CHAPTER 18

The Measurement of
Interrater Agreement

The statistical methods described in the preceding chapter for controlling for
error are applicable only when the rates of misclassification are known from
external sources or are estimable by applying a well-defined standard classifi-
cation procedure to a subsample of the group under study. For some
variables of importance, however, no such standard is readily apparent.

To assess the extent to which a given characterization of a subject is
reliable, it is clear that we must have a number of subjects classified more
than once, for example by more than one rater. The degree of agreement
among the raters provides no more than an upper bound on the degree of
accuracy present in the ratings, however. If agreement among the raters is
good, then there is a possibility, but by no means a guarantee, that the ratings
do in fact reflect the dimension they are purported to reflect. If their
agreement is poor, on the other hand, then the usefulness of the ratings is
severely limited, for it is meaningless to ask what is associated with the
variable being rated when one cannot even trust those ratings to begin with.

In this chapter we consider the measurement of interrater agreement
when the ratings are on categorical scales. Section 18.1 is devoted to the case
of the same two raters per subject. Section 18.2 considers weighted kappa to
incorporate a notion of distance between rating categories. Section 18.3 is
devoted to the case of multiple ratings per subject with different sets of
raters. Applications to other problems are indicated in Section 18.4. Section
18.5* relates the results of the preceding sections to the theory presented in
Chapter 15 on correlated binary variables.
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Table 18.1. Diagnoses on n = 100 subjects by two raters

Rater B
Rater A4 Psychotic Neurotic Organic Total
Psychotic 0.75 0.01 0.04 0.80
Neurotic 0.05 0.04 0.01 0.10
Organic 0 0 0.10 0.10
Total 0.80 0.05 0.15 1.00

18.1. THE SAME PAIR OF RATERS PER SUBJECT

Suppose that each of a sample of n subjects is rated independently by the
same two raters, with the ratings being on a categorical scale consisting of k
categories. Consider the hypothetical example of Table 18.1, in which each
cell entry is the proportion of all subjects classified into one of k=3
diagnostic categories by rater 4 and into another by rater B. Thus, for
example, 5% of all subjects were diagnosed neurotic by rater 4 and psychotic
by rater B.

Suppose it is desired to measure the degree of agreement on each
category separately as well as across all categories. The analysis begins by
collapsing the original k X k table into a 2 X 2 table in which all categories
other than the one of current interest are combined into a single “all others”
category. Table 18.2 presents the results in general, as well as for neurosis
from Table 18.1 in particular. It must be borne in mind that the entries a, b,
¢, and d in the general table refer to proportions of subjects, not to their
numbers.

The simplest and most frequently used index of agreement is the overall
proportion of agreement, say

p,=a+d. (18.1)

Table 18.2. Data for measuring agreement on a single category

General For Neurosis
Rater B Rater B
Given All All
Rater A Category Others Total Rater A  Neurosis Others Total
Given
category a b )2 Neurosis 0.04 0.06 0.10
All others c d q, All others 0.01 0.89 0.90

Total P, @ 1 Total 0.05 095  1.00
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Table 18.3. Values of several indices of agreement from data of Table 18.1

Category Po Ps A, Py A K

Psychotic 0.90 0.94 0.88 0.75 0.84 0.69
Neurotic 0.93 0.53 0.06 0.96 0.75 0.50
Organic 0.95 0.80 0.60 0.97 0.89 0.77

p,, or a simple variant of it such as 2p, — 1, has been proposed as the
agreement index of choice by Holley and Guilford (1964) and by Maxwell
(1977). For neurosis, the overall proportion of agreement is

p,=0.04 +0.89 =0.93.

This value, along with the overall proportions of agreement for the other two
categories, is given in the column labeled p, in Table 18.3. The conclusion
that might be drawn from these values is that agreement is, effectively,
equally good on all three categories, with agreement on organic disorders
being somewhat better than on neurosis, and agreement on neurosis being
somewhat better than on psychosis.

Suppose the category under study is rare, so that the proportion d,
representing agreement on absence, is likely to be large and thus to inflate
the value of p,. A number of indices of agreement have been proposed that
are based only on the proportions a, b, and c. Of all of them, only the
so-called proportion of specific agreement, say

2a _

= 2avbTc (18.2)

a
ik
where p = (p, +p,)/2, has a sensible probabilistic interpretation. Let one of
the two raters be selected at random, and let attention be focused on the
subjects assigned to the category of interest. The quantity p, is the condi-
tional probability that the second rater will also make an assignment to that
category, given that the randomly selected first rater did. This index was first
proposed by Dice (1945) as a measure of similarity.
The proportion of specific agreement on neurosis is

B 2% 0.04 B
Ps= 2% 0.04+0.06+0.01

0.53,

and the values for all three categories are presented in the column headed p;
in Table 18.3. The conclusions based on p, are rather different from those
based on p,. Agreement now seems best on psychosis, rather less good on
organic disorders, and much poorer than either on neurosis.
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Define g =1—p, or

_ 1 b+c
q=5(q1+q)=d+——, (18.3)

and suppose that § > p. Goodman and Kruskal (1954) proposed

_ (a+d)—q 2a—(b+c)

A 1-q  2a+(b+c)

(18.4)

r

as an index of agreement; it is motivated less by notions of agreement than by
a consideration of the frequencies of correct predictions of a subject’s
category when predictions are made with and without knowledge of the joint
ratings. A, assumes its maximum value of +1 when there is complete
agreement, but assumes its minimum value of —1 whenever a = 0, irrespec-
tive of the value of d [not, as Goodman and Kruskal (1954, p. 758) imply,
only when a +d = 0].
For neurosis,

~ 2x0.04 — (0.06 +0.01)
r~ 2% 0.04 + (0.06 + 0.01)

= 0.06,

and the values of A, for all three categories are listed under the indicated
column of Table 18.3. Because of the identity

A=2p,—1, (18.5)

the categories are ordered on A, exactly as on p,.
The proportion of specific agreement ignores the proportion d. If, instead,
we choose to ignore a, we would calculate the corresponding index, say

2d

,_d _
=T 2dvbre (18.6)

where g = 1 — p. For neurosis

- 2% 0.89 B
Ps= 37X 089+0.06+0.01

0.96,

and this value and the other two are presented in the indicated column of
Table 18.3. Yet a different picture emerges from these values than from
earlier ones. Agreement (with respect to absence) on organic disorders and
on neurosis seems to be equally good and apparently substantially better than
on psychosis.
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Rather than having to choose between p, and p;, Rogot and Goldberg
(1966) proposed simply taking their mean, say

a + d
pitp, 41t 4qy’

1 /
A==5(p;+pi) = (18.7)

as an index of agreement. For neurosis,

0.04 0.89

A=310+005 T 0905095

0.75.

As seen in the indicated column of Table 18.3, the index A orders the three
categories in yet a new way: agreement on organic disorders is better than on
psychosis, and agreement on organic disorders and on psychosis is better
than on neurosis.

Yet other indices of agreement between two raters have been proposed
(e.g., Fleiss, 1965; Armitage, Blendis, and Smyllie, 1966; Rogot and Goldberg,
1966; and Bennett, 1972), but it should already be clear that there must be
more to the measurement of interrater agreement than the arbitrary selec-
tion of an index of agreement.

The new dimension is provided by a realization that, except in the most
extreme circumstances (either p, =¢q, =0 or p, =q, =0), some degree of
agreement is to be expected by chance alone (see Table 18.4). For example, if
rater A employs one set of criteria for distinguishing between the presence
and the absence of a condition, and if rater B employs an entirely different
and independent set of criteria, then all the observed agreement is explain-
able by chance.

Different opinions have been stated on the need to incorporate chance-ex-
pected agreement into the assessment of interrater reliability. Rogot and
Goldberg (1966), for example, emphasize the importance of contrasting
observed with expected agreement when comparisons are to be made be-
tween different pairs of raters or different kinds of subjects. Goodman and

Table 18.4. Chance-expected proportions of joint judgments
by two raters, for data of Table 18.2

General For Neurosis
Rater B Rater B
Given All All

Rater 4 Category Others Total Rater A  Neurosis Others Total

Given
category P1D2 P149> )22 Neurosis 0.005 0.095 0.10
All others q1P» 419> q: All others 0.045 0.855 0.90

Total Do q, 1 Total 0.05 0.95 1
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Kruskal (1954, p. 758), on the other hand, contend that chance-expected
agreement need not cause much concern, that the observed degree of
agreement may usually be assumed to be in excess of chance. (Even if one is
willing to grant this assumption, one should nevertheless check whether the
excess is trivially small or substantially large.)

Armitage, Blendis, and Smyllie (1966, p. 102) occupy a position between
that of Rogot and Goldberg and that of Goodman and Kruskal. They
appreciate the necessity for introducing chance-expected agreement when-
ever different sets of data are being compared, but claim that too much
uncertainty exists as to how the correction for chance is to be incorporated
into the measure of agreement.

There does exist, however, a natural means for correcting for chance.
Consider any index that assumes the value 1 when there is complete agree-
ment. Let I, denote the observed value of the index (calculated from the
proportions in Table 18.2), and let I, denote the value expected on the basis
of chance alone (calculated from the proportions in Table 18.4).

The obtained excess beyond chance is [, —1,, whereas the maximum
possible excess is 1 —1,. The ratio of these two differences is called kappa,

o__c. (18.8)

Kappa is a measure of agreement with desirable properties. If there is
complete agreement, k = + 1. If observed agreement is greater than or equal
to chance agreement, < > 0, and if observed agreement is less than or equal
to chance agreement, K <0. The minimum value of k depends on the
marginal proportions. If they are such that 1, = 0.5, then the minimum equals
— 1. Otherwise, the minimum is between —1 and 0.

It may be checked by simple algebra that, for each of the indices of
agreement defined above, the same value of k results after the chance-
expected value is incorporated as in (18.8) (see Problem 18.1):

2(ad — bc)
P92t P2q:y

A
K=

(18.9)

An important unification of various approaches to the indexing of agreement
is therefore achieved by introducing a correction for chance-expected agree-
ment.

For neurosis,

2(0.04 x 0.89 — 0.06 x< 0.01)
0.10 X 0.95 + 0.05 x 0.90

= 0.50.

K=

This value and the other two are presented in the final column of Table 18.3.
They are close to those found by Spitzer and Fleiss (1974) in a review of the
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literature on the reliability of psychiatric diagnosis. Agreement is best on
organic disorders, less good on psychosis, and poorest on neurosis.

The kappa statistic was first proposed by Cohen (1960). Variants of kappa
have been proposed by Scott (1955) and by Maxwell and Pilliner (1968). All
have interpretations as intraclass correlation coefficients (see Ebel, 1951). The
intraclass correlation coefficient is a widely used measure of interrater
reliability for the case of quantitative ratings. As shown by Fleiss (1975) and
Krippendorff (1970), only kappa is identical (except for a term involving the
factor 1/n, where n is the number of subjects) to that version of the
intraclass correlation coefficient due to Bartko (1966) in which a difference
between the raters in their base rates (i.e., a difference between p, and p,)
is considered a source of unwanted variability.

Landis and Koch (1977a) have characterized different ranges of values for
kappa with respect to the degree of agreement they suggest. For most
purposes, values greater than 0.75 or so may be taken to represent excellent
agreement beyond chance, values below 0.40 or so may be taken to represent
poor agreement beyond chance, and values between 0.40 and 0.75 may be
taken to represent fair to good agreement beyond chance.

Often, a composite measure of agreement across all categories is desired.
An overall value of kappa may be defined as a weighted average of the
individual kappa values, where the weights are the denominators of the
individual kappas [i.e., the quantities p,q, + p,q, in (18.9)]. An equivalent
and more suggestive formula is based on arraying the data as in Table 18.5.

The overall proportion of observed agreement is, say,

k
Po= 2 Piis (18.10)
i=1
and the overall proportion of chance-expected agreement is, say,

k
P.= EPi.P.i- (18.11)
i=1

Table 18.5. Joint proportions of ratings by two raters
on a scale with k categories

Rater B
Rater A 1 2 k Total
1 P Pz e Pk P1.
% P;1 sz ng Pg.
k Pr1 Pi2 Prk Dk.

Total Pa D2 Pk 1
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The overall value of kappa is then, say,

_ PP
1-p, -

XI)

(18.12)

For the data of Table 18.1,

p,=0.75+0.04 +0.10 = 0.89

and
p.=0.80x%0.80+0.10 X 0.05 + 0.10 X 0.15 = 0.66,
so that
~ 0.89 -0.66
K= W = 0.68.

For testing the hypothesis that the ratings are independent (so that the
underlying value of kappa is zero), Fleiss, Cohen, and Everitt (1969) showed
that the appropriate standard error of kappa is estimated by

sey(K) = - pe)f \/pe +p; — lilp,p(p, +p.), (18.13)

where p, is defined in (18.11). The hypothesis may be tested against the
alternative that agreement is better than chance would predict by referring
the quantity
k
z==
seo(

(18.14)

A

)

to tables of the standard normal distribution and rejecting the hypothesis if z
is sufficiently large (a one-sided test is more appropriate here than a
two-sided test).

For the data at hand,

— A 1
seq( k) = —\/0.66 +0.66% — 1.0285 =0.076
o(9) = T =0.66)y100
and
0.68
zZ= m = 8.95.

The overall value of kappa is therefore statistically highly significant, and, by
virtue of its magnitude, it indicates a good degree of agreement beyond
chance.
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Table 18.6. Kappas for individual categories and across all categories of Table 18.1

Category Do D. R seo(R) z

Psychotic 0.90 0.68 0.69 0.100 6.90
Neurotic 0.93 0.86 0.50 0.093 5.38
Organic 0.95 0.78 0.77 0.097 7.94
Opverall 0.89 0.66 0.68 0.076 8.95

Formulas (18.10)—(18.14) apply even when k, the number of categories, is
equal to two. They may therefore be applied to the study of each category’s
reliability, as shown in Table 18.6 for the data of Table 18.1.

Note that the overall value of kappa is equal to the sum of the individual
differences p, —p, (i.e., of the numerators of the individual kappas) divided
by the sum of the individual differences 1 —p, (i.e., of the denominators of
the individual kappas),

(090 —0.68) + (0.93 — 0.86) + (0.95—0.78) _ 0.46
B (1-0.68) + (1 —0.86) + (1 —0.78) ~0.68

x>

= 0.68,

confirming that k is a weighted average of the individual &’s.

For testing the hypothesis that the underlying value of kappa (either
overall or for a single category) is equal to a prespecified value k other than
zero, Fleiss, Cohen, and Everitt (1969) showed that the appropriate standard
error of k is estimated by

se(k) = %, (18.15)

where
A= i_flpﬁ[l —(ptp) (1= R, (18.16)
B=(1- '?)zii:#;pi,-(p.,- +p,)’s (18.17)
C=[k-p,(1-1)]". (18.18)

The hypothesis that « is the underlying value would be rejected if the
critical ratio

_ 1= (18.19)
se(K)

were found to be significantly large from tables of the normal distribution.
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An approximate 100(1 — a)% confidence interval for x is
R—z,,5¢(R) <k <R+z, ,5e(R). (18.20)

Consider testing the hypothesis that the overall value of kappa underlying
the data in Table 18.1 is 0.80. The three quantities (18.16)—(18.18) needed to
determine the standard error of k are

A=0.75[1-(0.80 +0.80)(1 - 0.68)]
+0.04[1 — (0.10 + 0.05)(1 — 0.68)]

+0.10[1 — (0.10 + 0.15)(1 — 0.68)]°
=0.2995,

B =(1-0.68)>[0.01(0.80 + 0.10)” + 0.04(0.80 + 0.10)’
+0.05(0.05 + 0.80)” + 0.01(0.05 + 0.10)
+0(0.15 +0.80)” + 0(0.15 + 0.10)°]

=0.0079,

C=10.68—0.66(1—0.68)]* =0.2198.

Thus
—~ . 4/0.2995 1 0.0079 — 0.2198
se = =0.087
() (1 - 0.66)y/100
and
_10.68—0.80
= o087 138

so the hypothesis that k = 0.80 is not rejected.

Suppose one wishes to compare and combine g (> 2) independent esti-
mates of kappa. The theory of Section 10.1 applies. Define, for the mth
estimate, V,(k,,) to be the squared standard error of &, that is, the square
of the expression in (18.15). The combined estimate of the supposed common
value of kappa is, say,

’Qm
Vm( ’Qm)
1
1 V(Ry)

1

A

K

(18.21)

overall —

ﬁMwﬁMw
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To test the hypothesis that the g underlying values of kappa are equal, the
value of

g A A 2
~ Kovera
Xequal K’s ;1 ( % ( Km) L ) (1822)

may be referred to tables of chi squared with g— 1 df. The hypothesis is
rejected if the value is significantly large. The limits of an approximate
100(1 — @)% confidence interval for the supposed common underlying value
are given by

- (18.23)

i
Koveral

18.2. WEIGHTED KAPPA

Cohen (1968) (see also Spitzer et al. 1967) generalized his kappa measure of
interrater agreement to the case where the relative seriousness of each
possible disagreement could be quantified. Suppose that, independently of
the data actually collected, agreement weights, say W;j (i=1,...,k; j=
1,...,k), are assigned on rational or clinical grounds to the k> cells (see
Cicchetti, 1976). The weights are restricted to lie in the interval 0 <w;; <1
and to be such that

w;,; =1 (18.24)
(i.e., exact agreement is given maximal weight),
O<w;<1 for i#j (18.25)
(i.e., all disagreements are given less than maximal weight), and
W, =w. (18.26)

(i.e., the two raters are considered symmetrically).
The observed weighted proportion of agreement is, say,

>

k
po(w) Z Z l]pij’ (1827)

where the proportions p;; are arrayed as in Table 18.5, and the chance-
expected weighted proportion of agreement is, say,

pe(w) Z Z Wupz p] (1828)
i=1j=1
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Weighted kappa is then given by

A po(w) _pe(w)
K,=—F .

18.29
" 1 _pe(w) ( )

Note that, when w;; = 0 for all i #j (i.e., when all disagreements are consid-
ered as being equally serious), then weighted kappa becomes identical to the
overall kappa given in (18.12).

The interpretation of the magnitude of weighted kappa is like that of
unweighted kappa: &, > 0.75 or so signifies excellent agreement, for most
purposes, and &, < 0.40 or so signifies poor agreement.

Suppose that the k categories are ordered and that the decision is made to
apply a two-way analysis of variance to the data resulting from taking the
numerals 1,2,...,k as bona fide measurements. Bartko (1966) gives a for-
mula for the intraclass correlation coefficient derived from this analysis of
variance, and Fleiss and Cohen (1973) have shown that, aside from a term
involving the factor 1/n, the intraclass correlation coefficient is identical to
weighted kappa provided the weights are taken as

_ =)
wi; =1 1) (18.30)

Independently of Cohen (1968), Cicchetti and Allison (1971) proposed a
statistic for measuring interrater reliability that is formally identical to
weighted kappa. They suggested that the weights be taken as

wy=1- ',i:ﬁ' . (18.31)

The sampling distribution of weighted kappa was derived by Fleiss, Cohen,
and Everitt (1969) and confirmed by Cicchetti and Fleiss (1977), Landis and
Koch (1977a), Fleiss and Cicchetti (1978), and Hubert (1978). For testing the
hypothesis that the underlying value of weighted kappa is zero, the appropri-
ate estimated standard error of k,, is

— 1 k k )
seg(R,) = =1 L L p.pj|wy— (W, +Ww,)| —pi.,, (18.32

where
k

W, = Z D.jWij (18.33)
=1

and

k
W= Z biVijs (18.34)
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The hypothesis may be tested by referring the value of the critical ratio

A

K

z=="— 18.35
seo( k) ( )
to tables of the standard normal distribution.
For testing the hypothesis that the underlying value of weighted kappa is
equal to a prespecified «, other than zero, the appropriate formula for the
estimated standard error of k, is

(18.36)

The hypothesis may be tested by referring the value of the critical ratio

= @;KW' (18.37)
(&)

to tables of the standard normal distribution and rejecting the hypothesis if
the critical ratio is too large.

It may be shown (see Problem 18.4) that the standard errors of un-
weighted kappa given in (18.13) and (18.15) are special cases of the standard
errors of weighted kappa given in (18.32) and (18.36) when w;; =1 for all i
and w;; =0 for all i #.

Some attempts have been made to generalize kappa to the case where
each subject is rated by each of the same set of more than two raters (Light,
1971; Landis and Koch, 1977a). Kairam et al. (1993) use the multivariate
multiple noncentral hypergeometric distribution to study kappa in the case of
m > 2 fixed raters with a prespecified interview schedule of subjects. Their
analysis allows some subjects not to be seen by some raters. We consider in
the next section the problem of different raters for different subjects when (i)
k =2 with varying m;, or (ii) k> 2 with m; =m for all i. Kraemer (1980)
considered the case in which k > 2 with varying m,.

18.3. MULTIPLE RATINGS PER SUBJECT WITH DIFFERENT RATERS

Suppose that a sample of n subjects has been studied, with m; being the
number of ratings on the ith subject. The raters responsible for rating one
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subject are not assumed to be same as those responsible for rating another.
Suppose, further, that k = 2, that is, that the ratings consist of classifications
into one of two categories; the case k> 2 will be considered later in this
section. Finally, let x; denote the number of (arbitrarily defined) positive
ratings on subject i, so that m; —x; is the number of negative ratings on him.

Identities between intraclass correlation coefficients and kappa statistics
will be exploited to derive a kappa statistic by starting with an analysis of
variance applied to the data (forming a one-way layout) obtained by coding a
positive rating as 1 and a negative rating as 0. This was precisely the
approach taken by Landis and Koch (1977b), except that they took the
number of degrees of freedom for the mean square between subjects to be
n — 1 instead of, as below, n.

Define the overall proportion of positive ratings to be

n
_ XX
- 7 ’

p=—tL (18.38)
where
Y
= ==l (18.39)

the mean number of ratings per subject. If the number of subjects is large
(say, n>20), the mean square between subjects (BMS) is approximately
equal to

1
m;

1 & (x—mp)’
BMS = 7,-:21 el ML S B (18.40)

and the mean square within subjects (WMS) is equal to

_ 1 o Xi(m; —x;)
WMS = nG =) ,-:21 m (18.41)
Technically, the intraclass correlation coefficient should be estimated as
BMS — WMS
"Z BMS + (m, — )WMS"’ (18.42)
where
" 2
my =7 — 2= UM = )” (18.43)

n(n—1)m

If n is at all large, though, m, and m will be very close in magnitude. If m,,
is replaced by m in (18.42), the resulting expression for the intraclass
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correlation coefficient, and therefore for kappa, is

BMS — WMS
BMS + (7 — 1)WMS
o Xi(m; —x;)
T
i=1 !
n(m—1)pg

A
K=

=1- , (18.44)

where g =1—p.

Kk has the following properties. If there is no subject-to-subject variation in
the proportion of positive ratings (i.e., if x;/m; =p for all i, with p not equal
to either 0 or 1), then there is more disagreement within subjects than
between subjects. In this case k may be seen to assume its minimum value of
—1/(7i — 1).

If the several proportions x;/m; vary exactly as binomial proportions with
parameters m; and a common probability p, then there is as much similarity
within subjects as between subjects. In this case, the value of & is equal to 0.

If each proportion x,/m; assumes either the values 0 or 1, then there is
perfect agreement within subjects. In this case, K may be seen to assume the
value 1.

Consider the hypothetical data of Table 18.7 on n = 25 subjects. For these
data, the mean number of ratings per subject is

_ 81

m = 25—324

Table 18.7. Hypothetical ratings by different sets of raters on n = 25 subjects

Number of Number of
Subject Raters, Positive Ratings,
i m; X; i m; X;
1 2 2 14 4 3
2 2 0 15 2 0
3 3 2 16 2 2
4 4 3 17 3 1
5 3 3 18 2 1
6 4 1 19 4 1
7 3 0 20 5 4
8 5 0 21 3 2
9 2 0 22 4 0
10 4 4 23 3 0
11 5 5 24 3 3
12 3 3 25 2 2
13 4 4 Total 81 46
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the overall proportion of positive ratings is

_ 46

P= 1955328 = 0568,
and the value of Xx,(m; —x,)/m, is

25 .

y Xlmimx) 6.

i=1 i
The value of kappa in (18.44) for these ratings is therefore

~ 6.30
25(3.24— 1) X 0.568 X 0.432

k=1

=0.54,

indicating only a modest degree of interrater agreement.

Fleiss and Cuzick (1979) derived the standard error of k appropriate for
testing the hypothesis that the underlying value of kappa is 0. Define i, to
be the harmonic mean of the number of ratings per subject, that is,

— n
My =S (18.45)

The standard error of k is estimated by

S [ (1 4pd)
seg( K) e \/2( p— 1)+ i , (18.46)

and the hypothesis may be tested by referring the value of the critical ratio

K

seol %)

z =

(18.47)

to tables of the standard normal distribution.
For the data of Table 18.7,
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and
(k) = !
0 (3.24 — 1)v25 x 2.935
(324 —2.935)(1 — 4 X 0.568 X 0.432)
x \/2(2'935 A 3.24 X 0.568 X 0.432
=0.103.

The value of the critical ratio in (18.47) is then

0.54
Z=0103 = 5.24,

indicating that & is significantly greater than zero.

Suppose, now, that the number of categories into which ratings are made
is k> 2. Denote by p; the overall proportion of ratings in category j and by &;
the value of kappa for category, j,j=1,...,k. Landis and Koch (1977b)
proposed taking the weighted average

(18.48)

as an overall measure of interrater agreement, where g; =1 —p;. The stan-
dard error of k has yet to be derived, when the numbers of ratings per
subject vary, to test the hypothesis that the underlying value is zero.

When, however, the number of ratings per subject is constant and equal to
m, simple expressions for Kl, ¥, and their standard errors are available.
Define x;; to be the number of ratings on subject i (i = 1,..., n) into category

j(j=1,...,k); note that

K
Y x,;=m (18.49)

j=1

for all i. The value of R]- is then

Z'.’le..(m—x,.)
Ri=1—- —- — 18.50
! nm(m—l)quj ( )

and the value of k is

2 n k 2
nm” — Y i X

nm(m — 1)25?:113,6,‘ ‘

b
Il
—

(18.51)



18.3 MULTIPLE RATINGS PER SUBJECT WITH DIFFERENT RATERS

Table 18.8. Five ratings on each of ten subjects into
one of three categories

Number of Ratings into Category

3
Subject 1 2 3 > x;
j=1

1 1 4 0 17

2 2 0 3 13

3 0 0 5 25

4 4 0 1 17

5 3 0 2 13

6 1 4 0 17

7 5 0 0 25

8 0 4 1 17

9 1 0 4 17
10 3 0 2 13
Total 20 12 18 174

Algebraically equivalent versions of these formulas were first presented
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by

Fleiss (1971), who showed explicitly how they represent chance-corrected

measures of agreement.

Table 18.8 presents hypothetical data representing, for each of n =10

subjects, m =5 ratings into one of k =3 categories.
The three overall proportions are p, =20/50=0.40, p,=12/50=0

24,

and p, =18/50 = 0.36. For category 1, the numerator in expression (18.50)

for k, is

10
Yoxu(5—x1)=1X(5-1)+2X(5=2)+ - +3X(5-3) =34,
i=1

and thus

34

kKi=l-qoxsxax040x0.60 ~ -2

Similarly, &, =0.67 and &, = 0.35. The overall value of k is, by (18.51),

B 10 X 25 — 174 _
10 X 5 X 4 X (0.40 X 0.60 + 0.24 X 0.76 + 0.36 X 0.64)

k=1

0.42.

Alternatively,

_ (0.40 X 0.60) X 0.29 + (0.24 X 0.76) X 0.67 + (0.36 X 0.64) X 0.35

Ab

0.40 X 0.60 + 0.24 X 0.76 + 0.36 X 0.64
=0.42.
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When the numbers of ratings per subject are equal, Fleiss, Nee, and
Landis (1979) derived and confirmed the following formulas for the approxi-

mate standard errors of x and K;, each appropriate for testing the hypothesis
that the underlying value is zero

sep(K) = 2
’ Zj;lﬁjqﬂ/nm(m -1)

k 2 k
X\/ Y 5| — X pd(q- D) (18.52)
j=1 j=1
and
N 2
€0(R) =V Somm =1y - (18.53)

Note that se,(k;) is independent of p; and g;! Further, it is easily checked
that formula (18 53) is a special case of (18. 46) when the m,’s are all equal,
because then m =m, =m.

For the data of Table 18.8

3
Z P;q; = 0.40X0.60 + 0.24 X 0.76 4 0.36 X 0.64 = 0.6528
1

23: Pi4,(a;—p;) =

0.40 X 0.60 X (0.60 — 0.40) + 0.24 X 0.76 X (0.76 — 0.24)

+0.36 X 0.64 X (0.64 — 0.36)

=0.2074,
so that
~ 4 V2
se (k) = V0.65282 — 0.2074 = 0.072
(k) = 0 6528v10 5 x 4
Because

K 0.42
7= ———— = — =583,
SGO(R) 0.072

the overall value of kappa is significantly different from zero (although its
magnitude indicates only mediocre reliability)
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The approximate standard error of each &; is, by (18.53),

N / 2
SCO(Kj) = m =0.10.

Each individual kappa is significantly different (p < 0.01) from zero, but only
K, approaches a value suggestive of fair reliability.

Various approaches have been taken to obtain the standard error of «.
Fleiss and Davies (1982) and Bloch and Kraemer (1989) obtain an asymptotic
variance, and a jackknife technique is proposed by Fleiss and Davies (1982),
Schouten (1986), and Flack (1987). Flack (1987) proposes a skewness-
corrected confidence interval using a jackknife estimate of the third moment
of the distribution of delete-one « statistics. Donner and Eliasziw (1992)
obtain a standard error with a method based on a goodness-of-fit test statistic
frequently used for clustered binary data. Lee and Tu (1994) propose yet
another confidence interval for « in the case of two raters with binary
ratings, by reparameterizing « as a monotone function of p,,. Garner (1991)
obtains the standard error conditioning on the margins. Hale and Fleiss
(1993) give two variance estimates of k depending on whether the rater
effect is treated as fixed or random. Lipsitz, Laird, and Brennan (1994)
provide an asymptotic variance of « statistics based on the theory of
estimating equations.

18.4. FURTHER APPLICATIONS

Even though the various kappa statistics were originally developed and were
illustrated here for the measurement of interrater agreement, their applica-
bility extends far beyond this specific problem. In fact, they are useful for
measuring, on categorical data, such constructs as “similarity,” “concordance,”
and “clustering.” Some examples will be given.

1. In a study of the correlates or determinants of drug use among
teenagers, it may be of interest to determine how concordant the attitudes
toward drug use are between each subject’s same-sex parent and the subject’s
best friend. Either unweighted kappa or weighted kappa (Section 18.1) may
be used, with rater 4 replaced by parent and rater B by best friend.

2. Suppose that m monitoring stations are set up in a city to measure
levels of various pollutants and that, on each of n days, each station is
characterized by whether or not the level of a specified pollutant (e.g., sulfur
dioxide) exceeds an officially designated threshold. The version of kappa
presented in Section 18.3 may be applied to describe how well (or poorly) the
several stations agree.

3. Consider a study of the role of familial factors in the development of a
condition such as adolescent hypertension. Suppose that n sibships are
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studied and that m, is the number of siblings in the ith sibship. The version
of kappa presented in Section 18.3 may be applied to describe the degree to
which there is familial aggregation in the condition.

4. Many of the indices of agreement cited in Section 18.1 are used in
numerical taxonomy (Sneath and Sokal, 1973) to describe the degree of
similarity between different study units; in fact, p, (18.2) was originally
proposed for this purpose by Dice (1945). Suppose that two units (people,
languages, or whatever) are being compared with respect to whether they
possess or do not possess each of n dichotomous characteristics. The propor-
tions a—d in the left-hand part of Table 18.2 then refer to the proportion of
all n characteristics that both units possess, the proportion that one possesses
but the other does not, and so on. Corrections for chance-expected similarity
in this kind of problem are as important as corrections for chance-expected
agreement in the case of interrater reliability. Bloch and Kraemer (1989)
discuss kappa as a measure of agreement and association.

5. Studies in which several controls are matched with each case or each
experimental unit were discussed in Section 13.3. If the several controls in
each matched set were successfully matched, the responses by the controls
from the same set should be more similar than the responses by controls
from different sets. The version of kappa presented in Section 18.2 may be
used to describe how successful the matching was.

6. Although « is widely used in psychology and educational research, its
application extends to periodontal research (Boushka et al., 1990), economet-
rics (Hirschberg and Slottje, 1989), veterinary epidemiology (Shourkri,
Martin, and Mian, 1995), anesthesiology (Posner et al., 1990), neurology
(Kairam et al., 1993), and radiology (Musch et al., 1984).

Whether used to measure agreement, or, more generally, similarity, kappa
in effect treats all the raters or units symmetrically. When one or more of the
sources of ratings may be viewed as a standard, however (two of m = 5 raters,
e.g., may be senior to the others, or one of the air pollution monitoring
stations in example 2 may employ more precise measuring instruments than
the others), kappa may no longer be appropriate, and the procedures
described by Light (1971), Williams (1976), and Wackerley, McClave, and
Rao (1978) should be employed instead.

18.5.* INTERRATER AGREEMENT AS ASSOCIATION IN
A MULTIVARIATE BINARY VECTOR

Many problems of interrater agreement can be solved in the framework of
clustered categorical data (see Chapter 15). For a binary rating, the notion of
interrater agreement is closely related to the correlation among the binary
ratings clustered within a subject. Specifically, suppose there are m; raters,
each of whom gives a two-category rating to subject i for i =1,..., n. Let the
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binary indicator Y;; be 1 if rater j judges subject i positive, and 0 if negative,
for j=1,...,m; Then Y;=(Y,,...,Y,, )" constitutes a vector of binary
outcomes, and the dependence among its components can be characterized
by the intraclass correlation coefficient (ICC) or kappa, among many other
measures. When m; is the same for all 7, the ICC and « are identical.

One way to specify the distribution of the Y;;’s is to consider all possible
2™ mutually exclusive response profiles and assume a 2™i-variate multino-
mial distribution. Some authors specify the multivariate distribution of Y,
this way, while some focus on the distribution of the total number of positive
ratings for subject i, Y;,, and assume it has a beta-binomial distribution; in
either case they express kappa in terms of the parameters of the chosen
distribution and obtain the maximum likelihood estimate (mle). See Ver-
ducci, Mack, and DeGroot (1988), Shoukri, Martin, and Mian (1995), Shoukri
and Mian (1995), and Barlow (1996). Other authors construct a multivariate
distribution using a latent class model; see Aickin (1990), Agresti and Lang
(1993), and Uebersax (1993).

In a different approach, the pairwise association between Y;; and Y;, can
be expressed as a function of kappa without making a full distributional
assumption. Landis and Koch (1977b) structure the correlation using a
random effects model. They assume

Yij=P+sl.+e,»j,

where P is the probability of a positive rating, the s,’s are independent and
identically distributed with mean 0 and variance %, the e;;’s are similarly

s
distributed with mean 0 and variance o, and the s;’s and e;;’s are mutually
independent. Then Y;; and Y, are conditionally independent given the
random effect s; which is unique to subject i, but are marginally correlated,
because they share the random effect s,. See Section 15.5.2 at expression

(15.42). The intraclass correlation coefficient is

2

(o

ST
The authors use a moment estimator to estimate p and derive its standard
error.

Lipsitz, Laird, and Brennan (1994) propose a class of estimators for kappa
using an estimating-equation approach (see Section 15.5.1). Assuming that
each subject has the same probability of a positive rating, say P = P(Y;, = 1),
and the same joint probability of being rated positive by a pair of raters for
all pairs of raters, P;; = E(Y;;Y;,) =P(Y;;=1,Y,, = 1), kappa can be written
as a function of the probability of agreement under two assumptions: nonin-
dependence among the elements of Y;, and independence. The probability of
agreement without assuming independence, P,, is

Pa:P(Yile’Yikzl) +P(Yij:07Yik=0)
=P, +{(1-P)—(P—P,)} =P, +1-2P+P,. (1854)
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The chance-expected probability of agreement, P,, is the probability of
agreement under marginal independence among the elements in Y;:

P,=P>+(1-P)°. (18.55)
With
_P-P _ | 1P
“K=T1-p, T T 1-P>

after substitution of (18.54) and (18.55) we have

P-P,

“«=1=pa-p)

(18.56)

We can rewrite P,; in terms of P and « thus:
P, =P?+ kP(1-P).

Lipsitz, Laird, and Brennan (1994) construct a class of estimating equations
each of whose solutions becomes an estimate of kappa. Based on the
identities E(Y;.)=m,P and E{Y, (Y,,— 1)}=P,m,(m;—1), the authors
construct a joint estimating equation,

() | _,
U,(k, P)
with
7 —mP
U(P) = Z
and

Y, (Y.,—-1)—-Pm(m,—1
UZ(K,P): Z l+( i+ ) o llml(ml ),

i=1 i

where v, and w; are weights to be chosen. The estimating equation is
unbiased, that is, F{U,(P)}=FE{Uy,(x,P)}=0 for all x and P, and, as
explained in Section 15.5.1, the solution is consistent and asymptotically
normal. Applying further results from the standard theory of estimating
equations, the variance of K has a sandwich-type estimator which can be
obtained easily. A convenience of this approach is that on choosing the
weights v, and w; appropriately, the solution of the estimating equation
coincides with existing kappa statistics, including the kappa statistic of Fleiss
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(1971) and the weighted kappa statistic of Schouten (1986). For example,
Fleiss” kappa can be obtained by solving

U1(ﬁ) = i Uy = i (Yi+_mip) =0 (18.57)

and

Yi,(m—Y,) AN\ P 5
#—(1—K)P(1—P)mi}

= 0. (18.58)

The sandwich-type variance of Lipsitz, Laird, and Brennan (1994) is asymp-
totically equivalent to the jackknife variance estimate proposed by Schouten
(1986). The sandwich variance of Fleiss’ kappa statistic has the form
Var(k) = X,V;%, where

v, - (Lm0 -2P)

L

Uli

m
Vi= nP(1—P)

The authors also show that the asymptotic relative efficiency against the mle
assuming a beta-binomial distribution (Verducci, Mack, and DeGroot, 1988)
is highest for Fleiss’ kappa, lower for weighted kappa (Schouten, 1986), and
lowest for unweighted kappa, where both v; and w; are constants.

The estimating-equation approach can be extended to the regression case
in which kappa is modeled as a function of covariates. Alternative ways of
incorporating covariates and testing homogeneity of kappa across covariate
levels are discussed by Barlow, Lai, and Azen (1991), Barlow (1996), and
Donner, Eliasziew, and Klar (1996).

Both mle and estimating-equation estimators require a large sample size
for inferences to be valid. Small-sample properties of kappa estimates have
been studied by Koval and Blackman (1996) and Gross (1986). Lau (1993)
provides higher-order kappa-type statistics for a dichotomous attribute with
multiple raters.

Several authors investigate alternative measures of agreement. Kupper
and Hafner (1989) discuss correcting for chance agreement when the raters’
attribute selection probabilities are equal, and use a hypergeometric distribu-
tion. O’Connell and Dobson (1984) describe a class of agreement measures
in which kappa is a special case. Uebersax (1993) considers a measure of
agreement based on a latent-class model. Aickin (1990) uses a mixture of
distributions assuming independent ratings and perfect agreement, and takes
the mixing probability as a measure of agreement. He finds that his measure
of agreement has a kappa-like form, but tends to be larger than Cohen’s



622

THE MEASUREMENT OF INTERRATER AGREEMENT

kappa except in the case of uniform margins. Agresti (1992) and Banerjee,
Capozzoli, and McSweeney (1999) give a review of measures of agreement,
and Smeeton (1985) describes the early history of kappa.

PROBLEMS

18.1.

18.2.

18.3.

18.4.

18.5.

Prove that, when each of the indices of agreement given by (18.1),
(18.2), (18.4), (18.6), and (18.7) is corrected for chance-expected agree-
ment using formula (18.8), the same formula for kappa (18.9) is ob-
tained.

Prove that, when k = 2, the square of the critical ratio given in (18.14)
is identical to the standard chi squared statistic without the continuity
correction.

Suppose that g=3 independent reliability studies of a given kind of
rating have been conducted, with results as follows:

Study 1 (n = 20) Study 2 (n = 20) Study 3 (n = 30)
Rater B Rater D Rater F
Rater 4 + — RaterC + — Rater £+ -
+ 0.60 0.05 + 0.75 0.10 + 0.50 0.20
- 0.20 0.15 — 0.05 0.10 — 0.10 0.20

(a) What are the three values of kappa? What are their standard
errors [see (18.15)]? What is the overall value of kappa [see
(18.21)]?

(b) Are the three estimates of kappa significantly different? [Refer the
value of the statistic in (18.22) to tables of chi squared with 2 df.]

(¢) Using (18.23), find an approximate 95% confidence interval for the
common value of kappa.

Prove that, when w;; =1 for all i and w;; =0 for all i #j, the standard-
error formulas (18.13) and (18.32) are identical. Prove that, with this
same system of agreement weights, the standard-error formulas (18.15)
and (18.36) are identical.

Prove that, when k = 2, formulas (18.52) and (18.53) are identical.
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