens if we drop the restriction on the number of such inputs. That is, considerthe set of circuits that take a sequence of input strings, which is (of course) bounded in length bythe size of the circuit. Such a circuit, denoted C, having t = t(G) input strings, denoted x1; :::; xt,is in the set QC (standing for Quanti�ed Circuits) if and only if 9x18x2 � � �Qtxt C(x1; :::; xt) = 1.It is easy to see that QC 2 PSPACE . To show that any problem in PSPACE is reducible (infact, Karp-reducible) to QC, we follow the underlying idea of the proof of Theorem 5.7. That is, letL 2 PSPACE , let M be the corresponding polynomial-space machine, and p be the correspondingpolynomial space-bound. For any x 2 f0; 1gn, it holds that x 2 L i� M passes in at most 2p(n)steps from the initial con�guration with input x, denoted init(x), to an accepting con�guration,denoted ACC. De�ne a Boolean predicate pM such that pM(�; �; t) = true i� M passes in atmost t steps from the con�guration � to con�guration �. Then, we are interested in the valuepM (init(x); ACC; 2p(n)). On the other hand, for every � and � (and i 2 N), it holds thatpM (�; �; 2i) = 9 [pM (�; ; 2i�1) ^ pM (; �; 2i�1)] (6.6)If we were to iterate Eq. (6.6) then the length of the formula will double in each iteration, and afterlog2 t iterations we'll just get a straightforward conjunction of t formulae capturing single steps ofM . Our aim is to moderate the growth of the formula size during the iterations. Towards this end,we replace Eq. (6.6) bypM(�; �; 2i) = 98�9�0�0 [(� = 0! (�0 = � ^ �0 =)) ^ (� = 1! (�0 = ^ �0 = �))^ pM(�0; �0; 2i�1))] (6.7)where � 2 f0; 1g. Observe that Eq. (6.6) is equivalent to Eq. (6.7), whereas in the latter the size ofthe formula grows by an additive term (rather than by a factor of 2). Thus, pM (init(x); ACC; 2p(n))8Assuming that �i = �i+1, we prove by induction on j > i that �j = �i. In the induction step, we have�j+1 = NP�j = NP�i = �i+1 = �i. 27

can be written as a quanti�ed boolean formula with O(log t) (alternating) quanti�ers. The formulabeing quanti�ed over will be a conjunction of (O(log t)) simple logical conditions (of the typeintroduced in Eq. (6.7)) as well as (a single occurrence of) the formula pM (�; �; 1). Hence, we haveactually established the PSPACE-hardness of a special case of QC corresponding to Quanti�edBoolean Formulae, denoted QBF .

28

Lecture 7Randomized Complexity ClassesSo far, our approach to computing devises was somewhat conservative: we thought of them as(repeatedly) executing a deterministic rule. A more liberal and quite realistic approach pursuedin this lecture considers computing devices that use a probabilistic (or randomized) rule. Specif-ically, we allow probabilistic rules that choose uniformly among two predetermined possibilities,and observe that the e�ect of more general probabilistic rules can be e�ciently approximated by arule of the former type. We still focus on polynomial-time computations, but these are probabilis-tic polynomial-time computations. Indeed, we extend our notion of e�cient computations fromdeterministic polynomial-time computations to probabilistic polynomial-time computations.Rigorous models of probabilistic machines are de�ned by natural extensions of the basic model;for example, we will talk of probabilistic Turing machines. Again, the speci�c choice of model isimmaterial; as long as it is \reasonable". We consider the output distribution of such probabilisticmachines on �xed inputs; that is, for a probabilistic machine M and string x 2 f0; 1g�, we denoteby M(x) the distribution of the output of M on input x, where the probability is taken over themachine's random moves. Focusing on decision problems, three natural types of machines arise:1. The most liberal notion is of machines with two-sided error probability. In case of searchproblems, it is required that the correct answer is output with probability that is signi�cantlygreater than 1=2 (e.g., probability at least 2=3). When this approach is applied to deci-sion problems (solvable by probabilistic polynomial-time machines), we get the class BPP ,standing for Bounded-error Probabilistic Polynomial-time.2. Machines with one-sided error probability: In case of search problems, a natural notion is ofmachines that output a (correct) solution (in case such exists) with probability at least 1=2,and never output a wrong solution. In case of decision problems, there are two natural casesdepending on whether the machine errs on YES-instances (but not on NO-instances), or theother way around.3. Machines that never err, but may output a special don't know symbol, say, with probabilityat most 1=2.We focus on probabilistic polynomial-time machines, and on error probability that may be reducedto a \negligible" (e.g., exponentially vanishing in the input length) amount by polynomially manyindependent repetitions.We comment that an alternative formulation of randomized computations is captured by (de-terministic) machines that take two inputs, the �rst representing the actual input and the secondrepresenting the coin tosses (or the \random input"). For such machines, one considers the output29

distribution for any �xed �rst input, when the second input is uniformly distributed among the setof strings of adequate length.7.1 Two-sided error: BPPThe standard de�nition of BPP is in terms of machines that err with probability at most 1=3.That is, L 2 BPP if there exists a probabilistic polynomial-time machine M such that for everyx 2 L (resp., x 62 L) it holds that Pr[M(x) = 1] � 2=3 (resp., Pr[M(x) = 1] � 1=3). In otherwords, letting �L denote the characteristic function of L, we requite that Pr[M(x) 6= �L(x)] � 1=3for every x 2 f0; 1g�. The choice of the constant 1=3 is immaterial, and any other constant smallerthan 1=2 will do (and yield the very same class). In fact, a more general statement, which is provedby so-called \ampli�cation" (see next), holds.Error reduction (or con�dence ampli�cation). For any function � : N ! (0; 0:5), considerthe class BPP� of sets L such that there exists a probabilistic polynomial-time machine M forwhich Pr[M(x) 6= �L(x)] � �(jxj) holds. Clearly, BPP = BPP1=3. However, a wide range of otherclasses also equal BPP . In particular,1. For every positive polynomial p, the class BPP�, where �(n) = (1=2) � (1=p(n)), equalsBPP . That is, any error that is (\noticeably") bounded away from 1/2 (i.e., error (1=2) �(1=poly(n))) can be reduced to an error of 1=3.2. For every positive polynomial p, the class BPP�, where �(n) = 2�p(n), equals BPP . That is,an error of 1=3 can be further reduced to an exponentially vanishing error.Both facts are proven by applying an adequate Law of Large Numbers. That is, consider inde-pendent copies of a random variable that represents the output of the weaker machine (i.e., themachine having larger error probability). Use the adequate Law of Large Numbers to bound theprobability that the average of these independent outcomes deviates from the expected value of theoriginal random variable. Indeed, the resulting machine will invoke the original machine su�cientlymany times, and rule by majority. We stress that invoking a randomized machine several timesmeans that the random choices made in the various invocations are independent of one another.BPP is in the Polynomial-Time Hierarchy: Clearly P � BPP , and it is commonly con-jectured that equality holds (although a polynomial slow-down may occur when transforming,according to these conjectures, a probabilistic polynomial-time algorithm into a deterministic one).However, it is not known whether or not BPP is contained in NP. In view of this ignorance, thefollowing result is of interest:Theorem 7.1 BPP � �2.Proof: Suppose that L 2 BPP , and consider (by suitable error-reduction) a probabilistic polynomial-time algorithm A such that Pr[A(x) 6= �L(x)] < 1=3`(jxj) for all x 2 f0; 1g�, where `(jxj) denotesthe number of coins tossed by A(x). Let us consider the residual deterministic two-input algorithmA0 such that A0(x; r) equals the output of A on input x and random choices r 2 f0; 1g`(jxj). Weclaim that x 2 L if and only if9s1; s2; :::; s`(jxj) 2 f0; 1g`(jxj)8r 2 f0; 1g`(jxj) `(jxj)_i=1 (A0(x; si � r) = 1) (7.1)30

Once the claim is proved, the theorem follows by observing that Eq. (7.1) �ts the de�nition of �2.In order to prove the claim, we �rst consider the case x 2 L. We use the Probabilistic Method toshow that an adequate sequence of si's exists. That is, we show that most sequences of si's areadequate, by upper bounding the probability that a random sequence of si's is not adequate:Prs1;s2;:::;s`(jxj)[:8r 2 f0; 1g`(jxj) `(jxj)_i=1 (A0(x; si � r) = 1)]= Prs1;s2;:::;s`(jxj)[9r 2 f0; 1g`(jxj) `(jxj)î=1 (A0(x; si � r) 6= 1)]� Xr2f0;1g`(jxj) Prs1;s2;:::;s`(jxj)[`(jxj)î=1 (A0(x; si � r) 6= 1)]= Xr2f0;1g`(jxj) `(jxj)Yi=1 Prsi [A0(x; si � r) 6= 1]< 2`(jxj) � � 13`(jxj)�`(jxj) = � 23`(jxj)�`(jxj) � 1where the last inequality is due to the fact that, for any �xed x 2 L and r, it holds that Prsi [A0(x; si�r) 6= 1] = Prs[A0(x; s) 6= �L(x)] < 1=3`(jxj). On the other hand, for any x 62 L and every sequenceof si's, it holds that Prr[W`(jxj)i=1 A0(x; si � r) = 1] < 1=3 < 1 (since x 62 L). Thus, Eq. (7.1) cannotpossibly hold for x 62 L.We comment that the same proof idea yields a variety of similar statements (e.g., see Sec-tion 12.2).7.2 One-sided error: RP and coRPThe class RP is de�ned as containing any set L such that there exists a probabilistic polynomial-time machine M satisfying the following two conditionsx 2 L =) Pr[M(x) = 1] � 12 (7.2)x 62 L =) Pr[M(x) = 0] = 1 (7.3)Observe that RP � NP (e.g., note that NP is obtained by replacing Eq. (7.2) with the conditionPr[M(x) = 1] > 0, for every x 2 L). Again, the speci�c probability threshold in Eq. (7.2) isimmaterial as long as it is noticeable (and su�ciently bounded from 1).1 Thus, RP � BPP .Exercise: Prove that L0 is in the class coRP = ff0; 1g� n L : L 2 RPg if and only if there existsa probabilistic polynomial-time machine M 0 satisfying the following two conditionsx 2 L0 =) Pr[M 0(x) = 1] = 1 (7.4)x 62 L0 =) Pr[M 0(x) = 0] � 12 (7.5)1Exercise: Let RP� denote the class obtained by replacing Eq. (7.2) by the condition Pr[M(x) = 1] � 1 � �(jxj),for every x 2 L. Observe that RP1=2 = RP, and prove that RP1�(1=p(n)) = RP and RP2�p(n) = RP, for anypositive polynomial p. (Note that ampli�cation is easier in this case (of one-sided error).)31

The well-known randomized primality testing algorithms always accept prime numbers and rejectscomposite number with high probability. Thus, these algorithms establish that the set of primenumbers is in coRP .7.3 No error: ZPPWhereas in case of BPP we have allowed two-sided errors, and in case of RP (and coRP) wehave allowed one-sided errors, we now allow no errors at all. Instead, we allow the algorithm tooutput a special don't know symbol, denoted ?, with some bounded (away from 1) probability.The resulting class is denoted ZPP , standing for Zero-error Probabilistic Polynomial-time. Thestandard de�nition of ZPP is in terms of machines that output ? with probability at most 1=2.That is, L 2 ZPP if there exists a probabilistic polynomial-time machine M such that Pr[M(x) 2f�L(x);?g] = 1 and Pr[M(x) = �L(x)] � 1=2 for every x 2 f0; 1g�. Again, the choice of theconstant (i.e., 1=2) is immaterial, and \ampli�cation" can be conducted as in case of RP (andyield the very same class). In fact, as in case of RP , a more general statement holds.Exercise: Prove that ZPP = RP \ coRP . (Indeed, ZPP � RP (as well as ZPP � coRP)follows by a trivial transformation of the ZPP-machine. On the other hand, RP \ coRP � ZPPcan be proved by combining the two machines guaranteed for a set in RP \ coRP .)7.4 Randomized space complexityThe class RL (Random LogSpace) is de�ned analogously to the class NL, and is indeed containedin the latter. Speci�cally, the syntax of Random LogSpace machines is identical to the one ofNon-deterministic LogSpace machines, but the acceptance condition is probabilistic as in the caseof RP . In addition, we need to require explicitly that the machine runs in polynomial-time (or elseRL extends up to NL).2Recall that Directed Connectivity is complete for NL (under log-space reductions). Below weshow that undirected connectivity is solvable in RL. Speci�cally, consider the set of triples (G; s; t)such that the vertices s and t are connected in the (undirected) graph G. On input (G; s; t), therandomized (log-space) algorithm starts a poly(jGj)-long random walk at vertex s, and accepts thetriplet if and only if the walk passed through vertex t. By a random walk we mean that at eachstep we select uniformly one of the neighbors of the current vertex and move to it. Observe thatthe algorithm can be implemented in logarithmic space (because we only need to store the currentvertex as well as the number of steps taken so far), and that we never accept (G; s; t) in case s andt are not connected. We claim that if s and t are connected in G = (V;E) then a random walkof length O(jV j � jEj) starting at s passes through t with probability at least 1=2. It follows thatundirected connectivity is indeed in RL.2Recall that, w.l.o.g, a non-deterministic log-space machine need only run for polynomial-time. Such a computationcan be simulated by a randomized log-space machine that repeatedly guesses non-deterministic moves and simulatesthe original machine on it. Note that we expect at most 2t tries before we guess an accepting t-time computation,where t is polynomial in the input length. But what if there are no accepting t-time computations? To halt with aprobabilistic rejecting verdict we should implement a counter that counts till 2t, but we need to do so within spaceO(log t) (rather than t which is easy). In fact it su�ces to have a randomized counter that with high probabilitycounts to approximately 2t. This can be implemented by tossing t coins until all show us heads. The expectednumber of times we need to repeat the experiment is 2t, and we can implement this by a counter that counts till t(using space log2 t). 32

On proving the Random Walk Claim: (Indeed, this has little to do with the current course.) Considerthe connected component of vertex s, denoted G0 = (V 0; E0). For any pair, (u; v), let Tu;v be a random variablerepresenting the number of steps taken in a random walk starting at u until v is �rst encountered. First verify thatE[Tu;v] � 2jE0j, for any (u; v) such that fu; vg 2 E0.3 Next, letting cover(G0) be the expected number of steps in arandom walk starting at s and ending when the last of the vertices of V 0 is encountered, and C be any directed cyclictour that visits all vertices in G0, we have cover(G0) � P(u;v)2C E[Tu;v] � jCj � 2jE0j. Letting C be a traversal ofsome spanning tree of G0, we conclude that cover(G0) < 4 � jE0j � jV 0j. Thus, with probability at least 1=2, a randomwalk of length 8 � jE0j � jV 0j starting at s visits all vertices of G0.

3For example, let Cu;v(n) be a random variable counting the number of minimal u-to-v sub-paths within arandom walk of length n, where the walk starts at the stationary vertex distribution (assuming the graph is notbipartite or is sligtly modi�ed otherwise). On one hand, E[Tu;v] = limn!1(n=E[Cu;v(n)]) (due to the memorylessproperty of the walk). On the other hand, E[Cu;v(n)] + 1 is lower bounded by the expected number of timesthat the edge (v; u) was travesed (from v to u) in such a (n-step) walk, where the latter expected number equalsn=2jE0j (because each directed edge appears (in each step) on the walk with equal probability). It follows thatE[Tu;v] � limn!1(n=((n=2jE0j)� 1)) = 2jE0j. 33

Lecture 8Non-Uniform ComplexityAll complexity classes considered so far are \uniform" in the sense that each set in each of theseclasses was de�ned via one �nite machine (or �nite expression), which applied to all input lengths.This is indeed in agreement with the basic algorithmic paradigm of designing algorithms that canhandle all inputs.In contrast, non-uniform complexity investigates what happens when we allow to use a di�erentalgorithm for each input length. Indeed, in such a case, we must bound the description size ofthe algorithm (otherwise any problem can be solved by incorporating in the algorithm the answersto all �nitely many inputs of the adequate length). By considering non-uniform complexity, weare placing an upper-bound on what can be done by the corresponding uniform-complexity class.The hope is that by abstracting away the (\evasive") uniformity condition, we will get a �nitecombinatorial structure that we may be able to understand.8.1 Circuits and adviceFocusing on non-uniform polynomial-time, we mention two standard ways of de�ning non-uniformcomplexity classes. The �rst way is by considering (families of) Boolean circuits (as in Section 3.3).Speci�cally, L is said to be in non-uniform polynomial-time, denoted P=poly, if there exists anin�nite sequence of Boolean circuits C1; C2; ::: such that for some polynomial p the following threeconditions hold:1. The circuit Cn has n inputs and one output.2. The size (e.g., number of edges) of the circuit Cn is at most p(n).3. For every x 2 f0; 1gn, it holds that Cn(x) = 1 if and only if x 2 L.That is, Cn is a non-trivial algorithm (i.e., it cannot explicitly encode all 2n answers) for decidingthe membership in L of n-bit long strings. However, although Cn has size at most p(n), it is notclear whether one can construct Cn in poly(n)-time (or at any time; see below).An alternative way of de�ning P=poly proceeds by considering \machines that take advice".That is, we consider deterministic polynomial-time machines that get two inputs, where the secondinput (i.e., the advice) has length that is at most polynomial in the �rst input. The advice mayonly depend on the input length, and thus it cannot explicitly encode the answers to all inputs (ofthat length). Speci�cally, L 2 P=poly if there exists a deterministic polynomial-time machine Mand an in�nite sequence of advice strings a1; a2; ::: such that for some polynomial p the followingconditions hold: 34

1. The length of an is at most p(n).2. For every x 2 f0; 1gn, it holds that M(x; an) = 1 if and only if x 2 L.Exercise: Prove that the two formulations of P=poly are indeed equivalent. Furthermore, provethat without loss of generality, the machine M (as above) may be a universal machine.8.2 The power of non-uniformityWaiving the \uniformity condition" allows non-uniform classes to contain non-recursive sets. Thisis true for P=poly as well as for most reasonable non-uniform classes, and is due to the obviousreason that there exists non-recursive unary sets. Speci�cally, any unary set L � f1g� (possibly non-recursive), can be decided by a linear-time algorithm that uses 1-bit long advice (i.e., an def= �L(1n)and M(x; ajxj) = 1 if and only if both x = 1jxj and ajxj = 1).On the other hand, the existence of sets that are not in P=poly can be proven in a more\concrete" way than the corresponding statement for P. Fixing any super-polynomial and sub-exponential function f , we observe that the number of possible f(n)-bit long advice is much smallerthan the number of possible subsets of f0; 1gn, whereas these advice account for all the sets thatP=poly may recognize (using a universal machine).We took it for granted that P � P=poly, which is indeed true (e.g., by using empty advicestrings). The fact that P=poly also contains BPP is less obvious. Before proving this fact, let usemention that it is widely believed that P=poly does not contain NP , and indeed proving the latterconjecture was suggested as a good way for establishing that P 6= NP. (Whether or not this wayis a good one is controversial.)Theorem 8.1 BPP � P=polyProof: As in the proof of Theorem 7.1, we consider an adequate ampli�cation of BPP . Here, forL 2 BPP , we consider (by suitable error-reduction) a probabilistic polynomial-time algorithm Asuch that Pr[A(x) 6= �L(x)] < 2�jxj. Again, let us consider the residual deterministic two-inputalgorithm A0 such that A0(x; r) equals the output of A on input x and random choices r 2 f0; 1g`(jxj).Then, by a trivial counting argument, there exists a string r 2 f0; 1g`(n) such that A0(x; r) = �L(x)for all x's of length n. Using this string r as the advice for n-bit long inputs, we are done.8.3 UniformityThe non-uniform aspect of the de�nition of P=poly is the lack of requirements regarding the con-structibility of the circuits (resp., advice). As a sanity check, we note that requiring that theseobjects be polynomial-time constructible results in a cumbersome de�nition of P. That is, supposethat we require that there is a polynomial-time algorithm A that given 1n outputs the circuit Cn(resp., the advice an) for deciding L 2 P=poly (as per the de�nition above). Then, combining Awith the standard circuit-evaluation algorithm (resp., the advice-taking machine M), we obtain anordinary polynomial-time algorithm for deciding L.8.4 Evidence that P/poly does not contain NPRecall that a major motivation towards studying P=poly is the desire to prove that P=poly doesnot contain NP (and thus also BPP � P does not contain NP). In view of the fact that P=poly35

contains non-recursive sets, one may wonder how feasible is the conjecture that P=poly does notcontain NP . It would have been best if we knew that NP � P=poly if and only if P = NP . Butwe only know that NP � P=poly implies a collapse of the Polynomial-time Hierarchy. That is:Theorem 8.2 NP � P=poly implies that PH = �2.Proof sketch: We show that �2 = �2, and the claim follows by Theorem 6.2. Suppose that L 2 �2,and let us consider the corresponding quanti�ed expression (for x 2 L): 8y9zR(x; y; z) = 1, wherey; z 2 f0; 1gpoly(jxj). Let L0 def= f(x; y) : 9zR(x; y; z) = 1g, and observe that L0 is in NP , and thusin P=poly. Thus, x 2 L if and only if for m = poly(jxj) there exists a poly(m)-size circuit Cmfor deciding L0 \ f0; 1gm such that for all y's it holds that Cm(x; y) = 1. The above expression isalmost of the adequate (i.e., �2) form, except that we need to check that C is indeed correct on allinputs of length m. Suppose that L0 was downwards self-reducible; that is, that deciding whetherw 2 L0 could be reduced to deciding membership in L0 of shorter (than w) strings. Then, we couldhave revised the above expression and assert that x 2 L if and only if there exists a sequence ofpolynomial-size circuits C1; :::; Cm such that1. for all y's it holds that Cm(x; y) = 1;2. for i = 1; :::;m, the circuit Ci correctly determines membership in L0, where correctness ofCi is expressed by saying that for all w 2 f0; 1gi the value of Ci(w) is consistent with thevalues obtained by the downwards self-reduction (as answered by the already veri�ed circuitsC1; :::; Ci�1).However, we have no reason to assume that L0 is self-reducible. What we do instead is reduce L0to SAT and apply the argument to SAT (using its polynomial-size circuits (which exist by thehypothesis) and its downwards self-reducibility (which is a very natural procedure)). Speci�cally,let f be a Karp-reduction of L0 to SAT . Thus, x 2 L if and only if 8y f(x; y) 2 SAT . Using thehypothesis, we have SAT 2 P=poly, and thus there exists a sequence of polynomial-size circuitsC1; C2; ::: for SAT . Now, we assert that x 2 L if and only if there exists a sequence of polynomial-size circuits C1; :::; Cm, where m = jf(x; y)j, such that the following two conditions hold:1. For all y's (of adequate length), Cm(f(x; y)) = 1.2. For i = 1; :::;m, the circuit Ci correctly decides membership of i-bit long strings in SAT . Notethat the correctness condition for Ci can be expressed as follows: For every i-long formula �it holds that Ci(�) = 1 if and only if either Ci0(�0) = 1 or Ci00(�00) = 1, where �0 (resp., �00) isthe formula obtained from � by replacing its �rst variable with 0 (resp., 1), and i0 (resp., i00)is the length of the resulting formula after straightforward simpli�cations (which necessarilyoccurs after instantiating a variable).Observe that the expression obtained for membership in L is indeed of the �2-form. The theoremfollows.8.5 Reductions to sparse setsAnother way of looking at P=poly is as the class of sets that are Cook-reducible to a sparse set,where a sparse set is a set that contains at most polynomially many strings of each length. (Thereason for stressing the fact that we refer to Cook-reductions will be explained below.) Let us �rstestablish the validity of the above claim. 36

Proposition 8.3 L 2 P=poly if and only if L is reducible to some sparse set.Proof sketch: Suppose that L 2 P=poly and suppose that n is su�ciently large. Then we canencode the nth advice string (i.e., an) in (the �rst janj strings of) the n-bit slice of a set S (i.e., byplacing the ith (n-bit) string in S \ f0; 1gn if and only if the ith bit of an equals 1). Observe thatS is indeed sparse (because janj = poly(n)). On input x, the reduction �rst retrieves the advicestring ajxj (by making polynomially-many n-bit long queries to S), and decides according to theadvice-taking M(x; ajxj).In case L is reducible to a sparse set S, we let the nth advice encode the list of all the stringsin S that have length at most q(n), where q is the polynomial bounding the running-time of thereduction. Given this advice (which is of length Pq(n)i=1 jS \ f0; 1gij � i = poly(n)), the advice-takingmachine can emulate the answers of the oracle machine (of the reduction), and thus decide L.As a direct corollary to Proposition 8.3, we obtain:Corollary 8.4 SAT is Cook-reducible to a sparse set if and only if NP � P=poly.Combining Corollary 8.4 and Theorem 8.2, it follows that SAT cannot be Cook-reducible to asparse set, unless the Polynomial-time hierarchy collapses.Perspective: Karp-reductions to sparse setsWe have stressed the fact that we refer to Cook-reductions, because (by Corollary 8.4) SAT isCook-reducible to a sparse set if and only if NP � P=poly. In contrast, it is known that SATis Karp-reducible to a sparse set if and only if NP = P. Thus, the di�erence between Cook andKarp reductions is \reected" in the di�erence between NP � P=poly and NP = P.Theorem 8.5 SAT is Karp-reducible to a sparse set if and only if NP = P.Proof of a special case: Clearly, if NP = P then SAT is Karp-reducible to any non-trivial set(e.g., to the set f1g). We establish the opposite direction only for the special case that SAT isKarp-reducible to some set S such that S is a subset of a sparse set G 2 P. (Such a set S is calledguarded, and S � f1g� is indeed a special case). Speci�cally, using the Karp-reduction of SATto S, we present a (deterministic) polynomial-time decision procedure for SAT . The procedureconducts a DFS on the tree of all possible partial truth assignment to the input formula, whiletruncating the search at nodes that are roots of sub-trees that contain no satisfying assignment(at the leaves).1 The key observation is that each internal node (which yields a formula derivedfrom the initial formulae by instantiating the corresponding partial truth assignment) is mappedby the reduction either to a string not in G (in which case we conclude that the sub-tree containsno satisfying assignments) or to a string in G (in which case we don't know what to do). However,once we backtrack from this internal node, we know that the corresponding element of G is not inS, and we will never extend a node mapped to this element again. Speci�cally, let � be the inputformula, and �� denote the formula resulting from � by setting its �rst j� j variables according tothe partial truth assignment � . Then, the procedure proceeds as follows, using the Karp-reductionf of SAT to S:1For an n-variable formulae, the leaves of the tree correspond to all possible n-bit long strings, and an internalnode corresponding to � is the parent of nodes corresponding to �0 and �1.37

Initialization: � � and B ;, where � is a partial truth assignment for which we wish todetermined whether or not �� 2 SAT , and B � G n S is a set of strings that were already\proved" not to be in S.The following steps are recursive and return a Boolean value, representing the whether or not�� 2 SAT .Internal node: Determine whether or not �� 2 SAT , according to the following three cases.1. If f(��) 62 G then return the value false.(Since S � G, we have f(��) 62 S, and by the validity of the reduction, �� 62 SAT .)2. If f(��) 2 B then return the value false.(Since B � G n S, we have f(��) 62 S, and by the validity of the reduction, �� 62 SAT .)3. Otherwise (i.e., f(��) 2 GnB), invoke two recursive calls, for ��0 and ��1, respectively.2If both calls have returned false and f(��) 2 GnB then add f(��) to B (since �� 62 SATholds). Actually, if the �rst call returns true then the second call does not take place.3In any case, return the OR-value of the two values returned by the recursive calls.(We stress that only the third case invokes recursive calls.)Bottom Level: If the constant \formula" �� is false and f(��) 2 G n B then add f(��) to B.In any case, return the value of �� .It is easy to verify that the procedure returns the correct answer. The running-time analysis isbased on the observation that if � 0 and � 00 are not pre�xes of one another and f(�� 0) = f(�� 00) thenit cannot be that Case 3 was applied to both of them. Thus, the number of internal nodes for whichCase 3 was applied is at most the depth of the tree times j [mi=1 Gi n Sj � Pmi=1 jGij = poly(m),where Gi def= G \ f0; 1gi and m = jf(�)j = poly(j�j).

2We may re-evaluate the condition f(��) 2 B after obtaining the answer of the �rst call, but this is not reallynecessary.3Otherwise, the procedure will visit all satisfying assignments, and consequently may run for exponential time.38

Lecture 9Counting Classes9.1 The de�nition of #PA natural computational problem associated with an NP-relation R is to determine the number ofsolutions for a given instance; that is, given x, determine the cardinality of R(x) def= fy : (x; y) 2 Rg.This problem is the counting problem associated with R. Certainly, the counting problem associatedwith R is not easier than the problem of deciding membership in LR = fx : 9y s.t. (x; y) 2 Rg(which can be casted as determining, for a given x, whether jR(x)j is positive or zero).The class #P can be de�ned as a class of functions that count the number of solutions inNP-relations. That is, f 2 #P if there exists an NP-relation R such that f(x) = jR(x)j for allx's. Alternatively, we can de�ne #P as a class of sets, where for every NP-relation R the set#R def= f(x; k) : jR(x)j � kg is in #P. (Exercise: Formulate and show the \equivalence" betweenthe two de�nitions.)Relation to PP. The class #P is related to a probabilistic class, denoted PP, that was notde�ned in Lecture 7. We say that L 2 PP if there exists a probabilistic polynomial-time algorithmA such that, for every x, it holds that Pr[A(x) = 1] > 1=2 if and only if x 2 L (or, alternatively,Pr[A(x) = �L(x)] > 1=2 for every x).1 (Recall that, in contrast, L 2 BPP requires that Pr[A(x) =�L(x)] > 2=3 for every x.) Notice that any L 2 PP can be decided by a polynomial-time oraclemachine that is given oracle access to #R, where R describes the actions of the PP-algorithm (i.e.,(x; r) 2 R i� A(x) accepts when using coins r). On the other hand, #P � PP , by virtue of (a minormodi�cation to) the following algorithm that refers to #R, where R � [n2Nf0; 1gn � f0; 1gm(n) :on input (x; k), with probability one half select y uniformly in f0; 1gm(jxj) and accept i� (x; y) 2 R,and otherwise (i.e., with probability 1=2) accept with probability exactly 1 � (k � 0:5) � 2�m(jxj).(Exercise: Provide the missing details for all the above claims.)9.2 #P-complete problemsWe say that a computational problem is #P-complete if it is in #P and every problem in #Pis reducible to it. Thus, for an NP-relation R, the problem #R (which is always in #P) is #P-complete if for any NP-relation R0 it holds that #R0 is reducible to #R. Using the standardKarp-reductions, it is easy to show that for any known NP-complete relation R the set #R is1Exercise: show the equivalence of the two formulations.39

#P-complete. This is the case because the standard reductions (or minor modi�cations of them)are \parsimonious" (i.e., preserve the number of solutions). In particular:Proposition 9.1 #SAT is #P-complete, where (�; k) 2 #SAT if and only if � has at least kdi�erent satisfying assignment.Exercise: Verify that the standard reduction of any NP-relation to SAT is parsimonious; that is, forany NP-relation R, the standard reduction of R to SAT maps each x to a formula having exactlyjR(x)j satisfying assignments.As stated above, Proposition 9.1 is merely a consequence of the nature of the reductions used inthe standard context of NP-completeness results. Speci�cally, it is the case that the same reductionsused to demonstrate NP-completeness of search problems can be used to show #P-completeness ofthe corresponding counting problems. Consequently, \hard" (i.e., NP-complete) search problemsgive rise to \hard" (i.e., #P-complete) counting problems. Interestingly, there are \hard" countingproblems (i.e., #P-complete problems) for which the corresponding search problem is easy. Forexample, whereas the problem of �nding a maximum matching in a given graph is \easy" (i.e.,solvable in polynomial-time), the corresponding counting problem is \hard" (i.e., #P-complete):Theorem 9.2 The problem of counting the number of perfect matching in a bipartite graph is#P-complete. Equivalently, the problem of computing the permanent of integer matrices with 0/1-entries is #P-complete.Needless to say, the reduction used in proving Theorem 9.2 is not parsimonious (or else we couldhave used it to reduceNP to the problem of deciding whether a given graph has a perfect matching).For the same reason, the recent polynomial-time algorithm for approximating the permanent (ofnon-negative matrices)2 does not yield polynomial-time approximation algorithms for all #P.9.3 A randomized reduction of Approximate-#P to NPBy an approximation for a counting problem #R in #P, we mean a procedure that on inputx outputs a \good" approximation, denoted A(x), of jR(x)j. Speci�cally, we require that withhigh probability, the ratio A(x)=jR(x)j will be bounded. For many natural NP-relations (and inparticular for SAT), the following notions are all equivalent:1. With probability at least 2=3, it holds that A(x) is within a factor of 2 of jR(x)j(i.e., 1 � A(x)=jR(x)j � 2).32. With probability at least 1� exp(�jxj), it holds that 1 � A(x)=jR(x)j � 2.3. With probability at least 1 � exp(�jxj), it holds that 1 � A(x)=jR(x)j � 1 + jxj�c, wherec > 0 is any �xed constant.4. With probability at least 2=3, it holds that 1 < A(x)=jR(x)j < 2jxjc , where c < 1 is any �xedconstant.42See Jerrum, Sinclair and Vigoda: A Polynomial-Time Approximation Algorithm for the Permanent of a Matrix withNon-Negative Entries, in Proc. of the 33rd STOC, pages 712{721, 2001.3Show that this is equivalent to ability to get A(x) such that 1=p2 � A(x)=jR(x)j � p2.4Note that for some constant c that depends on R, the ability to approximate jR(x)j to within a factor of 2jxjcmerely requires the ability to distinguish the case jR(x)j = 0 from jR(x)j > 0 (since jR(x)j � 2jxjc always holds).Exercise: Show that ability to approximate every jR(x0)j to within a factor of 2jx0j implies ability to approximatejR(x)j to within a factor of 2jxjc . 40

Item 1 implies Item 2 by using straightforward error-reduction (as in case of BPP). To show thatItem 4 implies Item 1 (resp., Item 2 implies Item 3), we use the fact that for many natural NP-relations it is the case that many instances can be encoded in one (i.e., R(hx1; :::; xti) = fhy1; :::; yti :8i yi 2 R(xi)g).5 Thus, suppose that (for every x) we know how to approximate jR(x)j to withina factor of 2jxj2=3 , and we want to approximate jR(x)j to within a factor of 2 (for every x). Then,we form x0 as a sequence of t def= jxj2 copies of x, and obtain a 2jx0j2=3-factor approximation ofjR(x0)j = jR(x)jt. Taking the tth root of this approximation, we obtain jR(x)j up-to a factor of(2jx0j2=3)1=t = 2(t�jxj)2=3=t = 2.In view of the above, we focus on providing any good approximation to the problem of countingthe number of satisfying assignments to a boolean formula. The same techniques apply to anyNP-complete problem.Theorem 9.3 The counting problem #SAT can be approximated up to a constant factor by aprobabilistic polynomial-time oracle machine with oracle access to SAT .Proof Sketch: Given a formula � on n variables, we approximate jSAT (�)j by trying all possiblepowers of 2 as candidate approximations. That is, for i = 1; :::; n, we check whether 2i is agood approximation of jSAT (�)j. This is done by uniformly selecting a \good" hashing functionh : f0; 1gn ! f0; 1gi, and checking whether there exists a truth assignment � for � such that thefollowing two conditions hold:1. the truth assignment � satis�es � (i.e., �(�) = true), and2. h hashes � to the all-zero string (i.e., h(�) = 0i).These two conditions can be encoded in a new formula (e.g., by reducing the above NP-conditionto SAT).6 The new formula �0 is satis�able if and only if there exists an assignment � (to �) thatsatis�es the above conditions. Thus, the answer to the above question (i.e., whether such a � exists)is obtained by making a corresponding query (i.e., �0) to the SAT oracle.In the analysis, we assume that the hashing function is good in the sense that for any S � f0; 1gn,with high probability, a randomly selected hashing function h satis�es jfe 2 S : h(e) = 0igj � jSj=2i.In particular, a randomly selected hashing function h maps each string to 0i with probability 2�i,and the mapping of di�erent strings is pairwise independent. For further details, see [28, Lect. 4].Note that if jSAT (�)j < 2i�2 then a randomly selected hashing function is unlikely to mapany of the (fewer than 2i�2) satisfying assignment of � to 0i. Speci�cally, the probability that anyspeci�c assignment is mapped to 0i equals 2�i, and so the bad event occurs with probability lessthan 1=4, which can be further reduced by repeating the random experiment.On the other hand, if jSAT (�)j > 2i+2 then a randomly selected hashing function is likely tomap some of the (more than 2i+2) satisfying assignment of � to 0i. This can be proven using thepairwise independent property of the mapping induced by a random hashing function.Thus, with high probability, the above procedure outputs a value v = 2i such that i � 2 <log2 jSAT (�)j < i + 3. We stress that the entire argument can be adapted to any NP-completeproblem. Furthermore, smaller approximation factors can be obtained (directly) by using tricks asin the proof of Theorem 9.4.5For example, the number of satisfying assignments to a formula consisting of t formulae over distinct variables isthe product of the number of satisfying assignments to each of these formulae.6Alternatively, for some popular hashing functions, the condition h(�) = 0i is easily transformed to CNF. Thus,we obtain the formula �0(z1; :::; zn) = �(z1; :::; zn) ^ (h(z1 � � � zn) = 0i).41

9.4 A randomized reduction of SAT to Unique-SATThe widely believed intractability of SAT cannot be due to instances that have \very many" satis-fying assignments. For example, satisfying assignments for n-variable formula having at least 2n=nsatisfying assignments can be found in probabilistic polynomial-time by selecting n2 assignmentsat random. Going to the other extreme, one may ask whether SAT instances having very fewsatisfying assignments (e.g., a unique satisfying assignment) can be hard. As shown below, theanswer is positive. We show that ability to solve such instances yields ability to solve arbitraryinstances.In order to formulate the above discussion, we need to introduce the notion of a promise problem,which extends (or relaxes) the notion of a decision problem. A promise problem � is a pair ofdisjoint subsets, denoted (�yes;�no). A (deterministic) machine M is said to solve such a problemif M(x) = 1 for every x 2 �yes and M(x) = 0 for every x 2 �no, whereas nothing is required incase x 62 �yes [�no (i.e., x \violates the promise"). (The notion extends naturally to probabilisticmachines, oracle machines, and so on.) When we say that some problem reduces to the promiseproblem � = (�yes;�no), we mean that the reduction yields the correct output regardless of theway in which queries outside of �yes [�no are answered. (This is consistent with requiring nothingfrom a machine that solves � in case the input is not in �yes [�no.)The computational problem of distinguishing instances with a unique solution from instanceswith no solution yields a natural promise problem. For example, uniqueSAT (or uSAT) is thepromise problem with yes-instances being formulae having a unique satisfying assignment and no-instances being formulae having no satisfying assignment.Theorem 9.4 SAT is randomly reducible to uSAT .Proof Sketch: We present a probabilistic polynomial-time oracle machine that solves SAT usingan oracle to uSAT . Actually, it is easier to �rst (randomly) reduce SAT to fewSAT , wherefewSAT is the promise problem with yes-instances being formulae having between 1 and 100satisfying assignments and no-instances being formulae having no satisfying assignment.Observe that the procedure described in the proof of Theorem 9.3 can be easily adapted to dothe work. Speci�cally, we accept the given SAT instance � if and only if any of the oracle invocationsreturns the value true. Note that the latter event may occur only if � is satis�able (because when� is unsatis�able all queries �0 are unsatis�able). On the other hand, if � has k > 8 satisfyingassignments then in iteration i = blog2 kc � 2, with high probability, the query �0 is satis�able andhas at most k=2i�2 < 32 satisfying assignments (i.e., �0 is a yes-instance of fewSAT).7To �nish-up the proof we reduce fewSAT to uSAT . Given a formula �, for i = 1; :::; 100,we construct a formula �(i) that has a unique satisfying assignment if and only if � has exactly isatisfying assignments. For example, �(i) may consist of the conjunction of i copies of � over distinctvariables and a condition imposing a lexicography order between the corresponding assignments.8
7In order to take care of the case k � 8 < 100, we also query the fewSAT oracle about � itself.8E.g., �(2)(x1; :::; xn; y1; :::; yn) def= �(x1; :::; xn) ^ �(y1; :::; yn) ^ (_n�1j=0 ((xj+1 < yj+1) ^ (^jk=1xk = yk))).42

Lecture 10Space is more valuable than timeThis lecture was not given. The intention was to prove the following result, which asserts that anycomputation requires strictly less space than time.Theorem 10.1 Dtime(t) � Dspace(t= log t)That is, any given deterministic multi-tape Turing Machine (TM) of time complexity t, can besimulated using a deterministic TM of space complexity t= log t. A main ingredient in the simulationis the analysis of a pebble game on directed bounded-degree graphs.

43

Lecture 11Circuit Depth and Space ComplexityThis lecture was not given. The intention was to explore some of the relations between Booleancircuits and Turing machines. Speci�cally:� De�ne the complexity classes NCi and ACi (i.e., bounded versus unbounded fan-in circuits ofpolynomial-size and O(logi)-depth), and compare their computational power. Point out theconnection between uniform-NC and \e�cient" parallel computation.� Establish a connection between the space complexity of a problem and the depth of circuits(with bounded fan-in) for the problem.

44

Historical NotesFor historical discussion of the material presented in Lecture 4, the reader is referred to the textbookof Hopcroft and Ullman [41]. Needless to say, the latter provides accurate statements and proofsof hierarchy and gap theorems.Space Complexity: The emulation of non-deterministic space-bounded machines by determin-istic space-bounded machines (i.e., Theorem 5.7) is due to Savitch [68]. Theorem 5.8 (i.e., NL =coNL) was proved independently by Immerman [42] and Szelepcsenyi [77].The Polynomial-Time Hierarchy: The Polynomial-Time Hierarchy was introduced by Stock-meyer [75]. The third equivalent formulation via \alternating machines" can be found in [16].Randomized Time Complexity: Probabilistic Turing Machines and corresponding complexityclasses (including BPP ;RP ;ZPP and PP) were �rst de�ned by Gill [23]. The random-walk (log-space) algorithm for deciding undirected connectivity is due to Aleliunas et. al. [2]. Additionalexamples of randomized algorithms and procedures can be found in [62] and [26, Apdx. B].The robustness of the various classes under various error thresholds was established usingstraightforward ampli�cations (i.e., running the algorithm several times using independent ran-dom choices). Randomness-e�cient ampli�cation methods (which use related random choices inthe various runs) have been studied extensively since the mid 1980's (cf. [26, Sec. 3.6]).The fact that BPP is in the Polynomial-time hierarchy was proven independently by Laute-mann [56] and Sipser [72]. We have followed Lautemann's proof. The ideas underlying Sipser'sproof found many applications in complexity theory; in particular, they are used in the approxi-mation procedure for #P (as well as in the emulation of general interactive proofs by public-coinones).Non-Uniform Complexity: The class P/poly was de�ned by Karp and Lipton as part of ageneral formulation of \machines which take advise" [49]. They have noted the equivalence to thetraditional formulation of polynomial-size circuits, the e�ect of uniformity, as well as the e�ectof NP � P=poly on the Polynomial-time hierarchy (i.e., Theorem 8.2). Theorem 8.5 is due toFortune [20].Theorem 8.1 is attributed to Adleman [1], who actually proved that RP � P=poly using a moreinvolved argument.Counting Classes: The counting class #P was introduced by Valiant [79], who proved thatcomputing the permanent of 0-1 matrices is #P-complete (cf. Theorem 9.2). Valiant's proof�rst establishes the #P-hardness of computing the permanent of integer matrices (the entries areactually restricted to f�1; 0; 1; 2; 3g), and next reduces the computation of the permanent of integer45

matrices to the the permanent of 0-1 matrices. A de-constructed version of Valinat's proof can befound in [11].The approximation procedure for #P is due to Stockmeyer [76], following an idea of Sipser [72].Our exposition follows further developments in the area. The randomized reduction of SAT touniqueSAT is due to Valiant and Vazirani [80]. Again, our exposition is a bit di�erent.

46

Lecture Series IIIThe less traditional material

47

These lectures are based on research done in the 1980's and the 1990's.The lectures on Probabilistic Proof Systems and Pseudorandomness are related to lectures thatmay be given as part of other courses (i.e., Foundations of Cryptography and Randomness in Com-putation, respectively). But the choice of material for the current course as well as the perspectivewould be di�erent here.

48

Lecture 12Probabilistic Proof SystemsVarious types of probabilistic proof systems have played a central role in the development of com-puter science in the last decade. In these notes, we concentrate on three such proof systems:interactive proofs, zero-knowledge proofs, and probabilistic checkable proofs.The notes for this lecture were adapted from various texts that I wrote in the past (see, e.g.,[26, Chap. 2]). In view of the fact that that zero-knowledge proofs are covered at Weizmann in theFoundation of Cryptography course, I have only discussed IP and PCP in the current course. Theactual notes I have used in the current course appear in Section 12.5.12.1 IntroductionThe glory given to the creativity required to �nd proofs, makes us forget that it is the less glori-�ed procedure of veri�cation which gives proofs their value. Philosophically speaking, proofs aresecondary to the veri�cation procedure; whereas technically speaking, proof systems are de�ned interms of their veri�cation procedures.The notion of a veri�cation procedure assumes the notion of computation and furthermore thenotion of e�cient computation. This implicit assumption is made explicit in the de�nition of NP,in which e�cient computation is associated with (deterministic) polynomial-time algorithms.Traditionally, NP is de�ned as the class of NP-sets. Yet, each such NP-set can be viewed as aproof system. For example, consider the set of satis�able Boolean formulae. Clearly, a satisfyingassignment � for a formula � constitutes an NP-proof for the assertion \� is satis�able" (theveri�cation procedure consists of substituting the variables of � by the values assigned by � andcomputing the value of the resulting Boolean expression).The formulation of NP-proofs restricts the \e�ective" length of proofs to be polynomial in lengthof the corresponding assertions. However, longer proofs may be considered by padding the assertionwith su�ciently many blank symbols. So it seems that NP gives a satisfactory formulation of proofsystems (with e�cient veri�cation procedures). This is indeed the case if one associates e�cientprocedures with deterministic polynomial-time algorithms. However, we can gain a lot if we arewilling to take a somewhat non-traditional step and allow probabilistic veri�cation procedures. Inparticular,� Randomized and interactive veri�cation procedures, giving rise to interactive proof systems,seem much more powerful (i.e., \expressive") than their deterministic counterparts.� Such randomized procedures allow the introduction of zero-knowledge proofs, which are ofgreat theoretical and practical interest. 49

� NP-proofs can be e�ciently transformed into a (redundant) form that o�ers a trade-o� be-tween the number of locations examined in the NP-proof and the con�dence in its validity(which is captured in the notion of probabilistically checkable proofs).In all abovementioned types of probabilistic proof systems, explicit bounds are imposed on thecomputational complexity of the veri�cation procedure, which in turn is personi�ed by the notionof a veri�er. Furthermore, in all these proof systems, the veri�er is allowed to toss coins andrule by statistical evidence. Thus, all these proof systems carry a probability of error; yet, thisprobability is explicitly bounded and, furthermore, can be reduced by successive application of theproof system.12.2 Interactive Proof SystemsIn light of the growing acceptability of randomized and distributed computations, it is only naturalto associate the notion of e�cient computation with probabilistic and interactive polynomial-timecomputations. This leads naturally to the notion of interactive proof systems in which the veri�ca-tion procedure is interactive and randomized, rather than being non-interactive and deterministic.Thus, a \proof" in this context is not a �xed and static object but rather a randomized (dynamic)process in which the veri�er interacts with the prover. Intuitively, one may think of this interactionas consisting of \tricky" questions asked by the veri�er to which the prover has to reply \convinc-ingly". The above discussion, as well as the actual de�nition, makes explicit reference to a prover,whereas a prover is only implicit in the traditional de�nitions of proof systems (e.g., NP-proofs).12.2.1 The De�nitionThe main new ingredients in the de�nition of interactive proof systems are:� Randomization in the veri�cation process.� Interaction between the veri�er and the prover, rather than uni-directional communication(from the prover to the veri�er) as in the case of NP-proof systems.The combination of both new ingredients is the source of power of the new de�nition: If theveri�er does not toss coins then the interaction can be collapsed to a single message. (On the otherhand, combining randomization with uni-directional communication yields a randomized version ofNP-proof systems, calledMA.) We stress several other aspects:� The prover is computationally unbounded: As in NP, we start by not considering the com-plexity of proving.� The veri�er is probabilistic polynomial-time: We maintain the paradigm that veri�cationought to be easy, alas we allow random choices (in our notion of easiness).� Completeness and Soundness: We relax the traditional soundness condition by allowing smallprobability of being fooled by false proofs. The probability is taken over the veri�er's randomchoices. (We still require \perfect completeness"; that is, that correct statements are provenwith probability 1). Error probability, being a parameter, can be further reduced by successiverepetitions.We denote by IP the class of sets having interactive proof systems.50

Variations: Relaxing the \perfect completeness" requirement yields a two-sided error variant ofIP (i.e., error probability allowed also in the completeness condition). Restricting the veri�er tosend only \random" (i.e., uniformly chosen) messages yields the restricted notion of Arthur-Merlininteractive proofs (aka public-coins interactive proofs, and denoted AM). However, both variantsare essentially as powerful as the original one.112.2.2 An Example: interactive proof of Graph Non-IsomorphismThe problem (not known to be in NP): Proving that two graphs are isomorphic can be doneby presenting an isomorphism, but how do you prove that no such isomorphism exists?The construction { the \two object protocol": If you claim that two objects are di�erentthen you should be able to tell which is which (when I present them to you in random order). Inthe context of the Graph Non-Isomorphism interactive proof, two (supposedly) di�erent objectsare de�ned by taking random isomorphic copies of each of the input graphs. If these graphs areindeed non-isomorphic then the objects are di�erent (the distributions have distinct support) elsethe objects are identical.12.2.3 Interactive proof of Non-Satis�abilityWe show that coNP � IP by presenting an interactive proof for Non-Satis�ability (i.e., SAT).Arithmetization of Boolean (CNF) formulae: Given a Boolean (CNF) formula, we replacethe Boolean variables by integer variables (their negations by 1 minus the variable), or-clauses bysums, and the top level conjunction by a product. Note that false is associated with zero, whereastrue is associated with a positive integer. To prove that the given formula is not satis�able, weconsider the sum over all 0-1 assignments of the resulting integer expression. Observe that theresulting arithmetic expression is a low degree polynomial (i.e., the degree is at most the numberof clauses), and that its value is bounded (i.e., exponentially in the number of clauses).Moving to a Finite Field: Whenever we check equality between two integers in [0;M], it su�cesto check equality mod q, where q > M . The bene�t is that the arithmetic is now in a �nite �eld(mod q) and so certain things are \nicer" (e.g., uniformly selecting a value). Thus, proving that aCNF formula is not satis�able reduces to proving an equality of the following formXx1=0;1 � � � Xxn=0;1�(x1; :::; xn) � 0 (mod q)where � is a low degree multi-variant polynomial (and q is exponential in n).The actual construction: stripping summations in iterations. In each iteration the proveris supposed to supply the polynomial describing the expression in one (currently stripped) vari-able. (By the above observation, this is a low degree polynomial and so has a short description.)The veri�er checks that the polynomial is of low degree, and that it corresponds to the currentvalue being claimed (i.e., p(0) + p(1) � v). Next, the veri�er randomly instantiates the variable,yielding a new value to be claimed for the resulting expression (i.e., v p(r), for uniformly chosen1See [21] and [36], respectively. Speci�cally, we can get rid of the completeness error by adapting the proof ofTheorem 7.1 (cf. [21]). The proof that AM = IP is signi�cantly more involved (cf. [36]).51

r 2 GF(q)). The veri�er sends the uniformly chosen instantiation to the prover. (At the end ofthe last iteration, the veri�er has a fully speci�ed expression and can easily check it against theclaimed value.) That is, for i = 1; :::; n, the ith iteration is intended to provide evidence thatPxi=0;1 � � �Pxn=0;1 �(r1; :::; ri�1; xi; :::; xn) � vi�1 (mod q), where r1; :::; ri�1; vi�1 are as deter-mined in the previous i � 1 iterations (and v0 def= 0). The prescribed prover is supposed to setpi(z) = Pxi+1=0;1 � � �Pxn=0;1 �(r1; :::; ri�1; z; xi+1; :::; xn), and send p to the veri�er, which checksthat pi(0)+ pi(1) � vi�1 (mod q) (rejecting immediately if the equivalence does not hold), selectsri at random in GF(q), sends it to the prover, and sets vi = pi(r1) mod q. (In the next iteration,the veri�er expects to get evidence that Pxi+1=0;1 � � �Pxn=0;1 �(r1; :::; ri�1; ri; xi+1; :::; xn) � vi�1(mod q).)Completeness of the above: When the claim holds, the prover has no problem supplying thecorrect polynomials, and this will lead the veri�er to always accept.Soundness of the above: It su�ces to bound the probability that for a particular iteration theinitial claim is false whereas the ending claim is correct. Both claims refer to the current summationexpression being equal to the current value, where `current' means either at the beginning of theiteration or at its end. Let T (�) be the actual polynomial representing the expression when strippingthe current variable, and let p(�) be any potential answer by the prover. We may assume thatp(0) + p(1) � v and that p is of low-degree (as otherwise the veri�er will reject). Using ourhypothesis (that the initial claim is false), we know that T (0) + T (1) 6� v. Thus, p and T aredi�erent low-degree polynomials and so they may agree on very few points. In case the veri�erinstantiation does not happen to be one of these few points, the ending claim is false too.Open Problem 1: alternative proof of coNP � IP. Polynomials play a fundamental rolein the above construction and this trend has even deepened in subsequent works on PCP. It doesnot seem possible to abstract that role, which seems to be very annoying. I consider it importantto obtain an alternative proof of coNP � IP; a proof in which all the underlying ideas can bepresented at an abstract level.12.2.4 The Power of Interactive ProofsTheorem 12.1 (The IP Characterization Theorem): IP = PSPACE .Interactive Proofs for PSPACE: Recall that PSPACE languages can be expressed by Quan-ti�ed Boolean Formulae. The number of quanti�ers is polynomial in the input, but there are bothexistential and universal quanti�ers, and furthermore these quanti�ers may alternate. Consideringthe arithmetization of these formulae, we face two problems: Firstly, the value of the formulae areonly bounded by a double-exponential function (in the length of the input), and secondly whenstripping out summations, the expression may be a polynomial of high degree (due to the universalquanti�ers which are replaced by products). The �rst problem is easy to deal with by using theChinese Reminder Theorem (i.e., if two integers in [0;M] are di�erent then they must be di�er-ent modulo most of the primes in the interval [1;poly(logM)]). The second problem is resolvedby \refreshing" variables after each universal quanti�er (e.g, 9x8y9z �(x; y; z) is transformed into9x8y9x0(x = x0) ^ 9z �(x0; y; z)). That is, in the resulting formula, all variables appearing in aresidual formula are quanti�ed (within the residual formula).52

IP is in PSPACE: We show that for every interactive proof system there exists an optimalprover strategy, and furthermore that this strategy can be computed in polynomial-space. Thisfollows by looking at the tree of all possible executions. Thus, the acceptance probability of theveri�er (when interacting with an optimal prover) can be computed in polynomial-space.12.2.5 Advanced TopicsThe IP HierarchyLet IP(r(�)) denote the class of languages having an interactive proof in which at most r() messagesare exchanges. Then, IP(0) = coRP � BPP . The class IP(1) is a randomized version of NP; wit-nesses are veri�ed via a probabilistic polynomial-time procedure, rather than a deterministic one.2The class IP(2) seems to be fundamentally di�erent; the veri�cation procedure here is truly inter-active. Still, this class seems relatively close to NP ; speci�cally, it is contained in the polynomial-time hierarchy (which seems `low' when contrasted with PSPACE = IP(poly)). Interestingly,IP(2r(�)) = IP(r(�)), and so in particular IP(O(1)) = IP(2). (Note that \IP(2r(�)) = IP(r(�))"can be applied successively a constant number of times, but not more.)Open Problem 2: the structure of the IP(�) hierarchy: Suppose that L 2 IP(r). What canbe said about L? Currently, we only know to argue as follows: L 2 IP(r) � IP(poly) � PSPACE ,and so L 2 PSPACE and is in IP(poly). This seems ridiculous: we do not use the extra information(i.e., L 2 IP(r) and not merely L 2 IP). On the other hand, we do not expect L to be in IP(g(r)),for any function g, since this would put coNP � coIP(1) in IP(g(1)) � IP(2). Other parametersof interest are the total lengths of the messages exchanged in the interaction and the total numberof bits sent by the prover.3 In general, it would be interesting to get a better understanding of theIP(�) Hierarchy.How Powerful Should the Prover be?Here we consider the complexity of proving valid statements; that is, the complexity of the pre-scribed prover referred to in the completeness condition.The Cryptographic Angle: Interactive proofs occur inside \cryptographic" protocols and sothe prover is merely a probabilistic polynomial-time machine; yet it may have access to an auxiliaryinput (given to it or generated by it in the past). Such provers are relatively weak (i.e., they can onlyprove languages in IP(1)); yet, they may be of interest for other reasons (e.g., see zero-knowledge).The Complexity Theoretic Angle: It make sense to try to relate the complexity of provinga statement (to another party) to the complexity of deciding whether the statement holds. Thisgives rise to two related approaches:1. Restricting the prover to be a probabilistic polynomial-time oracle machine with oracle accessto the language (in which membership is proven). This approach can be thought of asextending the notion of self-reducibility (of NP-languages): these languages have an NP-proof2This class is also denoted MA. Observe that the proof of Theorem 7.1 can be adapted to give BPP � MA.Thus, BPP [NP �MA.3For a study of the latter complexity measure see On interactive proofs with a laconic provers (by Goldreich, Vadhanand Wigderson) in Proc. of the 28th ICALP, Springer's LNCS 2076, pages 334{345, 2001.53

system in which the prover is a polynomial-time machine with oracle access to the language.Indeed, alike NP-complete languages, the IP-complete languages also have such a \relativelye�cient" prover. (Recall that an optimal prover strategy can be implemented in polynomial-space, and thus by a polynomial-time machine having oracle access to a PSPACE-completelanguage.)2. Restricting the prover to run in time that is polynomial in the complexity of the language (inwhich membership is proven).Open Problem 3: Further investigate the power of the various notions, and in particular theone extending the notion of self-reducibility of NP languages. Better understanding of the latter isalso long due. A speci�c challenge: provide an NP-proof system for Quadratic Non-Resideousity(QNR), using a probabilistic polynomial-time prover with access to the QNR language.4Computationally-Sound ProofsComputationally-sound proofs systems are fundamentally di�erent from the above discussion (whichdid not e�ect the soundness of the proof systems): here we consider relaxations of the soundnessconditions { false proofs may exist (even with high probability) but are hard to �nd. Variants maycorrespond to the above approaches; speci�cally, the following have been investigated:Argument Systems: Here one only considers prover strategies implementable by (possibly non-uniform) polynomial-size circuits (equiv., probabilistic polynomial-time machines with auxiliaryinputs). Under some reasonable assumptions there exist argument systems for NP having poly-logarithmic communication complexity. Analogous interactive proofs cannot exists unless NP iscontained in Quasi-Polynomial Time (i.e., NP � Dtime(exp(poly(log n)))).CS Proofs: Here one only considers prover strategies implementable in time that is polynomialin the complexity of the language. In an non-interactive version one asks for \certi�cates of the NP-type" that are only computationally-sound. In a model allowing both prover and veri�er access toa random oracle, one can convert interactive proofs (alike CS proofs) into non-interactive ones. Asa heuristics, it was also suggested to replace the random oracle by use of \random public functions"(a fuzzy notion, not to be confused with pseudorandom functions).Open Problem 4: Try to provide �rm grounds for the heuristics of making proof systems non-interactive by use of \random public functions": I advise not to try to de�ne the latter notion (in ageneral form), but rather devise some ad-hoc method, using some speci�c but widely believed com-plexity assumptions (e.g., hardness of deciding Quadratic Residucity modulo a composite number),for this speci�c application.512.3 Zero-Knowledge ProofsZero-knowledge proofs are central to cryptography. Furthermore, zero-knowledge proofs are veryintriguing from a conceptual point of view, since they exhibit an extreme contrast between being4We mention that QNR has a constant-round interactive proof in which the prover is a probabilistic polynomial-time prover with access to QNR. This proof system is similar to the one presented above for Graph Non-Isomorphism.5The reasons for this recommendation are explained in The Random Oracle Methodology, Revisited (by Canetti,Goldreich and Halevi), in Proc. of the 30th STOC, pp. 209{218, 1998.54

convinced of the validity of a statement and learning anything in addition while receiving sucha convincing proof. Namely, zero-knowledge proofs have the remarkable property of being bothconvincing while yielding nothing to the veri�er, beyond the fact that the statement is valid.The zero-knowledge paradigm: Whatever can be e�ciently computed after interacting withthe prover on some common input, can be e�ciently computed from this input alone (withoutinteracting with anyone). That is, the interaction with the prover can be e�ciently simulated insolitude.A Technical Note: I have deviated from other presentation in which the simulator works in ex-pected (probabilistic) polynomial-time and require that it works in strict probabilistic polynomial-time. Yet, I allow the simulator to halt without output with probability at most 12 . Clearly thisimplies an expected polynomial-time simulator, but the converse is not known. In particular, someknown positive results regarding perfect zero-knowledge (with average polynomial-time simulators)are not known to hold under the above more strict notion.612.3.1 Perfect Zero-KnowledgeThe De�nition: A simulator can produce exactly the same distribution as occurring in an inter-action with the prover. Furthermore, in the general de�nition this is required with respect to anyprobabilistic polynomial-time veri�er strategy (not necessarily the one speci�ed for the veri�er).Thus, the zero-knowledge property protects the prover from any attempt to obtain anything fromit (beyond conviction in the validity of the assertion).Zero-Knowledge NP-proofs: Extending the NP-framework to interactive proof is essential forthe non-triviality of zero-knowledge. It is easy to see that zero-knowledge NP-proofs exist only forlanguages in RP. (Actually, that's a good exercise.)7A perfect zero-knowledge proof for Graph Isomorphism: The prover sends the veri�er arandom isomorphic copy of the �rst input graph. The veri�er challenges the prover by asking theprover to present an isomorphism (of graph sent) to either the �rst input graph or to the secondinput graph. The veri�er's choice is made at random. The fact that this interactive proof system iszero-knowledge is more subtle than it seems; for example, (many) parallel repetitions of the proofsystem are unlikely to be zero-knowledge.Statistical (or almost-perfect) Zero-Knowledge: Here the simulation is only required to bestatistically close to the actual interaction. The resulting class, denoted SZK, lies between PerfectZK and general (or Computational) ZK. For further details see [78].12.3.2 General (or Computational) Zero-KnowledgeThis de�nition is obtained by substituting the requirement that the simulation is identical to thereal interaction, by the requirement that the two are computational indistinguishable.6See further details in strict polynomial-time in simulation and extraction (by Barak and Lindell), 34th STOC, pages484{493, 2002.7An NP-proof system for a language L yields an NP-relation for L (de�ned using the veri�er). On input x 2 L aperfect zero-knowledge simulator either halts without output or outputs an accepting conversation (i.e., an NP-witnessfor x). 55

Computational Indistinguishability is a fundamental concept of independent interest. Twoensembles are considered indistinguishable by an algorithm A if A's behavior is almost invariant ofwhether its input is taken from the �rst ensemble or from the second one. We interpret \behavior"as a binary verdict and require that the probability that A outputs 1 in both cases is the same up-toa negligible di�erence (i.e., smaller than 1=p(n), for any positive polynomial p(�) and all su�cientlylong input lengths (denoted by n)). Two ensembles are computational indistinguishable if they areindistinguishable by all probabilistic polynomial-time algorithms.A zero-knowledge proof for NP { an abstract (boxes) setting: It su�ces to constructsuch a proof system for 3-Colorability (3COL). (To obtain a proof system for other NP-languagesuse the fact that the (standard) reduction of NP to 3COL is polynomial-time invertible.)The prover uses a �xed 3-coloring of the input graph and proceeds as follows. First, it uniformlyselects a relabeling of the colors (i.e., one of the 6 possible ones) and puts the resulting color ofeach vertex in a locked box (marked with the vertex name). All boxes are sent to the veri�er whoresponse with a uniformly chosen edge, asking to open the boxes corresponding to the endpoint ofthis edge. The prover sends over the corresponding keys, and the veri�er opens the two boxes andaccepts i� he sees two di�erent legal colors.A zero-knowledge proof for NP { the real setting: The locked boxes need to be implementeddigitally. This is done by a commitment scheme, a cryptographic primitive designed to implementsuch locked boxes. Loosely speaking, a commitment scheme is a two-party protocol which proceedsin two phases so that at the end of the �rst phase (called the commit phase) the �rst party(called sender) is committed to a single value (which is the only value he can later reveal in thesecond phase), whereas at this point the other party gains no knowledge on the committed value.Commitment schemes exist if (and actually i�) one-way functions exist. Thus, the mildest of allcryptographic assumptions su�ces for constructing zero-knowledge proofs for NP (and actuallyfor all of IP). That is:Theorem 12.2 (The ZK Characterization Theorem): If one-way functions exist then every set inIP has a zero-knowledge interactive proof system.Furthermore, zero-knowledge proofs for languages that are \hard on the average" imply the exis-tence of one-way functions; thus, the above construction essentially utilizes the minimal possibleassumption.12.3.3 Concluding RemarksThe prover's strategy in the above zero-knowledge proof for NP can be implemented by a proba-bilistic polynomial-time machine which is given (as auxiliary input) an NP-witness for the input.(This is clear for 3COL, and for other NP-languages one needs to use the fact that the relevantreductions are coupled with e�cient witness transformations.) The e�cient implementation of theprover strategy is essential to the applications below.Applications to Cryptography: Zero-knowledge proofs are a powerful tool for the design ofcryptographic protocols, in which one typically wants to guarantee proper behavior of a partywithout asking him to reveal all his secrets. Note that proper behavior is typically a polynomial-time computation based on the party's secrets as well as on some known data. Thus, the claim56

that the party behaves consistently with its secrets and the known data can be casted as an NP-statement, and the above result can be utilized. More generally, using additional ideas, one canprovide a secure protocol for any functional behavior. These general results have to be considered asplausibility arguments; you would not like to apply these general constructions to speci�c practicalproblems, yet you should know that these speci�c problems are solvable.Open Problems do exists, but seem more specialized in nature. For example, it would beinteresting to �gure out and utilize the minimal possible assumption required for constructing\zero-knowledge protocols for NP" in various models like constant-round interactive proofs, the\non-interactive" model, and perfect zero-knowledge arguments.Further Reading: See chapter on Zero-Knowledge in [27].12.4 Probabilistically Checkable Proof (PCP) SystemsWhen viewed in terms of an interactive proof system, the probabilistically checkable proof settingconsists of a prover that is memoryless. Namely, one can think of the prover as being an oracle andof the messages sent to it as being queries. A more appealing interpretation is to view the proba-bilistically checkable proof setting as an alternative way of generalizing NP . Instead of receivingthe entire proof and conducting a deterministic polynomial-time computation (as in the case ofNP), the veri�er may toss coins and probe the proof only at location of its choice. Potentially,this allows the veri�er to utilize very long proofs (i.e., of super-polynomial length) or alternativelyexamine very few bits of an NP-proof.12.4.1 The De�nitionThe Basic Model: A probabilistically checkable proof system consists of a probabilistic polynomial-time veri�er having access to an oracle which represents a proof in redundant form. Typically, theveri�er accesses only few of the oracle bits, and these bit positions are determined by the outcomeof the veri�er's coin tosses. Completeness and soundness are de�ned similarly to the way theywere de�ned for interactive proofs: for valid assertions there exist proofs making the veri�er alwaysaccepts, whereas no oracle can make the veri�er accept false assertions with probability above 12 .(We've speci�ed the error probability since we intend to be very precise regarding some complexitymeasures.)Additional complexity measures of fundamental importance are the randomness and querycomplexities. Speci�cally, PCP(r(�); q(�)) denotes the set of languages having a probabilistic check-able proof system in which the veri�er, on any input of length n, makes at most r(n) coin tossesand at most q(n) oracle queries. (As usual, unless stated otherwise, the oracle answers are alwaysbinary (i.e., either 0 or 1).)Observed that the \e�ective" oracle length is at most 2r � q (i.e., locations that may be accessedon some random choices). In particular, the e�ective length of oracles in a PCP(log; �) system ispolynomial. (Exercise: Show that PCP(log;poly) � NP .)PCP augments the traditional notion of a proof: An oracle that always makes the pcp-veri�er accept constitutes a proof in the standard mathematical sense. However a pcp system has57

the extra property of enabling a lazy veri�er, to toss coins, take its chances and \assess" the validityof the proof without reading all of it (but rather by reading a tiny portion of it).12.4.2 The power of probabilistically checkable proofsTheorem 12.3 (The PCP Characterization Theorem): PCP(log; O(1)) = NP.Thus, probabilistically checkable proofs in which the veri�er tosses only logarithmically many coinsand makes only a constant number of queries exist for every NP-language. It follows that NP-proofscan be transformed into NP-proofs which o�er a trade-o� between the portion of the proof beingread and the con�dence it o�ers. Speci�cally, if the veri�er is willing to tolerate an error probabilityof � then it su�ces to let it examine O(log(1=�)) bits of the (transformed) NP-proof. These bitlocations need to be selected at random. Furthermore, an original NP-proof can be transformedinto an NP-proof allowing such trade-o� in polynomial-time. (The latter is an artifact of the proofof the PCP Theorem.)The Proof of the PCP Characterization Theorem is one of the most complicated proofsin the Theory of Computation. Its main ingredients are:1. A pcp(log;poly(log)) proof system for NP . Furthermore, this proof system has additionalproperties which enable proof composition as in Item (3) below.2. A pcp(poly; O(1)) proof system for NP . This proof system also has additional propertiesenabling proof composition as in Item (3).3. The proof composition paradigm: Suppose you have a pcp(r(�); O(`(�))) system for NP inwhich a constant number of queries are made (non-adaptively) to an 2`-valued oracle andthe veri�er's decision regarding the answers may be implemented by a poly(`)-size circuit.Further suppose that you have a pcp(r0(�); q(�))-like system for P in which the input is givenin encoded form via an additional oracle so that the system accepts input-oracles that encodeinputs in the language and reject any input-oracle which is \far" from the encoding of anyinput in the language. In this latter system access to the input-oracle is accounted in thequery complexity. Furthermore, suppose that the latter system may handle inputs whichresult from concatenation of a constant number of sub-inputs each encoded in a separatesub-input oracle. Then, NP has a pcp(2(r(�) + r0(s(�))); 2q(s(�))), where s(n) def= poly(`(n)).[The extra factor of 2 is an artifact of the need to amplify each of the two pcp systems sothat the total error probability sums up to at most 1=2.]In particular, the proof system of Item (1) is composed with itself [using r = r0 = log, ` = q =poly(log), and s(n) = poly(log(n))] yielding a pcp(log;poly(log log)) system for NP , which is thencomposed with the system of Item (2) [using r = log, ` = poly(log log), r0 = poly, q = O(1), ands(n) = poly(log log(n))] yielding the desired pcp(log; O(1)) system for NP .The pcp(log;poly(log)) system for NP: We start with a di�erent arithmetization of CNF for-mulae (than the one used for constructing an interactive proof for coNP). Logarithmically manyvariables are used to represent (in binary) the names of variables and clauses in the input formula,and an oracle from variables to Boolean values is supposed to represent a satisfying assignment.An arithmetic expression involving a logarithmic number of summations is used to represent thevalue of the formula under the truth assignment represented by the oracle. This expression is a58

low-degree polynomial in the new variables and has a cubic dependency on the assignment-oracle.Small-biased probability spaces are used to generate a polynomial number of such expressions sothat if the formula is satis�able then all these expressions evaluate to zero, and otherwise at mosthalf of them evaluate to zero. Using a summation test (as in the interactive proof for coNP) anda low-degree test, this yields a pcp(t(�); t(�)) system for NP , where t(n) def= O(log(n) � log log(n)).[We use a �nite �eld of poly(log(n)) elements, and so we need (log n) � O(log log n) random bitsfor the summation test.] To obtain the desired pcp system, one uses O(logn)log log n -long sequences overf1; :::; log ng to represent variable/clause names (rather than logarithmically-long binary sequences).[We can still use a �nite �eld of poly(log(n)) elements, and so we need only O(log n)log log n � O(log log n)random bits for the summation test.] All this is relatively easy compared to what is needed in orderto transform the pcp system so that only a constant number of queries are made to a (multi-valued)oracle. This is obtained via (randomness-e�cient) \parallelization" of pcp systems, which in turndepends heavily on e�cient low-degree tests.Open Problem 5: As a �rst step towards the simpli�cation of the proof of the PCP Characteri-zation Theorem, one may want to provide an alternative \parallelization" procedure that does notrely on polynomials or any other algebraic creatures.8The pcp(poly; O(1)) system for NP: It su�ces to prove the satis�ability of a systems ofquadratic equations over GF(2), because this problem is NP-complete. The oracle is supposedto hold the values of all quadratic expressions under a satisfying assignment to the variables. Wedistinguish two tables in the oracle: One corresponding to the (2n) linear expressions and the otherto the (2n2 pure) bilinear expressions. Each table is tested for self-consistency (via a linearitytest) and the two tables are tested to be consistent (via a matrix-equality test which utilizes \self-correction"). Each of these tests utilizes a constant number of Boolean queries, and randomnesswhich is logarithmic in the size of the corresponding table.12.4.3 PCP and ApproximationPCP-Characterizations of NP play a central role in recent developments concerning the di�cultyof approximation problems. To demonstrate this relationship, we �rst note that the PCP Char-acterization Theorem can be rephrased without mentioning the class PCP altogether. Instead, anew type of polynomial-time reductions, which we call amplifying, emerges.Amplifying reductions: There exists a constant � > 0, and a (polynomial-time) Karp-reductionf , of 3SAT to itself so that f maps non-satis�able 3CNF formulae to 3CNF formulae for whichevery truth assignment satis�es at most a 1 � � fraction of the clauses. I call the reduction famplifying, and its existence follows from the PCP Characterization Theorem. On the other hand,any amplifying reduction for 3SAT yields a proof of the PCP Characterization Theorem. (Theproofs of both directions are left as an exercise.)98A �rst step towards this partial goal was taken in A Combinatorial Consistency Lemma with application to the PCPTheorem (by Goldreich and Safra), SICOMP, Volume 29, Number 4, pages 1132{1154, 1999.9Hint: To prove the �rst direction, consider the guaranteed pcp system for 3SAT, associate the bits of the oraclewith Boolean variables, and introduce a (constant size) Boolean formula for each possible outcome of the sequence ofO(log n) coin tosses (describing whether the veri�er would have accepted given this outcome). For the other direction,consider a pcp system that is given oracle access to a truth assignment for the formula resulting from the ampli�edreduction. 59

Amplifying reductions and Non-Approximability: The above amplifying reduction of 3SATimplies that it is NP-Hard to distinguish satis�able 3CNF formulae from 3CNF formulae for whichevery truth assignment satis�es less than a 1�� fraction of its clauses. Thus, Max-3SAT is NP-Hardto approximate to within a 1� � factor.Stronger Non-Approximability Results were obtained via alternative PCP Characterizationsof NP. For example, the NP-Hardness of approximating Max-Clique to within N1��, 8� > 0, wasobtained via NP = FPCP(log; �), where the second parameter in FPCP measures the \amortizedfree-bit" complexity of the pcp system.12.5 The actual notes that were usedI have focused on interactive proofs and probabilistically checkable proofs.12.5.1 Interactive Proofs (IP)Unfortunately, this part of my notes was lost. I have de�ned and discussed the basic model,exampli�ed it with the Graph Non-Isomorphism protocol, and showed that coNP � IP.12.5.2 Probabilistically Checkable Proofs (PCP)Unfortunately, the �rst part of my notes (introducing the basic model and the complexity measures)was lost.Adaptivity versus non-adaptivity in the context of PCP. Whenever one discusses oraclemachines, there is a distinction between adaptive machines that may select their queries based onanswers to prior queries and non-adaptive machines that determine all their queries as a function oftheir initial input (and coin tosses). Adaptive machines can always be converted to non-adaptiveones at the cost of an exponential increase in their query complexity (i.e., by considering a-prioriall possible answers). In our case, where the query complexity is an unspeci�ed constant, thisdi�erence is immaterial. Thus, whenever it is convenient, we will assume that the veri�er (in thePCP scheme) is non-adaptive.The PCP Characterization Theorem: The theorem states that NP = PCP [O(log n); O(1)].The easy direction consists of showing that PCP [O(log n); O(1)] is contained inNP . This follows byobserving that the e�ective length of the oracle (i.e., the number of bits read from the oracle underall possible settings of the random-tape) is polynomial. The other direction is much more complex.Here we will only sketch a proof of a much easier result: that is, NP � PCP [poly(n); O(1)]. Westress that this result is very interesting by itself, because it states that NP-assertions can be veri�edprobabilistically by making only a constant number of probes into the (possibly exponentially-long)proof.Let QE2 be the set of satis�able systems of quadratic equations modulo 2 (i.e., quadraticequations over GF (2)). That is, ((c(k)i;j)i;j2[n]; b(k))k2[m] is inQE2 if the quadratic system of equationsfPi;j2[n] c(k)i;j xixj = b(k)gk2[m] modulo 2 has a solution in the xi's. Exercise: Prove that QE2 is NP-complete, and that this holds also when m = n. (Also note that linear terms can be replaced byquadratic terms.) We will show that QE2 is in PCP [O(n2); O(1)]. (Below, all arithmetic operationsare modulo 2.) 60

The oracle in the PCP system that we will present is supposed to encode a satisfying assignmentto the system of equations, where the encoding will be very redundant. As we will see redundantencodings may be very easy to check. Speci�cally, a satisfying assignment � = (�1; :::; �n) will beencoded by providing all the partial sums of the �i's (i.e., an encoding of � via the Hadamard code)as well as all the partial sums of the �i�j's That is, the �rst (resp., second) part of the encoding of� = (�1; :::; �n) is the 2n-bit long string in which entry � 2 f0; 1gn corresponds toPi �i�i (resp., the2n2 -bit long string in which entry � 2 f0; 1gn2 corresponds to Pi;j �i;j�i�j), where � = (�1; :::; �n)(resp., � = �1;1; �1;2; :::; �n;n).On input ((c(k)i;j)i;j2[n]; b(k))k2[n] and oracle access to � = (�(1);�(2)), where j�(i)j = 2ni , theveri�er will perform the following four tests:1. Test that �(1) is close to an encoding of some � 2 f0; 1gn under the Hadamard code: That is,we check whether there exists a � 2 f0; 1gn such thatPr� "�(1)(�) =Xi �i�i# > 0:99 (12.1)This checking is performed by invoking the so-called linearity test for a constant number oftimes where in each invocation we select uniformly and independently �0; �00 2 f0; 1gn andcheck whether �(1)(�0) + �(1)(�00) = �(1)(�0 + �00). holds, where �0 + �00 denote bit-by-bitaddition. (Although very appealing, the analysis of the linearity test is quite non-trivial andthus omitted.)2. Test that �(2) is close to an encoding of some � 2 f0; 1gn2 under the Hadamard code: Thatis, we check whether there exists a � 2 f0; 1gn2 such thatPr� 24�(2)(�) =Xi;j �i;j�i;j35 > 0:99 (12.2)Indeed, we just use the linearity test on �(2).3. Test that the string encoded in �(1) match the one encoded in �(2): Recall that the Hadamardcode has relative distance equal to 1=2 (i.e., the encodings of two di�erent strings agree inexactly 1/2 of the coordinates). Thus, Eq. (12.1) may hold only for one � , and similarlyEq. (12.2) may hold only for one �. In the current step we want to test whether the string �that satis�es Eq. (12.1) is consistent with the string � that satis�es Eq. (12.2); that is, that�i;j = �i�j holds for all i; j 2 [n].A detour: Suppose we want to test that two n-by-n matrices, A and B are equal, by makingfew queries to a suitable encoding. This case be done by uniformly selecting a row vector rand a column vector s and checking whether rAs = rBs (i.e., bit equality). Let C = A�B.We are actually checking whether C is all zeros by checking whether rCs = 0. Clearly, if Cis all zeros then equality will always hold. On the other hand, if C is a non-zero matrix thenit has rank d � 1 in which case the probability that (for a randomly chosen r) the vector rCis an all-zero vector is exactly 2�d. (The proof is left as an exercise, but do the next exercise�rst.) Furthermore, for a non-zero vector v = rC, the probability that (for a randomly chosens) it holds that vs = 0 is exactly 1=2. (Prove this too.) We conclude that for any non-zeromatrix C, it holds that Prr;s[rCs = 0] � 3=4.61

Considering the matrices A = (�i�j)i;j and B = (�i;j)i;j, we want to check whether they areidentical. By the above detour, this calls for uniformly selecting r; s 2 f0; 1gn and checkingwhether rAs = rBs. Now, observe that rAs = (r�>)�s equals the product of Pi ri�i andPi si�i. On the other hand, rBs = Pi;j risj�i;j. So it seems that all we need to check iswhether �(1)(r) � �(1)(s) equals �(2)(z), where z is the outer-product of r and s. This is notquite true. Steps 1 and 2 only guarantee that �(1)(�) = Pi �i�i and �(2)(�) = Pi;j �i;j�i;jwith high probability for uniformly distributed � and �. This is �ne with respect to what wewant to retrieve from �(1), but not for what we want to retrieve from �(2) (because the outer-product of r and s is not uniformly distributed even if r and s are uniformly distributed).Thus, instead of querying �(2) on z, we uniformly select z0 2 f0; 1gn2 , query �(2) on z0 andz + z0 (which are both uniformly distributed), and use the value �(2)(z + z0)��(2)(z0). Thisprocess is called self-correction.4. Test that the string encoded in �(1) satis�es the quadratic system: That is, for � as inEq. (12.1), we want to check whether Pi;j2[n] c(k)i;j �i�j = b(k) holds for all k 2 [n]. Ratherthan performing n tests (which we cannot a�ord), we uniformly select r 2 f0; 1gn, and checkwhether Xk2[n] rk Xi;j2[n] c(k)i;j �i�j = Xk2[n] rkb(k)The left-hand side can be written as Pi;j(Pk rkc(k)i;j)�i�j, and so we merely need to retrievethat value, which by Steps 1{3 can be obtained, via self-correction, from �(2). That is,assuming we did not reject in any of Steps 1{3, it holds that, with high probability over auniformly chosen �0 2 f0; 1gn2 , the value of Pi;j �(k)i;j �i�j equals �(2)(�+�0)��(2)(�0), wherewe will set � such that �i;j =Pk rkci;j .We conclude that if the original system of equations is not satis�able then every � = (�(1);�(2)) isrejected with probability at least 1=2 (by one of the above four steps), whereas the original systemis satis�able then there exists a (�(1);�(2)) that is accepted with probability 1 (by all the abovesteps).Amplifying reductions: For sake of concreteness, we focus on a speci�c NP-complete problem(i.e., 3SAT), but similar statements can be made about some other (but not all) natural NP-complete problems. We say that a Karp-reduction f is an amplifying reduction of 3SAT to itself ifthere exists a constant � > 0 such that the following holds:� If � 2 3SAT then f(�) 2 3SAT .� If � 62 3SAT then (not only that f(�) 62 3SAT but rather) every truth assignment to�0 def= f(�) satis�es at most 1� � fraction of the clauses of �0.That is, the reduction \ampli�es" the unsatis�ability of � (i.e., it may be that there exists atruth assignment that satis�es all but one of the clauses of �, still all truth assignments failto satisfy a constant fraction of the clauses of �).Interestingly, the notion of amplifying reductions captures the entire contents of the PCP Theorem(and so you should not expect to be able to see a simple amplifying reduction).Theorem 12.4 The following two are equivalent:62

1. 3SAT 2 PCP [O(log n); O(1)].2. There exists an amplifying reduction of 3SAT to itself.Note that 3SAT 2 PCP [O(log n); O(1)] if and only if NP � PCP [O(log n); O(1)].Proof sketch: We �rst show that amplifying reductions imply the PCP Theorem. Suppose thatf is an amplifying reduction of 3SAT to itself (and � > 0 be the corresponding constant). Considera veri�er that on input a 3CNF formula �, computes �0 = f(�), selects at random a clause of �0,probe the oracle for the values of the corresponding three variables, and decide accordingly. Thisveri�er uses a logarithmic amount of randomness, always accepts � 2 3SAT (when provided anadequate oracle), and rejects each � 62 3SAT with probability at least � (not matter what oracleis presented). Clearly, the error can be reduced to 1=2 (as required) by invoking this veri�er 1=�times.On the other hand, given a PCP system as in Item 1, we construct an amplifying reduction asfollows. On input a 3CNF formula �, we construct a 3CNF formula �0 as follows. The variables of�0 will correspond to the bits of the oracle used by the PCP veri�er. (Recall, that the number ofe�ective oracle bits is polynomial in j�j.) For each possible random-tape r 2 f0; 1gO(log j�j) of theveri�er, consider the veri�er's verdict as a function of the O(1) answers obtained from the oracle.Thus, the veri�er's decision on input � and random-tape r can be represented as a constant-sizeformula in O(1) variables (representing the corresponding oracle bits). Using auxiliary variables,such a formula can be represented in 3CNF (of constant size). The conjunction of these 2O(log j�j)formulae (each constructible in polynomial time from �) yields �0. Observe that if � is satis�ablethen so is �0. On the other hand, if � is not satis�able then every truth assignment to the variablesof �0 satis�es at most 1=2 of the constant-size CNFs (which correspond to individual values of therandom-tape). Thus, for each of at least 1=2 of the constant-size CNFs, at least one of the clausesis not satis�ed. It follows that the reduction constructed above is amplifying (with � that dependson the constant number of clauses in each of the small CNFs).Amplifying reductions and the di�culty of approximation: Max3SAT is typically de�nedas a search problem in which given a 3CNF formula, one seeks a truth assignment satisfying as manyclauses as possible. In the (1 � �)-approximation version, given a formula �, one is only requiredto �nd a truth assignment that satis�es at least (1 � �) � opt(�) clauses, where opt(�) denotesthe maximum number of clauses that can be satis�ed by any truth assignment to �. Observethat the existence on an amplifying reduction of 3SAT to itself, with constant �, implies that the(1� �)-approximation version of Max3SAT is NP-hard. (Proving this fact is left as an exercise.)

63

Lecture 13PseudorandomnessA fresh view at the question of randomness was taken in the theory of computing: It has beenpostulated that a distribution is pseudorandom if it cannot be told apart from the uniform distri-bution by any e�cient procedure. The paradigm, originally associating e�cient procedures withpolynomial-time algorithms, has been applied also with respect to a variety of limited classes ofsuch distinguishing procedures.Loosely speaking, pseudorandom generators are e�cient procedures that stretch short randomseeds into (signi�cantly longer) pseudorandom sequences. Again, the original approach has requiredthat the generation be done in polynomial-time, but subsequent works have demonstrated thefruitfulness of alternative requirements.The notes for this lecture were adapted from various texts that I wrote in the past (see, e.g., [26,Chap. 3]). In view of the fact that that the archetypical case of pseudorandom generators is coveredat Weizmann in the Foundation of Cryptography course, I focused in the current course on thederandomization aspect. The actual notes I have used in the current course appear in Section 13.6.13.1 IntroductionThe second half of this century has witnessed the development of three theories of randomness, anotion which has been puzzling thinkers for ages. The �rst theory (cf., [18]), initiated by Shan-non [71], is rooted in probability theory and is focused at distributions that are not perfectlyrandom. Shannon's Information Theory characterizes perfect randomness as the extreme case inwhich the information content is maximized (and there is no redundancy at all). Thus, perfectrandomness is associated with a unique distribution { the uniform one. In particular, by de�nition,one cannot generate such perfect random strings from shorter random seeds.The second theory (cf., [58, 60]), due to Solomonov [74], Kolmogorov [53] and Chaitin [15],is rooted in computability theory and speci�cally in the notion of a universal language (equiv.,universal machine or computing device). It measures the complexity of objects in terms of theshortest program (for a �xed universal machine) that generates the object. Like Shannon's theory,Kolmogorov Complexity is quantitative and perfect random objects appear as an extreme case.Interestingly, in this approach one may say that a single object, rather than a distribution over ob-jects, is perfectly random. Still, Kolmogorov's approach is inherently intractable (i.e., KolmogorovComplexity is uncomputable), and { by de�nition { one cannot generate strings of high KolmogorovComplexity from short random seeds.The third theory, initiated by Blum, Goldwasser, Micali and Yao [34, 12, 81], is rooted incomplexity theory and is the focus of this lecture. This approach is explicitly aimed at providing a64

notion of perfect randomness that allows to e�ciently generate perfect random strings from shorterrandom seeds. The heart of this approach is the suggestion to view objects as equal if they cannotbe told apart by any e�cient procedure. Consequently, a distribution that cannot be e�cientlydistinguished from the uniform distribution will be considered as being random (or rather calledpseudorandom). Thus, randomness is not an \inherent" property of objects (or distributions) butrather relative to an observer (and its computational abilities). To demonstrate this approach, letus consider the following mental experiment.Alice and Bob play \head or tail" in one of the following four ways. In all of themAlice ips a coin high in the air, and Bob is asked to guess its outcome before the coinhits the oor. The alternative ways di�er by the knowledge Bob has before makinghis guess. In the �rst alternative, Bob has to announce his guess before Alice ips thecoin. Clearly, in this case Bob wins with probability 1=2. In the second alternative,Bob has to announce his guess while the coin is spinning in the air. Although theoutcome is determined in principle by the motion of the coin, Bob does not have accurateinformation on the motion and thus we believe that also in this case Bob wins withprobability 1=2. The third alternative is similar to the second, except that Bob hasat his disposal sophisticated equipment capable of providing accurate information onthe coin's motion as well as on the environment e�ecting the outcome. However, Bobcannot process this information in time to improve his guess. In the fourth alternative,Bob's recording equipment is directly connected to a powerful computer programmedto solve the motion equations and output a prediction. It is conceivable that in such acase Bob can improve substantially his guess of the outcome of the coin.We conclude that the randomness of an event is relative to the information and computing resourcesat our disposal. Thus, a natural concept of pseudorandomness arises { a distribution is pseudo-random if no e�cient procedure can distinguish it from the uniform distribution, where e�cientprocedures are associated with (probabilistic) polynomial-time algorithms.13.2 The General ParadigmA generic formulation of pseudorandom generators consists of specifying three fundamental aspects:the stretching measure of the generators, the class of distinguishers that the generators are supposedto fool (i.e., the algorithms with respect to which the computational indistinguishability requirementshould hold), and the resources that the generators are allowed to use (i.e., their own computationalcomplexity).Stretching function: A necessary requirement from any notion of a pseudorandom generatoris that it is a deterministic algorithm that stretches short strings, called seeds, into longer outputsequences. Speci�cally, it stretches k-bit long seeds into `(k)-bit long outputs, where `(k) > k. Thefunction ` is called the stretching measure (or stretching function). In some settings the speci�cstretching measure is immaterial (e.g., see Section 13.3).Computational Indistinguishability: A necessary requirement from any notion of a pseudo-random generator is that it \fools" some non-trivial algorithms. That is, any algorithm taken fromsome class of interest cannot distinguish the output produced by the generator (when the generatoris fed with a uniformly chosen seed) from a uniformly chosen sequence. Typically, we consider a65

class D of distinguishers and a class F of noticeable functions, and require that the generator Gsatis�es the following: For any D 2 D, any f 2 F , and for all su�ciently large k'sjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < f(k)where Un denotes the uniform distribution over f0; 1gn and the probability is taken over Uk (resp.,U`(k)) as well as over the coin tosses of algorithm D in case it is probabilistic.1 The archetypicalchoice is that D is the set of probabilistic polynomial-time algorithms, and F is the set of functionswhich are the reciprocal of some positive polynomial.Complexity of Generation: The archetypical choice is that the generator has to work inpolynomial-time (i.e., time that is polynomial in length of its input { the seed). Other choiceswill be discussed as well. We note that placing no computational requirements on the generator(or, alternatively, putting very mild requirements such as a double-exponential running-time upperbound), yields \generators" that can fool any subexponential-size circuit family.13.3 The Archetypical CaseAs stated above, the most natural notion of a pseudorandom generator refers to the case where boththe generator and the potential distinguisher work in polynomial-time. Actually, the distinguisheris more complex than the generator: The generator is a �xed algorithm working within some �xedpolynomial-time, whereas a potential distinguisher is any algorithm that runs in polynomial-time.Thus, for example, the distinguisher may always run in time cubic in the running-time of thegenerator. Furthermore, to facilitate the development of this theory, we allow the distinguisher tobe probabilistic (whereas the generator remains deterministic as above). In the role of the set ofnoticeable functions we consider all functions that are the reciprocal of some positive polynomial.2This choice is naturally coupled with the association of e�cient computation with polynomial-time algorithms: An event that occurs with noticeable probability occurs almost always when theexperiment is repeated a \feasible" (i.e., polynomial) number of times.13.3.1 The actual de�nitionThe above discussion leads to the following instantiation of the generic framework presented inSection 13.2.De�nition 13.1 (pseudorandom generator { archetypical case): A deterministic polynomial-timealgorithm G is called a pseudorandom generator if there exists a stretching function, ` :N!N, sothat for any probabilistic polynomial-time algorithm D, for any positive polynomial p, and for allsu�ciently large k's jPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < 1p(k)1Thus, we require certain functions (i.e., the absolute di�erence between the above probabilities), to be smallerthan any noticeable function on all but �nitely many integers. We call such functions negligible. Note that a functionmay be neither noticeable nor negligible (e.g., it may be smaller than any noticeable function on in�nitely manyvalues and yet larger than some noticeable function on in�nitely many other values).2The de�nition below asserts that the distinguishing gap of certain machines must be smaller than the reciprocalof any positive polynomial for all but �nitely many n's. Such functions are called negligible. The notion of negligibleprobability is robust in the sense that an event that occurs with negligible probability occurs with negligible probabilityalso when the experiment is repeated a \feasible" (i.e., polynomial) number of times.66

where Un denotes the uniform distribution over f0; 1gn and the probability is taken over Uk (resp.,U`(k)) as well as over the coin tosses of D.Thus, pseudorandom generators are e�cient (i.e., polynomial-time) deterministic programs thatexpand short randomly selected seeds into longer pseudorandom bit sequences, where the latter arecomputationally indistinguishable from truly random sequences by e�cient (i.e., polynomial-time)algorithms. It follows that any e�cient randomized algorithm maintains its performance when itsinternal coin tosses are substituted by a sequence generated by a pseudorandom generator.Amplifying the stretch function. Pseudorandom generators as de�ned above are only requiredto stretch their input a bit; for example, stretching k-bit long inputs to (k+1)-bit long outputs willdo. Clearly generator of such moderate stretch function are of little use in practice. In contrast, wewant to have pseudorandom generators with an arbitrary long stretch function. By the e�ciencyrequirement, the stretch function can be at most polynomial. It turns out that pseudorandomgenerators with the smallest possible stretch function can be used to construct pseudorandomgenerators with any desirable polynomial stretch function. (Thus, when talking about the existenceof pseudorandom generators, we may ignore the stretch function.)Theorem 13.2 Let G be a pseudorandom generator with stretch function `(k) = k + 1, and `0 beany polynomially bounded stretch function, which is polynomial-time computable. Let G1(x) denotethe jxj-bit long pre�x of G(x), and G2(x) denote the last bit of G(x) (i.e., G(x) = G1(x)G2(x)).Then G0(s) def= �1�2 � � � �`0(jsj) ;where x0 = s, �i = G2(xi�1) and xi = G1(xi�1), for i = 1; :::; `0(jsj)is a pseudorandom generator with stretch function `0.Proof Sketch: The theorem is proven using the hybrid technique (cf., [27, Sec. 3.2.3]): One consid-ers distributions Hik (for i = 0; :::; `0(k)) de�ned by U (1)i P`0(k)�i(U (2)k), where U (1)i and U (2)k are inde-pendent uniform distributions (over f0; 1gi and f0; 1gk, respectively), and Pj(x) denotes the j-bitlong pre�x of G0(x). The extreme hybrids correspond to G0(Uk) and U`0(k), whereas distinguisha-bility of neighboring hybrids can be worked into distinguishability of G(Uk) and Uk+1. Looselyspeaking, suppose one could distinguish Hik from Hi+1k . Then, using Pj(s) = G2(s)Pj�1(G1(s))(for j � 1), this means that one can distinguish Hik � (U (1)i ; G2(U (2)k); P(`0(k)�i)�1(G1(U (2)k)))from Hi+1k � (U (1)i ; U (10)1 ; P`0(k)�(i+1)(U (20)k)). Incorporating the generation of U (1)i and the eval-uation of P`0(k)�i�1 into the distinguisher, one could distinguish (G1(U (2)k); G2(U (2)k)) � G(Uk)from (U (20)k ; U (10)1) � Uk+1, in contradiction to the pseudorandomness of G. (For details see [27,Sec. 3.3.2].)13.3.2 How to Construct Pseudorandom GeneratorsThe known constructions transform computation di�culty, in the form of one-way functions (de-�ned below), into pseudorandomness generators. Loosely speaking, a polynomial-time computablefunction is called one-way if any e�cient algorithm can invert it only with negligible success prob-ability. For simplicity, we consider only length-preserving one-way functions.67

De�nition 13.3 (one-way function): A one-way function, f , is a polynomial-time computable func-tion such that for every probabilistic polynomial-time algorithm A0, every positive polynomial p(�),and all su�ciently large n's Prx�Un hA0(f(x))2f�1(f(x))i < 1p(n)where Un denotes the uniform distribution over f0; 1gn, and x�X means that x is distributedaccording to X.Popular candidates for one-way functions are based on the conjectured intractability of Integer Fac-torization, the Discrete Logarithm Problem, and decoding of random linear code. The infeasibilityof inverting f yields a weak notion of unpredictability: Let bi(x) denotes the ith bit of x. Then, forevery probabilistic polynomial-time algorithm A (and su�ciently large n), it must be the case thatPri;x[A(i; f(x)) 6= bi(x)] > 1=2n, where the probability is taken uniformly over i 2 f1; :::; ng andx 2 f0; 1gn. A stronger (and in fact strongest possible) notion of unpredictability is that of a hard-core predicate. Loosely speaking, a polynomial-time computable predicate b is called a hard-coreof a function f if all e�cient algorithm, given f(x), can guess b(x) only with success probabilitywhich is negligible better than half.De�nition 13.4 (hard-core predicate): A polynomial-time computable predicate b : f0; 1g� 7!f0; 1g is called a hard-core of a function f if for every probabilistic polynomial-time algorithm A0,every positive polynomial p(�), and all su�ciently large n'sPrx�Un [A0(f(x))=b(x)] < 12 + 1p(n)Clearly, if b is a hard-core of a 1-1 polynomial-time computable function f then f must be one-way.3It turns out that any one-way function can be slightly modi�ed so that it has a hard-core predicate.Theorem 13.5 (A generic hard-core): Let f be an arbitrary one-way function, and let g be de�nedby g(x; r) def= (f(x); r), where jxj = jrj. Let b(x; r) denote the inner-product mod 2 of the binaryvectors x and r. Then the predicate b is a hard-core of the function g.See proof in [26, Apdx C.2] or [27, Sec. 2.5.2]). Finally, we get to the construction of pseudorandomgenerators:Theorem 13.6 (A simple construction of pseudorandom generators): Let b be a hard-core predicateof a polynomial-time computable 1-1 function f . Then, G(s) def= f(s) b(s) is a pseudorandomgenerator.Proof Sketch: Clearly the jsj-bit long pre�x of G(s) is uniformly distributed (since f is 1-1 andonto f0; 1gjsj). Hence, the proof boils down to showing that distinguishing f(s)b(s) from f(s)�,where � is a random bit, yields contradiction to the hypothesis that b is a hard-core of f (i.e., thatb(s) is unpredictable from f(s)). Intuitively, such a distinguisher also distinguishes f(s)b(s) fromf(s)b(s), where � = 1� �, and so yields an algorithm for predicting b(s) based on f(s).In a sense, the key point in the proof of the above theorem is showing that the (obvious byconstriction) unpredictability of the output of G implies its pseudorandomness. The fact that (nextbit) unpredictability and pseudorandomness are equivalent in general is proven explicitly in [27,Sec. 3.3.5].3Functions that are not 1-1 may have hard-core predicates of information theoretic nature; but these are of nouse to us here. For example, for � 2 f0; 1g, the function f(�; x) = 0f 0(x) has an \information theoretic" hard-corepredicate b(�; x) = �. 68

A general condition for the existence of pseudorandom generators. Recall that givenany one-way 1-1 function, we can easily construct a pseudorandom generator. Actually, the 1-1requirement may be dropped, but the currently known construction { for the general case { is quitecomplex. Still we do have.Theorem 13.7 (On the existence of pseudorandom generators): Pseudorandom generators existif and only if one-way functions exist.To show that the existence of pseudorandom generators imply the existence of one-way functions,consider a pseudorandom generator G with stretch function `(k) = 2k. For x; y 2 f0; 1gk , de�nef(x; y) def= G(x), and so f is polynomial-time computable (and length-preserving). It must be thatf is one-way, or else one can distinguish G(Uk) from U2k by trying to invert f and checking that theresult is correct: Inverting f on its range distribution refers to experimenting with the distributionG(Uk), whereas the probability that U2k has an inverse under f is negligible.The interesting direction is the construction of pseudorandom generators based on any one-wayfunction. In general (when f may not be 1-1) the ensemble f(Uk) may not be pseudorandom, and soConstruction 13.6 (i.e., G(s) = f(s)b(s), where b is a hard-core of f) cannot be used directly. Thus,one idea is to hash f(Uk) to an almost uniform string of length related to its entropy, using UniversalHash Functions [14]. (This is done after guaranteeing, that the logarithm of the probability massof a value of f(Uk) is typically close to the entropy of f(Uk).)4 But \hashing f(Uk) down to lengthcomparable to the entropy" means shrinking the length of the output to, say, k0 < k. This foils theentire point of stretching the k-bit seed. Thus, a second idea is to compensate for the k � k0 lossby extracting these many bits from the seed Uk itself. This is done by hashing Uk, and the point isthat the (k�k0+1)-bit long hash value does not make the inverting task any easier. Implementingthese ideas turns out to be more di�cult than it seems, and indeed an alternative constructionwould be most appreciated.13.3.3 Pseudorandom FunctionsPseudorandom generators allow to e�ciently generate long pseudorandom sequences from shortrandom seeds. Pseudorandom functions (de�ned below) are even more powerful: They allow e�-cient direct access to a huge pseudorandom sequence (which is infeasible to scan bit-by-bit). Put inother words, pseudorandom functions can replace truly random functions in any e�cient applica-tion (e.g., most notably in cryptography). That is, pseudorandom functions are indistinguishablefrom random functions by e�cient machines that may obtain the function values at argumentsof their choice. (Such machines are called oracle machines, and if M is such machine and f is afunction, then Mf (x) denotes the computation of M on input x when M 's queries are answeredby the function f .)De�nition 13.8 (pseudorandom functions): A pseudorandom function (ensemble), with length pa-rameters `D; `R : N! N, is a collection of functions F def= ffs : f0; 1g`D(jsj) 7! f0; 1g`R(jsj)gs2f0;1g�satisfying� (e�cient evaluation): There exists an e�cient (deterministic) algorithm which given a seed,s, and an `D(jsj)-bit argument, x, returns the `R(jsj)-bit long value fs(x).4Speci�cally, given an arbitrary one way function f 0, one �rst constructs f by taking a \direct product" ofsu�ciently many copies of f 0. For example, for x1; :::; xk2 2 f0; 1gk, we let f(x1; :::; xk2) def= f 0(x1); :::; f 0(xk2).69

� (pseudorandomness): For every probabilistic polynomial-time oracle machine, M , for everypositive polynomial p and all su�ciently large n's���Prf�Fn [Mf (1n) = 1]� Pr��Rn [M�(1n) = 1] ��� < 1p(n)where Fn denotes the distribution on F obtained by selecting s uniformly in f0; 1gn, and Rndenotes the uniform distribution over all functions mapping f0; 1g`D(n) to f0; 1g`R(n).Suppose, for simplicity, that `D(n) = n and `R(n) = 1. Then a function uniformly selected among2n functions (of a pseudorandom ensemble) presents an input-output behavior which is indistin-guishable in poly(n)-time from the one of a function selected at random among all the 22n Booleanfunctions. Contrast this with the 2n pseudorandom sequences, produced by a pseudorandom gener-ator, which are computationally indistinguishable from a sequence selected uniformly among all the2poly(n) many sequences. Still pseudorandom functions can be constructed from any pseudorandomgenerator.Theorem 13.9 (How to construct pseudorandom functions): Let G be a pseudorandom generatorwith stretching function `(n) = 2n. Let G0(s) (resp., G1(s)) denote the �rst (resp., last) jsj bits inG(s), and G�jsj����2�1(s) def= G�jsj(� � �G�2(G�1(s)) � � �)Then, the function ensemble ffs : f0; 1gjsj 7! f0; 1gjsjgs2f0;1g� , where fs(x) def= Gx(s), is pseudoran-dom with length parameters `D(n) = `R(n) = n.The above construction can be easily adapted to any (polynomially-bounded) length parameters`D; `R :N!N.Proof Sketch: The proof uses the hybrid technique: The ith hybrid, Hin, is a function ensembleconsisting of 22i�n functions f0; 1gn 7! f0; 1gn, each de�ned by 2i random n-bit strings, denotedhs�i�2f0;1gi . The value of such function at x = ��, with j�j = i, is G�(s�). The extreme hybridscorrespond to our indistinguishability claim (i.e., H0n � fUn andHnn � Rn), and neighboring hybridscorrespond to our indistinguishability hypothesis (speci�cally, to the indistinguishability of G(Un)and U2n under multiple samples).13.3.4 The Applicability of Pseudorandom GeneratorsRandomness is playing an increasingly important role in computation: It is frequently used inthe design of sequential, parallel and distributed algorithms, and is of course central to cryptog-raphy. Whereas it is convenient to design such algorithms making free use of randomness, it isalso desirable to minimize the usage of randomness in real implementations. Thus, pseudorandomgenerators (as de�ned above) are a key ingredient in an \algorithmic tool-box" { they provide anautomatic compiler of programs written with free usage of randomness into programs which makean economical use of randomness. In the context of complexity theory, this yields results of thefollowing type.Theorem 13.10 (Derandomization of BPP): If there exists non-uniformly strong pseudorandomgenerators then BPP is contained in \�>0Dtime(t�), where t�(n) def= 2n� .70

Proof Sketch: Given any L 2 BPP and any � > 0, we let A denote the decision procedure for Land G denote a pseudorandom generator stretching n�-bit long seeds into poly(n)-long sequences(to be used by A on input length n). Combining A and G, we obtain an algorithm A0 = AG that,on input x, �rst produces a poly(jxj)-long sequence by applying G to a uniformly selected jxj�-bitlong string, and next runs A using the resulting sequence as a random-tape. We note that A andA0 may di�er in their decision on at most �nitely many inputs (or else we can incorporate suchinputs, together with A, into a family of polynomial-size circuits which distinguishes G(Un�) fromUpoly(n)). Incorporating these �nitely many inputs into A0, and more importantly { emulating A0on each of the 2n� possible random choices (i.e., seeds to G), we obtain a deterministic algorithmA00 as required.We comment that stronger results regarding derandomization of BPP are presented in Sec-tion 13.4.Comment: Indeed, \pseudo-random number generators" have appeared with the �rst computers.However, typical implementations use generators which are not pseudorandom according to theabove de�nition. Instead, at best, these generators are shown to pass some ad-hoc statistical test(cf., [52]). However, the fact that a \pseudo-random number generator" passes some statisticaltests, does not mean that it will pass a new test and that it is good for a future (untested)application. Furthermore, the approach of subjecting the generator to some ad-hoc tests fails toprovide general results of the type stated above (i.e., of the form \for all practical purposes usingthe output of the generator is as good as using truly unbiased coin tosses"). In contrast, theapproach encompassed in De�nition 13.1 aims at such generality, and in fact is tailored to obtainit: The notion of computational indistinguishability, which underlines De�nition 13.1, covers allpossible e�cient applications postulating that for all of them pseudorandom sequences are as goodas truly random ones.13.3.5 The Intellectual Contents of Pseudorandom GeneratorsWe shortly discuss some intellectual aspects of pseudorandom generators as de�ned above.Behavioristic versus Ontological. Our de�nition of pseudorandom generators is based on thenotion of computational indistinguishability. The behavioristic nature of the latter notion is bestdemonstrated by confronting it with the Kolmogorov-Chaitin approach to randomness. Looselyspeaking, a string is Kolmogorov-random if its length equals the length of the shortest programproducing it. This shortest program may be considered the \true explanation" to the phenomenondescribed by the string. A Kolmogorov-random string is thus a string which does not have asubstantially simpler (i.e., shorter) explanation than itself. Considering the simplest explanationof a phenomenon may be viewed as an ontological approach. In contrast, considering the e�ect ofphenomena (on an observer), as underlying the de�nition of pseudorandomness, is a behavioristicapproach. Furthermore, there exist probability distributions which are not uniform (and are noteven statistically close to a uniform distribution) that nevertheless are indistinguishable from auniform distribution by any e�cient method. Thus, distributions which are ontologically verydi�erent, are considered equivalent by the behavioristic point of view taken in the de�nitions above.A relativistic view of randomness. Pseudorandomness is de�ned above in terms of its ob-server. It is a distribution which cannot be told apart from a uniform distribution by any e�cient(i.e. polynomial-time) observer. However, pseudorandom sequences may be distinguished from71

random ones by in�nitely powerful powerful (not at our disposal!). Speci�cally, an exponential-time machine can easily distinguish the output of a pseudorandom generator from a uniformlyselected string of the same length (e.g., just by trying all possible seeds). Thus, pseudorandomnessis subjective to the abilities of the observer.Randomness and Computational Di�culty. Pseudorandomness and computational di�-culty play dual roles: The de�nition of pseudorandomness relies on the fact that putting com-putational restrictions on the observer gives rise to distributions which are not uniform and stillcannot be distinguished from uniform. Furthermore, the construction of pseudorandom generatorsrely on conjectures regarding computational di�culty (i.e., the existence of one-way functions),and this is inevitable: given a pseudorandom generator, we can construct one-way functions. Thus,(non-trivial) pseudorandomness and computational hardness can be converted back and forth.13.4 Derandomization of BPPThe above discussion has focused mainly on one aspect of the pseudorandomness question: the re-sources or type of the observer (or potential distinguisher). Another important question is whethersuch pseudorandom sequences can be generated from much shorter ones, and at what cost (or com-plexity). So far, we have required the generation process to be at least as e�cient as the e�ciencylimitations of the distinguisher.5 Indeed, this seems \fair" and natural. Allowing the generatorto be more complex (i.e., use more time or space resources) than the distinguisher seems unfair,but still yields interesting consequences in the context of trying to \de-randomize" randomizedcomplexity classes. For example, as we shall see, one may bene�t from considering generators thatwork in time exponential in the length of their seed.In the context of derandomization, we typically lose nothing by (being more liberal and) al-lowing exponential-time generators. To see why, we consider a typical derandomization argument,proceeding in two steps (cf. the proof of Theorem 13.10): First one replaces the true randomnessof the algorithm by pseudorandom sequences generated from much shorter seeds, and next onedeterministically scans all possible seeds and looks for the most frequent behavior of the (modi�ed)algorithm. Thus, in such a case, the deterministic complexity is anyhow exponential in the seedlength. The question is whether we gain anything by allowing exponential-time generators. Theanswer seems to be positive, because with more time at their disposal the generators can performbetter (e.g., output longer sequences and/or be based on weaker intractability assumptions). Forexample:Theorem 13.11 Let E def= [cDtime(tc), with tc(n) = 2cn. Suppose that there exists a languageL 2 E and a constant � > 0 such that, for all but �nitely many n's, any circuit Cn which correctlydecides L on f0; 1gn has size at least 2�n. Then, BPP = P.Indeed, Theorem 13.11 is related to Theorem 13.10, but the pseudorandom generators underlyingtheir proofs are very di�erent.Proof Sketch: Underlying the proof is a construction of an adequate pseudorandom generator.This generator operates in exponential-time, and generates an exponentially long output that fools5If fact, we have require the generator to be more e�cient than the distinguisher: The former was required to be a�xed polynomial-time algorithm, whereas the latter was allowed to be any algorithm with polynomial running time.72

circuits of size that is a �xed polynomial in the length of the output (or a smaller exponential inthe seed length). That is, for some constant b > 0 and all k's, the generator (running in time2O(k)) stretches k-bit seeds into sequences of length 2bk that cannot be distinguished from trulyrandom sequences by any circuit of size 2bk. (Note that b < 1, because a 2k-time machine caneasily distinguish the generated sequences from random ones, by trying all possible k-bit seeds.)The derandomization of BPP proceeds by setting the seed-length to be logarithmic in the inputlength, and utilizing the above generator.Speci�cally, let A be a randomized p(�)-time algorithm that we wish to derandomize.On input x, we set k def= (1=b) � log2 p(jxj) = O(log jxj), and scan all possible k-bit seeds.For each seed, we produce the corresponding 2bk-bit sequence, use it as a random-tapeto A (invoked on input x), and record the output of A. (Each such invocation takestime 2O(k) + p(jxj) = poly(jxj), and we have 2k = poly(jxj) many invocations.) Weoutput the most frequent output obtained in all 2k invocations of A(x).We now turn to the construction of the generator. The construction utilizes a predicate com-putable in exponential-time but unpredictable, even to within a particular exponential advantage,by any circuit family of a particular exponential size.6 (One main ingredient of the proof is sup-plying such a predicate, given the hypothesis, but we omit this part here.) Given such a predicatethe generator works by evaluating the predicate on exponentially-many subsequences of the bitsof the seed so that the intersection of any two subsets is relatively small. That is, for � > 0 as inthe hypothesis and �; b = poly(�), given a k-bit seed, the generator constructs (in 2O(k)-time) 2bksubsets of [k] def= f1; :::; kg each of size �k such that the intersection of every two sets has size atmost 2�2k, and evaluates the predicate on the projection of the seed bits determined by each ofthese subsets.7The above generator fools circuits of the stated size, even when these circuits are presentedwith the seed as auxiliary input. (These circuits are smaller than the running time of the generatorand so they cannot just evaluate the generator on the given seed.) The proof that the generatorfools such circuits refers to the characterization of pseudorandom sequences as unpredictable ones.Thus, one proves that the next bit in the generator's output cannot be predicted given all previousbits (as well as the seed). Assuming that a small circuit can predict the next bit (of the generator),we construct a circuit for predicting the hard predicate. The new circuit incorporates the best(for such prediction) augmentation of the input to the circuit into a seed for the generator (i.e.,the bits not in the speci�c subset of the seed are �xed in the best way). The key observation isthat all other bits in the output of the generator depend only on a small fraction of the input bits(i.e., recall the small intersection clause above), and so circuits for computing these other bits haverelatively small size (and so can be incorporated in the new circuit). Using all these circuits, thenew circuit forms the adequate input for the next-bit predicting circuit, and outputs whatever thelatter circuit does.Speci�cally, using a circuit C for predicting the i+ 1st bit of the generator (invoked onk-bit seeds), we describe a circuit for approximating the value of the predicate on inputsof length ` def= �k. Recall that C is given the �rst i bits output by the generator as well6For future reference, say that for some constant �0 > 0, no circuit of size 2�0` can guess the value of the predicateon a random `-bit input with success probability higher than 2��0`.7Thus, this generator is only \moderately more complex" than the distinguisher: Viewed in terms of its output,the generator works in time polynomial in the length of the output, whereas the output fools circuits of size which isa (smaller) polynomial in the length of the output. 73

as the (k-bit) seed, and predicts the said bit with advantage (say) 2�2bk. We �rst �xthe best setting (for C's prediction) of the seed bits that are not in the i + 1st subset.(Certainly, C's prediction for a random setting of the bits of the i+1st subset and a bestbest setting of the rest is at least as good as its prediction on a random seed.) Next, foreach of the �rst i bits (in the generator's output), we consider circuits for computingthe value of these bits as a function of the undetermined seed bits (of the i+1st subset)and the �xed bits of the rest of the seed. Since the number of undetermined bits is atmost 2�2k, each such circuit has size 22�2k. Incorporating these i < 2bk circuits intoC, we obtain a circuit that predicts the i + 1st output bit when only given the bitsof the i + 1st subset. In other words, the resulting circuit approximates the predicateon random inputs of length �k with correlation at least 2�2bk > 2��0��k (for �0 as inFootnote 6). The size of the resulting circuit is at most 2bk � 22�2k + size(C) < 2�0��k.This contradicts the hypothesis regarding the predicate.Recall that we have only showed how to use a predicate that is hard to approximate in order toobtain the desired pseudorandom generator. To complete the proof sketch, one has to show how theexistence of predicates (in E) that are hard in the (adequate) worst-case sense implies the existenceof predicates (in E) that are hard to approximate (in the adequate sense). This part is too complexto be treated here, and the interested reader is referred to [45].13.5 On weaker notions of computational indistinguishabilityWhenever the aim is to replace random sequences utilized by an algorithm with pseudorandomsequences, one may try to capitalize on knowledge of the target algorithm. Above we have merelyused the fact that the target algorithm runs in polynomial-time. However, for example, if weknow that the algorithm uses very little work-space then we may be able to do better. The sameholds if we know that the analysis of the algorithm only depends on some speci�c properties of therandom sequence it uses (e.g., pairwise independence of its elements). In general, weaker notionsof computational indistinguishability such as fooling space-bounded algorithms, constant-depthcircuits, and even speci�c tests (e.g., testing pairwise independence of the sequence), arise naturally:Generators producing sequences that fool such tests are useful in a variety of applications { if theapplication utilizes randomness in a restricted way then feeding it with sequences of low randomness-quality may do. Needless to say, we advocate a rigorous formulation of the characteristics of suchapplications and a rigorous construction of generators that fool the type of tests that emerge.In the context of a course on complexity theory, it is most appropriate to mention the pseu-dorandom generators that fool space-bounded algorithms that have on-line access to the inspectedsequence (which is analogous to the on-line access of randomized bounded-space machines to theirrandom-tape). Such generators can be constructed without relying on any intractability assump-tions, and yield strong derandomization results. Two such famous results are captured by thefollowing theorems.Theorem 13.12 BPL � SL, where BPL � RL in the class of sets recognized by two-sided log-space machines, and SL in the class of sets recognized by deterministic polynomial-time algorithmsthat use only poly-logarithmic amount of space.Theorem 13.13 Suppose that L can be decided by a probabilistic polynomial-time algorithm ofspace complexity s. Then L can be decided by a probabilistic polynomial-time algorithm of spacecomplexity O(s) and randomness complexity O(s0), where s0(n) = max(s(n); n).74

Analogous results hold for search problems. The pseudorandom generator underlying Theorem 13.12uses a logarithmic number of hashing functions (each having logarithmic description length) anda logarithmically-long string to de�ne a polynomially-long sequence. The seed of the generatorconsists of the description of the hash functions and the additional string, but for a �xed log-spacedistinguisher one can determine a sequence of hashing functions for which the distinguisher is fooled(when on only varies the additional logarithmically-long string). The pseudorandom generator un-derlying Theorem 13.13 uses a \randomness extractor", which is a more sophisticated construct(which has been the focus on extensive research in the recent decade; see [69]).13.6 The actual notes that were usedThe general paradigm of pseudorandom generators refers to a deterministic program that stretchesrandom seeds into longer sequences that look random to a speci�ed set of resource-bounded observers.Thus, pseudorandomness is not generated deterministically, but rather from a short random seed,and the above formalism is aimed to make explicit the (relatively small) amount of randomnessused in the generation process. That is, we refer to a deterministic function (or family of functionsone per each value of k) of the form G : f0; 1gk ! f0; 1g`(k), satisfying three properties:1. Stretching: At the very least `(k) > k for every k.2. Pseudorandomness: For every observer D taken from an adequate class (which depends onthe setting), D cannot distinguish a random output of G from a truly random string of thesame length. That is, Prs2f0;1gk [D(G(s)) = 1] � Prr2f0;1g`(k) [D(r) = 1] (13.1)That is, D as a potential distinguisher, fails to do its job in a very strong sense. Throughoutthis lecture, we will focus on potential distinguishers that are implementable by polynomial-size circuits (i.e., a non-uniform family of circuits of size polynomial in the length of the input(i.e., `(k))).83. The complexity of generation: This will vary from setting to setting. We mention two impor-tant cases:(a) The archetypical case: The natural requirement is that G be a polynomial-time algo-rithm. Using such a generator allows to shrink the amount of randomness used in any(e�cient) application. Note that in this case, the stretch ` is polynomially-bounded,and so the shrinkage obtained is `�1 (i.e., if the original application used m random bitsthen we can typically modify it to use only `�1(m) random bits).We stress that in this case the distinguisher, which may use any probabilistic polynomial-time procedure, is more complex than the generator, which has running-time equal aspeci�c (�xed) polynomial.(b) The case of derandomization: As we'll see below, in the context of derandomization,we will anyhow scan all possible seeds. Thus, derandomization is always exponential inthe seed, and so we gain nothing by requiring that the generation process (i.e., G) is8Indeed, such a distinguisher may incorporate the output of G on a speci�c seed (or on a few seeds), but theprobability that this seed will be chosen for the left-hand-side of Eq. (13.1) is negligible.75

polynomial-time. Instead, we may allow G to work for exponential time (i.e., time that isexponential in the seed length). In this case, the stretch ` is only exponentially-bounded.We stress that in this case the generator may be more complex than the distinguisher.Speci�cally, whereas the generator is allowed time exponential in the seed length, thiscannot be possibly allowed for the distinguisher (or else the latter may try all seeds andapply the generator to each such seed).We stress that the archetypical case yields a general-purpose generator that can be used inany application. In particular, it yields a compiler for saving randomness in any probabilis-tic polynomial-time algorithm and is the type of thing needed in cryptography (where theadversary/distinguisher may be more complex than the legitimate strategy that uses the gen-erator). In contrast, the type of generators used in case of derandomization are sometimesgood only with respect to the speci�c algorithm being derandomized (or a speci�c resourcebound).To clarify the above, let us spell out how one typically uses a pseudorandom generator. Let A be aprobabilistic polynomial-time algorithm, say running in time n3 (where n denote its input length).Let G be a pseudorandom generator of the �rst type (i.e., G is polynomial-time computable), say,with stretch function `(k) = k5. We derive a new algorithm A0 by replacing the randomness of Awith randomness generated out of a random seed of G. That is, let A(x; r) denote the output ofA on input x and randomness r 2 f0; 1gjxj3 (recall that A(x) makes at most jxj3 steps). Then oninput x and randomness s 2 f0; 1gjxj3=5 , algorithm A0 computes G(s) and outputs A(x;G(s)). Notethat A0 runs in polynomial-time because so do A and G. We claim that A0 performs as well as A,while using signi�cantly less random bits. The proof is left as an exercise (hint: use the fact thatinputs on which A0 di�ers signi�cantly from A can be hard-wired into a distinguishing circuit).Note that using an adequate pseudorandom generator we can shrink the amount of randomnessused by any probabilistic polynomial-time algorithm to n�, for any constant � > 0.So far we have only shrinked the amount of randomness used by probabilistic polynomial-timealgorithms. Full derandomization is obtained by scanning all possible random-tapes used by theresulting algorithm (or in other words scanning all possible seeds for the generator). That is, givenA0 as above, we derive a deterministic algorithm A00 by scanning all possible s's and outputting,on input x, the majority value of A0(x; s) (taken over all relevant s's). If we use a generator G ofrunning time tG and stretch `(k) � tG(k), then the running-time of A00 on input an n-bit stringwill be 2`�1(n) � �tG(`�1(n)) + timeA(n)�For ` that is exponential (i.e., `(k) = 2
(k)), whenever A is polynomial-time and G is exponential-time (i.e., tG(k) = 2O(k)), we obtain a polynomial-time algorithm A00, because `�1(n) = O(log n)and tG(`�1(n)) = 2O(`�1(n)) = poly(n). Let use take a closer look at what we need in order toobtain such a result. We need a generator (G : f0; 1gk ! f0; 1g`(k)) that (1) runs in at mostexponential-time (i.e., tG(k) = 2O(k)), and (2) stretches its seed by an exponential amount (i.e.,`(k) = 2
(k)), such that (3) these outputs are indistinguishable from random `(k)-bit long sequencesby circuits of size, say, `(k)2 (or even `(k)). (Note that the complexity of the distinguisher circuitis dominated by the complexity of A, but we have set `(k) = timeA(n).)The question is whether such generators exist. The answer depends on the existence of su�-ciently hard problems. Note that this is not surprising, because the de�nition of pseudorandomnessactually refers to a problem (i.e., the one of distinguishing) that should be hard (although it is \solv-able" when waiving resource-bounds, because the pseudorandom sequences are not truly random).76

Indeed, we have:Theorem 13.14 (Theorem 13.11, restated): Suppose that there exists a predicate f0 that is com-putable in exponential-time and a constant c0 > 0 such that, for all but �nitely many m's, anycircuit Cm that correctly compute f0 on f0; 1gm has size at least 2c0m. Then, there exists a con-stant c > 0 and an exponential-time generator G : f0; 1gk ! f0; 1g`(k) such that `(k) = 2
(k) andfor circuit C of size 2ck it holds that���Prs2f0;1gk [C(G(s)) = 1]� Prr2f0;1g`(k) [C(r) = 1]��� < 1=10Note that c0 < 1 must hold or else the hypothesis cannot possibly hold (i.e., because a circuit of size2m may just incorporate the values of f0 for all m-bit strings). Exercise: Show that Theorem 13.14implies Theorem 13.11 (i.e., if for some c1 > 0 the class E does not have 2c0n-size circuits thenBPP = P). The proof of Theorem 13.14 consists of two steps:1. Hardness Ampli�cation: Given f0 as in the hypothesis, we construct an exponential-timecomputable predicate f1 that cannot be approximated (on random m-bit inputs) by 2c1m-sized circuits, where c1 > 0 is a constant depending on c0. Speci�cally, for any such circuitC, it holds that Prx2f0;1gm [C(x) = f1(x)] < 12 + 2�c1mThat is, whereas f0 is \only" hard to compute in the worst-case, f1 is even hard to guess withsigni�cant advantage (over the obvious random guess).2. The actual construction: Average-case of the latter type is naturally linked to pseudoran-domness. Speci�cally, given f = f1 as above, G(s) = s; f(s) is a pseudorandom generator(alas with \pitiful" stretch).9 However, our goal is to obtain exponential stretch (rather thanone-bit stretch). Clearly, we cannot just repeat the above (i.e., G(s) = s; f(s); f(s); :::; f(s)is clearly not a pseudorandom generator, regardless how complex f is). One natural ideais to apply f to di�erent parts of the seed; that is, to parts of the seed with small pairwiseoverlap. This is indeed the construction in use. Let T1; :::; T`(k) be a collection of sets suchthat Ti � f1; :::; kg, jTij = k0 =
(k), and jTi \ Tj j � k00 = k0=O(1) for every i 6= j. On in-put a k-bit seed s, the generator will construct such a collection in exponential-time (detailsomitted), and will output the sequencef(s[T1]); f(s[T2]); :::; f(s[T`(k)])where s[Ti] is the projection of s on coordinates Ti.Observe that since f is computable in exponential-time so is G, and that G has the desired stretch.The issue is to establish the pseudorandomness of G. An important theorem in that respect is theconnection of pseudorandomness and unpredictability (i.e., hardness of guessing the next bit in theoutput sequence when given the previous bits). Clearly, pseudorandomness implies unpredictability(because ability to predict the next bit in the output of G yields ability to distinguish G's outputfrom a truly random sequence). However, we care about the opposite direction (i.e., that unpre-dictability implies pseudorandomness, or put di�erently, ability to distinguish from random impliesability to predict).9Exercise: Prove that G(s) = s; f(s) is indeed a pseudorandom generator.77

Unpredictability implies pseudorandomness: Suppose that a circuit C can distinguish withgap �(k) between Xk (in our case the output of G on a random k-bit seed) and the uniformdistribution over f0; 1g`(k). Consider, for i = 0; :::; `(k), the hybrid distributions Hik, where Hikconsists of the �rst i bits of Xk augmented with an (`(k)� i)-bit long uniformly distributed string.Observe that H`(k)k � G(Uk) and H0k � U`(k), where Um denotes the uniform distribution overf0; 1gm. Thus, although \not designed for that purpose", there exists an i such that C distinguisheswith gap at least �(k)=`(k) between Hi+1k and Hik. On the other hand, Hi+1k and Hik di�er only inthe distribution of the i+ 1st bit, and so C can be easily converted into a predictor of the i+ 1stbit of G(Uk). (Exercise: Fill-up the details.)Predictability of G implies approximation of f : By the above, it su�ces to prove thatthe output of G is unpredictable (with the suitable parameters). Towards the contradiction, weconsider a circuit C (of size at most 2ck) predicting the i + 1st bit of G(Uk). Using the de�nitionof G, we have Prs2f0;1gk [C(f(s[T1]); :::; f(s[Ti])) = f(s[Ti+1])] > 12 + �(k)For simplicity of notations, suppose that Ti+1 = f1; :::; k0g, and write s = hx; s0i, where jxj = k0.Using an averaging-argument (i.e., �xing the best s0), we infer that there exists a string s0 2f0; 1gk�k0 such thatPrx2f0;1gk0 [C(f(hx; s0i[T1]); :::; f(hx; s0i[Ti])) = f(x)] > 12 + �(k)The key observation is that, for j � i, the value of f(hx; s0i[Tj]) depends only on at most k00 bits ofx (i.e., the bits in positions Tj \ Ti+1). Thus, there exists a circuit of size at most exp(k00) (whichdepends on the �xed s00) that given x computes f(hx; s0i[Tj]) (i.e., by using a look-up table for therelevant bits of x). Combining all these circuits, we obtain a circuit C 0 (which is only `(k) � exp(k00)bigger than C) such that Prx2f0;1gk0 [C 0(x) = f(x)] > 12 + �(k). For a suitable setting of theconstants c, c0 = k0=k and c00 = k00=k0, we obtain a contradiction to the hypothesis regarding f(since C 0 has size at most 2ck+2ck+k00 < 21+((c=c0)+c00)k0 and approximates the value of f on randomk0-bit inputs, whereas (c=c0) + c00 < c1).

78

Lecture 14Average-Case ComplexityIn 1984, Leonid Levin has initiated a theory of average-case complexity. We provide an expositionof the basic de�nitions suggested by Levin, and discuss some of the considerations underlying thesede�nitions. The notes for this lecture were adapted from [24],14.1 IntroductionThe average complexity of a problem is, in many cases, a more signi�cant measure than its worst-case complexity. This has motivated the development of a rich area in algorithmic research: theprobabilistic analysis of algorithms (cf. [48, 46]). However, this line of research has so far beenapplicable only to speci�c algorithms and with respect to speci�c, typically uniform, probabilitydistributions.The general question of average-case complexity was addressed for the �rst time by Levin [59].Levin's work can be viewed as the basis for a theory of average NP-completeness, much the same wayas Cook's [17] (and Levin's [57]) works are the basis for the theory of NP-completeness. Subsequentworks have provided few additional complete problems. Other basic complexity problems, such asdecision versus search, were studied in [10].Levin's average-case complexity theory in a nutshell. An average-case complexity classconsists of pairs, called distributional problems. Each such pair consists of a decision (resp.,search) problem and a probability distribution on problem instances. We focus on the classDistNPdef= hNP ;P-computablei, de�ned by Levin [59], which is a distributional analogue of NP:It consists of NP decision problems coupled with distributions for which the accumulative measureis polynomial-time computable. That is, P-computable is the class of distributions for which thereexists a polynomial time algorithm that on input x computes the total probability of all stringsy � x. The easy distributional problems are those solvable in \average polynomial-time" (a notionwhich surprisingly require careful formulation). Reductions between distributional problems arede�ned in a way guaranteeing that if �1 is reducible to �2 and �2 is in average polynomial-time,then so is �1. Finally, it is shown that the class DistNP contains a complete problem.Levin's average-case theory, revisited. Levin's laconic presentation [59] hides the fact thatchoices has been done in the development of the average-case complexity theory. We discuss someof these choices here. Firstly, we stress that the motivation here is to provide a theory of e�cientcomputation, rather than a theory of infeasible computation (e.g., as in Cryptography). (The79

two are not the same!) Furthermore, we note that a theory of useful-for-cryptography infeasiblecomputations does exist (cf., e.g., [27]). A key di�erence between the two theories is that inCryptography we needs problems for which one may generate instance-solution pairs so that solvingthe problem given only the instance is hard. In the theory of average-case complexity consideredbelow, we consider problems that are hard to solve, but do not require an e�cient procedure forgenerating hard (on the average) instances coupled with solutions.Secondly, one has to admit that the class DistNP (i.e., speci�cally, the choice of distributions)is somewhat problematic. Indeed P-computable distributions seem \simple", but it is not clear ifthey exhaust all natural \simple" distributions. A much wider class, which is easier to defend, isthe class of all distributions having an e�cient algorithm for generating instances (according tothe distribution). One may argue that the instances of any problem we may need to solve aregenerated e�ciently by some process, and so the latter class of P-samplable distribution su�cesfor our theory [10]. Fortunately, it was show [44] that any distributional problem that is completefor DistNP=hNP ;P-computablei, is also complete with respect to the class hNP ;P-samplablei.Thus, in retrospect, Levin's choice only makes the theory stronger: It requires to select completedistributional problems from the restricted class hNP ;P-computablei, whereas hardness holds withrespect to the wider class hNP ;P-samplablei.As hinted above, the de�nition of average polynomial-time is less straightforward than one mayexpect. The obvious attempt at formulation this notion leads to fundamental problems which, inour opinion, deem it inadequate. (For a detailed discussion of this point, the reader is referredto the Appendix.) We believe that once the failure of the obvious attempt is understood, Levin'sde�nition (presented below) does look a natural one.14.2 De�nitions and NotationsIn this section we present the basic de�nitions underlying the theory of average-case complexity.Most de�nitions originate from Levin [59], but the reader is advised not to look there for furtherexplanations and motivating discussions.For sake of simplicity, we consider the standard lexicographic ordering of binary strings. Any�xed e�cient enumeration will do. (An e�cient enumeration is a 1-1 and onto mapping of stringsto integers that can be computed and inverted in polynomial-time.) By writing x < y we meanthat the string x precedes y in lexicographic order, and y� 1 denotes the immediate predecessor ofy. Also, we associate pairs, triples etc. of binary strings with single binary strings in some standardmanner (i.e. encoding).De�nition 14.1 (Probability Distribution Function): A distribution function � : f0; 1g� ! [0; 1]is a non-decreasing function from strings to the unit interval [0; 1] that converges to one; that is,�(0) � 0, �(x) � �(y) for each x < y, and limx!1 �(x) = 1. The density function associated withthe distribution function � is denoted �0 and de�ned by �0(0) = �(0) and �0(x) = �(x) � �(x� 1)for every x > 0.Clearly, �(x) = Py�x �0(y). For notational convenience, we often describe distribution functionsconverging to some c 6= 1. In all the cases where we use this convention it is easy to normalizethe distribution, so that it converges to one. An important example is the uniform distributionfunction �0 de�ned as �00(x) = 1jxj2 �2�jxj. (A minor modi�cation that does converge to 1 is obtainedby letting �00(x) = 1jxj�(jxj+1) � 2�jxj.) 80

De�nition 14.2 (A Distributional Problem): A distributional decision problem (resp., distribu-tional search problem) is a pair (D;�) (resp. (S; �)), where D : f0; 1g� ! f0; 1g (resp., S �f0; 1g� � f0; 1g�) and � : f0; 1g� ! [0; 1] is a distribution function.In the sequel we consider mainly decision problems. Similar formulations for search problems canbe easily derived.14.2.1 Distributional-NPSimple distributions are identi�ed with the P-computable ones. The importance of restrictingattention to simple distributions (rather than allowing arbitrary ones) is demonstrated in [10,Sec. 5.2]: essentially, making no such restrictions would collapse the average-case theory to thestandard worst-case theory.De�nition 14.3 (P-computable): A distribution � is in the class P-computable if there is a de-terministic polynomial time Turing machine that on input x outputs the binary expansion of �(x)(i.e., the running time is polynomial in jxj).It follows that the binary expansion of �(x) has length polynomial in jxj. An necessary conditionfor distributions to be of interest is their putting noticeable probability weight on long strings (i.e.,for some polynomial, p, and su�ciently big n the probability weight assigned to n-bit strings shouldbe at least 1=p(n)). Consider to the contrary the density function �0(x) def= 2�3jxj. An algorithm ofrunning time t(x) = 2jxj will be considered to have constant on the average running-time w.r.t this� (as Px �0(x) � t(jxj) =Pn 2�n = 1).If the distribution function � is in P-computable then the density function, �0, is computablein time polynomial in jxj. The converse, however, is false, unless P = NP . In spite of this remarkwe usually present the density function, and leave it to the reader to verify that the correspondingdistribution function is in P-computable.We now present the class of distributional problems which corresponds to (the traditional) NP.Most of results in the literature refer to this class.De�nition 14.4 (The class DistNP): A distributional problem (D;�) belongs to the class DistNPif D is an NP-predicate and � is in P-computable. DistNP is also denoted hNP ;P-computablei.A wider class of distributions, denoted P-samplable, gives rise to a wider class of distributional NPproblems, which was discussed in the introduction: A distribution � is in the class P-samplableif there exists a polynomial p and a probabilistic algorithm A that outputs the string x withprobability �0(x) within p(jxj) steps. That is, elements in a P-samplable distribution are generatedin time polynomial in their length. We comment that any P-computable distribution is P-samplable,whereas the converse if false (provided one-way functions exist). For a detailed discussion see [10].14.2.2 Average Polynomial-TimeThe following de�nitions, regarding average polynomial-time, may seem obscure at �rst glance. Itis important to point out that the naive formalizations of these de�nitions su�er from serious prob-lems such as not being closed under functional composition of algorithms, being model dependent,encoding dependent etc. For a more detailed discussion, see Appendix.81

De�nition 14.5 (Polynomial on the Average): A function f : f0; 1g� ! N is polynomial on theaverage with respect to a distribution � if there exists a constant � > 0 such thatXx2f0;1g� �0(x) � f(x)�jxj <1The function l(x) = f(x)� is linear on the average w.r.t. �.Thus, a function is polynomial on the average if it is bounded by a polynomial in a function that islinear on the average. In fact, the basic de�nition is that of a function that is linear on the average;see [10, Def. 2].De�nition 14.6 (The class Average-P): A distributional problem (D;�) is in the class Average-Pif there exists an algorithm A solving D, so that the running time of A is polynomial on the averagewith respect to the distribution �.We view the classes Average-P and DistNP as the average-case analogue of P and NP (respectively).14.2.3 Reducibility between Distributional ProblemsWe now present de�nitions of (average polynomial time) reductions of one distributional problemto another. Intuitively, such a reduction should be e�ciently computable, yield a valid result and\preserve" the probability distribution. The purpose of the last requirement is to ensure thatthe reduction does not map very likely instances of the �rst problem to rare instances of thesecond problem. Otherwise, having a polynomial time on the average algorithm for the seconddistributional problem does not necessarily yield such an algorithm for the �rst distributionalproblem. Following is a de�nition of randomized Turing reductions. De�nitions of deterministicand many-to-one reductions can be easily derived as special cases.De�nition 14.7 (Randomized Turing Reductions): We say that the probabilistic oracle Turingmachine M randomly reduces the distributional problem (D1; �1) to the distributional problem(D2; �2) if the following three conditions hold.1) E�ciency: Machine M is polynomial time on the average taken over x with distribution �1 andthe internal coin tosses of M with uniform probability distribution (i.e., let tM (x; r) be therunning time of M on input x and internal coin tosses r, then there exists � > 0 such thatPx;r �01(x)�00(r) � tM (x;r)�jxj <1, where �0 is the uniform distribution).2) Validity: For every x 2 f0; 1g�, Prob(MD2(x) = D1(x)) � 23where MD2(x) is the random variable (determined by M 's internal coin tosses) which denotesthe output of the oracle machine M on input x and access to oracle for D2.3) Domination: There exists a constant c > 0 such that for every y 2 f0; 1g�,�02(y) � 1jyjc � Xx2f0;1g�AskM (x; y) � �01(x)where AskM (x; y) is the probability (taken over M 's internal coin tosses) that \machine Masks query y on input x". 82

In the de�nition of deterministic Turing reductions MD2(x) is determined by x (rather than beinga random variable) and AskM (x; y) is either 0 or 1 (rather than being any arbitrary rational in[0; 1]). In case of a many-to-one deterministic reduction, for every x, we have AskM (x; y) = 1 fora unique y.It can be proven1 that if (D1; �1) is deterministically (resp., randomly) reducible to (D2; �2)and if (D2; �2) is solvable by a deterministic (resp., randomized) algorithm with running timepolynomial on the average then so is (D1; �1).Reductions are transitive in the special case in which they are honest; that is, on input x theyask queries of length at least jxj�, for some constant � > 0. All known reductions have this property.14.2.4 A Generic DistNP Complete ProblemThe following distributional version of Bounded Halting, denoted �BH = (BH;�BH), is known tobe DistNP-complete (see Section 14.3).De�nition 14.8 (distributional Bounded Halting):� Decision: BH(M;x; 1k) = 1 i� there exists a computation of the non-deterministic machineM on input x which halts within k steps.� Distribution: The distribution �BH is de�ned in terms of its density function�0BH(M;x; 1k) def= 1jM j2 � 2jM j � 1jxj2 � 2jxj � 1k2Note that �0BH is very di�erent from the uniform distribution on binary strings (e.g., considerrelatively large k). Yet, as noted by Levin, one can easily modify �BH so that has a \uniform"distribution and is DistNP-complete with respect to randomized reduction. (Hint: replace theunary time bound by a string of equal length, assigning each such string the same probability.)14.3 DistNP-completeness of �BHThe proof, presented here, is due to Guretich [37]. (An alternative proof is implied by Levin'soriginal paper [59].)In the traditional theory of NP-completeness, the mere existence of complete problems is almostimmediate. For example, it is very easy to show that Bounded Halting is NP-complete.2 In thecase of distributional-NP an analogous theorem is much harder to prove. The di�culty is thatwe have to reduce all DistNP problems (i.e., pairs consisting of decision problems and simple1Hint: Suppose that, for � > 0, we have Px �01(x) t(x)�)jxj = O(1), and for some c � 1 we have �02(x) � jxjc�01(x)(8x). Then, let S def= fx : t(x) � jxj2c=�g, and split the sum Px �02(x) t(x)�=2cjxj according to x 2 S or not. The sumPx2S �02(x) t(x)�=2cjxj is bounded by 1, using t(x)�=2c � jxj; whereas Px62S �02(x) t(x)�=2cjxj is bounded by O(1), using�02 � jxjc�01(x) and jxjc � t(x)�=2 (andPx �01(x) t(x)�)jxj = O(1)).2Recall that Bounded Halting (BH) is de�ned over triples (M;x; 1k), where M is a non-deterministic machine, x isa binary string and k is an integer (given in unary). The problem is to determine whether there exists a computationof M on input x which halts within k steps. Clearly, Bounded Halting is in NP (here its crucial that k is given inunary). Let D be an arbitrary NP problem, and let MD be the non-deterministic machine solving it in time PD(n)on inputs of length n, where PD is a �xed polynomial. Then the reduction of D to BH consists of the transformationx 7! (MD; x; 1PD(jxj)). 83

distributions) to one single distributional problem (i.e., Bounded Halting with a single simpledistribution). Applying reductions as in Footnote 2 we end-up with many distributional versions ofBounded Halting, and furthermore the corresponding distribution functions will be very di�erentand will not necessarily dominate one another. Instead, one should reduce each distributionalproblem, (D;�), with an arbitrary P-computable distribution � to the same distributional problemwith a �xed (P-computable) distribution (e.g. �BH). The di�culty in doing so is that the reductionshould have the domination property. Consider for example an attempt to reduce each problem inDistNP to �BH by using the standard transformation of D to BH (i.e., x 7! (MD; x; 1PD(jxj))). Thistransformation fails when applied to distributional problems in which the distribution of (in�nitelymany) strings is much higher than the distribution assigned to them by the uniform distribution.In such cases, the standard reduction maps an instance x having probability mass �0(x)� 2�jxj toa triple (MD; x; 1PD(jxj)) with much lighter probability mass (recall �0BH(MD; x; 1PD(jxj)) < 2�jxj).This violates the domination condition, and thus an alternative reduction is required.The key to the alternative reduction (of (D;�) to �BH) is an (e�ciently computable) encodingof strings taken from an arbitrary polynomial-time computable distribution by strings that havecomparable probability mass under a �xed distribution. This encoding will map x into a codewordof length bounded above by the logarithm of 1=�0(x). Accordingly, the reduction will map x to atriple (MD;�; x0; 1jxjO(1)), where jx0j < O(1) + log2 1=�0(x), and MD;� is a non-deterministic Turingmachine that �rst retrieves x from x0 and then applies the standard non-deterministic machine (i.e.,MD) of the problemD. Such a reduction will be shown to satisfy all three conditions (i.e. e�ciency,validity, and domination). Thus, instead of forcing the structure of the original distribution � onthe target distribution �BH , the reduction will incorporate the structure of � into the the reducedinstance. The following technical lemma is the basis of the reduction.Coding Lemma: Let � be a polynomial-time computable distribution function. Then there exista coding function C� satisfying the following three conditions.1) Compression: For every x 2 f0; 1g�jC�(x)j � 1 +min�jxj; log2 1�0(x)�2) E�cient Encoding: The function C� is computable in polynomial-time.3) Unique Decoding: The function C� is one-to-one (i.e. C�(x) = C�(x0) implies x = x0).Proof: The function C� is de�ned as follows. If �0(x) � 2�jxj then C�(x) = 0x (i.e. in this case xserves as its own encoding). If �0(x) > 2�jxj then C�(x) = 1z, where z is the longest common pre�xof the binary expansions of �(x� 1) and �(x) (e.g. if �(1010) = 0:10000 and �(1011) = 0:10101111then C�(1011) = 1z with z = 10). Consequently, 0:z1 is in the interval (�(x � 1); �(x)]; that is,�(x� 1) < 0:z1 � �(x).We now verify that C� so de�ned satis�es the conditions of the lemma. We start with thecompression condition. Clearly, if �0(x) � 2�jxj then jC�(x)j = 1+ jxj � 1 + log2(1=�0(x)). On theother hand, suppose that �0(x) > 2�jxj and let z = z1 � � � z` be as above (i.e., the longest commonpre�x of the binary expansions of �(x� 1) and �(x)). Then,�0(x) = �(x)� �(x� 1) � 0@X̀i=1 2�izi + poly(jxj)Xi=`+1 2�i1A� X̀i=1 2�izi < 2�jzj84

and jzj � log2(1=�0(x)) follows. Thus, jC�(x)j � 1+log2(1=�0(x)) in both cases. Clearly, C� can becomputed in polynomial-time by computing �(x� 1) and �(x). Finally, note that C� is one-to-oneby considering the two cases, C�(x) = 0x and C�(x) = 1z. (In the second case, use the fact that�(x� 1) < 0:z1 � �(x)).Using the coding function presented in the above proof, we introduce a non-deterministic machineMD;� so that the distributional problem (D;�) is reducible to �BH = (BH;�BH) in a way thatall instances (of D) are mapped to triples with �rst element MD;�. On input y = C�(x), machineMD;� computes D(x), by �rst retrieving x from C�(x) (e.g., guess and verify), and next runningthe non-deterministic polynomial-time machine (i.e., MD) that solves D.The reduction maps an instance x (of D) to the triple (MD;�; C�(x); 1P (jxj)), where P (n) def=PD(n) +PC(n) +n, PD(n) is a polynomial bounding the running time of MD on acceptable inputsof length n, and PC(n) is a polynomial bounding the running time of an algorithm for encodinginputs (of length n).Proposition: The above mapping constitutes a reduction of (D;�) to (BH;�BH).Proof: We verify the three requirements.� The transformation can be computed in polynomial-time. (Recall that C� is polynomial-timecomputable.)� By construction of MD;� it follows that D(x) = 1 if and only if there exists a computationof machine MD;� that on input C�(x) halts outputting 1 within P (jxj) steps. (Recall, oninput C�(x), machine MD;� non-deterministically guesses x, veri�es in PC(jxj) steps that xis encoded by C�(x), and non-deterministically \computes" D(x).)� To see that the distribution induced by the reduction is dominated by the distribution �BH , we�rst recall that the transformation x! C�(x) is one-to-one. It su�ces to consider instancesof BH that have a preimage under the reduction (since instances with no preimage satisfy thecondition trivially). All these instances are triples with �rst element MD;�. By the de�nitionof �BH �0BH(MD;�; C�(x); 1P (jxj)) = c � 1P (jxj)2 � 1jC�(x)j2 � 2jC�(x)jwhere c = 1jMD;�j2�2jMD;�j is a constant depending only on (D;�).By virtue of the coding Lemma �0(x) � 2 � 2�jC�(x)jIt thus follows that�0BH(MD;�; C�(x); 1P (jxj)) � c � 1P (jxj)2 � 1jC�(x)j2 � �0(x)2> c2 � jMD;�; C�(x); 1P (jxj)j2 � �0(x)The Proposition follows.
85

14.4 ConclusionsIn general, a theory of average-case complexity should provide1. a speci�cation of a broad class of interesting distributional problems;2. a de�nition capturing the subclass of (distributional) problems that are easy on the average;3. notions of reducibility that allow to infer the easiness of one (distributional) problem fromthe easiness of another;4. and, of course, results...It seems that the theory of average-case complexity, initiated by Levin and further developed in[37, 10, 44], satis�es these expectations to some extent. Following is my evaluation regarding its\performance" with respect to each of the above.1. The scope of the theory, originally restricted to P-computable distributions has been signi�-cantly extended to cover all P-sampleable distributions (as suggested in [10]). The key resulthere is by Impagliazzo and Levin [44] show proved that every language that is hNP ;P-computablei-complete is also hNP ;P-samplablei-complete. This important result makes the theory ofaverage-case very robust: It allows to reduce distributional problems from an utmost wideclass to distributional problems with very restricted/simple type of distributions.2. The de�nition of average polynomial-time does seem strange at �rst glance, but it seems thatit (or similar alternative) does captures the intuitive meaning of \easy on the average".3. The notions of reducibility are both natural and adequate.4. Results did follow, but here indeed much more is expected. Currently, DistNP-completeproblems are known for the following areas: Computability (e.g., Bounded-Halting), Combi-natorics (e.g., Tiling and a generalization of graph coloring), Formal Languages and Algebra(e.g., of matrix groups). However the challenge of �nding a really natural distributional prob-lem that is complete in DistNP (e.g., subset sum with uniform distribution), has not been metso far. It seems that what is still lacking are techniques for design of \distribution preserving"reductions.In addition to their central role in the theory of average-case complexity, reductions that preserveuniform (or very simple) instance distribution are of general interest. Such reductions, unlike mostknown reductions used in the theory of NP-completeness, have a range that is a non-negligible partof the set of all possible instances of the target problem (i.e. a part that cannot be claim to be onlya \pathological subcase").We note that Levin views the results in his paper [59] as an indication that all \simple" (i.e.,P-computable) distributions are in fact related (or similar).Appendix: Failure of a naive formulationWhen asked to motivate his de�nition of average polynomial-time, Leonid Levin replies, non-deterministically, in one of the following three ways:� \This is the natural de�nition". 86

� \This de�nition is not important for the results in my paper; only the de�nitions of reduc-tion and completeness matter (and also they can be modi�ed in many ways preserving theresults)".� \Any de�nition that makes sense is either equivalent or weaker".For further elaboration on the �rst argument the reader is referred to Leonid Levin. The secondargument is, of course, technically correct but unsatisfactory. We will need a de�nition of \easyon the average" when motivating the notion of a reduction and developing useful relaxations of it.The third argument is a thesis which should be interpreted along Wittgenstein's suggestion to theteacher: \say nothing and con�ne yourself to pointing out errors in the students' attempts to saysomething". We will follow this line here by arguing that the de�nition that seems natural to anaverage computer scientist su�ers from serious problems and should be rejected.De�nition X (naive formulation of the notion of easy on the average): A distributional problem(D;�) is polynomial-time on the average if there exists an algorithm A solving D (i.e. on input xoutputs D(x)) such that the running time of algorithm A, denoted tA, satis�es 9c > 08n:Xx2f0;1gn �0n(x) � tA(x) < ncwhere �0n(x) is the conditional probability that x occurs given that an n-bit string occurs (i.e.,�0n(x) = �0(x)=Py2f0;1gn �0(y)).The problem which we consider to be most upsetting is that De�nition X is not robust underfunctional composition of algorithms. Namely, if the distributional problem A can be solved inaverage polynomial-time given access to an oracle for B, and problemB can be solved in polynomial-time then it does not follow that the distributional problem A can be solved in average polynomial-time. For example, consider uniform probability distribution on inputs of each length and an oracleTuring machine M which given access to oracle B solves A. Suppose that MB runs 2n2 steps on2n2 of the inputs of length n, and n2 steps on all other inputs of length n; and furthermore thatM when making t steps asks a single query of length pt. (Note that machine M , given access tooracle for B, is polynomial-time on the average.) Finally, suppose that the algorithm for B hascubic running-time. The reader can now verify that although M given access to the oracle B ispolynomial-time on the average, combining M with the cubic running-time algorithm for B doesnot yield an algorithm which is polynomial-time on the average according to De�nition X. It is easyto see that this problem does not arise when using the de�nition presented in Section 2.The source of the above problem with De�nition X is the fact that the underlying de�nition ofpolynomial-on-the-average is not closed under application of polynomials. Namely, if t : f0; 1g� ! Nis polynomial on the average, with respect to some distribution, it does not follow that also t2(�)is polynomial on the average (with respect to the same distribution). This technical problem isalso the source of the following problem, that Levin considers most upsetting: De�nition X is notmachine independent. This is the case since some of the simulations of one computational model onanother square the running time (e.g., the simulation of two-tape Turing machines on a one-tapeTuring machine, or the simulation of a RAM (Random Access Machine) on a Turing machine).Another two problems with De�nition X have to do with the fact that it deals separately withinputs of di�erent length. The �rst problem is that De�nition X is very dependent on the particularencoding of the problem instance. Consider, for example, a problem on simple undirected graphsfor which there exist an algorithm A with running time tA(G) = f(n;m), where n is the number of87

vertices in G and m is the number of edges (in G). Suppose that if m < n 32 then f(n;m) = 2n andelse f(n;m) = n2. Consider the distributional problem which consists of the above graph problemwith the uniform probability distribution on all graphs with the same number of vertices. Now, ifthe graph is given by its (incident) matrix representation then De�nition X implies that A solvesthe problem in average polynomial-time (the average is taken on all graphs with n nodes). Onthe other hand, if the graphs are represented by their adjacency lists then the modi�ed algorithmA (which transforms the graphs to matrix representation and applies algorithm A) is judged byDe�nition X to be non-polynomial on the average (here the average is taken over all graphs of medges). This of course will not happen when working with the de�nition presented in Section 2.The second problem with dealing separately with di�erent input lengths is that it does not allowone to disregard inputs of a particular length. Consider for example a problem for which we areonly interested in the running-time on inputs of odd length.After pointing out several weaknesses of De�nition X, let us also doubt its \clear intuitiveadvantage" over the de�nition presented in Section 2. De�nition X is derived from the formulationof worst-case polynomial-time algorithms which requires that 9c > 0 8n:8x 2 f0; 1gn : tA(x) < ncDe�nition X was derived by applying the expectation operator to the above inequality. But whynot make a very simple algebraic manipulation of the inequality before applying the expectationoperator? How about taking the c-th root of both sides and dividing by n; this yields 9c > 0 8n:8x 2 f0; 1gn : tA(x) 1cn < 1Applying the expectation operator to the above inequality leads to the de�nition presented inSection 2... We believe that this de�nition demonstrates a better understanding of the e�ect of theexpectation operator with respect to complexity measures!Summary: Robustness under functional composition as well as machine independence seems tobe essential for a coherent theory. So is robustness under e�ciently e�ected transformation of theproblem encoding. These are one of the primary reasons for the acceptability of P as capturingproblems that can be solved e�ciently. In going from worst-case analysis to average-case analysiswe should not and would not like to lose these properties.

88

Lecture 15Circuit Lower BoundsSee old survey by Boppana and Sipser [13].15.1 Constant-depth circuits15.2 Monotone circuits

89

Lecture 16Communication ComplexitySee textbook by Kushilevitz and Nisan [54].16.1 Deterministic Communication Complexity16.2 Randomized Communication Complexity

90

Historical NotesProbabilistic Proof SystemsFor a more detailed account of the history of the various types of probabilistic proof systems, werefer the reader to [26, Sec. 2.6.2].Interactive Proofs: Interactive proof systems were introduced by Goldwasser, Micali and Rack-o� [35], with the explicit objective of capturing the most general notion of e�ciently veri�able proofsystems. The original motivation was the introduction of zero-knowledge proof systems, which inturn were supposed to provide (and indeed do provide) a powerful tool for the design of complexcryptographic schemes (cf. [32, 33]).First evidence that interactive proofs may be more powerful than NP-proofs was given by Gol-dreich, Micali and Wigderson [32], in the form of the interactive proof for Graph Non-Isomorphismpresented above. The full power of interactive proof systems was discovered by Lund, Fortnow,Karlo�, Nisan, and Shamir (in [61] and [70]). The basic technique was presented in [61] (whereit was shown that coNP � IP) and the �nal result (PSPACE = IP) in [70]. Our presentationfollows [70].Public-coin interactive proofs (also known as Arthur-Merlin proofs) were introduced by Babai [5].The fact that these restricted interactive proofs are as powerful as general ones was proved by Gold-wasser and Sipser [36]. The linear speed-up (in number of rounds) of public-coin interactive proofswas shown by Babai and Moran [8].Zero-knowledge proofs: The concept of zero-knowledge has been introduced by Goldwasser,Micali and Racko� (in the very same paper quoted above; i.e., [35]). Their paper contained alsoa perfect zero-knowledge proof for Quadratic Non-Residuosity. The perfect zero-knowledge proofsystem for Graph Isomorphism is due to Goldreich, Micali and Wigderson [32]. More importantly,the latter paper presents a zero-knowledge proof systems for all languages in NP, using any securecommitment scheme, which in turn can be constructed based on any one-way function [40, 63]. Forthe comprehensive discussion of zero-knowledge see [27, Chap. 4].Probabilistically Checkable Proofs: The PCP Characterization Theorem is attributed toArora, Lund, Motwani, Safra, Sudan and Szegedy (cf. [4] and [3]). These papers, in turn, built onnumerous previous works; for details see the papers themselves or [26]. In general, our presentationof PCP follows [26, Sec. 2.4], and the interested reader is referred to the latter for a survey offurther developments and more re�ned considerations.The �rst connection between PCP and hardness of approximation was made by Feige, Gold-wasser, Lovasz, Safra, and Szegedy [19]: They showed the connection to maxClique (presented91

above). The connection to max3SAT and other \MaxSNP approximation" problems was madelater in [3].We did not present the strongest known non-approximability results for max3SAT and max-Clique. These can be found in Hastad's papers, [39] and [38], respectively.PseudorandomnessThe notion of computational indistinguishability was introduced by Goldwasser and Micali [34](within the context of de�ning secure encryptions), and given general formulation by Yao [81].Our de�nition of pseudorandom generators follows the one of Yao, which is equivalent to a priorformulation of Blum and Micali [12]. For more details regarding this equivalence, as well as manyother issues, see [26]. The latter source presents the notion of pseudorandomness discussed here asa special case (or archetypical case) of a general paradigm.The discovery that computational hardness (in form of one-wayness) can be turned into apseudorandomness was made by Blum and Micali [12]. Theorem 13.7 (asserting that pseudorandomgenerators can be constructed based on any one-way function) is due to H�astad, Impagliazzo, Levinand Luby [40], who build on [30, 31].The fact that pseudorandom generators yield signi�cantly better derandomization than thestraightforward one was �rst exploited by Yao [81]. The fact that for purpose of derandomizationone may use pseudorandom generators that run in exponential time was �rst observed by Nisanand Wigderson [66], who presented a general framework for such constructions. All improvedderandomization results build on the latter framework. In Particular, Theorem 13.11 is due toImpagliazzo and Wigderson [45], who build on [66, 7, 43].Theorems 13.12 and 13.13 (regarding derandomization of space-bounded randomized classes)are due to Nisan [64, 65] and Nisan and Zuckerman [67], respectively.Average-Case ComplexityThe theory of average-case complexity was initiated by Levin [59]. Levin's laconic presentation [59]hides the fact that important choices have been made in the development of the average-casecomplexity theory. These choices were discussed in [24], and our presentation follows the lattertext.

92

Bibliography[1] L. Adleman. Two theorems on random polynomial-time. In 19th FOCS, pages 75{83, 1978.[2] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lov�asz and C. Racko�. Random walks, universaltraversal sequences, and the complexity of maze problems. In 20th FOCS, pages 218{223,1979.[3] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Veri�cation and Intractabilityof Approximation Problems. JACM, Vol. 45, pages 501{555, 1998. Preliminary version in 33rdFOCS, 1992.[4] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP. JACM,Vol. 45, pages 70{122, 1998. Preliminary version in 33rd FOCS, 1992.[5] L. Babai. Trading Group Theory for Randomness. In 17th STOC, pages 421{429, 1985.[6] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in PolylogarithmicTime. In 23rd STOC, pages 21{31, 1991.[7] L. Babai, L. Fortnow, N. Nisan and A. Wigderson. BPP has Subexponential Time Simulationsunless EXPTIME has Publishable Proofs. Complexity Theory, Vol. 3, pages 307{318, 1993.[8] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System and a Hierarchyof Complexity Classes. JCSS, Vol. 36, pages 254{276, 1988.[9] P. Beame and T. Pitassi. Propositional Proof Complexity: Past, Present, and Future. InBulletin of the European Association for Theoretical Computer Science, Vol. 65, June 1998,pages 66{89.[10] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Average Case Com-plexity. JCSS, Vol. 44, No. 2, April 1992, pages 193{219.[11] A. Ben-Dor and S. Halevi. In 2nd Israel Symp. on Theory of Computing and Systems(ISTCS93), IEEE Computer Society Press, 1993.[12] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SICOMP, Vol. 13, pages 850{864, 1984. Preliminary version in 23rd FOCS,1982.[13] R. Boppana and M. Sipser. The complexity of �nite functions. In Handbook of Theoreti-cal Computer Science: Volume A{ Algorithms and Complexity, J. van Leeuwen editor, MITPress/Elsevier, 1990, pages 757{804. 93

[14] L. Carter and M. Wegman. Universal Hash Functions. JCSS, Vol. 18, 1979, pages 143{154.[15] G.J. Chaitin. On the Length of Programs for Computing Finite Binary Sequences. JACM,Vol. 13, pages 547{570, 1966.[16] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer. Alternation. JACM, Vol. 28, pages 114{133,1981.[17] S.A. Cook. The Complexity of Theorem Proving Procedures. In . 3rd STOC, pages 151{158,1971.[18] T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc.,New-York, 1991.[19] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating Clique is almostNP-complete. JACM, Vol. 43, pages 268{292, 1996. Preliminary version in 32nd FOCS, 1991.[20] S. Fortune. A Note on Sparse Complete Sets. SIAM J. on Computing, Vol. 8, pages 431{433,1979.[21] M. F�urer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Completeness and Sound-ness in Interactive Proof Systems. Advances in Computing Research: a research annual, Vol. 5(Randomness and Computation, S. Micali, ed.), pages 429{442, 1989.[22] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.[23] J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on Com-puting, Vol. 6(4), pages 675{695, 1977.[24] O. Goldreich. Notes on Levin's Theory of Average-Case Complexity. In ECCC, TR97-058,1997.[25] O. Goldreich. Secure Multi-Party Computation. Unpublished amnuscript, 1998. Availablefrom http://www.wisdom.weizmann.ac.il/�oded/gmw.html[26] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithmsand Combinatorics series (Vol. 17), Springer, 1999.[27] O. Goldreich. Foundation of Cryptography { Basic Tools. Cambridge University Press, 2001.[28] O. Goldreich. Randomized Methods in Computation, Lecture Notes, Spring 2001. Availablefrom http://www.wisdom.weizmann.ac.il/�oded/rnd.html[29] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. JACM,Vol. 33, No. 4, pages 792{807, 1986.[30] O. Goldreich, H. Krawcyzk and M. Luby. On the Existence of Pseudorandom Generators.SICOMP, Vol. 22-6, pages 1163{1175, 1993.[31] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st STOC,pages 25{32, 1989. 94

[32] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity or AllLanguages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38, No. 1, pages 691{729,1991. Preliminary version in 27th FOCS, 1986.[33] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game { A CompletenessTheorem for Protocols with Honest Majority. In 19th STOC, pages 218{229, 1987. For detailssee [25].[34] S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages 270{299,1984. Preliminary version in 14th STOC, 1982.[35] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SICOMP, Vol. 18, pages 186{208, 1989. Preliminary version in 17th STOC, 1985.Earlier versions date to 1982.[36] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof Systems.Advances in Computing Research: a research annual, Vol. 5 (Randomness and Computation,S. Micali, ed.), pages 73{90, 1989. Extended abstract in 18th STOC, pages 59{68, 1986.[37] Y. Gurevich. Complete and Incomplete Randomized NP Problems. In Proc. of the 28th FOCS,1987, pages 111{117.[38] J. H�astad. Clique is hard to approximate within n1��. Acta Mathematica, Vol. 182, pages105{142, 1999. Combines preliminary versions in 28th STOC (1996) and 37th FOCS (1996).[39] J. H�astad. Getting optimal in-approximability results. In 29th STOC, pages 1{10, 1997.[40] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. A PseudorandomGenerator from any One-way Function. SICOMP, Volume 28, Number 4, pages 1364{1396, 1999. Combines preliminaryversions by Impagliazzo et. al. in 21st STOC (1989) and H�astad in 22nd STOC (1990).[41] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computa-tion. Addison-Wesley, 1979.[42] N. Immerman. Nondeterministic Space is Closed Under Complementation. SIAM Jour. onComputing, Vol. 17, pages 760{778, 1988.[43] R. Impagliazzo. Hard-core Distributions for Somewhat Hard Problems. In 36th FOCS, pages538{545, 1995.[44] R. Impagliazzo and L.A. Levin. No Better Ways to Generate Hard NP Instances than PickingUniformly at Random. In Proc. of the 31st FOCS, 1990, pages 812{821.[45] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandomizingthe XOR Lemma. In 29th STOC, pages 220{229, 1997.[46] D.S. Johnson. The NP-Complete Column { an ongoing guide. Jour. of Algorithms, 1984, Vol.4, pages 284{299.[47] R.M. Karp. Reducibility among Combinatorial Problems. In Complexity of Computer Com-putations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, pages 85{103, 1972.[48] R.M. Karp. Probabilistic Analysis of Algorithms. Manuscript, 1986.95

[49] R.M. Karp and R.J. Lipton. Some connections between nonuniform and uniform complexityclasses. In 12th STOC, pages 302-309, 1980.[50] R.M. Karp and V. Ramachandran. Parallel Algorithms for Shared Memory Machines. InHandbook of Theoretical Computer Science, Vol A: Algorithms and Complexity, 1990.[51] M.J. Kearns and U.V. Vazirani. An introduction to Computational Learning Theory. MITPress, 1994.[52] D.E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerical Algorithms). Addison-Wesley Publishing Company, Inc., 1969 (�rst edition) and 1981 (second edition).[53] A. Kolmogorov. Three Approaches to the Concept of \The Amount Of Information". Probl. ofInform. Transm., Vol. 1/1, 1965.[54] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1996.[55] R.E. Ladner. On the Structure of Polynomial Time Reducibility. Jour. of the ACM, 22, 1975,pages 155{171.[56] C. Lautemann. BPP and the Polynomial Hierarchy. IPL, 17, pages 215{217, 1983.[57] L.A. Levin. Universal Search Problems. Problemy Peredaci Informacii 9, pages 115{116, 1973.Translated in problems of Information Transmission 9, pages 265{266.[58] L.A. Levin. Randomness Conservation Inequalities: Information and Independence in Mathe-matical Theories. Inform. and Control, Vol. 61, pages 15{37, 1984.[59] L.A. Levin. Average Case Complete Problems. SIAM Jour. on Computing, Vol. 15, pages285{286, 1986.[60] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications. SpringerVerlag, August 1993.[61] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic Methods for Interactive ProofSystems. JACM, Vol. 39, No. 4, pages 859{868, 1992. Preliminary version in 31st FOCS,1990.[62] R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge University Press, 1995.[63] M. Naor. Bit Commitment using Pseudorandom Generators. Jour. of Crypto., Vol. 4, pages151{158, 1991.[64] N. Nisan. Pseudorandom Generators for Space Bounded Computation. Combinatorica, Vol. 12(4), pages 449{461, 1992.[65] N. Nisan. RL � SC. Journal of Computational Complexity, Vol. 4, pages 1-11, 1994.[66] N. Nisan and A. Wigderson. Hardness vs Randomness. JCSS, Vol. 49, No. 2, pages 149{167,1994.[67] N. Nisan and D. Zuckerman. Randomness is Linear in Space. JCSS, Vol. 52 (1), pages 43{52,1996. 96

[68] W.J. Savitch. Relationships between nondeterministic and deterministic tape complexities.JCSS, Vol. 4 (2), pages 177-192, 1970.[69] R. Shaltiel Recent developments in explicit constructions of extractors. In the Bulletin of theEuropean Association for Theoretical Computer Science, Vol. 77, June 2002, pages 67{95.[70] A. Shamir. IP = PSPACE. JACM, Vol. 39, No. 4, pages 869{877, 1992. Preliminary versionin 31st FOCS, 1990.[71] C.E. Shannon. A mathematical theory of communication. Bell Sys. Tech. Jour., Vol. 27, pages623{656, 1948.[72] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th STOC, pages 330{335,1983.[73] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.[74] R.J. Solomono�. A Formal Theory of Inductive Inference. Inform. and Control, Vol. 7/1,pages 1{22, 1964.[75] L.J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer Science, Vol. 3,pages 1{22, 1977.[76] L. Stockmeyer. The Complexity of Approximate Counting. In 15th STOC, pages 118{126,1983.[77] R. Szelepcsenyi. A Method of Forced Enumeration for Nondeterministic Automata. ActaInformatica, Vol. 26, pages 279{284, 1988.[78] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD Thesis, Department of Math-ematics, MIT, 1999.[79] L.G. Valiant. The Complexity of Computing the Permanent. Theoretical Computer Science,Vol. 8, pages 189{201, 1979.[80] L.G. Valiant and V.V. Vazirani. NP Is as Easy as Detecting Unique Solutions. TheoreticalComputer Science, Vol. 47 (1), pages 85{93, 1986.[81] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80{91, 1982.

97

