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UNIONS OF PRIME SUBMODULES

CHIN-PI LU

COMMUNICATED BY JOHNNY A. JOHNSON

ABSTRACT. A proper submodule P of a module M over a ring R is said
to be prime if re € P for r € R and e € M implies that either e € P or
r € P:gr M. In this paper we investigate the following two topics which are
related to unions of prime submodules: i) The Prime Avoidance Theorem
for modules and i) S-closed subsets of modules.

1. INTRODUCTION

Let M be a module over a ring R. A proper submodule P of M with P :p
M = p is said to be prime or p-prime if re € P for r € R and e € M implies that
either e € P or r € p (cf. 3], [4], or [5]).

The Prime Avoidance Theorem for rings (in the simplest form) states that if an
ideal I of a ring is contained in the union of a finite number of prime ideals, then
I must be contained in one of them. In section 2, using the technique of efficient
covering of submodules, which is adopted from [1], we prove its generalization
to modules (Theorem 2.3). Applying the theorem, in section 3, we characterize
the torsion subset T(M) of some type of Noetherian modules M with T(M) #
M as the set-theoretic union of a finite number of prime submodules, each of
which is an annihilator submodule (Theorem 3.6). Section 4 is devoted to an
introduction of S-closed subsets of modules, a generalization of multiplicatively
closed subsets of rings, and to exploration of various properties of S-closed subsets,
particularly, saturated S-closed subsets of modules. We obtain, among other
results, a condition under which a submodule of a finitely generated module M
maximal with respect to exclusion of an S-closed subset to be a prime submodule
of M (Theorem 4.5).
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Every ring in this paper is commutative with identity and every module is
unitary.

2. THE PRIME AVOIDANCE THEOREM FOR MODULES

The Prime Avoidance Theorem for rings [2, p.55, Theorem 81] states as follows:
Let J1,J2, -, Jn be a finite number of ideals in a ring R, and S a subring of R
such that S C JiJJ2U--- U Jn. Assume that at most two of the J’s are not
prime. Then S C Ji for some k. We consider a generalization of this theorem to
modules in terms of prime submodules.

Let L, Ly, Ly, - - , L, be submodules of an R-module M. Following [1], we call
a covering L C Ly|JLa|J-- - Ln efficient if no Ly is superfluous. Analogously,
we shall say that L = Ly |J L2 |- - - {J Ly, is an efficient union if none of the L may
be excluded. Any cover or union consisting of submodules of M can be reduced to
an efficient one, called an efficient reduction, by deleting any unnecessary terms.

It is well-known that if I, A;, and A, are ideals of a ring such that I C A4, | A4,,
then I C A; or I C A,;. Hence a covering of an ideal by two ideals is never
efficient. As McCoy remarked in [6], this result remains valid if I, A;, and A2
are subgroups of any arbitrary group. Consequently, a covering of a submodule
by two submodules of a module is never efficient. Thus, L C Ly J L2 |J--- U Ln
may possibly be an efficient covering only whenn > 2 or n = 1.

The important Lemma 1 of [1] for ideals, which is frequently used in the paper,
is due to McCoy [6, p.634, Lemma). We can see easily that this result also
remains valid if ideals are replaced with subgroups of any group. Thus the module
theoretic version of this lemma is

Lemma 2.1. Let L =L |JL2|J---JLn be an efficient union of submodules of

an R-module M for n > 1. Then (| L; = L; for all k.

i#k i=1
Proposition 2.2. Let L C L1 |JL2U---U Ln be an efficient covering consisting
of submodules of an R-module M where n > 1. If L; : M € Ly : M for every
j #k, then no Ly for k € {1,2,...,n} is a prime submodule of M.

PRrOOF. Since L C Li|JLaJ---ULn is an efficient covering, L = (L()L1)

UEZNL)U---ULNLy) is an efficient union. Hence, for every k < n, there

exists an element e, in L— L. Moreover, (| (L[ Lk) C L)Ly by Lemma 2.2. If
ik

J
j#k,thenL;: M € L : M so that there existsan s; € L; : N, but s; € Ly : M.
Now, suppose that some Ly is a prime submodule. Then Ly : M is a prime ideal,
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therefore, s = [] s; € L; : M, but s € Ly : M. Consequently, sex € L()L;
itk
for every j # k, but sex & L) Lx, which contradicts to () (L L;) € L) L.
J#tk
Therefore, no Ly is prime. O

Theorem 2.3. [The Prime Avoidance Theorem] Let M be an R-module, L,
Lg, ..., L, a finite number of submodules of M, and L a submodule of M such that
LCLiULU: - -UUL,. Assume that at most two of the L’s are not prime, and
that L : M € Ly : M whenever j # k. Then L C Ly, for some k.

PRroOF. For the given covering L C Ly |JL2 |J- - L, let

LCL;, UL, - --UL, beits efficient reduction. Then 1 < m < n and m # 2.
If m > 2, then there exists at least one L;; to be prime. In view of Proposition
2.2, this is impossibleas Lj : M € Ly : M if j # k. Hence m = 1, namely, L C Ly,
for some k. O

As we can see in the following Example 1, the condition that L; : M & Ly : M
if j # k in Theorem 2.3 is essential.

Ezample 1. Let V be a vector space of dimension > 2 over the field Z/2Z. Then
every subspace of V is (0)-prime. Let e; and es be distinct vectors of a basis
for V, Vi = e1F, Vo = eaF\V3 = (e1 + €e2)F, and L = V; + Vo. Then L =
{0,e1,e3,e1 + ez} = ViU V2lJ V3 is an efficient union of three prime submodules
V; with V; : V = (0), but L € V; for every i € {1,2,3}.

In [1], the problem concerning covering of ideals by cosets was studied. Some
results of the investigation can also be generalized to modules. The generalizations
are counterparts to some of the previous results including The Prime Avoidance
Theorem.

Let L,L,,Ls,...,L, be submodules of an R-module M and L; + e;, Ly +
e, ..., Ly+e, cosets in M. We call a covering L C (Ly+e1) J(L2+e2)J- - U(Ln+
en) efficient if no coset is superfluous. If ex = e for every k € {1,2,...,n}, then
the above covering is equivalent to L —e C L1 |J L2 |J- - - |J L» and this is a coset
efficiently covered by a union of submodules.

Lemma 2.4. Let L C (L1 +e1) U(La+e2) U - U(Ln + €,) be an efficient cov-

ering of a submodule L by cosets, where n > 2. Then L(\( () L;) C Ly, but
Jj#k

L g Ly for all k.

ProoF. Cf. [1, p.3094, Proof of Lemma 10]. O
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Proposition 2.5. Let L+e C Li|JL2J---|JLn be an efficient covering with
n>2 IfL;: M & L : M for every j # k, then no Ly is prime.

PROOF. From Lemma 2.4, L(\(( L;) C Ly and L € Ly. Put I = () L;): M.
i#k J#k
Then ILC L ﬂ( ﬂ Lj) C Lg. Suppose that Ly is prime for some k. Then either

LCLkorI—(ﬂL) M = ﬂ(L M)YCLy:Msothat Ly : M C Lg: M

for some j. However both ca.ses are impossible, hence no L is prime. O

Theorem 2.6. Let L+e C Ly|JLa|J - |JLn be a covering such that at most
one submodule L; is not prime and that L; : M € L : M if j # k. Then the
submodule L + eR C Ly for some k.

PROOF. For the given covering L+e C Li|JLaJ:--ULn,let L+e C L;,

Li,U---UL;, be its efficient reduction. Then 1 < m < n. It is immediate from
Proposition 2.5 that m = 1. Hence L + e C Ly for some k whence L + eR C Ly
ase=0+4+ee€ L+eC L. Od

3. THE TORSION SUBSET T(M)

Let M be an R-module, Z(M) the set of zero divisors on M, and T(M) the tor-

sion subset of M. Clearly, Z(M)= |J Anngmand T(M)= |J Annya,
0#FmeM 0#£a€ER
where Annpya=0:p a={e€ M :ae=0}

If R is an integral domain and T(M) # M, then T(M) is known to be a
submodule of M which is (0)-prime [4, p.62, Result 3]. Furthermore, if T'(M)
is finitely generated over the integral domain R, then T'(M) = Annpra for some
nonzero element a of R. ‘

It is known that if I is an ideal of a ring R that is maximal among all annihila-
tors Anngm of nonzero elements m of any R-module M, then I is a prime ideal.
If M is a finitely generated nonzero module over a Noetherian ring R, then Z(M)
is also known to be the set-theoretic union of a finite number of prime ideals
each of which is Anngm for some nonzero element m of M [2, p.4, Theorem 6,
p.55, Theorem 80]. In this section, we shall see that Annpsa and T(M) of some
finitely generated modules M over Noetherian rings with T'(M) # M have similar
properties. The Prime Avoidance Theorem proved in section 1 will be applied in
proving the main result of this section, Theorem 3.6.

The following notations will be used exclusively:

X = {Annpa:0+#a€ R}, X' = {Annpyb € X : Annpb is maximal in X},
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Y ={Annga:0#a€ R}, Y' = {Anngb €Y : Anngb is maximal in Y}.

Proposition 3.1. If M is an R-module with T(M) # M , then
Annpra : M = Annga for every nonzero element a of R.

The proof of Proposition 3.1 is straightforward.

Proposition 3.2. Let M be an R-module with T(M) # M and 0 # z € R. If
Annpsz is mazimal in X, then it is a prime submodule of M.

PROOF. Since T(M) # M, Annpz is a proper submodule of M. Now let ye €
Annyx fory € Rand e € M. Then zye = 0. Suppose that y &€ Annpsz : M, that
is, y & Anngz by Proposition 3.1. Then zy # 0, whence Annyx = Annpszy by
the maximality of Annyz in X. It follows that e € Annpty = Annpsz. Thus
Annpsz is a prime submodule of M. O

Corollary 3.3. If M is a Noetherian module with T(M) # M, then T(M) is a
union of prime submodules.

ProOF. We know that T(M) = |J Annpa. Since M is Noetherian, each
0#a€R
Annpsa of X is contained in a maximal one in X. Hence T(M) is the set theoretic-

union of those maximal ones, each of which was proved to be prime in Proposition
3.2. O

An R-module M is called a multiplication module provided that for every
submodule N of M there exists an ideal I of R such that N = IM.

Lemma 3.4. Let M be a multiplication R-module with T(M) # M. Then the
mapping f : X — Y defined by f(Annpra) = Annga for every Annpya € X is
an order preserving bijection.

PRrROOF. That f is both surjective and order preserving stems from the fact that
Annga = Annpra : M by Proposition 3.1. It is also injective due to that
Annpyra = (Annpya s M)M = (Annga)M. O
Lemma 3.5. Let M be a finitely generated module over a Noetherian reduced
ring R with T(M) # M. Let f : X - Y be defined by f(Annpyra) = Annga
for every Annpra € X, and g = f|X', the restriction of f on X'. Then g is an
injection from X' into Y.

Proor. Clearly both X’ and Y’ are not empty. For each Annya € X', we
claim that g(Annara) = Annga belongs to Y’. Assume the contrary and let b
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C
#
ab # 0, for otherwise ab = 0 results in b € Annga C Anngb whence b®> = 0. By

the maximality of Annpa in X, we have Annpyb C Annpyab = Annpsa which
implies a contradiction that Anngb C Annga. Thus Annga is maximal in X
so that g is a mapping from X’ to Y’, which is evidently injective by the same
arguments as above based on the fact that R is reduced. O

be a nonzero element of R such that Annga Anngb. Since R is reduced,

Theorem 3.6. Let R be a Noetherian ring and M a finitely generated R-module
with T(M) # M. Suppose that either

i) M is a multiplication module or ii) R is a reduced ring.
Then there are only a finite number of prime submodules which are mazimal within
T(M), and each is the annihilator submodule Annpra for some nonzero element
a of R.

PRrROOF. We have seen in the proof of Corollary 3.3 to Proposition 3.2 that
T(M) is the union of those annihilator submodules Annpra; which form X’.
Since R is Noetherian, the ideal spanned by the set {a; € R : Annpra; €
X'} is finitely generated, say, by ai,a2, - ,a,. Let Annpa be an arbitrary
element of X’. Then a = ria; + raas + --- + Tha, for some T1,T9, " ,Tn
in R, so that Annya; (- () Annpa, C Annpra. Consequently, (Annara; :
M)N---N(Annpa, : M) C (Annpa @ M), that is, Anngay (- - Annga, C
Annpa. Since Anngra is a prime ideal, Annga; C Annga for some j € {1,2,--- ,n}.
We can conclude that Annga; = Annga because both ideals are maximal in
Y. It follows that Annpa; = Annya for each case ¢) and i7) by Lemma 3.4
and Lemma 3.5, respectively. This proves that X’ = {Annpa,, ..., Annyra,}.
To complete the proof of Theorem 3.6, it will suffice to prove that any sub-
module N contained in T'(M) is contained in one of the Annpra; € X'. Since
N C T(M) = Annpar |- Annyra,, where each Annpa; € X' is a prime
submodule satisfying the property that Annya; : M € Annpa; : M if @ # 3,
N C Annpa; for some j € {1,2,...,n} by the Prime Avoidance Theorem. O

4. S-CLOSED SUBSETS OF MODULES

The most fundamental properties of prime ideals p of a ring R are as follows:

i) R — p is a saturated multiplicatively closed subset of R,

i) the ideal maximal with respect to the exclusion of a multiplicatively closed
subset of R is prime, and

i11) a subset S of R is a saturated multiplicatively closed subset of R if and
only if the complement of S is a set-theoretic union of prime ideals in R.
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In this section, we consider analogue of these and other properties for prime
submodules of modules. Throughout this section, we assume that every multi-
plicatively closed proper subset of R contains 1, but does not contain 0.

Definition 1. Let S be a multiplicatively closed subset of a ring R and M an
R-module. (1) A non-empty subset S* of M is said to be S-closed if se € S* for
every s € S and e € §*. (2) An S-closed subset S* is said to be saturated if the
following condition is satisfied: whenever ae € S* for @ € R and e € M, then
a€ Sandec S*.

Proposition 4.1. If S* is a saturated S-closed subset of an R-module M relative
to a multiplicatively closed subset S of R, then S s saturated.

PROOF. Let ab € S for a,b € R. Then for any e € S*, abe € S*. Since S* is
saturated, a € S and be € S*, whencea € Sand b€ S. O

Evidently, every multiplicatively closed subset S of a ring R is an S-closed
subset of the R-module R. However, not every S-closed subset of the R-module
R is a multiplicatively closed subset of the ring R. On the other hand, as we shall
see in the next proposition, a non-empty subset of the R-module R is a saturated
S-closed subset if and only if it is a saturated multiplicatively closed subset of the
ring R.

Proposition 4.2. Let S be a multiplicatively closed subset of a ring R and S*
any nonempty subset of R. Then S* is a saturated S-closed subset of the R-module
R if and only if S* = S and S* is a saturated multiplicatively closed subset of R.

PrOOF. The sufficiency is easy to verify. To prove the necessity, we assume that
S* is a saturated S-closed subset of the R-module R. By Proposition 4.1, S is
a saturated multiplicatively closed subset of R. Furthermore, for any a € S and
be S*, ab="ba € S* whence b € S and a € S* asb € R and a € R, the R-module
R. Thus $* C S and S C S* so that § = S*. O

There are plenty of examples of S-closed subsets of an R-module M. We shall
list some of them.

Ezample 2. Let {P;};c1 be a collection of prime submodules of M with P; : M =
p; for every i. Then S* = M — |J P; is a saturated S-closed subset of M, where

i€l
S=R- U Di-
el
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Ezample 3. For any S-closed subset S* of M, let W = {S; C M : S} is a
saturated S;-closed subset of M relative to a multiplicatively closed subset S; of
R such that S* C S and S C S;}. Then W is not empty, for example, M € W.
Suppose that W is indexed by a set I and let S* = () Sf. Then S* is a saturated
iel
So-closed subset of M containing S*, where S = ) S;.
iel
Let M be a nonzero module over an integral domain R and m,m’ € M. We
say that m divides m' and write m|m’ if there exists an element 7 € R such that
m' = rm. A nonzero element m is said to be irreducible in M if m = am’ for
a € R and m’ € M implies that a is a unit in R. A nonzero element e € M is
said to be primitive in M if, whenever e|am for 0 # a € R and m € M, then e|m
in M. We remark that every primitive element is irreducible and that an element
7 of the R-module R is primitive if and only if r is a unit of R. [3, p.126].

Ezample 4. Let M be a nonzero module over an integral domain R and S the
group of units of R. Then the set S* of all primitive elements (resp. irreducible
elements) of M is a saturated S-closed subset of M.

Ezample 5. Let S be a regular multiplicative system of a ring R and S* the set of
torsion-free elements of an R-module M. Then S* is a saturated S-closed subset
of M if S* #0.

Ezample 6. Let M be an R-module and S = R — Z(M). Then the set S* of
torsion-free elements of M is S-closed if S* # 0. However, S* is not necessarily
saturated as shown below:

Let Ng = Zt|J{0} and {p, : n € Z*} the set of all prime integers p,. Let
E(p,) = {an € Q/Z : an, = r/p}, + Z for some r € Z and t € Ng}. Then
E(p,) is a nonzero submodule of the Z-module Q/Z for each n € Z+. Now, let

M = T[] E(pn),a Z-module. If & = (an)nez+ € M with a, = r/pt, +Z # 0 for
nez+
infinitely many n, then « is torsion free and so is p, a for any fixed prime integer

p.- Thus p.a € S*, but p, ¢ S = R— Z(M) = Z — Z(M), for p, annihilates
B = (Bn)nez+ With Bk = 1/p, + Z and B, = 0 whenever n # k.

Proposition 4.3. Let S* be an S-closed subset of an R-module M, and N a
submodule contained in M — S*. Then (1) (N : M)(\S =0, so that Ns # Mg if
either M is finitely generated or N is a primary submodule. (2) If N is mazimal
in M — S*, then Ns(1\M = N.

PROOF. (1) Suppose that (N : M)(\S # @ and let s € (N : M)(\S. Then
sM C N and, for any e € S*, se € S*[|N = 0 which is a contradiction. The
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remaining statement of (1) is due to [5, p.3744, Proposition 2]. (2) According to
[7, p.137, Proposition 1], Ns(N\M = {m € M : sm € N for some s € S}. Assume
that N S Ng(\ M. Since N is maximal in M — S*, (Ns (VM) () S* # 0 so that

#
there exists an element e € S* such that e € Ng(|M. Hence se € N for some
s € §, which is impossible because se € N S* = 0. a

Corollary 4.4. Let M, S, and S* be as in Proposition 4.3. Let N be a submodule
of M which is mazimal in M — S§*. Then N is prime in M if and only if Ng is
prime in the Rg-module Mg.

PRrROOF. By Proposition 4.3, (N : M)(N\S = @ and N = Ng(}M. Thus the
corollary follows from [5, p.3742, Proposition 1]. a

Now, we are ready to prove main results of this section.

Theorem 4.5. Let S be a multiplicatively closed subset of a ring R and S* an
S-closed subset of a finitely generated R-module M. Let N be a submodule of M
which is mazimal in M — S*. If the ideal N : M is mazimal in R~ S, then N is
a prime submodule of M with (N : M)s = Ng : Mg.

Proor. If p = N : M is maximal in R — S, then p, is a maximal ideal of Rg.
Since p, = (N : M)g C Ng : Mg and Ng # Mg by Proposition 4.3, we have
that Ng : Mg = p,. It follows that Ng is a prime submodule of Mg as p, is a
maximal ideal of Rg, whence N is a prime submodule of M by Corollary 4.4 to
Proposition 4.3. O

Corollary 4.6. Let p be a prime ideal of a ring R,S = R — p, and S* an S-
closed subset of a finitely generated R-module M. A submodule N of M which is
mazimal in M — S* is prime if N: M = p.

The next two theorems characterize saturated S-closed subsets of cyclic mod-
ules.

Theorem 4.7. Let M = Rm be a cyclic R-module over a ring R. Let S* be an
S-closed subset of M relative to a multiplicatively closed subset S of R, and N a
submodule of M mazimal in M — S*. If S* is saturated, then the ideal N : M is
mazimal in R — S so that N is prime in M.

PROOF. Assume the J = N : M is not maximal in R — S. Then there must exist

an ideal I in R — S such that J ; I. Hence N = JM ;:é IM so that there

exists rm € S* for some r € I by the maximality of N in M — S*. Since S* is
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saturated, r € S which contradicts to the fact that (S = @. Thus J is maximal
in R — S and, consequently, N is prime by Theorem 4.5. O

Theorem 4.8. Let M be a cyclic module over a ring R, S a multiplicatively
closed subset of R, and S* a nonempty subset of M. Then S* is a saturated S-
closed subset of M if and only if the complement of S* in M is a union of prime
submodules P;, i € I, of M and the complement of S in R is a union of prime
tdeals p; = P, : M for eachi € I.

PROOF. We have seen that the sufficiency holds for any module in Example 3. To
prove the necessity, let e be any nonzero element of M — S*. Then Re((S* =0
since S* is saturated. Expand Re to a submodule P maximal with respect to
disjointness from S*. Such a submodule P must exist by Zorn’s Lemma and is
prime by Theorem 4.7. Hence M — S* = |J P;, a union of prime submodules

i€l
P,iel.
Next, put So = R — (| p;), where p; = P, : M for every i; we shall show that
i€l
S =258y If s€ S and me S* then sm € S* = M — (|J P;) so that sm € P,

i€l
for every i. Since each P; is a prime submodule and m € P;, s & p; for every i
whence s € Sy. Therefore S C Sp. On the other hand, if s’ € Sy, then s’ & p;

for every i and s'm’ € S* for all m’ € S* = M — (|J P;) due to that each P;
i€l

is p;-prime. It follows that s’ € § as S* is a saturated S-closed subset. We can

conclude that Sy C S and therefore S = Sp. O

In the following example, we show that not all properties of multiplicatively
closed subsets S of a ring R are inherited by S-closed subsets S* of an R-module
M even when M is cyclic. In particular, we will demonstrate that a submodule
N of M being maximal in M — §* does not imply, in general, that either N is
prime or N : M is maximal in R — S. Thus the condition that N : M is maximal
in R — S imposed in Theorem 4.5 is essential.

Ezample 7. Let R = Z,M = R = Z,S = {1,—1}, and S* the set of all prime
integers. Then S* is an S-closed subset of the cyclic Z-module M = Z, and
M — S§* is the set of all composite integers. Now, take N = 4Z. Then N is
a submodule of M which is maximal in M — S*. However, N is not a prime
submodule of M. Moreover, the maximality of N in M — 5™ does not imply that
of N:M=(4)inR-S.

We also remark that S* in the above example is not saturated and that M — §*
is not a set-theoretic union of prime submodules.
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