
Estimation of Covariance Matrix via the Sparse Cholesky Factor with Lasso

Changgee Changa,1, Ruey S. Tsay∗,b,2

aDepartment of Statistics, University of Chicago, Chicago, Illinois, USA
bBooth School of Business, University of Chicago, Chicago, Illinois, USA

Abstract

In this paper, we discuss a parsimonious approach to estimation of high-dimensional covariance matrices via

the modified Cholesky decomposition with lasso. Two different methods are proposed. They are the equi-

angular and equi-sparse methods. We use simulation to compare the performance of the proposed methods

with others available in the literature, including the sample covariance matrix, the banding method, and

the L1-penalized normal loglikelihood method. We then apply the proposed methods to a portfolio selection

problem using 80 series of daily stock returns. To facilitate the use of lasso in high-dimensional time series

analysis, we develop the dynamic weighted lasso (DWL) algorithm that extends the LARS-lasso algorithm.

In particular, the proposed algorithm can efficiently update the lasso solution as new data become available.

It can also add or remove explanatory variables. The entire solution path of the L1-penalized normal

loglikelihood method is also constructed.

Key words: Adding and removing variables, Covariance matrix estimation, Equi-angular, Dynamic

weighted lasso, L1 penalty, Lasso, Updating, Modified Cholesky decomposition

1. Introduction

Estimating a high-dimensional covariance matrix with limited data is a difficult problem because the

matrix often contains many parameters. For an m×m covariance matrix Σ, there are m(m+1)/2 parameters,

yet the sample size n is often small. In addition, the positive-definiteness of Σ makes the problem even more

complicated. The sample covariance matrix is positive-definite and unbiased if n > m, but it only works

well for the low-dimensional problem. As the dimension m increases, the sample covariance matrix tends

to become unstable. As shown by Yin [21], the sample covariance matrix can even fail to be consistent if

m/n 9 0. On the other hand, modern statistical applications often encounter high dimensionality with a

limited number of data points. See, for instance, problems in image processing, longitudinal data analysis,

∗Corresponding author: Ruey S. Tsay, Booth School of Business, University of Chicago, 5807 S. Woodlawn Avenue, Chicago,
IL 60637.

Email addresses: changgee@uchicago.edu (Changgee Chang), ruey.tsay@chicagobooth.edu (Ruey S. Tsay)
1Research supported in part by the ROC fund, Center for East Asian Studies, University of Chicago.
2Research supported in part by Booth School of Business, University of Chicago.

Preprint submitted to Journal of Statistical Planning and Inference September 16, 2009

machine learning, and gene array analysis. Many methods to covariance matrix estimation are available in

the literature if m is small relative to n, including the spectral decomposition, Bayesian methods, modeling

the matrix-logarithm, nonparametric smoothing, and banding/thresholding techniques. See, for example,

Bickel and Levina [1] [2], Boik [3], Chiu et al. [4], Diggle and Verbyla [7], Leonard and Hsu [11], and Yang

and Berger [20].

In some applications, one needs the inverse covariance matrix rather than the covariance matrix itself.

Consider, for instance, the question of asset allocation in finance. Solutions to the portfolio selection problem

of Markowitz [13] and many mean-variance type of financial problems are often written in terms of the

inverse covariance matrix. Furthermore, due to the time-varying nature of stock returns, the covariance

structure of return series is often estimated using only the most recent data, resulting in a small sample size

compared to the number of parameters to be estimated. In many cases, the sparse structure of the inverse

covariance matrix has attracted special interest because zero correlations represent conditional independence

between the variables, which is a major concern in some scientific fields, e.g., the graphical model. Dempster

[6] parsimoniously estimated the entries of the inverse covariance matrix, treating them as the canonical

parameters of a multivariate normal density, Wong et al. [18] used a Bayesian approach to estimation of

the inverse covariance matrix, and d’Aspremont et al. [5], Meinshausen and Bühlmann [14], and Yuan

and Lin [22] identified the sparse elements in the inverse covariance matrix by imposing the lasso type of

penalty. But dealing with the elements of the inverse covariance matrix may encounter the difficulty of

the positive definiteness, and often entails heavy computation. Some of the aforementioned papers indeed

provide computationally relaxed approximations.

Pourahmadi [15] employed the modified Cholesky decomposition, which reparameterizes the inverse

covariance matrix. The approach not only can easily guarantee the positive definiteness of a covariance

matrix, but also transforms the problem of estimating covariance matrices into one that employs m−1 linear

regressions. The modified Cholesky decomposition to covariance matrix estimation has been employed in

Bickel and Levina [1], Huang et al. [10], Levina et al. [12], Tsay [17] and Wu and Pourahmadi [19], among

others. In this paper, we also focus on methods based on the modified Cholesky decomposition (assuming

n > m) and seek to estimate entries of the Cholesky factor parsimoniously. The parsimony is achieved by a

series of lasso regressions proposed by Tibshirani [16] and known as the L1-penalized least squares method.

Specifically, we discuss how to fairly penalize the m− 1 lasso regressions with a single penalizing parameter

and propose two penalizing methods.

The first proposed method is the equi-angular method inspired by the least angle regression (LAR) of

Efron et al. [8]. Adopting the framework of Fan and Li [9], Huang et al. [10] proposed an estimation

method that Lp-penalizes the loglikelihood of Σ for normally distributed data. The equi-angular method is

a L1-penalized least squares method and, hence, is similar to the L1-penalized normal loglikelihood method.

But the two methods differ in choosing the penalties for the m − 1 lasso regressions involved. The equi-
2

angular method uses penalties proportional to the residual standard deviations of the lasso regressions.

That is, if the size of a residual of a lasso regression is twice larger than that of another lasso regression,

we impose twice heavier penalty on the former than the latter. We show that the L1-penalized normal

loglikelihood method is equivalent to choosing the lasso penalties being proportional to the corresponding

residual variance. So in the same situation, it assigns four times larger penalty to the former regression

than the latter one. We discuss situations under which the proposed method is fair and reasons for calling

it the equi-angular method. The other method we propose is the equi-sparse method. We define the degree

of sparsity of a lasso regression as the ratio of the current penalty over the minimum lasso penalty needed

to make all coefficients zero, and all lasso regressions synchronize their degree of sparsity. By so doing, if

the degree of sparsity is 1, we have all lasso regressions fully penalized and obtain the identity matrix for

the Cholesky factor, and if the degree of sparsity is 0, the lasso regressions are not penalized at all and we

obtain the sample covariance matrix. When the degree of sparsity is between 0 and 1, we have the Cholesky

factor between the two extremes. The idea behind the equi-sparse method is that, if a lasso regression is

penalized to some degree, then the same should be applied to the other lasso regressions, and this method

is expected to work well when all the regressions are similar.

We compare via simulation and empirical analysis the proposed two methods with the L1-penalized

normal loglikelihood method and the banding method of Bickel and Levina [1]. The simulation study shows

that the proposed equi-angular method outperforms the other methods in general, and the equi-sparse

method does slightly better for covariance matrices whose regression structures are alike. Since the modified

Cholesky decomposition is not permutation invariant, we also investigate the sensitivity to permutation of

each method by randomly permuting the variables before estimation. The result shows that the equi-angular

method still outperforms the others. As a real-world application, the optimal portfolio selection problem in

the finance literature is considered. We perform covariance matrix estimation by various methods and use

the estimated covariance matrices to select the global minimum variance (GMV) portfolios. The portfolios

are updated monthly and their monthly out-of-sample performance is compared.

The paper also develops a new algorithm for solving the lasso problem for serially dependent data. Efron

et al. [8] developed the LARS-lasso algorithm in light of the least angle regression and showed that the

whole solution path of the lasso is piecewise linear with respect to its penalty. A drawback of the LARS-lasso

algorithm is that it only supports fixed weights for the penalties. Although the LARS-lasso algorithm was

written only for homogeneous penalties for all coefficients, we may continue to use the LARS-lasso algorithm

when weighted penalties are used for different coefficients. This is achieved by re-scaling the variables so

that giving the same penalty for all coefficients has the same effect; see, for example, Zou [23]. However,

it is impossible to change the weights in the LARS-lasso algorithm. Furthermore, it is unclear how to

efficiently update the lasso solution when a new data point becomes available. In such cases, even if the

solution is almost unchanged, one needs to perform the LARS-lasso algorithm from the beginning. These
3

deficiencies are major obstacles in applying lasso to the high-dimensional time series analysis. To overcome

the difficulties, we propose a new algorithm that extends the LARS-lasso algorithm. We call it the dynamic

weighted lasso (DWL) algorithm. The time complexity of the DWL algorithm is exactly the same as that

of the LARS-lasso algorithm. Indeed, the two algorithms are twins if the lasso penalties are homogeneous.

But the DWL algorithm allows weighted penalties, can change the weights without rebuilding the solution

from the beginning, and accepts more flexible initial points. Consequently, the proposed new algorithm can

efficiently update the lasso solution. We show that substantial saving in running time is obtained by using

the updating algorithm. Moreover, the new algorithm can efficiently add or remove variables in the lasso.

We provide a fitting algorithm for the equi-angular method, which is based on the DWL (or the LARS-

lasso) algorithm. The whole solution path of each lasso regression with respect to the common penalizing

parameter η is the same as the ordinary lasso solution path with respect to the lasso penalty λ, and there is

a one-to-one correspondence between η and λ, which implies the solution of the equi-angular method exists

uniquely. Since the mapping between η and λ is analytically tractable, the solution for a particular η is

immediately available when the lasso solution path is available. We also discuss ways to find a particular

solution without generating the entire solution path.

Finally, we investigate the whole solution path of the L1-penalized normal loglikelihood method. This

not only provides a justification for the algorithm we used, but also has its own independent research

interest. The solution of the L1-penalized normal loglikelihood can have multiple local solutions due to its

nonconvexity, and an iterative quadratic approximation technique has been used in the literature; see Fan

and Li [9]. However, it turns out that the solution path of the L1-penalized normal loglikelihood method

is a subset of the lasso solution path, and not only the global optimal solution but all local optima are

immediately available when the lasso solution path is available. This leads to a much faster algorithm for

solving the L1-penalized normal loglikelihood problem.

The paper is organized as follows. In Section 2, we briefly review the modified Cholesky decomposition

and define our covariance matrix estimators. Their fitting algorithms are also provided. The L1-penalized

normal loglikelihood method of Huang et al. [10] is compared and its solution path is investigated. In Section

3, we compare via simulation the proposed methods with the banding method, Huang et al.’s method, and

the sample covariance matrix. Section 4 contains the empirical analysis of portfolio selection using daily

stock returns. The DWL algorithm is presented and its derivatives are derived in Section 5. Section 6

concludes the paper with some discussions.

4

2. The Estimation Methods

2.1. The Modified Cholesky Decomposition

For completeness, this subsection briefly reviews the modified Cholesky decomposition (e.g., Pourahmadi

[15]). Suppose Σ is an m ×m positive-definite matrix and let y = (y1, . . . , ym)′ be a random vector with

mean zero and covariance matrix Σ. Let φj,1, . . . , φj,j−1 be the coefficients of the least-squares predictors

for yj based on y1, . . . , yj−1 and εj be the prediction error. Then we have

yj =

j−1∑

k=1

φjkyk + εj . (1)

Let T be a unit lower triangular matrix with Tjk = −φjk for k < j and ε = (ε1, . . . , εm)′. Then (1) becomes

Ty = ε. (2)

Since εj−1 depends only on y1 through yj−1 and εj is uncorrelated with y1 through yj−1, all εj ’s are

uncorrelated and hence cov(ε) = diag
(
σ2

1 , . . . , σ2
m

)
= D. Therefore, it follows from (2) that

TΣT ′ = D.

This is called the modified Cholesky decomposition of Σ. φjk’s are called the generalized autoregressive

parameters, σ2
j ’s are the corresponding innovation or the residual variances, and T is the Cholesky factor.

2.2. The Proposed Estimators

The modified Cholesky decomposition reparameterizes Σ or Σ−1 using φjk’s and σ2
j ’s, and it transforms

the covariance matrix estimation problem into a regression coefficient estimation problem. It enables us to

consider every effort that has been devoted to estimation of regression coefficients as a potential solution to

the covariance matrix estimation problem.

To efficiently estimate covariance matrices with parsimonious Cholesky factor T , we consider the lasso

regression, which is known for its usefulness in variable selection and shrinkage. The lasso regression (Tib-

shirani [16]) is formulated as

minimize ‖y −Xβ‖2 + λ‖β‖1, (3)

where y is the response vector, X is a design matrix, β is the vector of regression coefficients, ‖β‖1 =
∑

j |βj |,

and λ is the penalizing factor with larger values of λ giving sparser and more parsimonious regression

coefficient estimates.

We run m− 1 lasso regressions to estimate φjk’s and σ2
j ’s of the modified Cholesky decomposition. Note

that the explanatory variables in a lasso regression are usually normalized for the sake of fair penalizing.

5

But in this paper, every variable stays in its own scale, and we use the weighted penalties. The j-th lasso

regression becomes

minimize ‖yj −Yjφj‖
2 + λj

j−1∑

k=1

wk|φjk|, j = 2, . . . ,m, (4)

where y′
j =

(
y1

j , . . . , yn
j

)
is the observation vector for the j-th variable, Yj = [y1, . . . ,yj−1] and φj =

(φj,1, . . . , φj,j−1)
′, and w2

k = ‖yk‖
2/n for k = 1, . . . ,m. The solution φ̂j of (4) is the estimator for φj and

σ̂2
j =

1

n

∥∥yj −Yjφ̂j

∥∥2
(5)

is the estimator for the residual variance σ2
j .

Since we use different penalty factors λj for the m − 1 regressions, we encounter the issue of how to

fairly balance λj in penalizing the m − 1 regressions. There might be other ways to address the issue, but

in this paper we propose a method that extends the spirit of lasso. The lasso gives parsimonious regression

coefficient estimates by making all variables corresponding to nonzero coefficients evenly correlated with

the residual and by zeroing the other coefficients whose corresponding variables are less correlated with the

residual. See Proposition 5.1 below or Efron et al. [8].

To make it more specific, assume that φ̂j is the solution of (4), and let Aj be the index set of nonzero

coefficients in φ̂j . Then it follows by Proposition 5.1 that

2
∣∣y′

k

(
yj −Yjφ̂j

)∣∣ = λjwk, k ∈ Aj .

Observe that the LHS of the above equation is proportional to the size of the residual. So, if the true residual

variance σ2
j is large, then the j-th lasso regression is relatively less penalized. Conversely, if σ2

j is small, then

the j-th lasso regression is penalized more heavily. Therefore, it would be fair to make λj proportional to

the residual standard error σ̂j . That is, we propose

λj(η) = ησ̂j , (6)

for some common penalty factor η > 0. By so doing, we can indeed achieve the balance condition

2
∣∣cor

(
yk,yj −Yjφ̂j

)∣∣ = η/n, k ∈ Aj , 2 ≤ j ≤ m,

which can be interpreted as the k-th variable and the j-th residual are equally correlated or equally angled

for every pair of j and k for which φ̂jk is nonzero. We call the resulting covariance matrix Σ̂a(η) the

equi-angular covariance matrix.

Alternatively, we consider another method which also uses the lasso regression but balances λj differently.

We introduce the degree of sparsity ν, which assumes a value in [0,1] and governs the entire sparsity of the

m − 1 lasso regressions. In particular, ν = 0 means that every regression is not penalized at all and the
6

Cholesky factor becomes that of the sample covariance matrix. On the other hand, ν = 1 means that all

regressions are fully penalized and the Cholesky factor becomes the identity matrix. For 0 < ν < 1, we

linearly interpolate the penalties for the two extreme cases. So, our choice of λj given ν becomes

λj(ν) = 2ν max
1≤k<j

|y′
kyj |/wk. (7)

We call the resulting covariance matrix Σ̂s(ν) the equi-sparse covariance matrix and expect that the estimate

fares well if the regressions in the modified Cholesky decomposition are similar.

2.3. Computation

In Section 5, we provide the DWL algorithm that extends the LARS-lasso algorithm of Efron et al.

[8]. Readers are referred to the section for details of our estimation algorithm. Here we briefly discuss the

computation associated with the two proposed estimation methods. The computation for the equi-sparse

covariance matrix is straightforward. We can construct the whole solution path or any particular solution

with respect to λj using the DWL algorithm, and hence we can do the same thing with respect to ν by (7).

The situation is similar for the equi-angular covariance matrix except that the relation between η and

λj becomes a little more complicated. If we have obtained the whole solution path with respect to λj , we

are able to find λj satisfying (6) because the estimated residual variance σ̂2
j (λj) is a tractable function of

λj . Suppose that φ̂j is the solution with lasso penalty λj and let Aj and SAj
be its nonzero index set and

the corresponding sign matrix, respectively. Then, it follows from (5) and (19) that

σ̂2
j (λj) =

1

n

(
y′

jyj − y′
jYAj

(
Y′

Aj
YAj

)−1
Y′

Aj
yj

)
+

1

4n
λ2

jw
′
Aj

SAj

(
Y′

Aj
YAj

)−1
SAj

wAj
. (8)

Hence, the estimated residual variance is piecewise quadratic in λj , and its entire curve is analytically

available if the whole solution path is available. Now assume further that φ̂j is the solution we seek for η.

Then, (6) implies that λj should be

λj =

√√√√√
4η2

(
y′

jyj − y′
jYAj

(
Y′

Aj
YAj

)−1
Y′

Aj
yj

)

4n− η2w′
Aj

SAj

(
Y′

Aj
YAj

)−1
SAj

wAj

. (9)

Note that (8) implies that λj/σ̂j(λj) is continuous and strictly monotone regardless of Aj . Therefore, λj

uniquely exists for each η, which means our equi-angular covariance matrix is unique. Figure 1(a) shows a

simple possible curve for σ̂2
j (λj) in solid line and the curves of λ2

j/η2 for some η’s in dashed lines. We can

see the one-to-one correspondence between η and λj .

To obtain the solution for a single η without having to generate the whole solution path, one encounters

the problem that the correct Aj is not known beforehand. The definition of λj in (6) depends on the

solution, and therefore λj is not available either before the estimation is actually carried out. In fact, the

choice of λj in (6) makes (4) no longer a classical lasso regression and we cannot obtain the solution from the
7

original DWL algorithm. But with some simple modification to the DWL algorithm, we can overcome the

difficulty at no extra cost. Due to the continuity and monotonicity of λj/σ̂j(λj), it is always clear whether

to increase or decrease λj to get closer to the solution. If λj/σ̂j(λj) < η, we increase λj , and conversely if

λj/σ̂j(λj) > η, we decrease λj . Then we will find the correct Aj where the inequality changes its direction,

and can obtain the exact λj by (9).

2.4. Solution Path for L1-Penalized Normal Loglikelihood Estimator

Following the framework of Fan and Li [9], Huang et al. [10] proposed the Lp-penalized loglikelihood

method for normally distributed data. Let yi = (yi
1, . . . , y

i
m)′ be the i-th observation of a normal random

vector with mean 0 and covariance matrix Σ. Suppose that the sample size is n. Then the loglikelihood of

Σ is given by

−2l
(
Σ;y1, . . . ,yn

)
= n log |D|+

∑

i

(
yi

)′
T ′D−1Tyi

= n
∑

j

log σ2
j +

∑

i,j

(
εi
j

)2

σ2
j

,

Figure 1: The solution paths of the equi-angular method and the L1-penalized normal loglikelihood method. The solid (thinner)

curve represents σ2

j (λj) of the lasso. The thicker curve means the set of possible solutions for each method. (a) The dashed

curves are of λ2

j/η2. Every lasso solution is a solution for an η, and every η has a corresponding lasso solution. (b) The dashed

lines are of λj/ξ. Only a part of the lasso solutions can be a solution for a ξ (proposition 2.1), and a single ξ can have multiple

local solutions.

0 5 10 15

0
2

4
6

8
10

12

(a) Equi−Angular Method

λj

σ̂ j2 (λ
j)

η1 η2 η3

0 5 10 15

0
2

4
6

8
10

12

(b) L1−Penalized Normal Loglikelihood Method

λj

σ̂ j2 (λ
j)

ξ1 ξ2 ξ3 ξ4

8

where εi
1 = yi

1 and εi
j = yi

j −
∑

k<j φjkyi
k for j = 2, . . . ,m. These authors obtained the estimates for φjk

and σ2
j by minimizing

−2l
(
Σ;y1, . . . ,yn

)
+ ξ

∑

k<j

|φjk|
p, (10)

where p ≥ 1. Since the penalty term does not involve σ2
j , the optimal choice of σ2

j is

σ̂2
j =

1

n
‖yj −Yjφj‖

2,

and the rest of the problem reduces to

minimize n log ‖yj −Yjφj‖
2 + ξ

j−1∑

k=1

|φjk|
p, (11)

for each j = 2, . . . ,m. It is easy to see that the (local) solution φ̂j of (11) also minimizes

‖yj −Yjφj‖
2 + λj

j−1∑

k=1

|φjk|
p, (12)

where λj = ξ
n

∥∥yj −Yjφ̂j

∥∥2
. Therefore, the case of p = 1 is similar to the proposed equi-angular method

except that the penalty parameter becomes

λj(ξ) = ξσ̂2
j . (13)

The L1-penalized normal loglikelihood method is, therefore, different from the equi-angular method, unless

σ2
j are homogeneous. We will assume w2

k = ‖yk‖
2/n for the Huang et al.’s method, otherwise the variables

should be normalized. The difference between (6) and (13) cannot be overlooked.

The prior discussion also unveils the whole solution path of the L1-penalized normal loglikelihood esti-

mators. Because (11) is not convex, its solution suffers from multiple local minima and the solution path

with respect to ξ is intrinsically discontinuous. But the fact that the (local) solution of (11) also minimizes

(12) says that we can construct the solution path of (11), including all local minima as well as the global

minimum, via the solution path of the lasso problem (12). And (13) provides the clue needed to map the

penalty parameters of the two different problems.

To state the following proposition, we rewrite the problems (11) and (12) as follows.

minimize n log ‖y −Xβ‖2 + ξ
∑

k

wk|βk|, (14)

minimize ‖y −Xβ‖2 + λ
∑

k

wk|βk|. (15)

Proposition 2.1. Suppose that β̂ is the solution of (15) with penalty λ and let A and SA be its nonzero

index set and the corresponding sign matrix, respectively. If β̂ is a breakpoint with
∣∣cl

(
β̂

)∣∣ = λwl/2 and
9

βl = 0 for some l, where cl is defined in (20), include l in A and set sl = sign
(
cl

(
β̂

))
. Then, β̂ is a local

minimizer of (14) with penalty ξ := λ/σ̂2(λ) if and only if A = ∅ or

ξλ

2n
w′

ASA

(
X′

AXA

)−1
SAwA ≤ 1,

which is equivalent to λ being the smaller (or double) root of the quadratic equation

λ = ξσ̂2(λ) =
ξ

n

(
y′y − y′XA

(
X′

AXA

)−1
X′

Ay
)

+
ξλ2

4n
w′

ASA

(
X′

AXA

)−1
SAwA. (16)

Proof. Note that the square brackets [] below are used to deal with the case where β̂ is a breakpoint. Let

g(β) be the objective function of (14) and let fu(h) = g
(
β̂ + hu

)
where u is a arbitrary vector. Then, we

have

f ′
u
(h) =

−2u′X′
(
y −X

(
β̂ + hu

))

1
n

∥∥y −X
(
β̂ + hu

)∥∥2 + ξu′
ASAwA + ξ‖u′

AcwAc‖1 −
[
ξulslwl − ξ|ul|wl

]
.

By the definition of A and Proposition 5.1, we have
∣∣ck

(
β̂

)∣∣ = λwk/2 for k ∈ A and
∣∣ck

(
β̂

)∣∣ < λwk/2 for

k ∈ Ac. Therefore, we have

f ′
u
(0) =

−2u′
AcX′

Ac

(
y −Xβ̂

)
+ λ‖u′

AcwAc‖1
σ̂2(λ)

−
[
ξulslwl − ξ|ul|wl

]
> 0,

unless uAc = 0Ac [and ulsl ≥ 0]. Therefore, the claim follows when A = ∅. Now we may assume the worst

case uAc = 0Ac [and ulsl ≥ 0]. Then, the first derivative becomes, by Proposition 5.1,

f ′
u
(h) =

−λu′
ASAwA + 2hu′

AX′
AXAuA

1
n

∥∥y −XA

(
β̂A + huA

)∥∥2 + ξu′
ASAwA.

Since f ′
u
(0) = 0, we must have

f ′′
u
(0+) =

2u′
AX′

AXAuA

∥∥y −XAβ̂A

∥∥2
− λ2u′

ASAwAw′
ASAuA

1
n

∥∥y −XAβ̂A

∥∥4 ≥ 0,

for any uA [with ulsl ≥ 0], which is true if and only if 2nX′
AXA − ξλSAwAw′

ASA is positive semi-definite,

whether β̂ is a breakpoint or not.

Proposition 2.1 shows which solution of (15) can be a solution of (14), and therefore we can track down

the solution path for the L1-penalized normal loglikelihood method if the lasso solution path is available.

Figure 1(b) shows a simple possible curve for σ2
j (λj) and the lines λj/ξ for some ξ (shown in dashed lines).

From the plot, one sees that not every lasso solution is a legitimate solution for (14) and some ξ has multiple

local minima.

Unlike the equi-angular method, it is not clear how to find a particular solution of (14) when the lasso

solution path is not available. Because λj/σ2
j (λj) is not monotone, it is impossible to determine whether a

solution exists below or above the current λj . If the penalty ξ is small like ξ1 in Figure 1(b), we can use
10

the same strategy as that of the equi-angular method. If λj/σ̂2
j (λj) < ξ, we increase λj , and conversely if

λj/σ̂2
j (λj) > ξ, we decrease λj . If the inequality changes its direction, we have the correct Aj and hence

the exact λj that is the smaller (or double) root of λj = ξσ̂2
j (λj). We used this modified algorithm in the

simulation study below and were able to cut down substantially the computation time compared with the

iterative quadratic approximation algorithm.

3. Simulation

In this section, we investigate the performance of the proposed methods for various kinds of covari-

ance matrix via simulation. We also compare them with three existing methods; the L1-penalized normal

loglikelihood method of Huang et al. [10], the banding method of Bickel and Levina [1], and the sample

covariance matrix. All the methods except the sample covariance matrix were fitted using the proposed

DWL algorithm. They were implemented in the R software. We applied all the methods to the following

six m×m covariance matrices.

1. TΣ1T
′ = D with φj,j−1 = 0.8 and φjk = 0 for k < j − 1 and 2 ≤ j ≤ m, and σ2

j = 1 for 1 ≤ j ≤ m.

2. Σ2 is same as Σ1 except σ2
j = 16 for odd j.

3. TΣ3T
′ = D with φjk = 0.5j−k for k < j and 2 ≤ j ≤ m, and σ2

j = 1 for 1 ≤ j ≤ m.

4. Σ4 is same as Σ3 except σ2
j = 16 for odd j.

5. Σ5 was chosen from a sample covariance matrix of m stock returns during a certain period of time,

but we deliberately set φjk = 0 if |φjk| < 0.01 to create sparsity.

6. Σ6 is same as Σ5 except that σ2
j is multiplied by 16 for odd j.

Note that the modified Cholesky factors for Σ1 through Σ6 are all parsimonious. While Σ1 through Σ4 are

of trivial form, Σ5 and Σ6 were chosen to mimic the practical situations in finance and economics. The

even-numbered covariance matrices were modified from the odd-numbered ones to highlight the difference

between Huang et al.’s method and the equi-angular method.

We used the entropy loss(∆1) and the Kullback-Leibler loss(∆2) to measure the accuracy of a covariance

matrix estimate, which are defined as follows:

∆1

(
Σ, Σ̂

)
= tr

(
Σ−1Σ̂

)
− log

∣∣Σ−1Σ̂
∣∣−m,

∆2

(
Σ, Σ̂

)
= tr

(
Σ̂−1Σ

)
− log

∣∣Σ̂−1Σ
∣∣−m,

where Σ is the true covariance matrix and Σ̂ is the estimate. The entropy loss was used in Huang et al.

[10] and is more appropriate for the covariance matrix, while the Kullback-Leibler loss was used in Levina

et al. [12] and is more appropriate for the inverse covariance matrix. We also considered two quadratic loss

functions ∆3 and ∆4:

∆3

(
Σ, Σ̂

)
= tr

(
Σ−1Σ̂− I

)2
, ∆4

(
Σ, Σ̂

)
= tr

(
Σ̂−1Σ− I

)2
.

11

Table 1: The averages and standard errors in parenthesis of the entropy losses (∆1) and the Kullback-Liebler losses (∆2) for

normally distributed data. The variables remained in their original ordering. The tuning parameters were chosen by validation

of another 100 observations from the same distribution. The sample size n is 100. The number of simulation runs is 200.

m Σ ∆ Sample Bickel et al. Huang et al. bΣs
bΣa

30 Σ1 ∆1 5.271 (0.025) 0.590 (0.008) 1.200 (0.012) 1.100 (0.011) 1.189 (0.013)

∆2 8.419 (0.069) 0.622 (0.009) 1.482 (0.019) 1.354 (0.016) 1.473 (0.018)

Σ2 ∆1 5.287 (0.024) 0.601 (0.007) 1.649 (0.015) 1.562 (0.013) 1.171 (0.012)

∆2 8.420 (0.064) 0.635 (0.008) 1.989 (0.023) 1.869 (0.021) 1.409 (0.019)

Σ3 ∆1 5.231 (0.024) 1.439 (0.016) 1.791 (0.014) 1.714 (0.013) 1.768 (0.014)

∆2 8.308 (0.068) 1.560 (0.017) 2.285 (0.026) 2.148 (0.023) 2.238 (0.024)

Σ4 ∆1 5.317 (0.025) 1.591 (0.017) 2.087 (0.016) 2.019 (0.015) 1.755 (0.012)

∆2 8.517 (0.070) 1.696 (0.016) 2.621 (0.026) 2.438 (0.025) 2.153 (0.021)

Σ5 ∆1 5.268 (0.024) 4.656 (0.044) 2.325 (0.014) 2.025 (0.012) 2.060 (0.013)

∆2 8.402 (0.068) 4.413 (0.029) 2.965 (0.025) 2.535 (0.023) 2.590 (0.023)

Σ6 ∆1 5.264 (0.025) 9.514 (0.134) 2.799 (0.018) 3.095 (0.019) 2.325 (0.014)

∆2 8.367 (0.072) 6.423 (0.030) 3.505 (0.031) 3.714 (0.029) 2.853 (0.025)

80 Σ1 ∆1 49.578 (0.095) 1.619 (0.014) 3.985 (0.024) 3.477 (0.021) 3.712 (0.021)

∆2 311.814 (2.685) 1.711 (0.016) 5.366 (0.039) 4.673 (0.037) 4.994 (0.036)

Σ2 ∆1 49.443 (0.091) 1.603 (0.014) 7.691 (0.049) 6.661 (0.032) 3.728 (0.022)

∆2 311.694 (2.570) 1.686 (0.016) 10.103 (0.078) 8.834 (0.060) 4.788 (0.035)

Σ3 ∆1 49.667 (0.086) 4.000 (0.018) 5.293 (0.025) 5.068 (0.021) 5.189 (0.023)

∆2 317.154 (2.730) 4.291 (0.024) 7.618 (0.053) 7.187 (0.048) 7.521 (0.052)

Σ4 ∆1 49.504 (0.099) 4.302 (0.034) 6.969 (0.035) 6.524 (0.026) 5.319 (0.024)

∆2 311.481 (2.911) 4.699 (0.029) 10.239 (0.079) 8.865 (0.057) 7.385 (0.048)

Σ5 ∆1 49.602 (0.087) 26.010 (0.153) 8.328 (0.031) 7.528 (0.023) 7.423 (0.024)

∆2 311.630 (2.541) 19.318 (0.051) 12.164 (0.069) 10.837 (0.060) 10.746 (0.053)

Σ6 ∆1 49.522 (0.096) 76.428 (0.580) 16.047 (0.094) 16.294 (0.053) 10.757 (0.034)

∆2 311.909 (2.751) 30.710 (0.066) 20.763 (0.086) 18.396 (0.085) 13.830 (0.065)

We generated normally distributed data with mean 0 and covariance matrix Σ, and then estimated Σ̂

using the data by all methods considered. The sample size was 100 and we repeated this process 200 times.

To compare the performance of the estimators, we calculated the average losses (risk) and the corresponding

standard errors. Since the modified Cholesky decomposition is not permutation invariant, we repeated the

whole process with a random permutation of the variables before estimation to study the sensitivity to

12

Table 2: The averaged percentages and the corresponding standard errors in parenthesis of Type-I and Type-II errors in

identifying zero coefficients in the Cholesky factor T . Type-I error represents falsely identifying a zero as a nonzero. Type-II

error means falsely identifying a nonzero as a zero. The figures are from the same simulation of Table 1.

m Σ Type Bickel et al. Huang et al. bΣs
bΣa

30 Σ1 I 0.00% (0.00%) 14.59% (0.19%) 13.91% (0.21%) 14.48% (0.21%)

II 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%)

Σ2 I 0.03% (0.03%) 21.79% (0.19%) 21.68% (0.19%) 13.73% (0.19%)

II 0.00% (0.00%) 1.11% (0.09%) 0.69% (0.08%) 0.75% (0.08%)

Σ3 I -% (-%) -% (-%) -% (-%) -% (-%)

II 74.52% (0.19%) 59.21% (0.17%) 59.72% (0.17%) 59.34% (0.16%)

Σ4 I -% (-%) -% (-%) -% (-%) -% (-%)

II 72.50% (0.31%) 56.39% (0.19%) 56.64% (0.17%) 60.17% (0.16%)

Σ5 I 31.76% (0.27%) 28.57% (0.40%) 22.80% (0.37%) 22.18% (0.38%)

II 44.61% (0.33%) 49.22% (0.24%) 49.52% (0.21%) 50.39% (0.22%)

Σ6 I 40.35% (0.55%) 34.90% (0.47%) 33.18% (0.41%) 23.14% (0.37%)

II 35.11% (0.56%) 46.56% (0.29%) 38.94% (0.25%) 46.87% (0.20%)

80 Σ1 I 0.00% (0.00%) 6.44% (0.05%) 6.72% (0.05%) 6.45% (0.05%)

II 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%) 0.00% (0.00%)

Σ2 I 0.00% (0.00%) 12.94% (0.05%) 12.34% (0.05%) 6.32% (0.05%)

II 0.00% (0.00%) 1.30% (0.06%) 0.74% (0.05%) 0.94% (0.05%)

Σ3 I -% (-%) -% (-%) -% (-%) -% (-%)

II 90.07% (0.05%) 81.53% (0.05%) 81.50% (0.06%) 81.60% (0.05%)

Σ4 I -% (-%) -% (-%) -% (-%) -% (-%)

II 88.52% (0.10%) 79.18% (0.05%) 79.37% (0.06%) 81.66% (0.05%)

Σ5 I 14.82% (0.17%) 12.52% (0.11%) 11.76% (0.09%) 11.70% (0.11%)

II 77.46% (0.20%) 74.63% (0.10%) 72.29% (0.09%) 73.29% (0.08%)

Σ6 I 21.31% (0.13%) 12.48% (0.22%) 17.85% (0.09%) 12.37% (0.10%)

II 68.84% (0.16%) 74.19% (0.22%) 66.49% (0.09%) 69.95% (0.09%)

permutation of each method.

For tuning the penalty parameters, we generated additional 100 validation data in each run, using the

same normal distribution, and chose the penalty parameter that maximizes the likelihood of Σ̂ given the

validation data. We also tried the K-fold cross-validated loglikelihood criterion by randomly dividing the

data into K groups. For each group of data, its loglikelihood is calculated based on the covariance matrix

13

estimated using the other K − 1 groups only. Then the K-fold cross-validated loglikelihood criterion is

defined as the sum of the K loglikelihoods. For instance, for normally distributed data, we have

CV(·) =
1

K

K∑

k=1

(
nk log

∣∣Σ̂−k(·)
∣∣ +

∑

i∈Ik

(
yi

)′
Σ̂−1

−k(·)yi

)
,

where Ik is the index set for the k-th group, nk is the size of Ik, and Σ̂−k(·) is the covariance matrix estimated

excluding the k-th group of data. Then, we chose the penalizing parameter that minimizes CV. The two

methods (K = 5 was used) gave similar results, and thus we only report the results from the method using

100 validation data.

Table 1 summarizes the simulation results for ∆1 and ∆2. The results for ∆3 and ∆4 are omitted

because they are similar to those reported in Table 1. To compare the ability of each method in capturing

the sparsity, we report the percentages of unidentified true zeros in the Cholesky factor T (type-I error) and

the percentages of the nonzeros in T mistakenly identified as zero (type-II error) in Table 2. Based on the

simulation study, the loss functions provide similar results for most covariance matrices considered. But in

some cases, the loss functions disagreed (e.g., Σ5 and Σ6 with the banding method), and in such cases the

procedure for tuning the penalty parameter acted more friendly toward the loss functions for the inverse

covariance matrix (∆2 and ∆4). This indicates that it would make little sense to judge the methods based

on ∆1 or ∆3. The conclusions that follow are well-supported by all loss functions.

For Σ1 and Σ2, whose Cholesky factors are banded, the banding method was the best. Although the

Cholesky factors of Σ3 and Σ4 are not banded, since their entries decay exponentially from the diagonal,

the banding method was still the best among all the methods considered. Σ5 and Σ6, however, showed the

drawbacks of the banding method. It worked poorly for the non-banded covariance matrices, suggesting

that the use of the banding method to general covariance matrices might be inappropriate.

Contrary to the banding method, the method of Huang et al. and the two proposed methods work

reasonably well for all covariance matrices with the equi-angular method outperforming the others in general.

Furthermore, the equi-angular method also has the smallest difference between odd-numbered and even-

numbered covariance matrices. In particular, there was almost no difference for the first two pairs of the

covariance matrices, indicating that the method indeed stably penalized the coefficients. It should also

be pointed out that, except for Σ5 with m = 80, the equi-sparse method slightly outperforms the equi-

angular method for the odd-numbered covariance matrices. This is understandable because the associated

regressions look similar.

The method of Huang et al. and the equi-angular method are supposed to be the same for Σ1 and Σ3,

but minor difference exists because of the uncertainty in the realized residual variances. As shown in Table

2, the type-I and type-II errors for Σ1 and Σ3 are also similar for the two estimation methods. However,

the performance of the method of Huang et al. deteriorates for Σ2 and Σ4 whereas that of the equi-angular

14

Table 3: The averages and standard errors in parenthesis of the entropy losses (∆1) and the Kullback-Liebler losses (∆2) for

normally distributed data. Every setting is same as that for Table 1 except that the variables were randomly permuted before

estimation.

m Σ ∆ Sample Bickel et al. Huang et al. bΣs
bΣa

30 Σ1 ∆1 5.258 (0.025) 5.974 (0.104) 1.755 (0.016) 1.564 (0.014) 1.559 (0.016)

∆2 8.388 (0.067) 7.465 (0.063) 2.065 (0.022) 1.838 (0.021) 1.853 (0.024)

Σ2 ∆1 5.296 (0.023) 5.483 (0.186) 2.100 (0.019) 1.736 (0.014) 1.444 (0.013)

∆2 8.457 (0.061) 7.563 (0.067) 2.453 (0.026) 2.024 (0.021) 1.686 (0.019)

Σ3 ∆1 5.289 (0.025) 5.879 (0.099) 2.150 (0.015) 2.097 (0.014) 2.076 (0.015)

∆2 8.433 (0.070) 6.139 (0.045) 2.608 (0.023) 2.523 (0.024) 2.524 (0.025)

Σ4 ∆1 5.293 (0.023) 5.581 (0.103) 3.280 (0.029) 2.984 (0.021) 2.879 (0.023)

∆2 8.422 (0.060) 7.743 (0.061) 3.815 (0.033) 3.503 (0.029) 3.402 (0.028)

Σ5 ∆1 5.236 (0.023) 5.704 (0.090) 2.383 (0.015) 2.107 (0.014) 2.132 (0.014)

∆2 8.300 (0.061) 5.094 (0.037) 3.047 (0.026) 2.640 (0.023) 2.709 (0.024)

Σ6 ∆1 5.289 (0.024) 6.339 (0.164) 3.810 (0.028) 3.479 (0.026) 3.116 (0.024)

∆2 8.481 (0.068) 7.160 (0.060) 4.330 (0.036) 3.891 (0.028) 3.501 (0.028)

80 Σ1 ∆1 49.483 (0.096) 97.795 (1.498) 6.445 (0.036) 5.520 (0.029) 5.185 (0.027)

∆2 308.775 (2.699) 50.495 (0.178) 7.857 (0.054) 6.888 (0.049) 6.479 (0.041)

Σ2 ∆1 49.451 (0.087) 345.259 (8.256) 10.377 (0.064) 7.755 (0.034) 4.925 (0.024)

∆2 309.777 (2.378) 79.296 (0.453) 12.419 (0.079) 9.704 (0.061) 5.995 (0.040)

Σ3 ∆1 49.524 (0.091) 67.203 (1.309) 7.304 (0.036) 7.161 (0.029) 6.797 (0.029)

∆2 312.798 (2.541) 36.046 (0.129) 9.228 (0.053) 9.063 (0.054) 8.723 (0.054)

Σ4 ∆1 49.349 (0.092) 179.905 (4.293) 19.575 (0.132) 16.075 (0.118) 14.669 (0.121)

∆2 308.977 (2.681) 65.420 (0.292) 17.917 (0.074) 15.487 (0.071) 15.260 (0.072)

Σ5 ∆1 49.275 (0.096) 33.352 (0.228) 8.719 (0.030) 7.711 (0.021) 7.518 (0.023)

∆2 306.556 (2.552) 21.736 (0.059) 12.990 (0.075) 10.959 (0.052) 10.841 (0.055)

Σ6 ∆1 49.416 (0.099) 102.046 (1.664) 25.821 (0.224) 17.857 (0.070) 15.287 (0.062)

∆2 312.233 (2.870) 39.589 (0.143) 23.962 (0.130) 17.987 (0.068) 15.725 (0.056)

method remains the same. From Table 2, the under-performance of the method of Huang et al. is caused

by its inability to shrink the regression coefficients under imbalanced penalties. Since Σ5 has heterogeneous

residual variances, the equi-angular method fares better, and the difference was amplified for Σ6. The equi-

angular method has smaller type-I and type-II errors for Σ5 and Σ6 than the Huang et al.’s method. The

only exception occurs in the type-II errors when m = 30.

15

As shown in Table 3, re-ordering the variables introduces some difficulties for each estimation method,

except the sample covariance matrix. But the equi-angular method remains the best. As expected, the

banding method encounters the biggest trouble. The advantage of the equi-sparse method for Σ1 and Σ3

disappeared because the associated regressions no longer look similar, but the method still fares better than

the equi-angular method for Σ5 with m = 30. Overall, the two proposed methods are less affected by the

permutation of the variables.

4. Empirical Study

We apply the proposed methods to daily stock returns. Returns of 80 stocks from January 2, 1990 to

December 31, 2007 were collected, but the effective sample period is from January 2, 1993 and December

31, 2007. The data of the first three years were used only for estimation and parameter tuning purposes.

At the beginning of each month starting from January 1993, the covariance matrix was estimated using

the past N ∈ {6, 12, 18, 24} months of daily returns. Then we chose the global minimum variance (GMV)

portfolio based on the estimated covariance matrix. The portfolio was held for a month, and at the end of

the month the average daily return and the risk (standard deviation) of the portfolio were recorded. The

Sharpe ratio, which is the average daily return divided by the risk, was also recorded monthly. We collected

the evaluation statistics for 180 months until December 2007.

The tuning parameter was chosen to be the one that did best for the previous four months in a cross

validation manner. Specifically, to choose the tuning parameter for Σ̂i(·) at the beginning of the i-th month,

we used daily returns of the past N + 4 months, i.e., from the (i − N − 4)-th month to the (i − 1)-th

month. The period contains five consecutive N -month rolling windows, from the (i − 4)-th to the i-th, so

let
{
Σ̂j(·)

}
i−4≤j≤i

be the estimated covariance matrices from the windows. Then, for each j, we validate

the daily returns of 4 months outside the j-th window by the normal loglikelihood for Σ̂j(·). That is, we

chose the tuning parameter to be the maximizer of

i∑

j=i−4

llk
(
Σ̂j(·)|ri,−j

)
,

where ri,−j denotes the daily returns from the (i−N − 4)-th month to the (i− 1)-th month, excluding the

N -month portion that was used to estimate Σ̂j(·).

Table 4 reports the averages of the recorded monthly statistics. Except for N = 6, the equi-angular

method has the smallest mean risks. To gain some insight into the difference in risks, we calculated the

means and standard errors of the paired differences of the risk of other methods against the equi-angular

method. Although the differences might not be serially independent because of the overlapping windows,

most of the mean differences are higher than its two standard-error limits. The method of Huang et al.

has the highest Sharpe ratio, but the differences in Sharpe ratio are small for the equi-angular method. We
16

Table 4: Results of the stock return analysis.

Sample Bickel et al. Huang et al. bΣs
bΣa

Estimated using the past 6 months’ daily return data

Risk 0.9643% 0.6651% 0.6912% 0.6819% 0.6700%

∆Risk 0.2944% -0.0049% 0.0213% 0.0119% -%

SE(∆Risk) (0.0178%) (0.0054%) (0.0027%) (0.0019%) (-%)

Mean Return 0.0394% 0.0477% 0.0538% 0.0495% 0.0501%

Sharpe Ratio 0.061 0.102 0.113 0.104 0.108

Gross Exp. 4.709 1.724 1.409 1.432 1.433

Estimated using the past 12 months’ daily return data

Risk 0.7336% 0.6662% 0.6682% 0.6662% 0.6564%

∆Risk 0.0772% 0.0098% 0.0118% 0.0098% -%

SE(∆Risk) (0.0088%) (0.0061%) (0.0020%) (0.0020%) (-%)

Mean Return 0.0465% 0.0472% 0.0539% 0.0486% 0.0504%

Sharpe Ratio 0.087 0.096 0.113 0.103 0.108

Gross Exp. 3.061 2.046 1.585 1.610 1.586

Estimated using the past 18 months’ daily return data

Risk 0.7047% 0.6774% 0.6706% 0.6688% 0.6611%

∆Risk 0.0436% 0.0163% 0.0095% 0.0076% -%

SE(∆Risk) (0.0072%) (0.0062%) (0.0019%) (0.0018%) (-%)

Mean Return 0.0493% 0.0531% 0.0549% 0.0505% 0.0514%

Sharpe Ratio 0.092 0.101 0.114 0.105 0.108

Gross Exp. 2.666 2.165 1.662 1.686 1.666

Estimated using the past 24 months’ daily return data

Risk 0.7018% 0.6877% 0.6737% 0.6767% 0.6685%

∆Risk 0.0333% 0.0192% 0.0052% 0.0082% -%

SE(∆Risk) (0.0063%) (0.0060%) (0.0016%) (0.0017%) (-%)

Mean Return 0.0501% 0.0529% 0.0551% 0.0507% 0.0515%

Sharpe Ratio 0.093 0.099 0.109 0.100 0.104

Gross Exp. 2.481 2.176 1.716 1.742 1.712

also calculated the gross exposure, which is the L1-norm of the weight vector of the portfolio and closely

related to the performance of the portfolio. The method of Huang et al. and the two proposed methods

have similar gross exposure measures. The poor performance of the sample covariance matrices is clearly

seen in the study. If the covariance matrix is poorly estimated, the uncertainty in portfolio weights increases

that in turn lead to poor performance. Overall, in the empirical study, the method of Huang et al. and the

two proposed methods work fairly well.

17

5. Algorithms for the Weighted Lasso

5.1. Characterization of the Weighted Lasso Solution

In this subsection, we characterize the solution of the weighted lasso regression that allows weighted

penalties for different coefficients. This will become the basis for the proposed algorithm in the next sub-

section. Let β̂ be the solution of the following weighted lasso problem

minimize ‖y −Xβ‖2 +

m∑

k=1

λk|βk|, (17)

where y is an n×1 vector, X is an n×m design matrix, β is an m×1 vector, and λk ≥ 0 are the penalties. Let

A =
{
k : β̂k 6= 0

}
be the index set of the nonzero coefficients in β̂ and S = diag(s1, . . . , sm) the sign matrix

for β̂, where sk = sign
(
β̂k

)
. Denote the penalty vector by λ = (λ1, . . . , λm)′, and let β̂A =

(
. . . , β̂k, . . .

)′
k∈A

and XA = [. . . ,xk, . . .]k∈A, where xk is the k-th column of X. Here we assume n ≥ m, so that X′X is

positive definite. This makes the objective function of (17) strictly convex.

Since the objective function is differentiable with respect to βA at β̂, we have

−X′
A

(
y −XAβ̂A

)
+ SAγA = 0A, (18)

where γ = 1
2λ, and obtain the closed form solution

β̂A =
(
X′

AXA

)−1
X′

Ay −
(
X′

AXA

)−1
SAγA. (19)

For each k, define

ck(β) := x′
k(y −Xβ) = −

1

2

d‖y −Xβ‖2

dβk

, (20)

which has two interpretations. It is the derivative of the objective function with respect to βk and can be

seen as the covariance between xk and the residual y −Xβ. Then (18) implies

ck

(
β̂

)
= skγk, k ∈ A. (21)

Also, by the optimality of β̂, the rate at which the first term of (17) decreases must be smaller than or

equal to the rate at which the second term increases for any changes of β. Therefore, we have

∣∣ck

(
β̂

)∣∣ ≤ γk, k /∈ A. (22)

Note that the conditions (21) and (22) are closely related to the so-called Karush-Kuhn-Tucker (KKT)

conditions for constrained optimization problems. And any vector β̂ satisfying the two conditions is locally

optimal. Since the objective function is strictly convex, the vector is also globally optimal. The following

proposition characterizes the solution of the weighted lasso problem.

Proposition 5.1. For any given β̂, let A and S be as defined above. Then, β̂ is the solution of (17) if and

only if the conditions (21) and (22) are satisfied with γk = 1
2λk, in which case, β̂A is given by (19).

18

5.2. DWL algorithm

We now propose a new algorithm for the weighted lasso problem (17). The algorithm starts with the

initial β0 which is the solution for a different penalty vector λ0. Our goal is to change λ0 and β0 in some

way so that we can end up with the solution for the penalty vector λ. The following proposition simply

rephrases Proposition 5.1 and provides the condition on the initial β0.

Proposition 5.2. For any given β0, let A and S be as defined above. Then, β0 is the solution of (17) with

λk = 2γ0
k, where

γ0
k =

∣∣ck

(
β0

)∣∣, k ∈ A (23)

and

γ0
k ≥

∣∣ck

(
β0

)∣∣, k /∈ A, (24)

if and only if

sk = sign
(
ck

(
β0

))
, k ∈ A. (25)

When the condition holds, the solution β0
A can be rewritten as

β0
A =

(
X′

AXA

)−1
X′

Ay −
(
X′

AXA

)−1
SAγ0

A.

Following Proposition 5.2, we can begin with any initial vector β0 which satisfies the sign condition (25).

Note that the class of the possible initial values is huge and the trivial ones include
(
X′

AXA

)−1
X′

Ay for any

index subset A. They also include the zero vector 0 and the OLS solution (X′X)−1X′y, which are the only

possible starting points of the LARS-lasso algorithm.

Suppose γ0 is a vector that satisfies the conditions (23) and (24). Then, by Proposition 5.2, β0 is the

solution for the penalty vector 2γ0. The strategy of the proposed algorithm is to change γ from γ0 to 1
2λ

linearly and to keep β, which is initially β0, as the solution for the penalty vector 2γ. Note that there

is some freedom in choosing γ0 because of the inequality in (24), and we suggest the trajectory for γ as

follows.

γk(α) = (1− α)
∣∣ck

(
β0

)∣∣ +
α

2
λk, k ∈ A, (26)

γk(α) = (1− α)Γ +
α

2
λk, k /∈ A, (27)

for 0 ≤ α ≤ 1, where Γ is a constant which is strictly greater than max
1≤k≤m

∣∣ck

(
β0

)∣∣.

Let β(α) be the solution for the penalty vector 2γ(α), and suppose that α increases from 0 continuously.

Then, γ(α) changes according to (26) and (27). And βA(α) follows, by (19),

βA(α) = β0 − α
(
X′

AXA

)−1
SA

dγA(α)

dα
, (28)

19

and ck(β(α)) evolves according to

ck(β(α)) = skγk(α), k ∈ A,

= ck

(
β0

)
− αx′

kXA

dβA(α)

dα
, k /∈ A.

(29)

so long as the following three conditions hold:

γk(α) = |ck(β(α))|, k ∈ A, (30)

γk(α) ≥ |ck(β(α))|, k /∈ A, (31)

sk = sign
(
ck(β(α))

)
, k ∈ A. (32)

While (30) is guaranteed by (29), (31) and (32) are subject to break as α increases from 0. (31) breaks

when |ck(β(α))| becomes larger than γk(α) for some k /∈ A. (32) breaks when βk(α) changes its sign for

some k ∈ A. Once a condition breaks at α = α∗, (28) and (29) no longer hold for α > α∗. However, owing

to the following two lemmas, we can adjust A and S properly so that (28) and (29) continue to hold. Lemma

5.1 deals with the condition (31) and Lemma 5.2 deals with the condition (32).

Lemma 5.1. Assume that |ck(β)| and γk has just agreed at α = α∗ for some k /∈ A in the course of α

increasing from 0. Then, after inserting k into A with sk = sign
(
ck(β(α∗))

)
, it follows that

sk

dβk(α)

dα

∣∣∣∣
α∗+

> 0,

and hence β(α∗ + δ) remains as the solution for the penalty vector 2γ(α∗ + δ) for small δ > 0.

Proof. By assumption, we have |ck(β(α∗))| = γ(α∗) and sk
dck(β(α))

dα

∣∣∣
α∗−

> dγk(α)
dα

. Let B = A ∪ {k}, and

let A = X′
AXA, b = X′

Axk, c = x′
kxk, and d = c− b′A−1b. Note that, by (28) and (29),

sk

dck(β(α))

dα

∣∣∣∣
α∗−

= skb
′A−1SA

dγA(α)

dα
>

dγk(α)

dα
.

Since d > 0, this implies

sk

dβk(α)

dα

∣∣∣∣
α∗+

= −ske
′
k

(
X′

BXB

)−1
SB

dγB(α)

dα

=
1

d
skb

′A−1SA

dγA(α)

dα
−

1

d

dγk(α)

dα
> 0,

where ek is a unit vector of length |B| with 1 for the entry corresponding to k. Since βk(α∗) = 0, this implies

skβk(α∗ + δ) > 0 and (32) is satisfied for k at α = α∗ + δ.

Lemma 5.2. Assume that βk has just reached 0 at α = α∗ for some k ∈ A in the course of α increasing

from 0. Then, after removing k from A, it follows that

sk

dck(β(α))

dα

∣∣∣∣
α∗+

<
dγk(α)

dα
,

and hence β(α∗ + δ) remains as the solution for the penalty vector 2γ(α∗ + δ) for small δ > 0.
20

Proof. By assumption, we have βk(α∗) = 0 and sk
dβk(α)

dα

∣∣∣
α∗−

< 0 where sk = sign
(
βk(α∗−)

)
. Let B =

A− {k}, and let A = X′
BXB, b = X′

Bxk, c = x′
kxk, and d = c− b′A−1b. Simple matrix algebra shows

sk

dβk(α)

dα

∣∣∣∣
α∗−

= −ske
′
k

(
X′

AXA

)−1
SA

dγA(α)

dα

=
1

d
skb

′A−1SB

dγB(α)

dα
−

1

d

dγk(α)

dα
< 0,

where ek is a unit vector of length |A| with 1 for the entry corresponding to k. Since d > 0,

sk

dck(β(α))

dα

∣∣∣∣
α∗+

= skb
′A−1SB

dγB(α)

dα
<

dγk(α)

dα
.

Since |ck(β(α∗))| = γk(α∗), this implies |ck(β(α∗ + δ))| < γk(α∗ + δ) and (31) is satisfied for k at α =

α∗ + δ.

In summary, as α goes from 0 to 1, if (31) breaks for some k /∈ A, we adjust the solution by inserting k

into A with sk = sign
(
ck(β(α))

)
. If (32) breaks for some k ∈ A, we adjust by removing k from A. After

the adjustment, we restart the whole process from the beginning regarding the current values as the initial

values. By repeating the procedure until α can reach 1 with no violation of (31) or (32), we obtain the

solution. Details of the proposed algorithm are given below.

1. For given β0, initialize A and S, calculate γ0 and ck

(
β0

)
, and find dγ(α)

dα
, dβ(α)

dα
, and dck(β(α))

dα
.

2. Find the smallest α∗ ≥ 0 at which either (31) or (32) breaks. If α∗ ≥ 1, then set α∗ = 1.

3. Update γ0 ← γ(α∗), β0 ← β(α∗) and ck

(
β0

)
← ck(β(α∗)).

4. If α∗ = 1, then stop.

5. Adjust A and S according to Lemma 5.1 or Lemma 5.2. Update dβ(α)
dα

and dck(β(α))
dα

. Go to step 2.

It is important to note that (28) and (29) exhibit the linearity of βk’s and ck’s in α. That makes it possible

to find α∗ in step 2 at O(m) time complexity. Also note that updating
(
X′

AXA

)−1
or its equivalent (for

example, the ordinary Cholesky decomposition of X′
AXA) when A is updated in step 5 can be done at O(m2)

time complexity. Therefore, a single iteration of the algorithm costs O(m2) amount of computing time. The

number of iterations needed to complete the algorithm depends on the number of nonzero coefficients in

the solution. Actually, the number of iterations will be slightly but not much more than the number of

nonzero coefficients because some coefficients may change their signs more than once during the algorithm.

Overall, we can obtain the solution of the general lasso problem at the same level of time complexity needed

to obtain the solution of the ordinary least squares problem.

The DWL algorithm can be seen as an extension of the LARS-lasso algorithm. Indeed, the DWL

algorithm is identical to the LARS-lasso algorithm if λk ≡ λ. Note that the DWL algorithm also assumes

the so-called one-at-a-time condition (see Efron et al. [8]). At every breakpoint of the condition (31) or

21

(32), only a single k must be involved. If two or more conditions break at the same time (same α), we

have to decide the next direction with extra caution, or we can use the technique of jittering. We omit the

performance analysis of the algorithm since it will be similar to the LARS-lasso algorithm, and we refer to

Efron et al. [8].

5.3. DWL-update Algorithm

It is true that we could use the LARS-lasso algorithm even when λk are heterogeneous, by changing

the scale of the explanatory variables. But, note that the DWL algorithm can do something more. An

advantage of the DWL algorithm is the ability to use the prior information about the nonzero index set A

of the solution, if available. Recall that we can start the algorithm with initial β0 =
(
X′

AXA

)−1
X′

Ay for

any index subset A. If there is no prior information about the solution, we would have to start with the zero

vector 0 or the OLS solution (X′X)−1X′y. However, in some cases when we can reasonably guess the set

A of the solution, if
(
X′

AXA

)−1
or its equivalent is available at O(m2) time complexity, we can start with

β0 =
(
X′

AXA

)−1
X′

Ay. If the guessed set A is the correct solution or close to it, we can obtain the solution

by only a few iterations, regardless of the number of nonzero coefficients in the solution.

The situation where a reasonable guess for A is available occurs when we want to update the solution

after an arrival of new data point. Suppose that we already have the solution of the general lasso problem

for n data points. And suppose that the (n + 1)-th data point becomes available. This is the case we

encounter often in time series analysis, machine learning literature, and many others. Note that the set A

of the current solution is an excellent guess for that of the new solution because a single data point cannot

change the solution substantially. Since we can update
(
X′

AXA

)−1
or the ordinary Cholesky decomposition

of X′
AXA at O(m2) amount of time, we can start the algorithm with β0 =

(
X′

AXA

)−1
X′

Ay and get the

new solution within a small number of iterations. If the sample size is moderately enough, we can update

the solution at almost O(m2) time complexity.

To see how much time we can save from the updating algorithm, we simulated the model y = x′β + e

where x ∼ N100(0, I), e ∼ N (0, 72), and β = (3, . . . , 3︸ ︷︷ ︸
20

, 1, . . . , 1︸ ︷︷ ︸
20

, 0.3, . . . , 0.3︸ ︷︷ ︸
20

, 0, . . . , . . . , 0︸ ︷︷ ︸
40

)′. Starting with

the sample size n = 100, we fitted the lasso with penalty λn = nλ for some fixed λ. We added new data

points one by one and updated the lasso solution by the updating algorithm until n = 700. The number of

algorithm steps needed to complete the update and the number of nonzero coefficients in the solution were

recorded for every data point. This entire process was repeated 300 times and Figure 2 shows their means

for several λ’s. We did not run the LARS-lasso algorithm, but note that the number of nonzero coefficients

is the minimum number of iterations in the LARS-lasso algorithm. So, the number of nonzero coefficients

provides rough information concerning the total number of iterations needed. For smaller n around 100, the

update cost is relatively high because the lasso solution is not stable. But we can see it is still more efficient

than performing the LARS-lasso algorithm for every new data point. As the sample size increases, the lasso
22

Figure 2: The number of steps needed for updating and the number of nonzero coefficients in the lasso solution for each data

point. These are averages from 300 times of simulations for various λ. The number of nonzero coefficients provides rough

information concerning the number of iterations needed when the lasso solution is completely rebuilt.

100 300 500 700

0
5

10
15

20

(a) Average # of steps for update

n

st

ep
s

λ = 6.4

λ = 3.2

λ = 1.6

λ = 0.8

λ = 0.4

λ = 0.2

λ = 0.1

100 300 500 700
0

20
40

60
80

10
0

(b) Average # of nonzero coefficients

n

no

nz
er

o
co

ef
fic

ie
nt

s

λ = 6.4

λ = 3.2

λ = 1.6

λ = 0.8

λ = 0.4

λ = 0.2

λ = 0.1

solution stabilizes fairly quickly. After about n = 200, the average number of steps goes below 5 for every

λ, that is, no matter how many nonzero coefficients exist in the solution.

5.4. Adding/Removing Variables

Another useful feature of the proposed DWL algorithm is the ease of adding and removing variables.

Suppose β̂ is the current solution and we want to add a new explanatory variable xk into the lasso with

penalty λk. If λk ≥ 2
∣∣ck

(
β̂

)∣∣, then βk = 0 is the solution with no change in other coefficients by proposition

5.1. If λk < 2
∣∣ck

(
β̂

)∣∣, we can apply the DWL algorithm with β0
k = 0 and

γk(α) = α
∣∣ck

(
β̂

)∣∣ +
α

2
λk.

Removing a variable xk from the lasso is also simple. If βk = 0, nothing more than simply removing the

variable directly, because it does not affect the conditions in Proposition 5.1. If βk 6= 0, we can increase the

corresponding penalty λk until βk becomes 0, and then we can drop the variable. The number of iterations

needed for adding or removing a variable will depend on how the variable of interest is correlated with others.

But it will be usually much smaller than the number of iterations needed to rebuild the lasso solution except

some extreme cases.

23

6. Discussion

In this paper, we proposed two new penalizing methods for estimating high-dimensional covariance matrix

when the sample size is greater than the dimension. We provided a new point of view in fairly penalizing

two or more regressions with a single penalizing parameter. The idea is not limited to the covariance matrix

estimation problem, but can be applied to any kind of problem involving multiple penalized least squares

problems. Although we focused on the L1 penalty, it can naturally be extended to other kinds of penalties

such as the L2 penalty and the SCAD (Fan and Li [9]). Our limited simulation study and empirical data

analysis show that the proposed methods and algorithm work well compared with other methods available

in the literature.

Since the two proposed methods and that of Huang et al. are based on the lasso, they all have the

same asymptotic properties. If we use some nonconvex penalty function, like the SCAD, they will have

certain oracle property. We can also consider the adaptive lasso (Zou [23]). The lasso does not have the

oracle property in general, but the adaptive lasso obtains the oracle property by giving weighted penalties

for different coefficients. These issues deserve further study.

References

[1] P. J. Bickel and E. Levina (2008), Regularized Estimation of Large Covariance Matrices, Annals of Statistics, 36, 199-227

[2] P. J. Bickel and E. Levina (2008), Covariance Regularization by Thresholding, Annals of Statistics, 36, 2577-2604

[3] R. J. Boik (2002), Spectral Models for Covariance Matrices, Biometrika, 89, 159-182

[4] T. Y. M. Chiu, T. Leonard, and K. W. Tsui (1996), The Matrix-Logarithm Covariance Model, Journal of the American

Statistical Association, 91, 198-210

[5] A. d’Aspremont, O. Banerjee, and L. El Ghaoui (2008), First-Order Methods for Sparse Covariance Selection, SIAM

Journal on Matrix Analysis and Applications, 30, 56-66

[6] A. P. Dempster (1972), Covariance Selection, Biometrics, 28, 157-175

[7] P. J. Diggle and A. P. Verbyla (1998), Nonparametric Estimation of Covariance Structure in Longitudinal data, Biometrics,

54, 401-415

[8] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani (2004), Least Angle Regression, Annals of Statistics, 32, 407-499

[9] J. Fan and R. Li (2001), Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties, Journal of the

American Statistical Association, 96, 1348-1360

[10] J. Z. Huang, N. Liu, M. Pourahmadi, and L. Liu (2006), Covariance Matrix Selection and Estimation via Penalized Normal

Likelihood, Biometrika, 93, 85-98

[11] T. Leonard and J. S. J. Hsu (1992), Bayesian Inference for a Covariance Matrix, Annals of Statistics, 36, 1669-1696

[12] E. Levina, A. Rothman, and J. Zhu (2008), Sparse Estimation of Large Covariance Matrices via a Nested Lasso Penalty,

Annals of Applied Statistics, 2, 1, 245-263

[13] H. Markowitz (1952), Portfolio Selection, Journal of Finance, 7, 77-91

[14] N. Meinshausen and P. Bühlmann (2006), High-Dimensional Graphs and Variable Selection with the Lasso, The Annals

of Statistics, 34, 1436-1462

[15] M. Pourahmadi (1999), Joint mean-covariance models with applications to longitudinal data: Unconstrained parameteri-

zation, Biometrika, 86, 677-690

24

[16] R. Tibshirani (1996), Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society, Series B,

58, 267-288

[17] R. S. Tsay (2005), Analysis of Financial Time Series, John Wiley & Sons, Inc.

[18] F. Wong, C. K. Carter, and R. Kohn (2003), Efficient Estimation of Covariance Selection Models, Biometrika, 90, 809-830

[19] W. B. Wu and M. Pourahmadi (2003), Nonparametric Estimation of Large Covariance Matrices of Longitudinal Data,

Biometrika, 90, 831-844

[20] R. Yang and J. O. Berger (1994), Estimation of a Covariance Matrix Using the Reference Prior, Annals of Statistics, 22,

1195-1211

[21] Y. Q. Yin (1986), Limiting Spectral Distribution for a Class of Random Matrices, Journal of Multivariate Analysis, 20,

50-68

[22] M. Yuan and Y. Lin (2007), Model Selection and Estimation in the Gaussian Graphical Model, Biometrika, 94, 19-35

[23] H. Zou (2006), The Adaptive Lasso and Its Oracle Properties, Journal of the American Statistical Association, 101,

1418-1429

25

