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Abstract

Refinement Types are a promising approach for checking behav
ioral properties of programs written using advanced lagguaa-
tures like higher-order functions, parametric polymosphiand re-
cursive datatypes. The main limitation of refinement typsteayns

to date is the requirement that the programmer providesyjhest

of all functions, after which the type system calmeckthe types
and hence, verify the program.

In this paper, we show how to automaticaltyfer refinement
types, using existing abstract interpretation tools fopénative
programs. In particular, we demonstrate that the problerefofe-
ment type inference can be reduced to that of computing iinvar
ants of simple, first-order imperative programs withoutursive
datatypes. As a result, our reduction shows that any of the wi
variety of abstract interpretation techniques developednfiipera-
tive programs, such as polyhedra, counterexample guidstiqate
abstraction and refinement, or Craig interpolation, canitectly
applied to verify behavioral properties of modern softwarafully
automatic manner.

1. Introduction

Automatic verification of semantic properties of moderngoemn-
ming languages is an important step toward reliable soéwar
systems. For higher-order programming languages withciiggi
datatypes or polymorphic instantiation, the main verifaatool
has been type systems, which traditionally capture onlysena
data-type properties (such asts are only added tants), and
require the programmer to explicitly annotate programriiawvds if
more precise invariants about program computations arerest]

For examplerefinementype systemg [33] associate data types
with refinement predicates that capture richer properfipsogram
computation. Using refinement types, one can state, foanas,
that a program variables has the refinement type “non-zero inte-
ger,” or that the integer division function has the refinetrtgpe
int — {v:int | v # 0} — int which states that the second ar-
gument must be non-zero. Then if a program with refinemerg typ
type-checks, one can assert that there is no division-hy-eeor in
the program. The idea of refinement types to express preoise p
gram invariants is well-knowri_[3, 10, 12,113,27] 33]. Howe\ve
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Figure 1. RTI algorithm.

In this paper, we present an algorithmaotomaticallyverify
properties of higher-order programs through refinemeng typ
ference (RTI) by combining refinement type systems for highe
order programs with invariant synthesis techniques fot-&irder
programs. Our main technical contribution is a translafiamm
type constraints derived from a refinement type system fyindr
order programs to a first-order imperative program with rdisses,
such that the assertions hold in the first-order progranhéfe is
a refinement type that makes the higher-order program thipekc
Moreover, a suitable type refinement for the higher-ordegam
can be constructed from the invariants of the first-ordeggam.
Thus, our algorithm replaces the manual annotation burderef
finement types with automatically constructed program riaves
on the translated program, thus enabling fully automatiifiea-
tion of programs written in modern languages.

The RTI algorithm (Figurg]1) proceeds in three steps.

Step 1: Type-Constraint Generation.First, it performs Hindley-
Milner type inferencel[11] to construct ML types for the praq,
and uses these types to generafsmement templatese., types in
which refinement variables are used to represent the unknown
refinement predicates. Then, the algorithm uses a stangataixs

each of the above systems, the programmer must provide tefine girected procedure to generate subtyping constraintstbeeem-

ments for each program type, and the type systeatksthe pro-
vided type refinements for consistency. We believe thatithiden
of annotations has limited the widespread adoption of referd
type systems.

For imperativeprogramming languages, algorithms based on
abstract interpretation can be usedtwomatically infermany pro-
gram invariants [26,16], thereby proving many semantpprties
of practical interest. However, these tools do not pregisebdel
modern programming features such as closures and higter-or
functions or inductive datatypes, and so in practice, theytao
imprecise when applied to higher-order programs.

plates such that the program type chedles (s safe) if the subtyp-
ing constraints are satisfiabl€ [3119}/29, 33].

Step 2: Translation.Second, it translates the set of type constraints
to afirst-order, imperative program over base valumgh that the
type constraints are satisfiable if and only if the imperafivtogram
does not violate any assertions.

Step 3: Abstract Interpretation. Finally, an abstract interpretation
technique for first order imperative programs is used to @tbat
the first order program is safe. The proof of safety producged b
this analysis automatically translates to solutions torétfimement
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type variables, thus generating refinement types for thgrai ML
program.

The main contribution of this paper is the RTI translation al
gorithm. The advantage of the translation is that it allowe o
to apply any of the well-developed semantic imperative oy
analyses based on abstract interpretatimg.(polyhedra[[9] and
octagons([5], counterexample-guided predicate absbracéfine-
ment (CEGAR) [[2|.16], Craig interpolation_[1l6.]22], congtita
based invariant generatidnl [4./30] random interpretatidij, [etc)
to the verification of modern software with polymorphismdue-
tive datatypes, and higher-order functions. Instead afgiakingly
reworking each semantic analysis for imperative prograonhé
higher order setting, possibly re-implementing them inghazess,
one can use our translation, and apply any existing anadgsis.
In fact, using the translation, our implementatidimectly uses a
CEGAR and interpolation based safety verification tool tdfye
properties of @AML programs.

In essence, our algorithm separates syntactic reasonimgt ab
function calls and inductive data types (handled well byirtgp
constraints) from semantic reasoning about data invari@atndled
well by abstract domains). The translation from refinemgpet
constraints to imperative programs in Step 2 is the key enabhe
translation, and the proof that the satisfiability of typ@stoaints
and safety of the translated program are equivalent, aredbais
the following observations.

The first observation is that refinement type variablegefine
relationsover the value being defined by the refinement type and
the finitely many variables that are in-scope at the pointrehe
the type is defined. In the imperative program, each finiig-ar
relation can be encoded with a variable that encodes aaelati
Each refinement type constraint can be encoded as a stlimight-
sequence that reads tuples from and writes tuples to theorela

let rec iteri i xs £
match xs with
I 0 -> 0
| x::xs” > f i x;
iteri (i+1) xs’ f

let mask a xs
let g jy=a(j) <~y & a.(j) in
if Array.length a = List.length xs then
iteri 0 xs g

Figure 2. ML Example

2. Overview

We begin with an example that illustrates how our refinemgoe t
inference (RTI) algorithm combines type constraints anstralt
interpretation to automatically verify safety propertid$unctional
ML programs with higher-order functions and recursive gites.
We show that the combination of syntactic type constraimid a
semantic abstract interpretation enables the automatificagion
of properties that are currently beyond the scope of eit@mtique
in isolation.

An ML Example. Figure[2(a) shows a simple ML program that
updates an array using the elements of the ligk. The program
comprises two functions. The first is a higher-order ilistexed-
iterator, iteri, that takes as arguments a starting indea (poly-
morphic) listxs, and an iteration function. The iterator goes over
the elements of the list and invokéson each element and the in-
dex corresponding to the element’s position in the list. $&eond

is a clientmask, of the iteratoriteri that takes as input a boolean
arraya and a list of boolean valuess, and if the lengths match,
calls the indexed iterator with an iteration functigthat masks the

variables, and the set of constraints can be encoded as a non-th

terminating while-loop that in each iteration, non-detigistically
executes one of the blocks. Thus, the problem of determitiiag
existence of appropriate relations reduces to that of caéimgpu
(overapproximations) of the set of tuples in each relatianable
in the translated program (Theoréin 1).

Our second observation is that if the translated program & i
speciakead-write-oncdorm, where within each straight-line block
a relation variable is read and writte most oncethen one can
replace all relation-valued variables with variables vehwalues
range over tuples (Theorelh 2). Moreover, we prove that we can
without affecting satisfiability, preprocess the refinemgmping
constraints so that the translated program is a read-wrnite-pro-
gram (Theorenl]3). Together, the observations yield a sirapte
direct translation from refinement type inference to siniplpera-
tive programs.

We have instantiated our algorithm in a verification tool for
OcaML programs. Our implementation generates refinement type
constraints using the algorithm of [29], and uses the ARME] [2
software model checker to verify the translated prograntds T
allows fully automatic verification of a set of €@mL bench-
marks for which previous approaches either required maansal
notations (either the refinement types|[33] or their constit
predicates[[29]), or an elaborate customization and atiaptaf
the counterexample-guided abstraction refinement para{Bd].
Thus, we show, for the first time, how abstract interpretatian be
lifted “as-is” to the practical refinement type inference fiaodern,
higher-order languages.

While we have focused on the verification of functional pro-
grams, our approach is language independent, and requirearo
appropriate refinement type system for the source language.

3" element of the array.

Suppose that we wish to statically verify the safety of thayr
reads and writes in functiog; that is to prove that wheneveris
invoked,0 < j < len(a). As this example combines higher-order
functions, recursion, data-structures, and arithmetisstraints on
array indices, it is difficult to analyze automatically ugigither
existing type systems or abstract interpretation impleatems in
isolation. The former do not precisely handle arithmetidratices,
and the latter do not precisely handle higher-order funstand are
often imprecise on data structures. We show how our RT1 igcien
can automatically prove the correctness of this program.

Refinement Types.To verify the program, we compute program
invariants that are expressedranement®f ML types with pred-
icates over program values|[3)19] 29]. The predicates atidi@atl
constraints that must be satisfied by every value of the thpe.
base value, say of typent, can be described by the refinement
type {v:int | p} wherev is a specialalue variablerepresenting
the type being defined, andis arefinement predicateshich con-
strains the range of to a subset of integers. For example, the type
{v:int | 0 < v < len(a)} denotes the set of integetsthat are
between0 and the value of the expressiaen(a). Thus, the un-
refined typeint abbreviate{v: int | true}, which does not con-
strain the set of integers. Base types can be combined toraons
dependent function typesrittenx: 71 — 1%, whereT is the type

of the domainI% the type of the range, and where the nanfer
the formal parameter can appear in the refinement prediteies
For example, the type

x:{v:int |v >0} = {v:int |v =x + 1}

is the type of a function which takes a non-negative integeam-
eter and returns an output which is one more than the inptlhen
following, we writer for the type{v: 7 | true}. Whenv andr are
clear from the context, we writgp} for {v:7 | p}.



Safety Specification.Refinement types can be used gpecify
safety properties by encoding pre-conditions into priveitoper-
ations of the language. For example, consider the arraya€gg
(resp. writea.(j) < e) in g which is an abbreviation foget a j

(resp.set a j e). By giving get andset the refinement types

a:aarray — {v:int |0 <v < len(a)} — «,
a:carray — {v:int | 0 <v < len(a)} - o — unit,

we can specify that in any program the array accesses must be

within bounds. More generally, arbitrary safety propertian be
specified by givinassert the appropriate refinement type [29].

Safety Verification. The ML type system is too imprecise to prove
the safety of the array accesses in our example as it infatgth
has typej : int — y:bool — unit, i.e.,thatg can be called with
any integer j. If the programmer manually provides the refine-
ment types for all functions and polymorphic type instaiias,
refinement-type checkin@[3,12.133] can be used to verify ttha
provided types were consistent and strong enough to prdeg/sa
This is analogous to providing pre- and post-conditions laog-
invariants for verifying imperative programs. For our exde) the
refinement type system could check the program if the program
provided the types:

iteri:: 1i:int — xs:{v:a list |0 < len(v)} —
(j:{i €v<1len(xs)} - a — unit) — unit
g j:{0<v<1len(a)} — bool — unit

Here, we omitted refinement predicates that are equal tpdrge
for i in the type ofiteri.

Automatic Verification via RTI. As even this simple example il-
lustrates, the type annotation burden for verification isesxely
high. Instead, we would like to verify the program withougue-
ing the programmer to provide every refinement type. The RTI a
gorithm proceeds in three steps. First, we syntacticalilyae the

sourceprogram to generate subtyping constraints over refinement

templates. Second, we translate the constraints into amadbeyt
simple imperativearget program. Third, we semantically analyze
the target program to determine whether it is safe, from whie
conclude that the constraints are satisfiable and hencsotiree
program is safe. Next, we illustrate these steps using E[@uas
the source program.

2.1 Step 1: Constraint Generation

In the first step, we generate a system of refinement typereamst
for the source program [19, P9]. To do so, we (a) build tengslat
that refine the ML types with refinement variables that stad f
the unknown refinements, and (b) make a syntax-directedopass
the program to generate subtyping constraints that catitarow
of values. For the functionsteri andg from Figurel2, with the
respective ML types

irint — xs:a list — (j:int — o — unit) — unit
j:int — bool — unit

we would generate the respective templates

irint - xs:{0 <len(v)} — (j:{k1} — @ — unit) — unit
j:{rk2} — bool — unit

Notice that these templates simply refine the ML types wifinee
ment variables:+, k2 that stand for the unknown refinements. For
clarity of exposition, we have added the refinemant for some
variables €.g.,for the typea andbool); our system would auto-
matically infer the unknown refinements. We model the lerajth
lists (resp. arrays) with an uninterpreted functiem from the lists
(resp. arrays) to integers, and (again, for brevity) addefirement
statingxs has a non-negative length in the typeiekri.

After creating the templates, we make a syntax-directed pas
over the program to generate constraints that captureaeditips
between refinement variables. There are two kinds of type con
straints -well-formednesandsubtyping

Well-formedness Constraints capture scoping rules, and ensure
that the refinement predicate for a type can only refer tcatdes
that are in scope. Our example has two constraints:

(wi)
(w2)

The first constraint states thai, which represents the unknown
refinement for the first parameter passsed to the higher-aste
ator iteri, can only refer to the two program variables that are
in-scope at that point, nameiyandxs. Similarly, the second con-
straint states that., which refines the first argument gf can only
refer toa andxs, which are in scope whegeis defined.

irint;xs:a list - {v:int | K1}

a:bool array;xs:« list F{v:int | Ko}

Subtyping Constraints reduce the flow of values within the
program into subtyping relationships that must hold betwie
source and target of the flow. Each constraint is of the form

GFTy <: Ty

whereG is anenvironmentomprising a sequence of type bindings,
andT; andT; are refinement templates. The constraint intuitively
states that under the environméhntthe typeT: must be a subtype
of T>. The subtyping constraints are generated syntacticaiy fr
the code. First consider the functiameri. The call tof generates

GH{v=1i} <: {r1} (c1)

where the environmer¥ comprises the bindings

G =1i:{true}; xs:{0 < len(v)};
x:{true}; xs":{0 < len(v) = len(xs) — 1}

the constraint ensures that at the callsite, the type of¢heabis a
subtype of the formal. The bindings in the environment amgosy
the refinement templates for the variables in scope at the foe
value flow occurs. The type system yields the information the
length ofxs’ is one less thams as the former is the tail of the
latter [18( 33]. Similarly, the recursive call taeri generates

GHF{j:k1:—a— uit} <:
{(j:k1 = a — unit)[i + 1/i][xs’/xs]}

which states that type of the actuilis a subtype of the third
formal parameter oiteri after applying substitutions + 1/1]

and [xs’/xs] that capture the passing in of the actualst 1
andxs’ for the first two parameters respectively. By pushing the
substitutions inside and applying the standard rules faction
subtyping, this constraint simplifies to

G {k[i/i+ 1]xs/xs"]} <: {x1} (c2)

Next, consider the functiomask. The array accesses insige
generate the “bounds-check” constraint

G5 {re};y:{true} - {v = j} <: {0 <v < len(a)} (c3)
whereG’ = a:bool array;xs:{0 < len(v)} has bindings for
the other variables in scope. Finally, the flow due to thedthir
parameter for the call tbteri yields

G';len(a) = len(xs) F {j:n2 — 7} <: {(j:x1 — 7)[0/i]}



where for brevity we write- for bool — unit, and omit the trivial
substitutionxs /xs] due to the second parameter. The last conjunct
in the environment captures the guard from thfeunder whose
auspices the call occurs. By pushing the substitutionglénaind
applying standard function subtyping, the above reduces to

G';1en(a) = len(xs) F {k1[0/i]} <: {K2} (c4)

For brevity we omit trivial constraints like- int <: int. If the
set of constraints constructed above is satisfiable, theretis a
valid refinement typing of the prograin [29], and hence thg@am
is safe.

2.2 Step 2: Translation to Imperative Program

Determining the satisfiability of the constraints requisesnantic
analysis about program computations. In the second stegkeyu
technical contribution, we show a translation that redubescon-
straint satisfiability problem to checking the safety ofraglie, im-
perative program. Our translation is based on two obsemnsti

Refinements are RelationsThe first observation is that type re-
finements are defined througblations the set of values denoted
by a refinement typév : 7 | p} wherep refers to the program vari-

ablesx, ..., x, of the respective base types, . .., 7. is equiva-
lent to the set
{to | E(tl, - ,tn) S.t.(to7t1, - ,tn) € Rp A\ }
t1=x1N...th =Xp,

whereR,, is an(n + 1)-ary relation inT x 71 X ... x 7, defined
by p. For example, the set of values denoted{byint | v < i}
is equivalent to the set:

{to | Jt; s.t. (t07t1) S RS Nt = i} s

whereR< is the standard-ordering relation over the integers. In
other words, each refinement variaklean be seen as the projec-
tion on the first co-ordinate of @ + 1)-relation over the variables
(v,x1,...,2n), Wherez,,...,z, are the variables in the well-
formedness constraint far(i.e.,the variables in scope af). Thus,
the problem of determining the satisfiability of the conistis is
analogous to the problem of determining the existence afoggup
ate relations.

Relations are RecordsThe second observation is that the problem
of finding appropriate relations can be reduced to the proble
of analyzing a simple imperative program with variablesgiag
over relations. In the imperative program, each refinemariable,
standing for am-ary relation, is translated into a record variable
with n-fields. Each subtyping constraint can be translated into a
block of reads-from and writes-to the corresponding resofdhe
set of all tuples that can be written into a given record oneom
execution of the program defines the corresponding relafibe
entire program is an infinite loop, which in each iteratiomno
deterministically chooses a block of reads and writes defime

a constraint.

The arity of a relation, and hence the number of fields of the
corresponding record, is determined by the well-formeslreem-
straints. For example, the constraint{w1) specifies thatorre-
sponds to a ternary relation, that is, a set of triples whiee®)t”
element (corresponding tg) is an integer, tha** element (corre-
sponding tai) is an integer, and th&"? element (corresponding to
xs) is a list. We encode this in the imperative program via amco
variablex; with three fields<;.0, k1.1 andk1.2.

Figure 3 shows the imperative program translated from tie co
straints for our running example. We use the subtyping caimés
to define the flow of tuples into records. For example, comdiue
constraint [[cR) which is translated to the block marked2x*/.
Each variable in the type environment is translated to aespond-

ing variable in the program. The block has a sequence of assig
ments that define the environment variables. For exampl&now
i has typeint, so there is an assignment of an arbitrary integer
to i. When there is a known refinement in the binding, the non-
deterministic assignment is followed by an assume operdto
conditional) that establishes that the value assignedfiatithe
given refinement. For examples gets assigned an arbitrary value,
but then the assume establishes the fact that the lengthisfnon-
negative. Similarlyxs’ gets assigned an arbitrary value, that has
non-negative length and whose length is 1 less than that.cfhe
LHS of (c2) reads a tuple from; whose first and second fields are
assumed to equal the+ 1 andxs’ respectively. Finally, the triple
(v,1,xs) is written into the record:; which is the RHS of{{c?).
Next, consider the translated block for the bounds-check co
straint [c3). Here, the translation is as before but the R$1§ i
known refinement predicate (that stipulates the integer itieirw
bounds). In this case, instead of writing into the record tiedines
the RHS, the translation contains an assertion over thegoond-
ing variables that ensures that the refinement predicatishol

Relational vs. Imperative SemanticsThere is a direct correspon-
dence between the refinement-relations and the recordblesia
when the translated program is interpreted under a Rekdtie:
mantics, where (1) the records range over (initially empgsis of
tuples (2) each write adds a new tuple to the record’s set, and,
(3) each read non-deterministically selects some tuplm ftioe
record’s set. Under these semantics, we can show that the con
straints are satisfiable iff the imperative program is safe, o
assert fails on any execution) (Theorgn 1).

Unfortunately, these semantics preclude the direct agipbic
of mature invariant generation and safety verification mémpes
e.g.,those based on abstract interpretation or CEGAR-based soft
ware model checking, as those techniques do not deal weil wit
set-valued variables. We would like to have an imperativazse
tics where each record contains a single value, the last tugitten
to it. We show that there is a syntactic subclass of programs f
which the two semantics coincide. That is, a program in the su
class is safe under the imperative semantics if and onlyisfsafe
under the set-based semantics (Thedrkm 2). Furthermorshave
a technique that ensures that the translated program lsetorige
subclass (Theoref 3).

The attractiveness of the translation is that the resultirg
grams fall in a particularly pleasant subclass of programisfvdo
not have any advanced language features like higher-otnher f
tions, polymorphism, and recursive data structures, oiabbes
over complex types such as sets, that are the bane of seranatic
yses. Thus, the translation yields simple imperative @ogy to
which a wide variety of semantic analyses directly apply.

2.3 Step 3: Invariant Generation.

Together these results imply that we can run off-the-shadtract
interpretation and invariant generation tools on the tedad pro-
gram, and use the result of the analysis to determine whétker
original ML program is typable.

For the translated program shown in Figlie 3, the CEGAR-
based software model checker ARMC [28] finds that the asserti
is never violated, and computes the invariants:

k1.1 < k1.0 A k1.0 < len(k1.2)
0 < k2.0 < len(k2.1)

which, when plugging in, i andxs for the 0*", 1%, 2" fields
of k1 andv, a for the 0", 1% fields of k> respectively, yields the
refinements

k1= i<v<len(xs) k2 = 0<v <len(a)



[*clx/

i + nondet();

xs < nondet(); assume(0 < len(xs))
xs’ < nondet(); assume(0 < len(xs’
v < nondet(); assume(v = i);

K1 ¢+ (v, i,xs)

[ /xc2x/
i + nondet();
xs < nondet(); assume(0 < len(xs))
xs’ + nondet(); assume(0 < len(xs’
(to,t1,t2) + K13
assume(t; = i+ 1);
assume(ty = xs’);
v < to;
K1 ¢ (v, i,xs)

[ /xc3%/
a < nondet();
xs < nondet(); assume(0 < len(xs));
(to,t1,t2) + k2;
J « to;
assert(0 < j < len(a))

[ /xcax/
a < nondet();
xs < nondet(); assume(0 < len(xs));
assume(len(a) = len(xs));
(to, t1,t2) ¢ K1;
assume(t; = 0);
assume(t2 = xs);
v < to;
K2 « (v, a,xs)

loop{

) — len(xs) — 1);

) — len(xs) — 1);

Figure 3. Translated Program

which suffice to typecheck the original ML. Indeed, thesedpre
cates forx1 andx. are easily shown to satisfy the constraints (c1),
(c2), (c3), and (c4).

3. Constraints

We start by formalizing constraints over types refined withdp
cates. To this end, we make precise the notions of refinemedi-p
cates (Section_31), refinement types (Sedfioh 3.2), aintsrover
refinement types and the notion of satisfaction (Seéfioh 3.3

A discussion of how such constraints can be generated in a

syntax-guided manner from program source is outside thpesco
of this paper; we refer the reader to the large body of priseaech
that addresses this issue[[3/19/29, 33].

Notation. We use uppercaseZ} to denote sets, lowercaseto
denote elements, afd) for a sequence of elementsih

3.1 Refinement Logic

Figure[4 shows the syntax of refinement predicates. In ogusdis
sion, we restrict the predicate language to the typed diemtiee

logic of linear integer arithmetic and uninterpreted fumes. How-

ever, it is straightforward to extend the logic to includaestdo-

mains equipped with effective decision procedures andatish-

terpreters.

Types and Environments.Our logic is equipped with a fixed set of

typesdenotedr, comprising the basic typesit for integervalues,
bool for booleanvalues, andii, a family of uninterpreted types

Expressions and Predicatesn our logic,expressiong comprise
variables, linear arithmetic.€.,addition and multiplication by con-
stants), and applications of uninterpreted functibrisote that as is
standard in semantic program analyses, complex operdifierci-
vision or non-linear multiplication be modelled using ueimpreted
functions. Finallypredicatescomprise atomic comparisons of ex-
pressions, or boolean combinations of sub-predicates. Vife w
true (resp.false) as abbreviations fay = 0 (resp.0 = 1).

Well-formedness.We say that a predicageis well-formedin an
environmenft” if every variable appearing inis bound inl* andp
is “type correct” in the environment.

Validity. For each typer, we write {(7) to denote the set of
concrete values af. An interpretationo is a map from variables
to concrete values, and functiofiso maps fronif((¢)) told (7).
We say thato is valid underT if for eachz:7 € T, we have
o(x) € U(T). We say that a predicageis valid in an environment
T, if o(p) evaluates tdrue for everyo valid underT.

3.2 Refinement Types

Figure[4 shows the syntax of refinement types and envirorsnent

Refinements.A refinementr is either a predicate drawn from
our logic, or arefinement variable with pending substitutions
Klyi/z1] ... [yn/zx]. Intuitively, the former represerknownre-
finements (or invariants), while the latter representuthienownin-
variants that hold of different program values. The notibpend-
ing substitutions[ [, 19] offers a flexible way of capturimg tvalue
flow that arises in the context of function parameter pasgmthe
functional setting), or assignment (in the imperativeisgjt even
when the underlying invariants are unknown.

Refinement Types and Environments. A refinement type
{v:7 | r} is atriple consisting of @alue variablev denoting the
value being described by the refinement type, a typlescribing
the underlying type of the value, and a refinemen refinement
environmen( is a sequence of refinement type bindings.

The value variables are special variables distinct from the
program variables, and can occur inside the refinement pred-
icates. Thus, intuitively, the refinement type describes ¢let
of concrete values of the underlying type which addition-
ally satisfy the refinement predicate. For example, the eefint
type: {v:int | v # 0} describes the set of non-zero integers and,
{v:int | v = x + y} describes the set of integers whose value
equals the sum of the values of the (program) variablasdy.

Note that path-sensitive branch information can be cagture
by adding suitable bindings to the refinement environment. F
example, the fact that some expression is only evaluatedrithd
if-condition thatx > 100 can be captured in the environment via a
refinement type binding, : {v:bool | x > 100}.

3.3 Refinement Constraints and Solutions

Figurd4 shows the syntax of refinement constraints. Ourenefamt
type system has two kinds of constraints.

Subtyping Constraints are of the form

GE {vit|rm} < A{v:7T|r}

Intuitively, a subtyping constraint states that when thegpam
variables satisfy the invariants describeddh the set of values
described by the refinement must besubsumed byhe set of
values described by the refinement type

Well-formedness Constraintsare of the formrT" + {v:7 | r}. In-

that are used to encode complex source language types such agJitiVely, a well-formedness constraints states that diimement-

products, sums, polymorphic type variables, recursivesytc.

must be a well-typed predicate in the environm@&rextended with

We assume there is a fixed set of uninterpreted functionsh Eac the bindingv: 7 for the value variable.

uninterpreted functiort has a fixed type: = () — 72. An
environments a sequence of variable-type bindings.

Embedding.To formalize the notions of constraint validity and sat-
isfaction, we embed subtyping constraints into our logie.d&fine



the functionEmb(-) that maps refinement types, environments and

. d . . : T = Types:
subtyping constraints to predicates in our logic. | int base type of integers
Emb({v:7 | p}) =p | bool base type of booleans
Emb(z:T;G) = Emb(T)[v/z] AEmb(G) | wui complex uninterpreted type
Emb() = true r = Environments:
Emb(G T <: Tz) = Emb(G) = Emb(Tl) = Emb(Tz) | l‘:T;F blndlng
Similarly, we define the functioShape(-) that maps refinement | 0 empty
types and environments to types and environments in out.logi e = Expressions:
Shape({v:7|p}) = 7 x variable
Shape(z:T;G) = x:Shape(T);Shape(G) n integer
Shape(#) = e1 + ez a#_dltlon —
nxe affine multiplication
Validity. A subtyping constraintG + T <: T> that does | £((e)) function application
not contain refinement variables isalid if the predicate p n= Predicates:
Emb(G F Ti <:T») is valid under environmen$hape(G). A | e1bdes comparison
well-formedness constraift - {v:7 | p} that does not contain —p negation
refir_lement variables igalid if the predicatep is well-formed in the p1A P2 conjunction
environment. | p1=p2 implication
Relational Interpretations. We assume, without loss of generality, o . .
) : : . ; ; roon= Refinements:
;hat egﬁgsr;flcrgenrgﬁgltn:t/anabjels assouatfd \f”th aluniqté:"\évgll- | p predicate
orme Nty :715...;Tn T ViTo | K . -
the well-formedness constraint far. In this case, we sax has | mlyi/za].[yn/za] - ref. var. with substitutions
arity n + 1. Furthermore, we assume that wherevet af arity T u= {vit|r} Refinement Types
n + 1 appears in a subtyping constraint, it appears with a sequenc ¢ ..— Refinement Environments:
of n pending substitutiongy, /1] . .. [yn/zx]. This assumption | 2:T:G binding
is without loss of generality, as we can enforce it with alvi | 0 empty
substitutions of the fornfi; /z;]. A relational interpretationfor « .
of arityn+ 1, is an(n + 1)-ary relation ind (o) x ... x U(7,). A c uw= GFTi<T Subtype Constraints
relational models a map from refinement variablego relational w = I'kT WF Constraints

interpretations.

Constraint Satisfaction. A set of constraintg' is satisfiableif

for all interpretations for uninterpreted functiofsthere exists a
relational models' such that, when each occurrence of a refinement )
type{v:7 | k[y1/z1] ... [yn/za]} in C is substituted with I u= Instructions:

Figure 4. Predicates, Refinements and Constraints.

| T4 e assign expr

{vit | 3t1,...,ta. S(K) (W t1, .. ytn) At =y1 Aty = Yn)} | x < nondet() havoc
. . Lo L 0,y ..yt t tupl

every subtyping constraint after the substitution is valid this i ,(13_ (zo, L)::) ggt tﬂSI:
case, we say théf is asolutionfor C. | assume(p) assume

| assert(p) assert
4. Imperative Programs | Il sequence

P == 1loop{Ii]...[|In} Program

RTI translates the satisfiability problem for refinementetyqon-
straints to the question of checking the safety of an impergtro-
gram in a simple imperative languageH. In this section, we for-
malize the syntax ofMiP programs and define the Relational se-
mantics and the Imperative semantics.

Figure 5. Imperative Programs: Syntax

(2) an arbitrary value of the appropriate base type is assign
4.1 Syntax to the base variabld,e., the variable is “havoc-ed” with a non-
' deterministically chosen value.

Tuple Assignments.The operationget tupleandset tuplerespec-
tively read a tuple from and write a tuple to a relation valgab

Figure[® shows the syntax ofab programs. Aninstruction (I)

is a sequence of assignments, assumptions and assertigng: A
gram (P) is an infinite loop over a block, whose body is a
non-deterministic choice between a finite number of instons Assumes and AssertsIMP programs have the standard assume
I1,...,I,. Next, we describe the different kinds of instructions. and assert instructions using predicates over the basablesi(cf.
For ease of notation, we assume that there is only one base typ  Figure[4). We writeskip as an abbreviation farssume (0 = 0).

and letl” denote the set of values of type

Variables. IMpP programs have two kinds of variables. (iBsevari-

ables, denoted by, z, y andt (and subscripted versions thereof), We define the Relational semantics as a state transitioarays$h
which range over values of type (2) relation variables, denoted  this semanticsy variables range ovesets oftuples overV.

by r, each of which have a fixed arity and range over tuples of  Relational States.A states* in the Relational semantics is either
values or sets ab-tuples of values depending on the semantics.  the speciagrror state€ or a map from program variables to values
Base Assignmentsimp programs have two kinds of assignments such that every base variable is mapped to a valdé,iand every
to base variables. Either (1) an expression over base \@siab relation variable of arity: is mapped to a (possibly empty) set of
(cf. Figure[3) is evaluated and assigned to the base variahle  tuplesinV™. Let 3 be the set of all Relational-program states.

4.2 Relational Semantics



For a states’ which is not&, variablez and valuev we write
s*[x +— v] for the map which maps to v and every other key’ to
s*(z). We lift mapss* from base variables to values to maps from
expressions (and predicates) to values in in the natural way

Initial State. The initial statesg of an IMP program in the Rela-
tional semantics is a map in which every base variable is etpp
to a fixed value fron¥/, and every relation variable is mapped to
the empty set.

Transition Relation. The transition relation is defined through a
Post? operator, shown in Figufd 6, which maps a stédtand an
instructionI to the setof states that the program can beatfter
executing the instruction from the state We lift Post” to a set of
statesst C 3* in the natural way:

| {Post®(s*, 1) | s* € 5}

Notice that the program halts if a get instruction is exedwtéth
an empty relation variable, or assume(p) is executed in a state
that does not satisfy.

Safety. Let P be the programloop{Ii]...[I»}. The set of
Relational-reachable statesf P, denotedReach? (P) is defined by
induction as:

Reach® (P, 0) =
Reach(P,m +1) =
Reach?(P) =

Post? (3¢, T) =

{s6}
U {Post (Reachi(p,m), 1,) | 1 < j < n}
U {Reach*(P,m) | 0 < m}

A programP is Relational-saféf £ ¢ Reach? (P).

4.3

Next, we define the Imperative semantics, as a state tramsiti
system. In this semantics,variabless range over tuples ovér.

Imperative States. In the Imperative semantics, each statés
either the specia¢rror state€ or a map from program variables
to values such that every base variable is mapped to a valie in
and every relation variable of arityis mapped either to a tuple in
V™ or to the specialindefinedvalue L. Let X denote the set of all
a Imperative-program states.

Initial State. The initial statesp of an IMpP program in the Impera-
tive semantics is a map in which every base variable is mafiped
a fixed value from/, and every relation variable is mapped.to

Transition Relation. The transition relation is defined usingast
operator, which is identical t®ost! in the Relational semantics
except for the tuple-get and tuple-set instructions. Fglishows
the operatoiPost for get and set operations. AgaiPost is lifted
to a set of states in the natural way. Notice that the progralts H

a get instruction is executed with andefinedrelation variable, or
anassume(p) is executed in a state that does not satjsfy

Safety. Let P be the programloop{Ii]...[I.}. The set of
Imperative-reachable stated P, denotedReach(P) is defined by
induction as:

Imperative Semantics

Reach(P,0) = {so0}
Reach(P,m +1) = |J{Post(Reach(P,m),I;)|1<j<n}
Reach(P) = U{Reach(P,m) | 0 < m}

A programp is Imperative-saféf & ¢ Reach(P).

5. From Type Constraints to IMP Programs
In this section we formalize the translation from type coaists

into IMP programs and prove that the constraints are satisfiable if

and only if the translated program is safe.

Refinement Type Translation

{v:r [pHgee =

v < nondet();

assume(p)
{v:7[pHsee = assert(p)
Kv:7 | klyr- - yn/x1 . zn]Hget = (to,...,tn) < K;

assume(y1 = t1);

assume(yn = tn);
v <+ to

H<—(V7y17"'7yn)

v:m | 6lyr. . yn/z1. . zn] see =

Binding Translation

[2:T5G] = [r]get; z < v; [G]
[1 = skip
Constraint Translation
IIG F T < T2]] = IIG]], IITl]]get; [[T2]]set

Constraint Set Translation
[{c1,...sen}] = Toop{[ai]]...[[en]}

Figure 7. Translating Constraints to IMP Programs

5.1 Translation

Figure[ 7T formalizes the translation from (a set of) refinentgpe
constraints”' to an Imp program[C]. We use the WF constraints to
translate each relation variabteof arity n+ 1 into a corresponding
tuple variablex of arity n + 1.

The translation is syntax-driven. We translate each sitgyp
constraintG = Ti <: T3 into a straight-line block of instructions
with three parts: a sequence of instructions that estasighe
environment bindings[(z]), a sequence of instructions that “gets”
the values corresponding to the LHEI(],.¢) and a sequence
of instructions that “sets” the (LHS) values into the appiaije
RHS ([T%]se¢)- The translation for a set of constraints is an infinite
loop that non-deterministically chooses among the blookgé&ch
constraint.

Each environment binding gets translated as a “get”. Bigslin
with unknown refinements are translated into tuple-getatpars,
followed by assume statements that establish the equalities corre-
sponding to the pending substitutions. Bindings with knoafine-
ments are translated into non-deterministic assignmertisafed
by a assume that enforces that the refinement holds on the non-
deterministic value.

Each “set” operation to an unknown refinement is translated
into a tuple-set instruction that writes the tuple corregting to
the pending substitutions into the translated tuple végidkinally,
each “set” operation corresponding to a known refinememéaisst
lated to anassert instruction; intuitively, in such constraints the
RHS defines an upper bound on the set of values populating the
type, and theassert serves to enforce the upper bound require-
ment in the translated program.

The correctness of the procedure is stated by the following
theorem.

THEOREML. C'is satisfiable iff[C'] is Relational-safe

The proof of this theorem follows from the properties of the
following function « that maps a set# C ©* of Relational-states



Common Operations
Post! (&€, T)

Postf (s?,11;12)

Post® (s, 2 « e)
Postf(s!, z « nondet())

{€}

Post! (s?, assume(p)) =

{s*}

Postf(s#, assert(p)) =

Postf (Post? (s, 11), I2)
= {s*[z = s*(e)]}

= {sf[z—d|ceV}
{st} if st(p) = true
0 otherwise

if st(p) = true

{€} otherwise
Tuple Operations: Relational Semantics
Post?(st, (to, ..., tn) < k) = {sf[to — vo]...[tn — vn]| (vo,...,vn) € st(k)}

Post?(st, k + (o, ..

. 750”))

Tuple Operations: Imperative Semantics

Post(s, (to,...,tn) < K) =

0

Post(s, k < (z0,...,Zn)) =

{S[tO = 'UO} cee [tn — Un]}

= {s*[r > s*(w) U{(s* (z0),- .., s* (zn))}]}

if s(k) = (vo, ...
if s(k) =L

7'Un)

{slx = (s(z0), ..., s(zn))]}

Figure 6. Relational and Imperative Semantics: Other casesf Post identical to Post?

to constraint solutions:
a(¥f) = A | J{s* (k) | * € B4}

The functiona enjoys the following property, which can be proven
by induction on the construction &feach, that relates the satisfy-
ing solutions of the constraints to the Relational-reatshatates of
the translated program. Theoré€in 1 follows from the follayvirb-
servations. IS satisfiesC' thena(Reach?([C]))(k) C S(x) for

all k. If £ ¢ Reach?([C]) thena(Reach?([C])) satisfiesC'.

5.2 Read-Write-Once Programs

At this point, via Theorerfll1, we have reduced checking satisfi
bility of type constraints to the problem of verifying agsems of
IMP programs under the (non-standard) Relational semantits. U
fortunately, under these semantics, the program contairnables
(k) which range ovesetsof tuples. This makes it inconvenient to
directly apply abstract-interpretation based technicfoesmper-
ative programs which typically assume the (standard) latper
semantics; each technique has to be painstakingly adaptesb t
non-standard semantics.

We would be home and dry if we could prove the equivalence
of the Relational and Imperative semantics; that is, if waldo
show that anmp program was Relational-safe if and only if it was
Imperative safe. Unfortunately, this is not true.

Example. Consider the Mp program:

(to) < K;

vV 4 1oy T v,

(to) < & }
V<4 1lojy <+ v
assert(z = y)

v < nondet(); [I

Loop{ K+ (v)

This programis not Relational-safe as the set-operation in the first
instruction populates: with the set of all integers, and the get-
operation in the second instruction can assign differentegato
integer values ta: andy. However the prograris Imperative-safe
as whenever the second instruction executesill be undefined
or contain some arbitrary integer that is assigned to baéindy,
which causes the assert to succeed.

This example pinpoints exactly why the two semantics differ
the Relational semantics, in any given loop iteration edéht gets
on the sames can returndifferenttuples, while in the Imperative
semantics the gets are correlated and return the same tuple.

Read-Write-Once Programs.An IMP instruction is aread-write-
onceinstruction if any relation variable is read from and written
to at most once in the instruction. That is, read-write-omegns
at most one write and at most one read (and not at most one read
or write). An IMP program is aread-write-onceprogram if each
instruction in its loop is a read-write-once instructioneWan
show that for Read-Write-Oncenb programs the Relational and
Imperative semantics are equivalent.

THEOREM2. If P is a read-write-once MP program thenP is
Relational-saféff P is Imperative-safe

To prove this theorem, we formalize the connection betwken t
reachable states under the two different semantics, usefunc-
tion Expand, which maps a Relational-state to a set of Imperative
states:

s(z) = s*(z) for base variables

s(k) = (v if (v) €sf(k
Bpand(sh) = 3| 9= E4) S

S = S If 8ﬁ = 5

We lift the function to sets of Relational states in the nalturay:

Expand(Xt) = U{Expand(su) | s* e ot}

Next, we can show that read-write-once instructions ertjeyfol-
lowing property, by case splitting on the form bf

LEMMA 1. [Step] If I is a read-write-once instruction then
Expand(Post?(s*,I)) = Post(Expand(s), I).

We use this property to show that the reachable states umeler t
different semantics are equivalent.

LEMMA 2. If P = loop{Ii]...]I»} is a read-write-once pro-
gram, therExpand(Reach (P)) = Reach(P).

PROOF To prove thaReach(P) C Expand(Reach?(P)), we show
Vm : Reach(P,m) C Expand(Reach’(P))

by straightforward induction om, noting thats, € Expand(s%),
andPost(Expand(s*),I) C Post®(s*, ) for any Relational-state
s* e % instructionI, and any progran® (not necessarily read-
write-once).



To show inclusion in the other direction, we prove
Vm : Expand(Reach?(P,m)) C Reach(P)
by induction onm. For the base case,
Expand(Reach?(P, 0)) = Reach(P, 0) C Reach(P)
by the definition of the initial states. By induction, assutfmat
Expand(Reach?(P,m)) C Reach(P)

Let s’ € Expand(Reach?(P,m + 1)). By Lemmall, eithers’ is
already inReach® (P, m), in which case the inductive hypothesis
applies and henc€ € Reach(P), or

s" € Post(Expand(Reach? (P, m), I;)

for somej. That is, there is @ € Expand(Reach?(P,m) such that
s’ € Post(s, I,). From the induction hypothesisc Reach(P). As
Reach(P) is closed undePost, we concludes’ € Reach(P). O

5.3 Cloning

At this point, we have shown that the Imperative semanticead-
write-once programs are equivalent to the Relational séosarll

that remains is to show that the translation procedure ofirfe[@
produces read-write-once programs. Unfortunately, thisi true.

Example. Consider the following constraints:
OF {k},0F {true} <:{x},z:ry:x b {true} <: {z =y}

It is easy to check that on the above constraints, the trémsla
procedure yields theMpP program from the previous example,
which is not read-write-once.

The reason the translated program is not a read-write-amee p
gram is that there can be constraigis—= 77 <: T in which s
occurs in multiple places withi&' andT3.

To solve this problem, we can simptyonethe « variables that
occur multiple times inside a constraint, and use diffectonies at
each occurrence! We formalize this as a procediisae that maps
a finite set of constraints to another finite set. The proaedurks
as follows. For each that is read upta times in some constraint,
we maken clones !, ..., k", and

1. for thei*™ occurence of: within any constraint, we use thé"
clonex' (instead ofk), and,

2. for each constraint where appears on the right hand side,
we maken clones of the constraints where in tié cloned
constraint, we use® (instead ofx).

The first step ensures that eaghis read-once in any constraint,
and the second step ensures that the clones correspondctty exa
the same set of tuples as the original variahl&Ve can prove that
Clone enjoys the following properties.

THEOREM3. LetC be a finite set of constraints.

1. [Clone(C)] is a read-write-once program.
2. Clone(C) is satisfiable iffC' is satisfiable.

It is easy to verify thafClone(C)] is a read-write-once pro-
gram. Furthermore, any satisfying solution for the origjioan-
straints can be mapped directly to a solution for the clorau ¢
straints. To go in the other direction, we must map a solutiat
satisfies the cloned constraints to one that satisfies thamaticon-
straints. This is trivial if the solution for the cloned comsnts
maps each clong’ to the same set of tuples. We show that if the
cloned constraints have a satisfying solution, they havalwtisn
that satisfies the above property. To this end, we prove tlenwfo
ing lemma that states that fany set of constraints, the satisfying
solutions are closed under intersection.

Program | Time Invariant
(sec) Refinement Types
max 0.091 k1.1<K1.0NK1.2<K1.0
Ke = true,ky = true,k1 = < v Ay <w
sum 0.071 0 < k2.0AN ka1 < k2.0
K = true,ke = 0<ovAk<vw
foldn 0.060 0<k;.0N0<k3.0AK3.0<K3.2
ki=0<wv,k3=0<vAv<n
arraymax | 0.135 0<k4.0N0<k5.0A
0 < k6.0 A Kyg.0 < len(ky.1)
ka0 =<wv,k5 = 0< v,
ke = 0<wv,kg = v < len(a)
mask 0.098 k1.0 < len(k1.4) ANk1.1 < k1.0 A
0 < k2.0 A k2.0 < len(k2.3)
k1v < len(xs) At < v,
k2 = 0 <wvAv<len(a)
samples | 0.117 0 < k2.0 A k2.0 < len(k2.4) A
0 < k3.0 A k3.0 < len(k3.3) A0 < Kk¢.0
k2 = 0 <vAv<len(b),
k3 = 0<wvAwv <len(a),ke = 0<v

Table 1. Experimental evaluation using a predicate abstraction-
based verification tool on examples from [29]. The third ocmfu
presents the invariant for the translated program, andeselting
refinement types.

LEMMA 3. If S; and.S; are solutions that satisf¢' thenS1N.Se =
Ak.S1(k) N Sz (k) satisfiexC.

Thus if S satisfies the cloned constraints then by symmetry and
Lemmd3 the solution that mapsachcloned variable to);_; S(x*)
also satisfies the cloned constraints, and hence, direilgsya
solution to the original constraints.

Finally, as a corollary of Theorerhd 1.2,3 we get our mainltesu
that reduces the question of refinement type constrairgfaation,
to that of safety verification.

THEOREM4. C'is satisfiable iff[Clone(C')] is Imperative-safe.

While we state Theorens 1 3 as preserving satisfialbiiey,
proof shows how the solutions can be effectively mapped e&etw
C and [C] (or [Clone(C)]. In particular, while the intersection
of two non-trivial solutions can be a trivial solution, it wid be
guaranteed that in that case, the trivial solution satigfieStated in
terms of invariants, Lemnid 3 states the observation thathkae
may be several non-comparable inductive invariants to grav
safety property, but in that case, the intersection of allittductive
invariants is also an inductive invariant.

6. Experiments

We have implemented a verification tool forc@uL programs
based on RTI. We use the liquid types infrastructure impleeg:

in DsSOLVE [29] to generate refinement type constraints from
OcaAML programs. We use ARMC [28], a software model checker
using predicate abstraction and interpolation-basedemfémt, as
the verifier for the translated imperative program.

Table[d shows the results of running our tool on a suite of kmal
OcaAML examples from [29]. For array manipulating programs, the
safety objective is to prove array accesses are within bufaor
MAX we prove that the output is larger than input values. $iow
we prove that the sum is larger than the largest summatiom ter

Table[2 presents the running time of our tool on the benchmark
programs for the Depcegar verifier [31]. We observe thatitesp
our blackbox treatment of ARMC as a constraint solver weiabta
competitive running times compared to Depcegar on most@f th
examples (Depcegar uses a customized procedure for umoldi



Program Time # iterations | # predicates
boolflip.ml 2.17s 7 21
sum.ml 0.24s 5 14
sum-acm.ml 0.11s 1 3
sum-all.ml 3.51s 10 26
mult.ml 4.67s 10 25
mult-cps.ml 780.24s 11 27
mult-all.ml 18.44s 9 24
boolflip-e.ml 0.65s

sum-e.ml 0.01s

sum-acm-e.ml|  0.02s

sum-all-e.ml 0.79s

mult-e.ml 0.01s

mult-cps-e.ml 7.69s

mult-all-e.ml 144.93s

Table 2. Experimental evaluation of our tool on Depcegar bench-
marks [31]. The third column presents the number of abstract
refinment iterations required by ARMC. The last column gitres
number of predicates discovered by ARMC. For the progrartts wi
suffix “-e”, which are incorrect, we omit the number of iteoars
and predicates and only show the time required by ARMC to find
a counterexample.

constraints and creating interpolation queries that yiefthement
types).

Most of the predicates discovered by the interpolatioredas
abstraction refinement procedure implemented in ARMC fdd i
the fragment “two variables per inequality.” The examplesk
required a predicate that refers to three variablesikse@/hile our
initial experiments used a CEGAR-based tool, we expechopéd
abstract interpreters for numerical domains to also work foe
this class of properties.

7. Extensions and Related Work
7.1 Completeness

The soundness of safety verification for higher-order ooy for
any domain follows from the soundness of constraint geimerat
(e.g.,Theorem 1 in[[2B]) and Theorel 4. Since the safety verifi-
cation problem for higher-order programs is undecidabie téch-
nique cannot be complete in general. Even in the finite-siade,
in which each base type has a finite domarg(,booleans), com-
pleteness depends on the generation of type constraintexam-
ple, in our examples and in our implementation, we have asduan
context insensitiveonstraint generation from program syntag,,
we have not distinguished the types of the same functionffatrdi
ent call points. This entails a loss of information, as tHéofaing
example demonstrates. Consider

let check f x y = assert (f x = y) in
check (fun a -> a) false false ;
check (fun a -> not a) false true

where the builtin functiorassert has the typgv:bool | v} —
unit. The refinement template fatheck generated by our con-
straint generation process is

(x:{v:bool | k1} = {k2}) = {ks} = {ka} — unit

which is too weak to show that the program is safe. This isleza
the template “merges” the two call sites fedreck.

One way to get context sensitivity is througtiersection types
[12,14]20, 25]. For the above example, we can show typeysafet
using the following refined type fatheck:

A

(x:bool = {v =x}) = {-v} = {-v} = unit
(x:bool = {v =—x}) = {-v} = {v} = unit

It is important to note that Theorerh$ 1 dnd 2 hold &my set

of constraints. Thus, one way to get completeness in theefinit
state case is to generate refinement templates using ictierse
types, perform the translation ta1p programs, and then using a
complete invariant generation technique for finite statstesys.
The key observation (made in_[20]) that ensures a finite humbe
of constraints, is that there is at most a finite number of texis”

in the finte state case, and hence a finite number of terms in the
intersection types. The bad news is that the bound on the @umb
of contexts isxp,, (k), wheren is the highest order of any function
in the program,k is the maximum arity of any function in the
program, andexp,,(k) is a stack ofn exponentials, defined by
expy (k) = k, andexp,, , ; (k) = 27°» "),

Fully context-sensitive constraints are used in [20] taxssbom-
pleteness in the finite case, at the priceexp,, (k) in every case
not just the worst case. In our exposition and our implentmtta
we have traded off precision for scalability: while we losep
cision by generating context-insensitive constraints,aweid the
exp,, blow-up that comes with full context sensitivity. Howevitr,
has been shown through practical benchmarks that sincgjke t
themselves capture relations between the inputs and sutihe
context-insensitive constraint generation suffices to@variety
of complex programs safel[3.118]29].

When considering completeness properties in special cases
point out completeness wrt. the discovery of refinementipagels
in octagons/difference bounds abstract domains [24] angltte-
based invariant generation for linear arithmetic [7] antepgions
with uninterpreted function symbolsl|[5], which carries of®m
respective verification approaches.

7.2 Related Work

Higher-Order Programs. Kobayashi[[20, 21] gives an algorithm
for model checking arbitrary:;-calculus properties of finite-data
programs with higher order functions by a reduction to model
checking for higher-order recursion schemes (HORS) [26}. F
safety verification, RTI shows a promising alternative.

First, the reduction to HORS critically depends on a finittes
abstraction of the data. In contrast, our reduction deferslata ab-
straction to the abstract interpreter working on the impezapro-
gram, thus enabling the direct application of abstractrpmeters
working over infinite domains. Since abstract interpretees infi-
nite abstract domains are strictly more powerful than (itdifam-
ilies of) finite ones([8], our approach can be strictly moravpdul
for infinite-state programs.

Second, in the translation of an abstracted program to a HORS
this algorithm eliminates Boolean variables by enumegatti
possible assignments to them, giving an exponential bipram
the program to the HORS. In contrast, our technique presehe
Boolean statsymbolically enabling the use of efficient symbolic
algorithms for verification. For example, for the simple @xde:

let £ bl ... bn x =
if (b1 || || bn) then lock x;
if (b1 || || bn) then unlock x

in let f (%) (*) (mewlock ())

where we wish to prove that lock and unlock alternate. Kobhya
translation[[20] gives aaxponentiabized HORS, with a version of
f for each assignment t , . . . ,bn. In contrast, our reduction pre-
serves the source-level expressions and is linear, andadecto
symbolic verification techniques (e.g., BDDs). Previousezience
with software model checkin@[2, 116.117] shows that the nunafe
reachable states is often drastically smaller tamherep is the
number of Booleans. Thus, the pre-processing step thatenabes
Booleans may not lead to a scalable implementation.



Might [23] describesogic-flow analysisa general safety verifi-
cation algorithm for higher-order languages, which is ttepct of
a k-CFA like call-strings analysis and a form of SMT-based pred
icate abstraction (together with widening). In contrast; work
shows how higher-order languages can be analyzed diraatblv
stract analyses designed for first-order imperative laggsia

Inference of refinement types using conterexample-guieleiut
nigues was recentrly identified as a promising directioni33]. In
contrast, our approach is not limited to CEGAR and faciisathe
applicability of a wide range abstract interpretation teéghes for
precise reasoning about program data.

Software Verification. This work was motivated by the recent suc-
cess in software model checking for first-order imperative- p
grams [2] 6, 16, 22], and the desire to apply similar techesqio
modern programming languages with higher order functins.
starting point was refinement types [[L4] 19], implementedan
pendent ML [38] to give strong static guarantees, and th&war
liquid types [18] 29] that applied predicate abstractioinfer re-
finement types. By enabling the application of automatiafiant
generation from software model checking, RTI reduces theane
for programmer annotations in refinement type systems.
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