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UNIONS OF PRIME SUBMODULES 

CHIN-PI LU 

COMMUNICATED BY JOHNNY A. JOHNSON 

ABSTRACT. A proper submodule P of a module M over a ring R is said 
to be prime if re E P for r E R and e • M implies that either e • P or 
r • P :R M. In this paper we investigate the œoIIowing two topics which are 
related to unions of prime submodules: i) The Prime Avoidance Theorem 
for modules and ii) S-closed subsets of modules. 

1. INTRODUCTION 

Let M be a module over a ring R. A proper submodule P of M with P :R 
M = p is said to be prime or p-prime if re • P for r • R and e • M implies that 
either e • P or r • p (cf. [3], [4], or [5]). 

The Prime Avoidance Theorem for rings (in the simplest form) states that if an 
ideal I of a ring is contained in the union of a finite number of prime ideals, then 
I must be contained in one of them. In section 2, using the technique of efficient 
covering of submodules, which is adopted from [1], we prove its generalization 
to modules (Theorem 2.3). Applying the theorem, in section 3, we characterize 
the torsion subset T(M) of some type of Noetherian modules M with T(M) • 
M as the set-theoretic union of a finite number of prime submodules, each of 
which is an annihilator submodule (Theorem 3.6). Section 4 is devoted to an 
introduction of S-closed subsets of modules, a generalization of multiplicatively 
closed subsets of rings, and to exploration of various properties of S-closed subsets, 
particularly, saturated S-closed subsets of modules. We obtain, among other 
results, a condition under which a submodule of a finitely generated module M 
maximal with respect to exclusion of an S-closed subset to be a prime submodule 
of M (Theorem 4.5). 
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Every ring in this paper is commutative with identity and every module is 
unitary. 

2. THE PRIME AVOIDANCE THEOREM FOR MODULES 

The Prime Avoidance Theorem for rings [2, p.55, Theorem 81] states as follows: 
Let J•, J2,'" , J, be a finite number of ideals in a ring R, and S a subring of R 
such that S C_ J• [.J J2 [.J'" [.J J•. Assume that at most two of the J's are not 
prime. Then $ C_ Jk for some k. We consider a generalization of this theorem to 
modules in terms of prime submodules. 

Let L, L•, L2,' .. , L, be submodules of an R-module M. Following [1], we call 
a covering L c_ L• [.J L2 [.J.-. U L,• efficient if no Lk is superfluous. Analogously, 
we shall say that L - L• [J L2 •J'" •J Ln is an efficient union if none of the L• may 
be excluded. Any cover or union consisting of submodules of M can be reduced to 
an efficient one, called an efficient reduction, by deleting any unnecessary terms. 

It is well-known that if I, A•, and A2 are ideals of a ring such that I C_ A• 
then I C_ A• or I C_ A2. Hence a covering of an ideal by two ideals is never 
efficient. As McCoy remarked in [6], this result remains valid if I, A•, and A2 
are subgroups of any arbitrary group. Consequently, a covering of a submodule 
by two submodules of a module is never efficient. Thus, L c_ L• [.J L2 [.J--. [.J L= 
may possibly be an efficient covering only when n > 2 or n -- 1. 

The important Lemma 1 of [1] for ideals, which is frequently used in the paper, 
is due to McCoy [6, p.634, Lemma]. We can see easily that this result also 
remains valid if ideals are replaced with subgroups of any group. Thus the module 
theoretic version of this lemma is 

Lemma 2.1. Let L = L1 U L2 •J... •J Ln be an efficient union of submodules of 

an R-moduIe M forn > l. Then •1 L j= • Lj for alI k. 
j• j=• 

Proposition 2.2. Let L c_ L1 [J L• [J... [J Ln be an efficient covering consisting 
of submodules of an R-module M where n > 1. If Lj ß M • L• ß M for every 
j • k, then no L• for k C {1, 2, ..., n} is a prime submodule of M. 

PROOF. Since L c_ L1 [JL•U...[_JL,• is an efficient covering, L = (L•IL•) 
[J(L•IL•)[J...[J(LNL,• ) is an efficient union. Hence, for every k _< n, there 
exists an element ek in L-L•. Moreover, N (LNL•) C_ L•L• by Lemma 2.2. If 

j•k 

j • k, then Lj ß M • L• ß M so that there exists an sj• Lj ß N, but sj • Lk ß M. 
Now, suppose that some L• is a prime submodule. Then L• ß M is a prime ideal, 



UNIONS OF PRIME SUBMODULES 2O5 

therefore, s = rI sj • Lj ß M, but s • Lk ß M. Consequently, sek • L NL j 

for every j • k, but se• •' L N L•, which contradicts to N (L • Lj) C_ L • L•. 
j/k 

Therefore, no L• is prime. [] 

Theorem 2.3. [The Prime Avoidance Theorem] Let M be an R-module, L1, 
L2, ..., Ln a finite number of submodules of M, and L a submodule of M such that 
L C_ L1 •J L2 •J... •J Ln. Assume that at most two of the L's are not prime, and 
that Lj ' M • L• ' M whenever j • k. Then L C_ L• for some k. 

PROOF. For the given covering L c_ L1 U L2 U-.. • L•, let 
L C_ Li• • Li2 • "' • Li.• be its efficient reduction. Then 1 _• m _• n and m • 2. 
If m > 2, then there exists at least one Lij to be prime. In view of Proposition 
2.2, this is impossible as Lj ß M • L• ß M ifj • k. Hence m - 1, namely, L C_ Lk 
for some k. [] 

As we can see in the following Example 1, the condition that Lj ß M • L• ß M 
if j y• k in Theorem 2.3 is essential. 

Example 1. Let V be a vector space of dimension > 2 over the field Z/2Z. Then 
every subspace of V is (0)-prime. Let el and e2 be distinct vectors of a basis 
for V, V1 ---- e•F, V2 = e2F, V3 = (el q- e2)F, and L = V• + V2. Then L = 
{0, el, e2, el q- e2} -- V1 [.J V2 [.J V3 is an efficient union of three prime submodules 
V/with ¬ ß V = (0), but L • V• for every i 6 {1,2,3}. 

In [1], the problem concerning covering of ideals by cosets was studied. Some 
results of the investigation can also be generalized to modules. The generalizations 
are counterparts to some of the previous results including The Prime Avoidance 
Theorem. 

Let L,L•,L2,...,L• be submodules of an R-module M and L1 
e2, ..., L,•+e,• cosets in M. We call a covering L c_ (Lx+e•) [.J(L2+e2) [.J ß ß ß 
e•) efficient if no coset is superfluous. If e& = e for every k • {1, 2, ...,n}, then 
the above covering is equivalent to L - e C_ L1 [,J L•. [,.J. ß ß [.J L• and this is a coset 
efficiently covered by a union of submodules. 

Lemma 2.4. Let L c_ (L1 q- el)[.J(L2 q- e2) [J" .[J(L,• + en) be an efficient cov- 
ering of a submodule L by cosets, where n > 2. Then L•( • L•) C_ L&, but 

jg& 

L • Lk for all k. 

PROOF. Cf. [1, p.3094, Proof of Lemma 10]. [] 
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Proposition 2.5. Let L + e C- L• U L2 •J.'. •J L, be an efficient covering with 
n _• 2. If Li ' M • L• ß M for every j • k, then no L• is prime. 

PROOF. From Lemma 2.4, L N( N Lj) C_ L& and L • L&. Put I = ( [• Lj)' M. 

Then IL C_ L(•( (• Lj) C_ L•. Suppose that L• is prime for some k. Then either 

LC_L•orI=(N L•)'M= •(Lj'M) C_L•'MsothatLy'MC_L•'M 

for some j. However, both cases are impossible, hence no L• is prime. [] 

Theorem 2.6. Let L + e C_ L• •J L2 U'" •J L, be a covering such that at most 
one submodule Li is not prime and that Lj ß M • L• ß M if j • k. Then the 
submodule L + eR C_ L• for some k. 

PROOF. For the given covering L + e C_ L1 [_J L2 U'-' [_J L,, let L + e C- Li• [J 
Li2 U'" [J Li,• be its efficient reduction. Then 1 <_ m < n. It is immediate from 
Proposition 2.5 that m = 1. Hence L + e C- L& for some k whence L + eR C_ L& 
as e = O + e • L + e c- L •. [] 

3. THE TORSION SUBSET T(M) 

Let M be an R-module, Z(M) the set of zero divisors on M, and T(M) the tor- 
sion subset of M. Clearly, Z(M) = [J Annam and T(M) = [_J AnnMa, 

O•m6M O•a6R 

where AnnMa -- 0 :M a ---- {e E M: ae - 0}. 
If R is an integral domain and T(M) • M, then T(M) is known to be a 

submodule of M which is (0)-prime [4, p.62, Result 3]. Furthermore, if T(M) 
is finitely generated over the integral domain R, then T(M) -- AnnMa for some 
nonzero element a of R. 

It is known that if I is an ideal of a ring R that is maximal among all annihila- 
tors Annam of nonzero elements m of any R-module M, then I is a prime ideal. 
If M is a finitely generated nonzero module over a Noetherian ring R, then Z(M) 
is also known to be the set-theoretic union of a finite number of prime ideals 
each of which is Annam for some nonzero element m of M [2, p.4, Theorem 6, 
p.55, Theorem 80]. In this section, we shall see that Ann•4a and T(M) of some 
finitely generated modules M over Noetherian rings with T(M) • M have similar 
properties. The Prime Avoidance Theorem proved in section I will be applied in 
proving the main result of this section, Theorem 3.6. 

The following notations will be used exclusively: 
X = {AnnMa: 0 • a • R}, X' = {AnnMb • X: AnnMb is maximal in X}, 
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Y = (AnnRa: 0 • a • R), Y' = (AnnRb • Y: Annnb is maximal in Y). 
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Proposition 3.1. If M is an R-module with T(M) • M , then 
AnnMa : M = Annsa for every nonzero element a of R. 

The proof of Proposition 3.1 is straightforward. 

Proposition 3.2. Let M be an R-module with T(M) • M and 0 • x • R. If 
AnnMx is maximal in X, then it is a prime submodule of M. 

PROOF. Since T(M) • M, AnnMx is a proper submodule of M. Now let ye • 
AnnMx for y • R and e 6 M. Then xye = 0. Suppose that y ft AnnMx: M, that 
is, y ft Annsx by Proposition 3.1. Then xy • 0, whence AnnMx = AnnMxy by 
the maximality of AnnMx in X. It follows that e 6 AnnMxy = AnnMx. Thus 
AnnMx is a prime submodule of M. [] 

Corollary 3.3. If M is a Noetherian module with T(M) • M, then T(M) is a 
union of prime submodules. 

PROOF. We know that T(M) = •J AnnMa. Since M is Noetherian, each 
O•aER 

AnnMa of X is contained in a maximal one in X. Hence T(M) is the set theoretic- 
union of those maximal ones, each of which was proved to be prime in Proposition 
3.2. [] 

An R-module M is called a multiplication module provided that for every 
submodule N of M there exists an ideal I of R such that N = IM. 

Lemma 3.4. Let M be a multiplication R-module with T(M) • M. Then the 
mapping f: X --• ¾ defined by f(AnnMa) = AnnRa for every AnnMa • X is 
an order preserving bijection. 

PROOF. That f is both surjective and order preserving stems from the fact that 
Annsa = AnnMa : M by Proposition 3.1. It is also injectire due to that 
AnnMa = (AnnMa : M)M = (AnnRa)M. [] 

Lemma 3.5. Let M be a finitely generated module over a Noetherian reduced 
ring R with T(M) • M. Let f: X --• Y be defined by f(AnnMa) = AnnRa 
for every AnnMa • X, and g = fix •, the restriction of f on X •. Then g is an 
injection from X • into Y•. 

PROOF. Clearly both X • and Y• are not empty. For each AnnMa • X •, we 
claim that g(AnnMa) = Annsa belongs to Y•. Assume the contrary and let b 
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c Annnb. Since R is reduced, be a nonzero element of R such that Annna • 
ab • 0, for otherwise ab = 0 results in b • AnnRa C AnnRb whence b 2 = 0. By 
the maximality of AnnMa in X, we have AnnMb c_ AnnMab - AnnMa which 
implies a contradiction that AnnRb c_ Annna. Thus Annna is maximal in X 
so that g is a mapping from X • to ¾•, which is evidently injective by the same 
arguments as above based on the fact that R is reduced. [] 

Theorem 3.6. Let R be a Noetherian ring and M a finitely generated R-module 
with T(M) • M. Suppose that either 

i) M is a multiplication module or ii) R is a reduced ring. 
Then there are only a finite number of prime submodules which are maximal within 
T(M), and each is the annihilator submodule AnnMa for some nonzero element 
aofR. 

PROOf. We have seen in the proof of Corollary 3.3 to Proposition 3.2 that 
T(M) is the union of those annihilator submodules AnnMai which form X •. 
Since R is Noetherian, the ideal spanned by the set {ai • R ß AnnMai • 
X •} is finitely generated, say, by ax,a2,." ,an. Let AnnMa be an arbitrary 
element of X •. Then a = plax q- r2a2 q- '" q- man for some rl,r2,..- ,rn 
in R, so that AnnMax (•'" (• AnnMa** _C AnnMa. Consequently, (AnnMal ß 
M)•...•(AnnMa,, ' M) c_ (AnnMa ' M), that is, Ann•ax(•...(•Ann•a,, c_ 
AnnRa. Since Annna is a prime ideal, Ann•aj c_ Annna for some j • {1, 2,... , n}. 
We can conclude that AnnRaj = Annna because both ideals are maximal in 
Y. It follows that AnnMaj -- AnnMa for each case i) and ii) by Lemma 3.4 
and Lemma 3.5, respectively. This proves that X • -- {AnnMax,...,AnnMa,,}. 
To complete the proof of Theorem 3.6, it will suffice to prove that any sub- 
module N contained in T(M) is contained in one of the AnnMaj • X •. Since 
N C- T(M) = AnnMal •J'"•JAnnMan, where each AnnMai • X • is a prime 
submodule satisfying the property that AnnMai ß M • AnnMaj ß M if i • j, 
N C- AnnMaj for some j • {1, 2, ..., n} by the Prime Avoidance Theorem. [] 

4. S-CLOSED SUBSETS OF MODULES 

The most fundamental properties of prime ideals p of a ring R are as follows: 
i) R - p is a saturated multiplicatively closed subset of R, 
ii) the ideal maximal with respect to the exclusion of a multiplicatively closed 

subset of R is prime, and 

iii) a subset S of R is a saturated multiplicatively closed subset of R if and 
only if the complement of S is a set-theoretic union of prime ideals in R. 
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In this section, we consider analogue of these and other properties for prime 
submodules of modules. Throughout this section, we assume that every multi- 
plicatively closed proper subset of R contains 1, but does not contain 0. 

Definition 1. Let S be a multiplicatively closed subset of a ring R and M an 
R-module. (1) A non-empty subset S* of M is said to be S-closed if se • S* for 
every s • S and e • S*. (2) An S-closed subset S* is said to be saturated if the 
following condition is satisfied: whenever ae • S* for a • R and e • M, then 
a•Sande•S*. 

Proposition 4.1. If S* is a saturated S-closed subset of an R-module M relative 
to a multiplicatively closed subset S of R, then S is saturated. 

PROOF. Let ab • S for a, b • R. Then for any e G S*, abe • S*. Since S* is 
saturated, a • S and be • S*, whence a • S and b • S. [] 

Evidently, every multiplicatively closed subset S of a ring R is an S-closed 
subset of the R-modul.e R. However, not every S-closed subset of the R-module 
R is a multiplicatively closed subset of the ring R. On the other hand, as we shall 
see in the next proposition, a non-empty subset of the R-module R is a saturated 
S-closed subset if and only if it is a saturated multiplicatively closed subset of the 
ring R. 

Proposition 4.2. Let S be a multiplicatively closed subset of a ring R and S* 
any nonempty subset of R. Then S* is a saturated S-closed subset of the R-module 
R if and only if S* -- S and S* is a saturated multiplicatively closed subset of R. 

PROOf. The sufficiency is easy to verify. To prove the necessity, we assume that 
S* is a saturated S-closed subset of the R-module R. By Proposition 4.1, S is 
a saturated multiplicatively closed subset of R. Furthermore, for any a • S and 
b • S*, ab - ba • S* whence b • S and a • S* as b • R and a • R, the R-module 
R. Thus S* C S and S C S* so that S = S*. [] 

There are plenty of examples of S-closed subsets of an R-module M. We shall 
list some of them. 

Example 2. Let {Pi}ie• be a collection of prime submodules of M with ?i ' M - 
pi for every i. Then S* - M- •j Pi is a saturated S-closed subset of M, where 

i•I 

S=R- [jp. 
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Example 3. For any S-closed subset S* of M, let W = (S• C_ M ß S• is a 
saturated Si-closed subset of M relative to a multiplicatively closed subset Si of 
R such that S* c_ S• and S C_ Si}. Then W is not empty, for example, M ß W. 
Suppose that W is indexed by a set I and let •* - [') S•. Then ,½* is a saturated 

iEI 

,½0-closed subset of M containing S*, where •0 = [') Si. 
iEI 

Let M be a nonzero module over an integral domain R and m, m • ß M. We 
say that m divides m • and write mira • if there exists an element r ß R such that 
m • - rm. A nonzero element m is said to be irreducible in M if m - am • for 

aß Randin • ß M implies that aisaunit inR. A nonzero element e ß M is 
said to be primitive in M if, whenever elam for 0 • a ß R and m ß M, then elm 
in M. We remark that every primitive element is irreducible and that an element 
r of the R-module R is primitive if and only if r is a unit of R. [3, p.126]. 

Example 4. Let M be a nonzero module over an integral domain R and S the 
group of units of R. Then the set S* of all primitive elements (resp. irreducible 
elements) of M is a saturated S-closed subset of M. 

Example 5. Let S be a regular multiplicative system of a ring R and S* the set of 
torsion-free elements of an R-module M. Then S* is a saturated S-closed subset 

of MifS*•0. 

Example 6. Let M be an R-module and S = R- Z(M). Then the set S* of 
torsion-free elements of M is S-closed if S* • 0. However, S* is not necessarily 
saturated as shown below: 

Let No = Z + [,J{0} and {p,• ß n ß Z +} the set of all prime integers p,•. Let 
E(p,•) = {a,• ß Q/Z' a,• = r/p•+Z for some r ß Z and t ß No}. Then 
E(p,•) is a nonzero submodule of the Z-module Q/Z for each n ß Z +. Now, let 
M = rI E(p,•), a Z-module. If a = (a,•),•ez+ ß M with a,• = r/pt• + Z • 0 for 

n•Z+ 

infinitely many n, then a is torsion free and so is pka for any fixed prime integer 
pk. Thus p•a ß S*, but p• • S = R - Z(M) = Z - Z(M), for p• annihilates 
/• - (/•,•),•e z+ with/•k = 1/p• + Z and/•,• = 0 whenever n • k. 

Proposition 4.3. Let S* be an S-closed subset of an R-module M, and N a 
submodule contained in M- S*. Then (1) (N' M)[•S - 0, so that Ns • Ms if 
either M is finitely generated or N is a primary submodule. (2) If N is maximal 
in M- S*, then Ns N M = N. 

PROOF. (1) Suppose that (N ' M)[•S • 0 and let s ß (N ' M)[•S. Then 
sM c_ N and, for any e ß S*, se ß S*[')N = 0 which is a contradiction. The 
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remaining statement of (1) is due to [5, p.3744, Proposition 2]. (2) According to 
[7, p.137, Proposition 1], Ns • M -- {m ß M :sin ß N for some s ß S}. Assume 

½ Ns •] M. Since N is maximal in M - S*, (Ns •] M) •] S* • 0 so that that N • 
there exists an element e ß S* such that e ß Ns •] M. Hence se ß N for some 
s ß S, which is impossible because se ß N •] S* = O. [] 

Corollary 4.4. Let M, S, and S* be as in Proposition 4.3. Let N be a submodule 
of M which is maximal in M - S*. Then N is prime in M if and only if Ns is 
prime in the Rs-module Ms. 

PROOF. By Proposition 4.3, (N ß M)•]S = 0 and N = Ns•]M. Thus the 
corollary follows from [5, p.3742, Proposition 1]. [] 

Now, we are ready to prove main results of this section. 

Theorem 4.5. Let S be a multiplicatively closed subset of a ring R and S* an 
S-closed subset of a finitely generated R-module M. Let N be a submodule of M 
which is maximal in M - S*. If the ideal N: M is maximal in R- S, then N is 
a prime submodule of M with (N: M)$ = Ns: Ms. 

PROOF. If p = N: M is maximal in R - S, then Ps is a maximal ideal of Rs. 
Since Ps = (N : M)$ C_ Ns: Ms and Ns • Ms by Proposition 4.3, we have 
that Ns: Ms - Ps. It follows that Ns is a prime submodule of Ms as Ps is a 
maximal ideal of Rs, whence N is a prime submodule of M by Corollary 4.4 to 
Proposition 4.3. [] 

Corollary 4.6. Let p be a prime ideal of a ring R,S = R - p, and $* an S- 
closed subset of a finitely generated R-module M. A submodule N of M which is 
maximal in M - S* is prime if N ß M = p. 

The next two theorems characterize saturated S-closed subsets of cyclic mod- 
ules. 

Theorem 4.7. Let M = Rm be a cyclic R-module over a ring R. Let $* be an 
S-closed subset of M relative to a multiplicatively closed subset S of R, and N a 
submodule of M maximal in M - S*. If S* is saturated, then the ideal N: M is 
maximal in R - $ so that N is prime in M. 

PROOF. Assume the J - N ß M is not maximal in R- $. Then there must exist 

c IM so that there c I. HenceN= JM • an ideal IinR-Ssuchthat J • 
exists rm ß $* for some r ß ! by the maximality of N in M - $*. Since $* is 
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saturated, r ß S which contradicts to the fact that I [• S = 0. Thus J is maximal 
in R - S and, consequently, N is prime by Theorem 4.5. [] 

Theorem 4.8. Let M be a cyclic module over a ring R, S a multiplicatively 
closed subset of R, and S* a nonempty subset of M. Then S* is a saturated S- 
closed subset of M if and only if the complement of S* in M is a union of prime 
submodules Pi, i ß I, of M and the complement of S in R is a union of prime 
ideals Pi = Pi ' M for each i ß I. 

PROOF. We have seen that the sufficiency holds for any module in Example 3. To 
prove the necessity, let e be any nonzero element of M - S*. Then Re N S* = 0 
since S* is saturated. Expand Re to a submodule P maximal with respect to 
disjointness from S*. Such a submodule P must exist by Zorn's Lemma and is 
prime by Theorem 4.7. Hence M - S* = [J Pi, a union of prime submodules 

i•I 

Pi,ißI. 
Next, put So = R - ( •J Pi), where Pi = Pi ' M for every i; we shall show that 

iGI 

S= So. Ifs ß Sand m ß S*,thensmß S* = M-(U Pi) so that sm •Pi 
iGI 

for every i. Since each Pi is a prime submodule and m • Pi, s • Pi for every i 
whence s ß So. Therefore S c_ So. On the other hand, if s • ß So, then s • • Pi 
for every i and s•m • ß S* for all m • ß S* = M - (•J Pi) due to that each Pi 

i•I 

is pi-prime. It follows that s • ß S as S* is a saturated S-closed subset. We can 
conclude that So c_ S and therefore S = So. [] 

In the following example, we show that not all properties of multiplicatively 
closed subsets S of a ring R are inherited by S-closed subsets S* of an R-module 
M even when M is cyclic. In particular, we will demonstrate that a submodule 
N of M being maximal in M - S* does not imply, in general, that either N is 
prime or N ß M is maximal in R - S. Thus the condition that N ß M is maximal 
in R - S imposed in Theorem 4.5 is essential. 

Example 7. Let R = Z,M = R = Z,S = {1,-1), and S* the set of all prime 
integers. Then S* is an S-closed subset of the cyclic Z-module M = Z, and 
M - S* is the set of all composite integers. Now, take N - 4Z. Then N is 
a submodule of M which is maximal in M - S*. However, N is not a prime 
submodule of M. Moreover, the maximality of N in M - S* does not imply that 
ofN-M=(4) inR-S. 

We also remark that S* in the above example is not saturated and that M- S* 
is not a set-theoretic union of prime submodules. 
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