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Abstract

A method commonly used for packet flow control over connections with long round-trip delays is ‘‘sliding win-

dows’’. In general, for a given loss rate, a larger window size achieves a higher average throughput, but also a higher

rate of spurious packet transmissions, rejected by the receiver merely for arriving out-of-order. This paper analyzes the

problem of optimal flow control quantitatively, for a connection that has a cost per unit time and a cost for every

transmitted packet. The optimal strategy is defined as one that minimizes the expected cost/throughput ratio, and is

allowed to transmit several copies of a packet within a window. We present an algorithm for computing the optimal

strategy and study its properties; in particular, we derive bounds on the optimal strategy cost/throughput performance,

and show that it increases merely logarithmically with the time price, whereas the cost/throughput of the ‘traditional’

classic window scheme is linear in the time price.
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1. Introduction

A common method for packet flow control over

network connections, used both in the data-link
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and the transport layers, is sliding windows [1]. In

this method, the receiver regularly reports to the

sender the index of the next-expected packet,

thereby acknowledging all the packets up to that
index. The sender may transmit up to a certain

number of packets, called the window size, beyond

the last acknowledged packet; if a packet is not

acknowledged within a certain ‘timeout’ period

(ideally aimed to be the connection round-trip

time, or slightly higher), the window is retrans-

mitted from that packet on. In its pure form,

this scheme implies that packets must arrive to
the destination in-order. While the receiver may
ed.
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temporarily keep out-of-order packets in a buffer,

this does not affect the connection’s performance

unless the protocol is extended to allow selective,

rather than cumulative, acknowledgments [2,3].

Such extensions are not universally implemented,

and even when they are, the space allocated to
hold such out-of-order packets is, typically, not

very large. Therefore, on a coarser level, the packet

stream still has to arrive in-order, allowing

exceptions only to a limited extent.

Since a lost packet may trigger a retransmission

of up to an entire window, its negative effect on

throughput is not only due to the loss itself, but

due to the time wasted in waiting for the
acknowledgment as well. This effect is more severe

when the connection’s round-trip time (more pre-

cisely, the timeout) is long compared to the

transmission time of a packet; such a connection is

said to have a large bandwidth-delay product. A

good example is a geostationary satellite link, with

a round-trip propagation delay of roughly 0.25 s,

used within a high-speed connection where a
packet transmission typically takes a fraction of a

millisecond; the delay-bandwidth product is then

measured in thousands.

Assuming that packet losses are independent

(e.g., caused by white noise or a randomized dis-

carding policy along the connection path, such as

RED [4,5]), and that transmission of a window

takes less than the round-trip delay, the through-
put can be improved considerably by retransmit-

ting some or all of the packets several times within

the window itself (rather than just after a timeout,

as in ‘classic’ sliding-window schemes), as this in-

creases their initial probability of successful arri-

val. For the rest of the paper, we extend the

definition of the window size to include all such

transmissions, counting each one separately whe-
ther it is a new packet or a copy of a previous one.

We define a sliding-window strategy to be a rule

that specifies how many copies of each packet,

relative to the start of the window, are transmitted

and in what order; in particular, it also specifies

the window size. We mention at this point that

alternative methods, such as forward error cor-

rection (FEC), can be used within this framework
instead of simple retransmissions; we comment

more on this later.
In general, for a given packet loss rate, trans-

mitting more packets in a window––whether new

ones or more copies of the same––increases the

expected number of successful packets in every

round-trip period, and, hence, the long-term

throughput (at any rate, so long as the total window
transmission time remains below the round-trip

time). However, a larger window also increases the

average rate of duplicate and out-of-order packets,

which needlessly contributes to the network load.

Thus, selection of a window size constitutes a

tradeoff between these conflicting goals. To quan-

tify this tradeoff, we associate with the connection a

‘cost’ per unit time and a ‘cost’ per packet trans-
mission, and define the optimal strategy as one that

minimizes the average cost/throughput ratio over

time. We point out that these costs can have various

interpretations, and should not be taken literally as

money charges [6]. For example, the time cost may

be associated with the disutility incurred by the

application due to increased delay, and the trans-

mission cost may be related to the energy con-
sumption of a mobile device. Similarly, a ‘social’

(e.g., TCP-friendly) sender that refrains from re-

transmitting to avoid loading the network for oth-

ers behaves as if it had a high per-transmission cost.

In ‘classic’ sliding windows, the sender trans-

mits each packet in the window once, and the

optimal strategy computation thus reduces to a

trivial optimization of a single parameter (the
window size). When each packet may be (re)-

transmitted several times within a window, the

problem becomes much more interesting. Finding

the optimal strategy can then be viewed as being

composed of two subproblems: an ‘outer’ problem

of finding the optimal window size N , depending
on the time and packet transmission costs; and an

‘inner’ problem of optimally distributing a total
‘budget’ of N transmissions among the packets in a

window, which, for a given N , no longer depends
on the costs. A salient feature of the resulting

solution is that not all packets are transmitted an

equal number of times: earlier packets in every

window get more copies transmitted than later

ones, in accordance with their ‘importance’ (e.g.,

the loss of the first packet in a window results in
the loss of the entire window even if later packets

arrive correctly, while the reverse is not true).



L. Libman, A. Orda / Computer Networks 46 (2004) 219–235 221
In this paper, we present a detailed analysis of

optimal sliding-window strategies, following the

above decomposition to the ‘outer’ and ‘inner’

subproblems. It turns out that the inner problem,

of deciding which packet copies to transmit for a

given window size N , involves a certain combina-
torial optimization problem, and we explore in

detail its properties, derive bounds on the solu-

tion’s performance, and suggest an efficient solu-

tion algorithm based on dynamic programming.

We then proceed to extend it for the outer problem

(of finding the optimal window size) as well, thus

establishing an integrated solution algorithm for

the strategy optimization problem. Finally, we
show that the cost/throughput ratio increases only

logarithmically in the time price; this is a signifi-

cant improvement of the linear dependence

achievable by ‘classic’ sliding windows.

Our current study analyzes optimal strategies

limited to simple retransmissions only. A poten-

tially better scheme for increasing the success

probability of a group of packets is that of forward
error correction (FEC) coding; generally, a ðn; kÞ
FEC code encodes a group of k packets into n > k
‘copies’, so that any k successful ones allow

reconstructing the original data. We wish to

emphasize that the ideas presented in this paper

are not inconsistent with FEC coding, but rather

complement it. If the code parameters are fixed

(e.g., in a lower layer), our analysis can be readily
applied by treating each encoded block as a

‘‘super-packet’’ with the appropriate loss proba-

bility. If the code can be controlled, the problem

becomes that of finding an optimal coding strategy,

which, though more complex, is based essentially

on the methodology introduced here, except that

the number of retransmissions is replaced by the

notion of coding redundancy. In particular, it is to
be expected that the optimal strategy would use

higher-redundancy coding for the first packets in

every window than for later ones.

The special concerns raised by connections with

large delay-bandwidth products in general, and

satellite links in particular, have attracted consid-

erable research in recent years. Most of these

studies are in the context of the widely-used TCP
protocol and propose how to improve its perfor-

mance, either by tuning the parameters of existing
features like extended windows, slow-start, and

congestion avoidance [7,8], or by introducing

extensions, such as explicit congestion notifica-

tions [9]. Considerable attention has also been

devoted to FEC coding that is able to adapt to

higher-layer protocol requirements, partly in the
context of multimedia applications with real-time

requirements [10], but mostly, again, in conjunc-

tion with TCP [11,12]. None of these works,

however, suggested improvements of the sliding-

window mechanism itself. In fact, to the best of

our knowledge, the idea of basing the number of

retransmissions (or the FEC coding redundancy)

on the position of the packet within a window,
which is central to this paper, has not been sug-

gested before. The approach we follow in the

paper is generic, with the goal of discovering fun-

damental properties of optimal retransmission

strategies, and we do not consider specific imple-

mentation issues in existing sliding-window pro-

tocols, which may require further work.

The rest of the paper is structured as follows.
Section 2 describes the model and formally defines

the underlying optimization problems. Section 3

describes basic structural properties of the solution

and derives bounds on the optimal strategy per-

formance. The solution algorithm and its proper-

ties for the ‘inner’ problem are analyzed in Section

4 and incorporated into an overall solution algo-

rithm in Section 5. Finally, Section 6 concludes
with a discussion of our methodology and its

possible extensions, and outlines directions for

further research.
2. Model and problem formulation

2.1. The model

As explained in the Introduction, we are inter-

ested in network connections with a high delay-

bandwidth product, in which the receiver accepts

packets only in order (with only a small buffer space,

if at all, to hold a limited number of out-of-order

packets). For our analysis, we shall bring these two

characteristics to an extreme. That is, we assume
that the receiver is unable to accept out-of-order



2 Obviously, transmitting the same packets in any other

order can only decrease the expected number of in-order

arrivals.
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packets at all, and we take the packet transmission

time to be zero, which implies that the size of the

window that can be transmitted within a round-

trip period is unlimited. Furthermore, we assume

there are no other factors that may limit the win-

dow size; e.g., the receiving application processes
the arriving packets instantly, if necessary, hence

no buffer space is consumed by packets arriving in-

order. These assumptions simplify the analysis and

allow it to concentrate on the essential properties

of the resulting strategies, without having to deal,

from the outset, with details of secondary impor-

tance. Section 6 discusses the extensions required

to alleviate these assumptions, and argues that
the solution methodology remains similar none-

theless.

We denote the loss rate in the network by L, and
assume that losses are independent among pack-

ets, as is the case, e.g., for white noise or a random

discard policy such as RED. In addition, we ne-

glect the loss rate of acknowledgments, since they

are, typically, much shorter than data packets, and
therefore suffer less from noise and their paths are

often less congested; moreover, since acknowl-

edgments only carry the next-expected packet

index, a loss of one has no significance if a later

one in that window is received successfully. Con-

sequently, for each packet, the sender knows

whether it was successfully received after a round-

trip time, which we denote by T .
We introduce a cost composed of a ‘price’ of a

per unit of time and b per transmitted packet, and
define an optimal strategy as one that minimizes

the cost/throughput ratio over time; as explained

in the Introduction, these prices can have generic

interpretations. Incidentally, we chose to base our

analysis on this cost structure, which is linear in

the time and number of packets, reckoning that it
is appropriate for a variety of scenarios and cost

interpretations [6]. A different (non-linear) cost

structure may be used instead, provided that the

cost of transmitting a window depends only on its

size, and not on the identities of its packets or the

actual number successfully received. This may af-

fect only the analytical results, e.g., the asymptotic

dependence of the optimal strategy performance
on the costs, whereas the actual algorithm for

finding it remains intact.
The computation of the optimal strategy from

the connection parameters (L, T , a, b) implicitly
assumes that they are known; therefore, they must

either remain constant or change quasi-statically,

allowing the strategy to adapt after a change is

detected. If any of the parameters, e.g., the round-
trip time, changes quickly and unpredictably, it

should be modeled by a random variable (e.g., as

in [6]) rather than a constant value. We point out,

however, that this is not typical of the kind of

network connections that are the subject of this

study: e.g., for satellite links, the round-trip time is

dominated by the propagation delay, which can be

considered essentially constant.
The above assumptions readily imply two fun-

damental properties. First, in the optimal strategy,

packets are transmitted only at multiples of T ;
sending packets at other times cannot gain, since

no extra information is present. Second, once a

sequence of packets is sent at time t, the index of
the last one to arrive in-order is known by time

t þ T , so the strategy simply restarts (‘slides’) at the
subsequent packet. Consequently, the description

of a strategy consists simply of a single vector

that specifies the number of copies to be sent of

every packet, relative to the next-expected index,

at every multiple of T . The purpose of the

subsequent analysis will be to find the optimal

such vector.
2.2. Problem formulation

Consider a vector ~n ¼ hn1; . . . ; ni; . . .i, where ni
are whole and non-negative, and define a random

variable S to be the number of in-order success-

ful packets at the receiver if the sender trans-

mits n1 repetitions of packet 1, followed by n2
repetitions of packet 2, etc. 2 The distribution of
S is

PSðjÞ ¼
Yj
i¼1

1ð � LniÞ � Lnjþ1 : ð1Þ



3 The product-log function is also known elsewhere as

Lambert’s W-function [13], or, more precisely, as one of its real-

valued branches.
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We define the score of~n, denoted by /ð~nÞ, to be
the expected value of S; thus

/ð~nÞ,E½S
 ¼
X1
j¼1

j �
Yj
i¼1

1ð � LniÞ � Lnjþ1

¼
X1
j¼1

j �
Yj
i¼1

1ð
"

� LniÞ �
Yjþ1
i¼1

1ð � LniÞ
#

¼
X1
j¼1

Yj
i¼1

1ð � LniÞ: ð2Þ

We seek the vector ~n ¼ hn1; . . . ; ni; . . .i that

minimizes

a � T þ b �
P1

i¼1 ni
/ð~nÞ ¼ a � T þ b �

P1
i¼1 niP1

j¼1
Qj

i¼1 1� Lnið Þ
: ð3Þ

The above expression describes the cost/
throughput ratio attained by the strategy ~n over
time. The numerator is the fixed cost of a period of

T , during which one window is transmitted, and

the denumerator is the expected number of packets

successfully communicated in that period.

Consider expression (3) more closely. For any

N , all the vectors with
P1

i¼1 ni ¼ N , i.e., suggesting
the same total window size, attain the same
numerator value; hence, the comparison among

them is based merely on their score. Consequently,

let us define

ELðNÞ, max
n1;n2;...

s:t:
P

i
ni¼N

X1
j¼1

Yj
i¼1

1ð
(

� LniÞ
)

ð4Þ

and rewrite expression (3) accordingly as

a � T þ b � N
ELðNÞ : ð5Þ

Then, the problem of finding the strategy vector

that minimizes (5) can be separated into the fol-

lowing (sub-)problems:

Inner problem: Computing ELðNÞ for a given N.
Outer problem: Searching for N � that minimizes

(5).

This separation is convenient in that it isolates

the infinite-dimensional part of the problem to

depend solely on L, while the dependence on the
other parameters reduces to a one-dimensional
optimization only. Furthermore, the vector that

actually attains the maximum in (4) is not needed

until the final stage, after N � has been found;

during the search of N , it suffices to be able to

evaluate ELðNÞ, without the need to find the

maximizing vector explicitly.
To conclude this section, we digress to consider

the case of ‘classic’ sliding windows, where each

packet is sent only once in a window; this corre-

sponds to the vector n1 ¼ � � � ¼ nN ¼ 1, with a

cost/throughput ratio of

a � T þ b � NPN
j¼1 1� Lð Þj

¼ L
1� L

� a � T þ b � N
1� 1� Lð ÞN

: ð6Þ

Maximizing this (e.g., by differentiating with
respect to N ) yields an optimal window size of

N � ¼ 1

log 1
1�L

"
� plog

 
� ð1� LÞaT =b

e

!
� 1

þ aT
b
logð1� LÞ

#



ðif aT�bÞ

log aT
b log

1
1�L þ 1

� �
log 1

1�L

;

ð7Þ

where plogð�Þ (the product-log function) denotes
the inverse function of f ðtÞ ¼ t � et, such that

t ¼ �plogð�yÞ (for 0 < y6 1=e) is the largest po-
sitive solution to the equation y ¼ t � e�t; in the

final approximation we used the property that
�plogð�e�xÞ 
 xþ log x for x � 1. 3 Thus, as the

time cost a increases with respect to the other

parameters, the optimal window size increases

logarithmically in a. Since the denominator of (6)
tends to a finite value as N ! 1, the cost/

throughput ratio, overall, increases linearly in a.
3. Basic properties and bounds

In this section, we show some basic structural

properties of the optimization problems’ solutions,

and derive important bounds, in particular, on

their asymptotic behavior.



4 Recall that the factorial t!, for any tP 0, is defined by

t! ¼
R1
0 xte�x dx; this definition coincides with the more com-

mon t! ¼ 1 � 2 � . . . � t for integer t. A well-known property of the

factorial is t! ¼ t � ðt � 1Þ! for any tP 1.
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3.1. Properties of the inner problem

Our first two lemmas state basic and intuitively

obvious structural properties.

Lemma 1. ELðNÞ decreases in L and increases in N .

Proof. Consider the maximizing vector in (4) for

some L and N , and suppose that L is then de-

creased. The score of that vector then increases; if

it is no longer the maximizer for the new L, then,
obviously, the maximum value can only be even

higher. Therefore, the value of (4) increases.
Alternatively, suppose that N is increased, and

add the entire amount of the increase to the first

element (arbitrarily). Again, this results in an in-

crease of the score; if the resulting vector is not the

maximizer for the new N , the value of (4) can only
increase further. h

Lemma 2. For a given N , the elements of the vector
that achieves the maximum in (4) maintain a non-
increasing order, i.e., n1 P n2 P � � � P ni P � � �.

Proof. Suppose, by contradiction, that there exists

a pair of indices i1 < i2 with ni1 < ni2 . Consider the
score of the vector resulting by swapping ni1 ; ni2 , as
given by expression (2). All the sum elements

(products) for j < i1 (which depend on neither ni1
nor ni2 ), as well as for jP i2 (which contain both
ð1� Lni1 Þ and ð1� Lni2 Þ in the product), remain

unchanged. The elements for i16 j < i2, which
contain only ð1� Lni1 Þ but not ð1� Lni2 Þ in the

product, are strictly increased by the swap, thereby

increasing the value of the entire sum. Conse-

quently, the original vector cannot be a maxi-

mizer. h

Corollary. In the maximizing vector, all the ele-
ments after the first zero element are also zero.

Corollary. For a given N , the index of the last non-
zero element in the maximizing vector is bounded
by N .

We proceed to derive an important bound on

the number of transmissions required to attain a

given score. For this purpose, we introduce a
variable change that makes the subsequent pre-

sentation more convenient. Define pi,1� Lni (i.e.,

pi is the individual probability of packet i to arrive
successfully, regardless of other packets). We shall

refer to the vector ~p ¼ hp1; . . . ; pi; . . .i as com-

pletely equivalent to the vector ~n and interchange
them freely for convenience; in particular, with a

slight abuse of notation, we refer to /ð~pÞ ¼P1
j¼1
Qj

i¼1 pi as the score of ~p.

Lemma 3. If~n is the maximizing vector in (4), then
p1 ¼ 1� Ln1 P /ð~nÞ=ð/ð~nÞ þ 1Þ.

Proof. Lemma 2 implies that pi 6 p1 for all i;
therefore,

/ð~nÞ ¼
X1
j¼1

Yj
i¼1

pi 6
X1
j¼1

p1ð Þj ¼ p1
1� p1

ð8Þ

and the lemma immediately follows by extracting

p1. h

Theorem 1. For any vector ~n, N ¼
P

i ni P
log1=L f½/ð~nÞ þ 1
!g. 4

Proof. Obviously, since the factorial and the log-

arithm are monotonously increasing operations, it

suffices to prove the theorem for the vector with

the maximum score for a given N . Such a vector
must satisfy Lemmas 2 and 3.

Consider the equivalent vector ~p ¼ hp1; . . . ;
pM ; 0; . . .i, where M denotes the index of the last

non-zero element. Define the following sequence
of subvectors, ~pðmÞ, hpm; pmþ1; . . . ; pM ; 0; 0; . . .i,
and of their corresponding scores, /m ¼ /ð~pðmÞÞ ¼PM

j¼m

Qj
i¼m pi, for all 16m6M ; note that /1 is the

score of the original vector. Observe that

/m ¼ pmð1þ /mþ1Þ, and, therefore, /mþ1 P /m � 1,

for all 16m < M ; successively applying this

inequality, we get /m P /1 � ðm� 1Þ for all m. On
the other hand, applying Lemma 3 on each of the
subvectors in turn, we have pm P /m=ð/m þ 1Þ, or
1=ð1� pmÞP /m þ 1. Consequently,



L. Libman, A. Orda / Computer Networks 46 (2004) 219–235 225
YM
m¼1

1ð
"

� pmÞ
#�1

P
YM
m¼1

/mð þ 1Þ

P
YM
m¼1

max /1½ � ðm� 1Þ þ 1; 1
:

ð9Þ

Now, consider the factorial ð/1 þ 1Þ!. Denote
b/1c to be the integer part of /1 (and, thereby,

ð/1 � b/1cÞ to be its fractional part). Successively
applying the factorial property of t! ¼ t � ðt � 1Þ!
for any tP 1, we have

/1ð þ 1Þ!

¼ /1ð þ 1Þ � /1 � /1ð � 1Þ � � � � � /1ð � b/1cÞ!

¼
YM
m¼1

max /1½ � ðm� 1Þ þ 1; 1
 � /1ð � b/1cÞ!

6

YM
m¼1

max /1½ � ðm� 1Þ þ 1; 1
: ð10Þ

Note that we implicitly used the obvious fact

that /16M , and also that t!6 1 for any 06 t < 1.

Combining inequalities (9) and (10), we obtain

½
Q

m ð1� pmÞ
�1 P ð/1 þ 1Þ!. Taking the logarithm
of both sides and noting that log1=L ð1� pmÞ ¼
�nm; we finally get

P
m nm P log1=L ½ð/1 þ 1Þ!
. h

Finally, the following fundamental theorem

presents the asymptotic relation between the win-

dow size and the maximum score that can be ob-

tained by a vector of that size.

Theorem 2. ELðNÞ ¼ HðN= log1=L NÞ. 5

Proof.We apply the well-known Stirling’s factorial

approximation formula, t! 

ffiffiffiffiffiffiffi
2pt

p
ðt=eÞt for large t,

to the inequality established in Theorem 1, and

obtain
5 Recall that f ðNÞ ¼ OðgðNÞÞ, for positive functions f ðNÞ,
gðNÞ, means that limN !1 f ðNÞ=gðNÞ < 1; in addition, f ðNÞ ¼
XðgðNÞÞ is equivalent to gðNÞ ¼ Oðf ðNÞÞ, and f ðNÞ ¼ HðgðNÞÞ
means that both f ðNÞ ¼ OðgðNÞÞ and f ðNÞ ¼ XðgðNÞÞ.
N P log1=L ELðNÞ½ þ 1
!


 log1=L
ELðNÞ þ 1

e

� �
� ELðNÞ½ þ 1


þ log1=L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p½ELðNÞ þ 1


p
; ð11Þ

thus, N ¼ XðELðNÞ � log1=L ELðNÞÞ. This implies
directly that ELðNÞ ¼ OðN= log1=L NÞ.
To show that ELðNÞ ¼ XðN= log1=L NÞ as well, it

suffices to find one example of a vector that attains

a score of XðN= log1=L NÞ. Accordingly, consider
the vector hn1; . . . ; nM ; 0; . . .i, such that n1 ¼ � � � ¼
nM ¼ log1=L N and M ¼ N= log1=L N . Its score is

XM
j¼1

Yj
i¼1

1ð � LniÞ

¼
XN= log1=L N

j¼1
1
�

� Llog1=L N
�j

¼ N 1

�
� 1

N

�
� 1

"
� 1

�
� 1

N

�N= log1=L N
#

PN 1

�
� 1

N

�
1
�

� e�1= log1=L N
�
; ð12Þ

completing the proof, as e�1=x 
 1� 1=x for large
x. 6 h

It is insightful to compare the result of Theorem

2 with the total number of packets received suc-

cessfully (not necessarily in-order), which is,

obviously, N � ð1� LÞ, i.e., HðNÞ. Hence, it can be
said that discarding out-of-order packets impacts
the performance by a logarithmic factor. This

theorem can also be used inversely: in-order to

have an expected number of / packets arriving

successfully and in-order to the destination, the

total number of packet copies transmitted by the

source must be Hð/ � log1=L /Þ.
6 The fact that log1=L N and/or N= log1=L N may not be

integers is insignificant: rounding both expressions up to the

nearest integers only increases the vector’s score further, with

an asymptotically negligible impact on the window size.
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3.2. Properties of the outer problem

This subsection is concerned with the depen-

dence of the optimal window size N � on the cost

factors a; b. Theorem 3 states an intuitively evident
monotonicity property. Theorem 4 presents the

central result of this section, regarding the

asymptotic dependence of the cost/throughput

ratio on the time cost a.

Theorem 3. The optimal N � is non-decreasing in
aT=b.

Proof. Consider two sets of parameters a1; b1; T1
and a2; b2; T2 such that a1T1=b1 P a2T2=b2, and
suppose that N �

1 , N
�
2 are their corresponding solu-

tions (to the outer problem). This implies, in par-

ticular, that

a1T1=b1 þ N �
2

EL N �
2ð Þ P

a1T1=b1 þ N �
1

EL N �
1ð Þ ; ð13Þ

a2T2=b2 þ N �
2

EL N �
2ð Þ 6

a2T2=b2 þ N �
1

EL N �
1ð Þ : ð14Þ

Subtracting the second inequality from the first

and noting that the common factor
ða1T1=b1 � a2T2=b2Þ is positive, we obtain

ELðN �
1 ÞPELðN �

2 Þ. In light of the monotonicity of
ELðNÞ (Lemma 1), this implies N �

1 PN �
2 . h

Theorem 4. As a ! 1 (for fixed values of T , b, L),
the cost/performance ratio attained by the optimal
strategy increases logarithmically in a.

Proof. Consider the expression hðxÞ, ða � T þ
b � xÞ=ðx= log1=L xÞ, as a function of a (continuous)
variable x. By differentiation with respect to x, it is
easily found that its minimum is attained at

x� ¼ aT=b � �plog �e � b=ðaT Þð Þ½ 
. 7 Using again

the property that �plogð�e�yÞ 
 y þ log y for

large y, we obtain x� ¼ Hða � log aÞ, and the mini-
mum value of hðxÞ is therefore Hðlog aÞ. This
proves the theorem, since, in light of Theorem 2,
7 Recall the definition of the plog function at the end of

Section 2.
the cost/throughput ratio is itself HðhðNÞÞ, and its
minimum value can, therefore, deviate from that

of hðNÞ by a constant factor at most. h

Thus, the ability to use retransmissions within
the window enables the average cost per successful

packet to increase merely logarithmically in a, ra-
ther than linearly as in the case of ‘classic’ sliding

windows. Incidentally, note that no similar result

exists for b ! 1 with the other parameters con-

stant; indeed, as aT=b ! 0, the optimal strategy

tends to h1; 0; 0; . . .i (simple stop-and-wait), and
the value of expression (5) simply increases linearly
in b. This is true, of course, for the ‘classic’ case as
well.
4. Solution of the inner problem

In this section, we present two approaches to

the solution of the inner problem. First, we show
how to solve it (i.e., compute the value of the

function ELðNÞ) exactly, using a technique of dy-
namic programming. The corresponding solution

algorithm has a complexity of OðN 2Þ. However, it
does not provide an insight to the structural

properties of the solution; therefore, we also con-

sider a similar optimization problem in continuous

variables, for which the dependence of the solution
on the problem parameters can be demonstrated

more easily. Though the solution of the auxiliary

problem is only an approximation to that of the

original one, we show that it is tight for large

values of the window size, and its properties

therefore provide a useful insight.
4.1. Exact solution

To present the solution to the inner problem,

we consider the score expression (2) and rearrange

it as follows:

X1
j¼1

Yj
i¼1

1ð � LniÞ

¼ 1ð � Ln1Þ 1

"
þ
X1
j¼2

Yj
i¼2

1ð � LniÞ
#
: ð15Þ
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Therefore, if n1 is fixed, the dependence of the
vector’s overall score on the other elements is only

through the score of the subvector that begins with

the second element. Consequently, the following

relation holds:

ELðNÞ ¼ max
n1;n2;...

s:t:
P

i
ni¼N

X1
j¼1

Yj
i¼1

1ð
(

� LniÞ
)

¼ max
16 n1 6N

1ð � Ln1Þ 1½ þ ELðN � n1Þ
: ð16Þ

Relation (16) suggests that the optimal score for

a window size of N (and the vector that achieves it)

can be found from the scores of smaller window

sizes by dynamic programming. The algorithm is

described formally in Fig. 1, and is termed DI (for

‘‘Dynamic Inner’’). We note that, since the com-

putation of ELðNÞ requires N score computations

once the optimal scores for all window sizes up to
N � 1 are known, the overall complexity of the

algorithm is OðN 2Þ.

Example. The following table summarizes the

optimal vectors and their scores for N ¼ 15 and

selected values of L.

In accordance with intuition, for low loss rates,

it is best to send at least one copy of more indi-
vidual packets; conversely, when the loss rate is

high, the expected number of successful in-order

arrivals is maximized by duplicating just the first

few packets. In fact, it is obvious that, for any N ,
the optimal vector tends to

L Optimal vector Score

0.1 h2; 2; 2; 2; 1; 1; 1; 1; 1; 1; 1; 0; 0; . . .i 8.41131

0.3 h3; 2; 2; 2; 2; 2; 1; 1; 0; 0; . . .i 5.39436

0.5 h4; 3; 3; 2; 2; 1; 0; 0; . . .i 3.61954

0.7 h6; 5; 3; 1; 0; 0; . . .i 2.24336

0.9 h11; 4; 0; 0; . . .i 0.92217
Fig. 1. Algorithm Dyn
h1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
N

; 0; 0; . . .i

for L ! 0 and to hN ; 0; 0; . . .i for L ! 1.

4.2. Approximation through continuous relaxation

We now analyze the properties of the optimi-

zation problem that defines the function ELðNÞ,
expressed by (4), omitting the requirement for the

elements of ~n to be integers. This way, we have a
relaxed optimization problem in a continuous

space, which can be analyzed more easily by ‘tra-

ditional’ methods from optimization theory.

Obviously, this technique results in a value that is
higher than ELðNÞ.
To distinguish the relaxed problem from the

original one, we denote the maximum score by

ULðsÞ, where s (rather than N ) is used to denote the
vector size, to emphasize that ULð�Þ, unlike ELð�Þ, is
well-defined for non-integer arguments. Addition-

ally, we again make the convenient variable

change of pi,1� Lni , after which the score
expression is simply

P1
j¼1
Qj

i¼1 pi, while the con-
straints on the vector elements become

ni P 0 ) 06 pi 6 1; ð17ÞX
i

ni ¼ s )
Y
i

1ð � piÞ ¼ Ls: ð18Þ

We immediately observe that the problem

essentially depends on just one parameter, Ls, i.e.,

ULðsÞ ¼ UðLsÞ (even though the translation back to
the original variables, ni ¼ logL ð1� piÞ, involves
the specific value of L). This crucial property en-
ables us to solve the problem for a wide range of

input parameters and demonstrate the results in a

simple one-dimensional plot of UðLsÞ, which is

indeed given in Fig. 3 at the end of this subsection.

We point out that the graph (or an equivalent
amic-Inner (DI).
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table) can be used in any case where a quick esti-

mation of the score is required, without the need to

perform a full run of the dynamic programming

algorithm. The rest of this subsection describes

how the optimization problem in continuous

variables is solved.
Obviously, the solution vector, which attains

the globally maximum score, must, in particular,

be also a local maximum; as both the target

expression and the constraint are differentiable,

this means that it has to satisfy the corresponding

Kuhn–Tucker conditions [14]. These can be veri-

fied, by a straightforward simplification, to require

that there exists a constant k such that

1ð � pmÞ
X1
j¼m

Yj
i¼1
i 6¼m

pi ¼ k ðif 0 < pm < 1Þ; ð19Þ

X1
j¼m

Yj
i¼1
i6¼m

pi 6 k ðif pm ¼ 0Þ: 8 ð20Þ

Using (19) and (20), we can prove the following

claim about the structure of the solution vector.

Lemma 4. A vector that satisfies conditions (17)–
(20) has the form hp1; p2; . . . ; pM ; 0; 0; . . .i, where M
is finite, p1 > � � � > pM > 0, and pM 6

1
2
.

Proof. First, note that if pk ¼ 0 for some k, then
condition (19) cannot be satisfied for any m > k,
since all the products contain pk and hence equal 0.
Therefore, there are no positive elements after the

first zero element.

For any 16m < M , condition (19) implies that

1� pm
pm

X1
j¼m

Yj
i¼1

pi ¼
1� pmþ1
pmþ1

X1
j¼mþ1

Yj
i¼1

pi: ð21Þ

Since, obviously,
P1

j¼m

Qj
i¼1 pi >

P1
j¼mþ1

Qj
i¼1 pi;

it follows that ð1� pmÞ=pm < ð1� pmþ1Þ=pmþ1,
which implies pm > pmþ1.
8 In principle, there should also be a condition for pm ¼ 1;

however, it is immediately seen that pm ¼ 1 for any m
contradicts constraint (18).
Comparing expression (20) for pMþ1 with

expression (19) for pM , we haveYM
i¼1

pi 6 1ð � pMÞ
YM�1

i¼1
pi; ð22Þ

and after dividing both sides by the common fac-

tor of
QM�1

i¼1 pi, it reduces to pM 6 1� pM , hence
pM 6

1
2
.

It remains to show that M is finite, i.e., the

vector cannot have infinitely many positive ele-

ments. Suppose, by contradiction, that such a
vector exists. Then constraint (18) implies that

pk�!k!1 0. Consequently, choose an index K such

that pK < 1
2
. We now show that the assumption

pKþ1 > 0 leads to a contradiction.

If pKþ1 > 0, then condition (19) implies

1� pKþ1
pKþ1

X1
j¼Kþ1

Yj
i¼1

pi ¼
1� pK
pK

X1
j¼K

Yj
i¼1

pi; ð23Þ

or, dividing both sides by the common factor ofQK
i¼1 pi,

1� pKþ1
pKþ1

X1
j¼Kþ1

Yj
i¼Kþ1

pi

¼ 1� pK
pK

� 1

 
þ
X1
j¼Kþ1

Yj
i¼Kþ1

pi

!
; ð24Þ

therefore

X1
j¼Kþ1

Yj
i¼Kþ1

pi ¼
1� pKð ÞpKþ1
pK � pKþ1

: ð25Þ

However, we showed above that the positive

elements of ~p must maintain a decreasing order;
hence, pi < pKþ1 for i > K þ 1, and the following

inequality holds:

X1
j¼Kþ1

Yj
i¼Kþ1

pi 6
X1
j¼Kþ1

pKþ1ð Þj�K ¼ pKþ1
1� pKþ1

: ð26Þ

Substituting this inequality into (25), we get

1� pK
pK � pKþ1

6
1

1� pKþ1
) 1þ pKpKþ16 2pK ;

ð27Þ

which contradicts pK < 1
2
. Thus, condition (19)

cannot be satisfied; therefore, pKþ1 ¼ 0. h
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Suppose that a vector hp1; p2; . . . ; pM ; 0; 0; . . .i is
known to satisfy conditions (17), (19) and (20),
and that only the value of the last element pM is

known. Then the other elements can be uniquely

determined by a procedure of backward iteration.

Specifically, once the values of pmþ1; . . . ; pM are

known, one can equate expression (19) for pm and
pmþ1, divide by the common factor of

Qm�1
i¼1 pi, and

extract pm. This results in the formula

pm ¼
1þ

PM
j¼mþ1

Qj
i¼mþ1 pi

2þ
PM

j¼mþ2
Qj

i¼mþ2 pi
: ð28Þ

Conversely, it is easy to see that, for any M and
0 < pM 6

1
2
, the vector obtained through formula

(28) satisfies conditions (19) and (20). For conve-

nience, we define a function ~p : Rþ 7!R1, such

that, for any t > 0,~pðtÞ is the vector corresponding
to M ¼ dte and pM ¼ 1

2
ðt þ 1� dteÞ. 9 This puts the

set of all vectors that satisfy conditions (19) and

(20) (and are therefore ‘‘eligible candidates’’ to be

solutions to the optimization problem for the
corresponding values of Ls) in one-to-one corre-

spondence with the positive real axis. We also

define pi : R
þ 7!R to be the ith component of ~p.

Lemma 5. The function ~p is continuous.

Proof. The continuity of ~p at non-integer points
(continuity in pM only, for a fixed M) is obvious
from formula (28), which shows pm, for any
9 The operator dte denotes the integer obtained by rounding
up of t, i.e., the smallest integer that is not less than t.
16m6M � 1, to be continuous in pmþ1; . . . ; pM ,
and therefore (applying backward induction from

m ¼ M � 1 to m ¼ 1) to be continuous in pM .
To show the continuity of ~p at t ¼ K for

an integer K, one must prove limt!K�~pðtÞ ¼
limt!Kþ~pðtÞ: Consider first the component pK . For
t ! K�, pKðtÞ is simply the last non-zero element
of ~pðtÞ; that is, M ¼ K and pKðtÞ ¼ 1

2
ðt þ 1� KÞ.

Therefore,

lim
t!K�

pKðtÞ ¼ lim
t!K�

1
2
tð þ 1� KÞ ¼ 1

2
: ð29Þ

For t ! Kþ, pKðtÞ is the penultimate non-zero
element; that is, M ¼ K þ 1, pM ¼ 1

2
ðt � KÞ, and

pKðtÞ can be computed from (28):

lim
t!Kþ

pKðtÞ ¼ lim
t!Kþ

1þ 1
2
t � Kð Þ
2

¼ 1
2
: ð30Þ

Hence, the component pKðtÞ is continuous at
t ¼ K. From here, the continuity of p1ðtÞ; . . . ;
pK�1ðtÞ in t follows from their continuity in pK ,
according to (28) (again, using backward induc-

tion from m ¼ K � 1 to m ¼ 1). h

Fig. 2 shows plots of a few functions derived

from the definition of ~pðtÞ. Fig. 2a shows a plot
of p1ðtÞ, using a logarithmic vertical axis to

emphasize the ‘waviness’ of the function. Note

that, by construction, piðtÞ ¼ piþkðt þ kÞ for any
integer k and any t > 0; hence, appropriately

shifted, the plot is valid for any component pmðtÞ.
Fig. 2b shows a plot of LsðtÞ,

Q1
i¼1 ð1� piðtÞÞ,

i.e., the value of Ls for which the vector ~pðtÞ
would satisfy constraint (18); for convenience,

the vertical axis is logarithmic here as well. Fi-

nally, Fig. 2c shows a plot of the score attained

by ~pðtÞ.
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Conceptually, the solution of the optimization

problem for a given Ls is obtained by locating the

set of points ftj
Q

i ½1� piðtÞ
 ¼ Lsg (e.g., from Fig.

2b), and selecting the point that attains the maxi-

mal value of
P

j

Qj
i¼1 piðtÞ (e.g., from Fig. 2c).

Note that the set contains more than one point for
Ls
/1:586� 10�43 (the function of Fig. 2b ceases to

be strictly decreasing after t ¼ 27). In practical

terms, computing the solution begins by evaluat-

ing LsðtÞ at integer points, exploiting the function’s
continuity to find an initial search range, and then

performing a detailed search, e.g., by evaluation

of LsðtÞ on a sufficiently dense grid of points

(depending on the required precision) and sub-
sequent interpolation.

Our experience from running this computation

for various problem instances suggests that dif-

ferent values of t that correspond to the same Ls

tend to attain very close values of / as well, hence

simply finding any such t is nearly optimal. In

graphical terms, this means that the plots in Figs.

2b and 2c are very nearly ‘‘mirror images’’ of each
other (and become ever more so as t gets larger).
To illustrate this, Fig. 3 shows a parametric plot of

/ðtÞ versus LsðtÞ. Observe that the plot is virtually
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Fig. 3. Parametric plot of /ðtÞ versus LsðtÞ, and com
indistinguishable from a function; it takes a great

deal of ‘‘zooming in’’ to notice that the plot

actually zig-zags back and forth, and that every

Ls
/1:586� 10�43 has several corresponding values

of /, of which only the topmost one is the ‘true’
UðLsÞ. Thus, strictly speaking, the function UðLsÞ is
not continuous; however, its ‘jumps’ are markedly

minuscule.

Incidentally, it can be observed that the proof of

Theorem 1 is easily extended to the continuous

version of the problem; it then states that Ls
6 1=

½UðLsÞ þ 1
! This bound is plotted by the dotted line
in Fig. 3. Thus, it can be seen that the auxiliary

function UðLsÞ provides a much tighter bound.
We conclude this subsection with a theorem

that provides the asymptotic connection between

ELðNÞ and the auxiliary function ULðsÞ. It states
that, in a certain sense, ULðsÞ closely approximates
ELðNÞ for large values of N .

Theorem 5. For any L,s, EðLsÞ1=N ðNÞ ���!
N !1

ULðsÞ.

Proof. Define the following auxiliary function, for

0 < K < 1 and 06 p < 1: YKðpÞ ¼ 1� KblogK ð1�pÞc,

where b�c denotes the integer-part operator. Thus,
10
-60

10
-40

10
-20

10
0

s

parison to the bound implied by Theorem 1.
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YKðpÞ is the highest number that is no higher than p
and can be expressed as 1� Kn, for some integer n.
It is obvious that as K ! 1, the set of points ex-

pressable as 1� Kn for some integer n becomes

dense in the segment ½0; 1
, i.e., any 06 p < 1 can
be approximated with an arbitrarily small differ-

ence by such a point, for K sufficiently close to 1.

Therefore, limK! 1 YKðpÞ ¼ p for any 06 p < 1.

Now, denote the maximizing vector of ULðsÞ
by p�

! ¼ hp�1; . . . ; p�M ; 0; 0; . . .i, and define the vec-

tor pjN�!, hYKN p�1
� �

; . . . ; YKN p�M
� �

; 0; 0; . . .i; where

KN , ðLsÞ1=N . Define also the corresponding vec-

tor njN
�!

,hblogKN
1� p�1
� �

c; . . . ;blogKN
1� p�M
� �

c;0;
0; . . .i; and denote N 0 ¼

P
njN�!; observe that

N 0
6
P

i logKN
1� p�i
� �

¼ logKN

Q
i 1� p�i
� �

¼ logKN

Ls ¼ N .
Now, consider the score of pjN�!. It cannot be

higher than EKN ðN 0Þ, since njN�! is just one of the
‘eligible’ vectors over which EKN ðN 0Þ is maximized.
In light of Lemma 1, it is therefore not higher than

EKN ðNÞ as well. Thus, EKN ðNÞ is ‘sandwiched’ be-
tween the scores of pjN�! and p�

!
(the latter, by

definition, being simply ULðsÞ). However, since
KN ! 1 as N ! 1, we have pjN�!�!

N !1 p�
!
, which

finally implies EKN ðNÞ !
N !1

ULðsÞ. h
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Fig. 4. The ratio ða � T þ b � NÞ=ELðNÞ as a function of N , for a ¼ 1
5. Finding the optimal window size

We now turn to discuss the solution of the

‘outer problem’, namely, finding the window size

(N ) that minimizes the cost/throughput ratio (5).
To begin, note that generic search algorithms (e.g.,

Fibonacci or golden-section search [14]), using

algorithm DI as a ‘subroutine’ for computing

ELðNÞ, are inefficient, as they neglect the internal
redundancy between computations for different N .
Indeed, for any N , algorithm DI computes the

scores for all window sizes up to N anyway. This

raises the idea of proceeding with the iterations of
that algorithm until the cost/throughput ratio

(computed on the fly) ceases to decrease, instead of

setting an advance limit.

Fig. 4 shows a typical plot of the target ratio as

a function of N . Observe that the function de-

creases steeply at first but quickly becomes quite

‘flat’, eventually rising slowly amid a somewhat

noise-resembling behavior. This shape is indeed
expected, considering that the ratio expression is

Hðða � T þ b � NÞ=ðN= log1=L NÞÞ (recall Theorem

2): thus, for small N (N � aT=b), it decreases at a
rate of 1=ðN= log1=L NÞ, while for N � aT=b, it
60 70 80 90 100

60 70 80

0, T ¼ 1, b ¼ 1, L ¼ 0:3. The inset ‘zooms in’ on 206N 6 80.



Fig. 5. Algorithm Dynamic-Outer (DO).

10 We point out that termination criteria based on the target

value itself, rather than the window size (such as ‘‘stop when the

current target value has risen to 5% above the optimum so far’’),

also work, but may lead to exponential complexity, due to the

logarithmic increase rate of the target expression for large N . On
the other hand, the complexity of algorithm DO is only OðN�2 Þ.
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increases at a rate of log1=L N , i.e., much more
slowly. The noise-like non-monotonocity, espe-

cially apparent around the minimum point, is due

to combinatorial effects that we do not go into

further; however, it may cause a potentially large

number of ‘false’ local minima (e.g., N ¼
f29; 31; 34; 37; 40; 44; 48; . . .g in Fig. 4), requiring

care to avoid terminating the search prematurely.

To decide on an appropriate termination con-
dition, we tested the algorithm for all L between

0:001 and 0:999 in increments of 0:001, with b ¼ 1,

T ¼ 1, and a 2 f1; 2; . . . ; 10; 20; . . . ; 100; 200; . . . ;
1000g (recall that, for a given L, the optimal N �

depends only on aT=b). We point out that this
range covers all the practically interesting cases:

for aT =b < 1, the optimal window size rarely gets

above 1, while for aT=b ¼ 1000 the search already
reaches window sizes of many thousands of

packets. In all these runs, we found that, similarly

to Fig. 4, the local minima indexes formed nearly

arithmetic sequences with periods much smaller

than N � itself (in a few cases, there were two sep-

arate regions of local minima sequences with dif-

ferent periods, both much smaller than the

corresponding N �). A simple termination condi-
tion that is based on the above observation is

N ¼ 2N �, i.e., stop the search after completing

twice the iteration number in which the optimum

was found. Fig. 5 describes the algorithm with this

condition employed; this algorithm, termed DO

(for ‘‘Dynamic Outer’’), did not fail to find the

global minimum even in a single instance.

Admittedly, this condition is quite conservative;
however, considering that the best strategy found

so far can be employed even before the search is

completed, perfecting the termination condition to
reduce the computation by a constant factor at
most does not seem to be of major importance. 10

Finally, Fig. 6 plots the optimal cost/through-

put ratio as a function of a, for a few select values

of the loss rate; note that the horizontal axis is

logarithmic. These plots clearly demonstrate the

property predicted by Theorem 4, namely, that the

ratio increases logarithmically in a.
We close this section with a conclusive example

that demonstrates the performance of the DO

algorithm.

Example. For the parameter values depicted in

Fig. 4 (namely, L ¼ 0:3, T ¼ 1, b ¼ 1, a ¼ 10),

algorithm DO finds the strategy h3; 3; 3; 3; 3; 3;
3; 3; 2; 2; 2; 2; 1; 1; 0; 0; . . .i; at N � ¼ 34. It has a

score of 10.295, which leads to a cost/throughput
ratio (i.e., average cost per successfully communi-

cated packet) of 4.2739.

For comparison, the optimal window size with

‘classic’ sliding windows, found by formula (7), is

5 (i.e., the strategy is h1; 1; 1; 1; 1; 0; 0; . . .i in our
terms), with a corresponding cost/throughput

value of 7.7273. Thus, using a strategy with ad-

vance retransmissions nearly halves the average
cost per packet.

Let us now try a ¼ 100, with the other param-

eters as before. This time, DO finds N � ¼ 529, with

the strategy
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h6; . . . ;6|fflfflffl{zfflfflffl}
7

;5; . . . ;5|fflfflffl{zfflfflffl}
70

;4; . . . ;4|fflfflffl{zfflfflffl}
25

;3; . . . ;3|fflfflffl{zfflfflffl}
9

;2;2;2;2;1;1;0;0; . . .i:

Its score is 97.3684, and the corresponding cost/

throughput value is 6.46. The ‘classic’ optimal

window size here is 10, yielding a cost/throughput

value of 48.513; thus, in this case, the advantage of

using a strategy with retransmissions is much

greater. In fact, it can be seen that the cost/

throughput increased only mildly from the previ-
ous case, despite the tenfold raise of the time cost,

due to using a significantly larger window; this

resulted in a nearly-tenfold increase in the

throughput as well, which, therefore, nearly can-

celed the extra time cost.
6. Conclusion

We have investigated optimal sliding-window

strategies in network connections where the packet

transmission time is negligible compared to the
round-trip delay. We associated a cost per unit of

time and per packet transmission with the con-

nection, and defined the optimal strategy as one

that minimizes the expected cost/throughput ratio.
We derived several important bounds on the
optimal strategy performance; specifically, for a

window size of N , we showed the number of suc-
cessful in-order packets to be HðN= logNÞ, and
used this result to prove that the cost/throughput

ratio increases logarithmically in the time price.

We then proposed an exact solution algorithm

based on dynamic programming, as well as an

approximate solution based on a relaxation of the
problem to continuous variables, which was used

to demonstrate the dependence of the strategy on

the input parameters. Our approach was demon-

strated to attain a significantly lower cost/

throughput ratio than ‘classic’ sliding windows,

where a packet is retransmitted only after a time-

out or negative acknowledgment.

The prime importance of this paper is in estab-
lishing a theoretical foundation for the study of

optimal error-control strategies. However, the anal-

ysis was based on some simplifying model assump-

tions, and further work is therefore called for in

order to extend the applicability of our results.

Several possible directions are outlined below.

One direction is to consider the case that the

receiver has a buffer capable of accepting packets
out-of-order, and reports its state in the
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acknowledgments (i.e., the protocol is capable of

selective repeat). Instead of a single vector speci-

fying the number of retransmissions for each

packet, the optimal strategy in this case is de-

scribed by a set of such vectors, corresponding to

the possible buffer states and specifying the opti-
mal sequence of tranmissions for each state (ap-

plied from the next-expected packet index). In

principle, the computation of these vectors in-

volves the optimization of an essentially similar

score expression. However, due to the exponential

number of possible buffer states, an advance

computation of the strategy may be unfeasible,

whereas in-time computation of the optimal re-
transmission vector after every acknowldgement is

unlikely to be practical. Consequently, there is a

need to explore suboptimal strategies, in which

only a small number of retransmission vectors is

precomputed, and one of them is selected after

every round-trip time, according to a certain rule

that depends on the buffer state. Studying the

performance of such strategies, and proposing a
proper rule for selecting the retransmission vector,

is left as a subject for further research.

Another simplifying assumption made in the

paper is the independence among packet losses.

This immediately led to the conclusion that packet

repetitions should immediately follow the original

packet (see footnote 2). However, if errors are

bursty, this may no longer be true: a single error
burst can destroy several adjacent copies of the

packet, whereas by spacing the copies apart, a

higher resilience may be gained. Finding the vector

that maximizes the score of expected in-order

arrivals under bursty errors, or, in other words,

extending the analysis of the ‘‘inner problem’’ to

account for the distribution of the error burst

length, remains for further investigation.
The strategies discussed in this paper were as-

sumed to wait for all the acknowledgments from a

window before setting out to transmit the next

one. We explained, while presenting the general

model, why such behavior is optimal if the packet

transmission time is neglected. In reality, of

course, a packet transmission takes a certain time

tx > 0. This can be simply catered to by replacing
the packet transmission price b with bþ a � tx, i.e.,
including the extra per-packet cost due to the time
it takes to transmit it, with no further changes in

the solution algorithm. Strategies thus computed

are adequate when the connection’s delay-band-

width product is large (and, hence, tx � T ), such
as, e.g., over satellite or very high-bandwidth

terrestrial links. Otherwise, i.e., if a packet trans-
mission takes a significant fraction of the round-

trip time, it may be better not to wait for all

acknowledgments from the previous window, and

proceed with transmission with only a partial

information on previous successes and losses.

Then, a strategy is no longer described by a vector

applied at every multiple of the round-trip time,

but, rather, by a rule applied after every packet
transmission and specifies the packet most

worthwhile to transmit next (if at all), according to

the information available up to that moment. The

investigation of optimal strategies and their

properties in this framework is the subject of

ongoing work.

Finally, our attention in this paper was limited

to strategies that use simple retransmissions only;
however, as explained in the Introduction, the

methodology can be extended for general FEC

coding as well. The optimization problem in that

case is more complex (it involves an extra param-

eter, namely the size of the coding block), yet its

solution follows essentially the same approach.

This extension is studied in detail in [15].
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