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Abstract. A proper submodule N of an R-module M is called a weakly prime [resp.

a prime] submodule, if for any elements a, b ∈ R and x ∈ M, the condition abx ∈ N
[resp. ax ∈ N ] implies that ax ∈ N or bx ∈ N [resp. x ∈ N or aM ⊆ N ]. In this

paper the relations between weakly prime submodules of a module M and weakly prime

submodules of the localization of M are studied. Some applications of these relations

are given. Furthermore, the relations between the intersection of prime submodules

and the intersection of weakly prime submodules are discussed.
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1. Introduction

Throughout this paper all rings are commutative with identity and all modules
are unitary. Also we denote by R a ring and by M a unitary R-module.

Let N be a prime submodule of M and P = (N : M ) = {t ∈ R| tM ⊆ N}.
It is easy to see that P is a prime ideal of R and we say that N is a P -prime
submodule of M. Prime submodules have been studied in several papers such as
[1-6, 10].

Weakly prime submodules are generalizations of prime submodules and they
have been introduced in [6]. Weakly prime submodules also have been studied in
[2, 4, 5]. If we consider R as an R-module, then prime submodules and weakly
prime submodules are exactly prime ideals of R. For every R-module, it is easy
to see that any prime submodule is a weakly prime submodule, but the converse
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is not always correct. For example let R be an integral domain and P a non-zero
prime ideals of R. Then it is easy to see that for the free R-module R ⊕ R, the
submodule 0⊕P is a weakly prime submodule, which is not a prime submodule.

Recall that the set of zero divisors of M, denoted by ZdR(M ) is defined by

ZdR(M ) = {r ∈ R| ∃0 6= x ∈ M, rx = 0}.

In Sec. 2 of this paper, by using the zero divisors, the relations between
weakly prime submodules of M and weakly prime submodules of the localization
of M are studied. Let S be a multiplicatively closed subset of R. It is proved that
there exists an one-to-one correspondence between weakly prime submodules N
of M with ZdR(M

N )∩S = ∅ and weakly prime submodules of MS (see Proposition
2.4).

In Sec. 3 some applications of the localization technique are given (see The-
orem 3.5). In [6, Sec. 5], it is proved that if R is a ring with dimR < ∞, then
an R-module M has weakly prime submodules if and only if M has a prime
submodule. We will relax the condition dimR < ∞, (see Proposition 3.1); fur-
thermore some specific prime submodules are introduced (see Theorem 3.2 and
Corollary 3.3).

Let B be a proper submodule of M . The intersection of all prime [resp.
weakly prime] submodules of M containing B is denoted by rad(B) [resp. wrad(B)].
If there does not exist any prime [resp. weakly prime] submodule of M containing
B, then we say rad(B) = M [resp wrad(B) = M ]. Evidently wrad(B) ⊆ rad(B).

In Sec. 4 we will study the equality wrad(B) = rad(B) (see Theorem 4.2).

2. Weakly Prime Submodules and Localization

Let M be an R-module and let N be a proper submodule of M. Obviously,

(N : M ) ⊆ ZdR(
M

N
) =

⋃

x∈M\N

(N : x).

In this section, we will show that ZdR(M
N ) has an important role in studying the

relation between weakly prime submodules of a module M and weakly prime
submodules of the localization of M.

Lemma 2.1. Let M be an R-module and let N be a proper submodule of M.

(i) N is a weakly prime submodule if and only if for each x ∈ M \ N, (N : x) is
a prime ideal of R. When this is the case, {(N : x)}x∈M\N is a chain of prime
ideals of R.

(ii) If N is a weakly prime submodule, then (N : M ) and ZdR(M
N ) are both prime

ideals of R.

Proof. (i) The first part is obvious.
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Now let N be a weakly prime submodule and x, y ∈ M \ N. Obviously,
(N : x)∩ (N : y) ⊆ (N : x + y). By the first part we have (N : x) ⊆ (N : x + y),
or (N : y) ⊆ (N : x + y). So (N : x) = (N : x) ∩ (N : x + y) ⊆ (N : y), or
(N : y) = (N : y) ∩ (N : x + y) ⊆ (N : x). Thus {(N : x)}x∈M\N is a chain of
prime ideals of R.

(ii) The proof is clear by part (i). �

If N is a weakly prime submodule of an R-module M, then by Lemma 2.1(ii),
(N : M ) is a prime ideal of R. In this case, if (N : M ) = P, we say that N is a
P -weakly prime submodule.

Lemma 2.2. Let M be an R-module, N a weakly prime submodule of M, and
S a multiplicatively closed subset of R. If NS 6= MS , then NS is a weakly prime
submodule of MS as an RS-module.

Proof. See [6, Proposition 6.3]. �

Let M be an R-module, S a multiplicatively closed subset of R, W a sub-
module of MS as an RS-module. We consider W c to be W ∩ M, that is,
W c = {x ∈ M |x1 ∈ W}. The following lemma shows that there exists an one-to-
one correspondence between prime submodules N of M with (N : M ) ∩ S = ∅
and prime submodules NS of MS .

Lemma 2.3. Let M be an R-module and let S be a multiplicatively closed subset
of R.

(i) If N is a P -prime submodule of M such that P∩S = ∅, then NS is a PS-prime
submodule of MS as an RS-module and (NS )c = N.

(ii) If W is a Q-prime submodule of MS as an RS-module, then W c is a Qc-
prime submodule of M, (W c)S = W and Qc ∩ S = ∅.

Proof. See [10, Proposition 1]. �

Let M be an R-module, S a multiplicatively closed subset of R. In the
following proposition we will show that there exists an one-to-one correspondence
between weakly prime submodules N of M with ZdR(M

N ) ∩ S = ∅ and weakly
prime submodules of MS . Comparing Proposition 2.4 with Lemma 2.3 shows
that the role of ZdR(M

N ) for a weakly prime submodule N is the role of (N : M )
for a prime submodule.

Proposition 2.4. Let M be an R-module and S a multiplicatively closed subset
of R.

(i) If N is a weakly prime submodule of M, and for some x ∈ M \ N, (N :
x) ∩ S = ∅, then NS is a weakly prime submodule of MS .

(ii) If N is a P -weakly prime submodule of M such that ZdR(M
N ) ∩ S = ∅, then

NS is a PS-weakly prime submodule of MS and (NS)c = N. Hence (N : M )S =
(NS : MS ). Moreover ZdRS (MS

NS
) = (ZdR(M

N ))S .
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(iii) If W is a Q-weakly prime submodule of MS , then W c is a Qc-weakly
prime submodule of M and (W c)S = W. Furthermore ZdR( M

W c ) ∩ S = ∅ and
ZdR( M

W c ) = (ZdRS (MS

W
))c.

Proof. (i) If P = (N : x), then PS = (N : x)S = (NS : x
1 ). By Lemma

2.1(i) the ideal P is prime and P ∩ S = ∅, then PS is a prime ideal of RS . So
(NS : x

1
) = PS 6= RS , which implies that NS 6= MS . Now by Lemma 2.2, NS is

a weakly prime submodule of MS .

(ii) By part (i), NS is a weakly prime submodule of MS . Let m ∈ (NS)c. So
n1
s1

= m
1
∈ NS , for some n1 ∈ N, s1 ∈ S. If m 6∈ N, then there exists an s2 ∈ S

such that s2s1 ∈ (N : m) ∩ S ⊆ ZdR(M
N ) ∩ S, which is impossible. Therefore

m ∈ N, i.e., (NS)c ⊆ N and then (NS)c = N.

If x
s ∈ MS \ NS , then obviously, (NS : x

s ) = (NS : x
1 ), and it is easy to see

that y
1
∈ MS \ NS if and only if y ∈ M \ N. Thus ZdRS (MS

NS
) = ∪x∈M\N (NS :

x
1
) = ∪x∈M\N (N : x)S = (∪x∈M\N (N : x))S = (ZdR(M

N
))S .

Clearly PS = (N : M )S ⊆ (NS : MS). Let r
t
∈ (NS : MS) \ (N : M )S ,

where r ∈ R \ (N : M ) and t ∈ S. Then there exists an element m0 ∈ M
such that rm0 6∈ N. Since r

t MS ⊆ NS , we have rm0
t = n

s′ for some n ∈ N and
s′ ∈ S. Then there exists s′′ ∈ S such that s′′s′rm0 = s′′tn ∈ N. Since rm0 6∈ N,
s′′s′ ∈ (N : m0) ∩ S ⊆ ZdR(M

N ) ∩ S, which is a contradiction.

(iii) It is easy to see that for each x ∈ M \W c, (W c : x) is a prime ideal. So
by Lemma 2.1(i), W c is a weakly prime submodule. Evidently (W c)S = W.

If s ∈ ZdR( M
W c ) ∩ S, then s ∈ (W c : y), for some y ∈ M \ W c. So sy

1 ∈ W,
and then y

1 = 1
s

sy
1 ∈ W. Consequently y ∈ W c, which is a contradiction.

By part (ii), we have, (W c : M )S = ((W c)S : MS) = (W : MS) = Q. Note
that (W c : M ) is a prime ideal and (W c : M ) ∩ S ⊆ ZdR( M

W c ) ∩ S = ∅. Then
(W c : M ) = ((W c : M )S)c = Qc.

Again by part (ii), we get (ZdR( M
W c ))S = ZdRS ( MS

(W c)S
) = ZdRS (MS

W ), and
then ((ZdR( M

W c ))S)c = (ZdRS (MS

W
))c. Since ZdR( M

W c ) is a prime ideal with
ZdR( M

W c )∩S = ∅, ZdR( M
W c ) = ((ZdR( M

W c ))S)c. Hence ZdR( M
W c ) = (ZdRS (MS

W ))c.

�

Proposition 2.5. Let M be an R-module and let S be a multiplicatively closed
subset of R.

(i) Let M be finitely generated or dim R < ∞. If N is a weakly prime submodule
of M such that (N : M ) ∩ S = ∅, then NS is a weakly prime submodule of MS .

(ii) If W is a weakly prime submodule of MS , then W c is a weakly prime sub-
module of M and (W c)S = W. Furthermore (W c : M ) ∩ S = ∅.

Proof. (i) It is shown that (N : M ) = (N : x), for some x ∈ M. Hence the result
is given by Proposition 2.4(i).

If M is generated by x1, x2, x3, · · · , xn, then it is easily checked that (N :
M ) = ∩n

i=1(N : xi). By Lemma 2.1(ii), (N : M ) is a prime ideal, then for some
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i, we have (N : M ) = (N : xi).
Now suppose that dim R < ∞. By Lemma 2.1(i), the set P = {(N :

y)}y∈M\N is a chain of prime ideals of R, and since dim R < ∞, the set P
has a minimal element. Suppose (N : x) is a minimal element of P. Then
obviously (N : M ) = (N : x).

(ii) By Proposition 2.4(iii), W c is a weakly prime submodule of M, (W c)S =
W and ZdR( M

W c ) ∩ S = ∅. Consequently (W c : M ) ∩ S ⊆ ZdR( M
W c ) ∩ S = ∅. �

Example 1. Let M = R⊕R, N = P1⊕P2, N ′ = P1⊕R, and S = R\P1, where P1

and P2 are prime ideals of R such that P1 ⊂ P2. It is easy to see that N and N ′

are weakly prime submodules of M. Also NS = (P1)S⊕(P2)S = (P1)S⊕RS = N ′
S

and so (NS)c = P1 ⊕ R 6= N. Hence even for a free module of finite rank M,
the function N −→ NS does not define an one-to-one correspondence between
weakly prime submodules N of M with (N : M ) ∩ S = ∅ and weakly prime
submodules of MS .

3. Some Applications of Localization

In [6, Proposition 5.1], it is proved that if dim R < ∞, M is an R-module and
M has a weakly prime submodule, then M has a prime submodule. If N is a
weakly prime submodule, then by Lemma 2.1(ii), (N : M ) is a prime ideal, and
if dim R < ∞, then by the proof of Proposition 2.5, (N : M ) = (N : x), for some
x ∈ M. Hence the following result is a generalization of [6, Proposition 5.1].

For the rest of this section, we denote the notation ⊂ for the proper inclusion.

Proposition 3.1. Let M be an R-module, N a submodule of M such that
(N : M ) = P is a prime ideal of R and for some x ∈ M, (N : x) = P. Then
there exists a P -prime submodule N0 of M containing N .

Proof. Consider the following set

T = {C| N ⊆ C, C is a submodule of M and (C : x) = P}.

By Zorn’s lemma T has a maximal element. Let N0 be a maximal element of T.
We show that N0 is a P -prime submodule of M. Evidently, (N0 : M ) = P.

Let ra ∈ N0, where a ∈ M \ N0 and r ∈ R. We have P = (N0 : M ) ⊂
(N0+Ra : x). Consider r1 ∈ (N0+Ra : x)\P. Note that rr1x ∈ rN0+Rra ⊆ N0,
i.e., rr1 ∈ (N0 : x) = P, and since r1 6∈ P, we have r ∈ P = (N0 : M ). �

In the following we will introduce a certain prime submodule containing a
weakly prime submodule.

Theorem 3.2. Let M be an R-module and let N be a P -weakly prime submodule
of M such that for some x ∈ M, (N : x) = P.
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(i) ((PM )P )c is a P -prime submodule of M.

(ii) (NP )c = {y ∈ M \ N | (N : M ) 6= (N : y)} ∪ N, and (NP )c is a P -prime
submodule of M and minimal prime over N.

Proof. (i) By Proposition 2.4(i) and (iii), (NP )c is a proper submodule of M.
Since PM ⊆ N, we have ((PM )P )c ⊆ (NP )c. Hence ((PM )P )c is a proper
submodule of M. Now we show that ((PM )P )c is a P -prime submodule of M.

Let ra ∈ ((PM )P )c, where r ∈ R and a ∈ M. We have ra
1 = y

s , for some
y ∈ PM, and s ∈ R \ P. Then s′sra = s′y, for some s′ ∈ R \ P. If r ∈ P, then
since P ⊆ (PM : M ) ⊆ (((PM )P )c : M ), we have r ∈ (((PM )P )c : M ). If
r 6∈ P, then sr ∈ R \ P and s′sra = s′y implies that a

1
= y

sr
∈ (PM )P . Hence

a ∈ ((PM )P )c.

We have P ⊆ (PM : M ) ⊆ (((PM )P )c : M ) ⊆ (((PM )P )c : x) ⊆ ((NP )c :
x) = (N : x) = P. Hence (((PM )P )c : M ) = P.

(ii) Let N ′ = {y ∈ M \ N | (N : M ) 6= (N : y)} and y ∈ (NP )c \ N. There
exist n ∈ N and s ∈ R \ (N : M ) such that y

1
= n

s
. Then for some s′ ∈ R \ P,

s′s ∈ (N : y) \ P = (N : y) \ (N : M ) and so y ∈ N ′.

Obviously, N ⊆ (NP )c. If z ∈ N ′, then z ∈ M \ N and (N : M ) ⊂ (N : z).
Let s0 ∈ (N : z) \ (N : M ). We have, z

1 = s0z
s0

∈ NP . So z ∈ (NP )c, whence
N = N ′ ∪ N.

It is easy to see that P = (N : M ) ⊆ ((NP )c : M ) ⊆ ((NP )c : x) = (N : x) =
P, i.e., ((NP )c : M ) = P.

To show that (NP )c is a prime submodule of M, let tb ∈ (NP )c, where t ∈ R
and b ∈ M \ (NP )c. From b 6∈ (NP )c = N ′ ∪ N, we get (N : b) = (N : M ) = P.

Since tb ∈ (NP )c, tb
1

= n′

t′
for some n′ ∈ N and t′ ∈ R\P. So for some t′′ ∈ R\P,

t′′t′tb = t′′n ∈ N. Then t′′t′t ∈ (N : b) = P and since t′′t′ 6∈ P, we have t ∈ P.

Now let N ⊆ L ⊆ (NP )c, where L is a prime submodule of M. Then P =
(N : M ) ⊆ (L : M ) ⊆ ((NP )c : M ) = P, that is (L : M ) = P. If N = (NP )c,
then obviously L = (NP )c. So suppose that y′ ∈ (NP )c \ N. Then P = (N :
M ) 6= (N : y′). Consider u ∈ (N : y′) \ P. We have uy′ ∈ N ⊆ L, and since L is
a P -prime submodule, we have y′ ∈ L. Hence L = (NP )c. Consequently (NP )c

is a minimal prime submodule over N . �

Corollary 3.3. Let M be an R-module and let N be a P -weakly prime submodule
of M. If dim R < ∞ or M is finitely generated, then (NP )c is a P -prime
submodule of M and a minimal prime submodule over N.

Proof. The proof of Proposition 2.5(i) shows that (N : M ) = (N : x), for some
x ∈ M. Now the result is completed by Theorem 3.1(ii). �

A ring R is said to be an arithmetical ring, if for any ideals I, J and K of
R, I + (J ∩ K) = (I + J) ∩ (I + K) (see [8]). Obviously Dedekind domains and
Prüfer domains are arithmetical rings.

Lemma 3.4. A ring R is arithmetical if and only if for each prime (or maximal)
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ideal P of R, any two ideals of the ring RP are comparable.

Proof. See [8, Theorem 1]. �

Let R be an arithmetical ring and M an R-module with T (M ) = 0. The
following result shows that every Q-weakly prime submodule of M contains a
Q-prime submodule of M, and in this case dim R need not be finite (compare
with Corollary 3.3). In the following theorem, if T (M ) = {m ∈ M | ∃r, 0 6= r ∈
R, rm = 0} = 0, then the condition ZdR(M ) = 0 ⊆ (N : M ) is satisfied.

Theorem 3.5. Let R be an arithmetical ring, N a Q-weakly prime submodule of
an R-module M such that ZdR(M ) ⊆ Q. Then there exists a Q-prime submodule
of M contained in N.

Proof. Let ZdR(M
N ) = P. By Proposition 2.4(ii), NP is a QP -weakly prime

submodule of MP and (NP )c = N. We show that there exists a QP -prime
submodule W of MP contained in NP . Then if we consider N1 = W c, we will
have N1 ⊆ (NP )c = N and by Lemma 2.3, N1 is a Q-prime submodule of M.

We have QP = (NP : MP ), so QP MP ⊆ NP , and consequently QP MP 6=
MP .

Since ZdR(M ) ⊆ Q, it is easily checked that ZdRP (MP ) ⊆ QP . We will show
that QP MP is the required prime submodule. Indeed we will show that for any
a ∈ MP , r ∈ RP \ QP , if ra ∈ QP MP , then a ∈ QP MP . (∗)

For some positive number k, ra =
∑k

j=1 pjaj , where for each j, 1 ≤ j ≤ k,
pj ∈ QP and aj ∈ MP . By Lemma 3.4, every two ideals of RP are comparable
and since RP r 6⊆ QP , QP ⊆ RP r. Suppose that pj = rjr, where rj ∈ RP , for
each j. Then, r(a −

∑k
j=1 rjaj) = 0. Since ZdRP (MP ) ⊆ QP and r 6∈ QP , we

have a−
∑k

j=1 rjaj = 0. Note that for each j, rrj = pj ∈ QP and r 6∈ QP , hence
rj ∈ QP . Consequently a =

∑k
j=1 rjaj ∈ QP MP .

Now we show that (QP MP : MP ) = QP . Obviously QP ⊆ (QP MP : MP ).
Let r ∈ (QP MP : MP ). Consider a ∈ MP \ QP MP . Since ra ∈ QP MP and
a 6∈ QP MP , by (∗) we have, r ∈ QP , that is (QP MP : MP ) ⊆ QP . �

Corollary 3.6. Let R be an arithmetical ring, and let N be a Q-weakly prime
submodule of an R-module M. If ZdR(M ) ⊂ Q, then there exists a non-zero
Q-prime submodule of M contained in N.

Proof. By Theorem 3.5, there exists a Q-prime submodule N1 of M contained
in N. If N1 = 0, then Q = (N1 : M ) = (0 : M ) ⊆ ZdR(M ) ⊂ Q, which is a
contradiction. �

Example 2. Let R be a Dedekind domain, M = R⊕R, P a non-zero prime ideal of
R, and N = 0⊕P. It is easy to see that N is a weakly prime submodule of M. Also
clearly, ZdR(M ) = 0 = (N : M ). We show that there does not exist any non-zero
prime submodule of M contained in N. Hence the condition ZdR(M ) ⊂ (N : M )
in Corollary 3.6 is necessary. Let N1 be a non-zero prime submodule of M
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contained in N = 0 ⊕ P and 0 6= (0, a) ∈ N1. We have a(0, 1) ∈ N1 and since
(N1 : M ) ⊆ (N : M ) = 0, a 6∈ (N1 : M ). Therefore (0, 1) ∈ N1 ⊆ 0 ⊕ P, which is
impossible.

4. The Equality wrad(B) = rad(B)

Evidently for any submodule B of a module M we have wrad(B) ⊆ rad(B). In
this section we study the equality wrad(B) = rad(B).

Definition. We say that the radical equality holds for a module M, if wrad(B) =
rad(B), for every submodule B of M. It will be said that the radical equality holds
for a ring R, if the radicals equality holds for every R-module.

The modules, every weakly prime submodule of which is an intersection of
prime submodules, have been studied in [5]. The following lemma shows that
these modules are exactly the modules for which the radical equality holds.

Lemma 4.1. Let M be an R-module. Then the radical equality holds for M
if and only if every weakly prime submodule of M is an intersection of prime
submodules of M.

Proof. Suppose that the radical equality holds for M and N a weakly prime
submodule of M. Obviously, N = wrad(N ) = rad(N ), that is N is an intersection
of prime submodules.

The converse is obvious. �

In [5, Proposition 3.2] there claims that the radical equality holds for every
projective module. Theorem 4.2(iii) and the next example show that this result
is incorrect. Indeed the only result which is proved in [5, Proposition 3.2] is
that wrad(0) = rad(0), for every projective module. This result is generalized
in Theorem 4.2(viii).

Example 3. Let R = Z[x], P = R2+Rx, N = P (2, x). Then it is easy to see that
N is a weakly prime submodule of M = R ⊕ R and wrad(N ) = N 6= R(2, x) =
rad(N ). So the radical equality does not hold for M (or R). Also this example
shows that even for a free (and consequently a projective) module of finite rank
M over a Noetherian domain, it is not necessary that the radical equality holds.
Now if we consider M = R⊕R

N , then wrad(0) = 0 6= R(2,x)
N = rad(0). Thus even

for a Noetherian module M over a Noetherian domain, it is not necessary that
wrad(0) = rad(0) (compare with Theorem 4.2(viii)).

Some generalizations of Dedekind domains such as weak multiplication rings
are introduced in [9, Chapter IX].

Theorem 4.2. Let M be an R-module. Then
(i) If R is an arithmetical ring, then the radical equality holds for R if one of



On Prime and Weakly Prime Submodules 323

the following is satisfied.
a) R has DCC on prime ideals.
b) dim R < +∞;
c) R is a Noetherian ring.

(ii) If R is an UFD, then the radical equality holds for R if and only if R is a
PID.

(iii) The radical equality holds for R if and only if the radical equality holds for
every free R-module.

(iv) If for every maximal ideal m of R containing Ann M, the radical equality
holds for the Rm-module Mm, then the radical equality holds for the R-module
M.

(v) The following are equivalent.
d) The radical equality holds for the ring R.

e) For any ideal I of R, the radical equality holds for the ring R
I .

f) For any non-maximal prime ideal P of R, the radical equality holds for
the ring R

P
.

(vi) If for every non-maximal prime ideal P of R, R
P is a Prüfer domain with

DCC on prime ideals, then the radical equality holds for R.

(vii) The radical equality holds for every weak multiplication ring.
(viii) If M is a flat R-module, then wrad(0) = rad(0).
(ix) Let R be an arithmetical ring with ZdR(M ) ⊆ N(R), where N(R) is the
intersection of all prime ideals of R. Then wrad(0) = rad(0).

Proof. (i)(a) For a submodule B of M , define

E(B) = {x| x = ra, rna ∈ B, for some r ∈ R, a ∈ M, n ∈ N}.

Also we define E1(B) = E(B), E2(B) = E(〈E1(B)〉) and for any positive
number n, we define En+1(B) = E(〈En(B)〉) inductively.

Also we set UE(B) =
⋃

n∈N

〈En(B)〉.

By induction we can show that 〈En(B)〉 ⊆ wrad B, for any positive number
n.

Therefore, UE(B) ⊆ wrad B. According to [3, Corollary 2.5], rad B =
UE(B). Hence rad B = wrad B.

(i)(b) The proof is clear by part (i)(a).

(i)(c) Note that for any prime ideal P of R, the ring R
P

is a Noetherian Prüfer
domain. Hence R

P is a Dedekind domain or a field, and so dim R
P ≤ 1. Hence

dim R ≤ 1. Now the proof is given by part (b).

(ii) Part (i)(b) shows that the radical equality holds for any PID.

By [5, Theorem 3.9], if R is an UFD such that the radical equality holds for
R, then R is a Bezout domain. Also we know that any Bezout domain is a Prüfer
domain (see [7, p. 278]), and every Prüfer UFD is a PID, by [7, Proposition 23.5].
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(iii) Suppose M is an arbitrary R-module. Then M is a homomorphic image
of a free R-module F. Let M ∼= F

K . Assume that B
K is an arbitrary submodule

of F
K

. By our assumption we have wrad( B
K

) = wrad(B)
K

= rad(B)
K

= rad( B
K

).
(iv) By Lemma 4.1, it is enough to show that every weakly prime submodule

N of M is an intersection of prime submodules. According to Lemma 2.1(ii),
ZdR(M

N ) is a proper ideal of R. Let m be a maximal ideal of R containing
ZdR(M

N
). By Proposition 2.4(ii), Nm is a weakly prime submodule of Mm. Now

our assumption implies that (rad(N ))m ⊆ rad(Nm) = wrad(Nm) = Nm. That is,
(rad(N ))m ⊆ Nm. We will show that rad(N ) = N. If not, consider x ∈ rad(N )\
N. Now x

1 ∈ (rad(N ))m ⊆ Nm implies that there exist n ∈ N and s ∈ R\m such
that x

1 = n
s . Consequently there exists s′ ∈ R \ m with ss′x = s′n ∈ N. Hence

ss′ ∈ (N : x) ⊆
⋃

x∈M\N (N : x) = ZdR(M
N ) ⊆ m, which is a contradiction.

(v) (d) =⇒ (e) Suppose that W is a weakly prime submodule of an R
I -module

M ′. Obviously, W is a weakly prime R-submodule of M ′. By our assumption
W = radR W. It is easy to see that every submodule of M ′ is a prime R-
submodule if and only if it is a prime R

I
-submodule of M ′. Hence radR W =

radR
I
(W ), and then W = radR

I
(W ).

(v) (f) =⇒ (d) Let N be a weakly P -prime R-submodule of M. If P is a
maximal ideal of R, then N is a prime submodule of M, so the proof is clear.
Now assume that P is a non-maximal prime ideal of R.

Consider M
N as an R

P -module. One can easily see that L
N is a prime R

P -
submodule of M

N
if and only if L is a prime R-submodule of M containing N.

Hence by our assumption we have

N

N
= rad R

P
(
N

N
) =

⋂

L
N prime R

P −submodule of M
N

N⊆L

L

N
=

⋂
L primeR−submodule

N⊆L

L

N
=

radRN

N
.

Consequently, N = radRN.

(vi) The proof is given by parts (v) and (i)(b)
(vii) By [9, p. 224, Exercise 7], for every prime ideal P of R, R

P
is a Dedekind

domain. Now the proof is given by part (vi).
(viii) Suppose that N is a weakly P -prime submodule of M. Obviously,

PM ⊆ N ⊂ M, that is, PM is a proper submodule of M.

According to [1, Corollary 2.6], in a flat R-module M, for any prime ideal
P ′ of R, P ′M is a prime submodule of M, or P ′M = M. Consequently PM is
a prime submodule of M, and hence

rad(0) =
⋂

T prime submodule

T ⊆
⋂

N weakly P−prime submodule

PM ⊆ wrad(0).

(ix) Let N be a weakly prime submodule of M. Theorem 3.5 shows that N
contains a prime submodule of M. Hence rad 0 ⊆ wrad 0. �
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