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Abstract
Refinement Types are a promising approach for checking behav-
ioral properties of programs written using advanced language fea-
tures like higher-order functions, parametric polymorphism and re-
cursive datatypes. The main limitation of refinement type systems
to date is the requirement that the programmer provides the types
of all functions, after which the type system cancheckthe types
and hence, verify the program.

In this paper, we show how to automaticallyinfer refinement
types, using existing abstract interpretation tools for imperative
programs. In particular, we demonstrate that the problem ofrefine-
ment type inference can be reduced to that of computing invari-
ants of simple, first-order imperative programs without recursive
datatypes. As a result, our reduction shows that any of the wide
variety of abstract interpretation techniques developed for impera-
tive programs, such as polyhedra, counterexample guided predicate
abstraction and refinement, or Craig interpolation, can be directly
applied to verify behavioral properties of modern softwarein a fully
automatic manner.

1. Introduction
Automatic verification of semantic properties of modern program-
ming languages is an important step toward reliable software
systems. For higher-order programming languages with inductive
datatypes or polymorphic instantiation, the main verification tool
has been type systems, which traditionally capture only coarse
data-type properties (such asints are only added toints), and
require the programmer to explicitly annotate program invariants if
more precise invariants about program computations are required.

For example,refinementtype systems [33] associate data types
with refinement predicates that capture richer properties of program
computation. Using refinement types, one can state, for instance,
that a program variablexs has the refinement type “non-zero inte-
ger,” or that the integer division function has the refinement type
int → {ν :int | ν 6= 0} → int which states that the second ar-
gument must be non-zero. Then if a program with refinement type
type-checks, one can assert that there is no division-by-zero error in
the program. The idea of refinement types to express precise pro-
gram invariants is well-known [3, 10, 12, 13, 27, 33]. However, in
each of the above systems, the programmer must provide refine-
ments for each program type, and the type systemchecksthe pro-
vided type refinements for consistency. We believe that thisburden
of annotations has limited the widespread adoption of refinement
type systems.

For imperativeprogramming languages, algorithms based on
abstract interpretation can be used toautomatically infermany pro-
gram invariants [2,6,16], thereby proving many semantic properties
of practical interest. However, these tools do not precisely model
modern programming features such as closures and higher-order
functions or inductive datatypes, and so in practice, they are too
imprecise when applied to higher-order programs.

OCaml Program
(with assertions)

Constraint Generation

RTI Translation

Subtyping Constraints

Abs. Interpretation

Simple IMP Program

Safe Unsafe

Figure 1. RTI algorithm.

In this paper, we present an algorithm toautomaticallyverify
properties of higher-order programs through refinement type in-
ference (RTI) by combining refinement type systems for higher-
order programs with invariant synthesis techniques for first-order
programs. Our main technical contribution is a translationfrom
type constraints derived from a refinement type system for higher-
order programs to a first-order imperative program with assertions,
such that the assertions hold in the first-order program iff there is
a refinement type that makes the higher-order program type-check.
Moreover, a suitable type refinement for the higher-order program
can be constructed from the invariants of the first-order program.
Thus, our algorithm replaces the manual annotation burden for re-
finement types with automatically constructed program invariants
on the translated program, thus enabling fully automatic verifica-
tion of programs written in modern languages.
The RTI algorithm (Figure 1) proceeds in three steps.

Step 1: Type-Constraint Generation.First, it performs Hindley-
Milner type inference [11] to construct ML types for the program,
and uses these types to generaterefinement templates, i.e., types in
which refinement variablesκ are used to represent the unknown
refinement predicates. Then, the algorithm uses a standard syntax-
directed procedure to generate subtyping constraints overthe tem-
plates such that the program type checks (i.e., is safe) if the subtyp-
ing constraints are satisfiable [3,19,29,33].

Step 2: Translation.Second, it translates the set of type constraints
to afirst-order, imperative program over base valuessuch that the
type constraints are satisfiable if and only if the imperative program
does not violate any assertions.

Step 3: Abstract Interpretation. Finally, an abstract interpretation
technique for first order imperative programs is used to prove that
the first order program is safe. The proof of safety produced by
this analysis automatically translates to solutions to therefinement
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type variables, thus generating refinement types for the original ML
program.

The main contribution of this paper is the RTI translation al-
gorithm. The advantage of the translation is that it allows one
to apply any of the well-developed semantic imperative program
analyses based on abstract interpretation (e.g.,polyhedra [9] and
octagons [6], counterexample-guided predicate abstraction refine-
ment (CEGAR) [2, 16], Craig interpolation [16, 22], constraint-
based invariant generation [4, 30] random interpretation [15], etc.)
to the verification of modern software with polymorphism, induc-
tive datatypes, and higher-order functions. Instead of painstakingly
reworking each semantic analysis for imperative programs to the
higher order setting, possibly re-implementing them in theprocess,
one can use our translation, and apply any existing analysisas is.
In fact, using the translation, our implementationdirectly uses a
CEGAR and interpolation based safety verification tool to verify
properties of OCAML programs.

In essence, our algorithm separates syntactic reasoning about
function calls and inductive data types (handled well by typing
constraints) from semantic reasoning about data invariants (handled
well by abstract domains). The translation from refinement type
constraints to imperative programs in Step 2 is the key enabler. The
translation, and the proof that the satisfiability of type constraints
and safety of the translated program are equivalent, are based on
the following observations.

The first observation is that refinement type variablesκ define
relationsover the value being defined by the refinement type and
the finitely many variables that are in-scope at the point where
the type is defined. In the imperative program, each finite-arity
relation can be encoded with a variable that encodes a relation.
Each refinement type constraint can be encoded as a straight-line
sequence that reads tuples from and writes tuples to the relation
variables, and the set of constraints can be encoded as a non-
terminating while-loop that in each iteration, non-deterministically
executes one of the blocks. Thus, the problem of determiningthe
existence of appropriate relations reduces to that of computing
(overapproximations) of the set of tuples in each relation variable
in the translated program (Theorem 1).

Our second observation is that if the translated program is in a
specialread-write-onceform, where within each straight-line block
a relation variable is read and writtenat most once, then one can
replace all relation-valued variables with variables whose values
range over tuples (Theorem 2). Moreover, we prove that we can,
without affecting satisfiability, preprocess the refinement typing
constraints so that the translated program is a read-write-once pro-
gram (Theorem 3). Together, the observations yield a simpleand
direct translation from refinement type inference to simpleimpera-
tive programs.

We have instantiated our algorithm in a verification tool for
OCAML programs. Our implementation generates refinement type
constraints using the algorithm of [29], and uses the ARMC [28]
software model checker to verify the translated programs. This
allows fully automatic verification of a set of OCAML bench-
marks for which previous approaches either required manualan-
notations (either the refinement types [33] or their constituent
predicates [29]), or an elaborate customization and adaptation of
the counterexample-guided abstraction refinement paradigm [31].
Thus, we show, for the first time, how abstract interpretation can be
lifted “as-is” to the practical refinement type inference for modern,
higher-order languages.

While we have focused on the verification of functional pro-
grams, our approach is language independent, and requires only an
appropriate refinement type system for the source language.

let rec iteri i xs f =
match xs with
| [] -> ()
| x::xs’ -> f i x;

iteri (i+1) xs’ f

let mask a xs =
let g j y = a.(j) <- y && a.(j) in
if Array.length a = List.length xs then

iteri 0 xs g

Figure 2. ML Example

2. Overview
We begin with an example that illustrates how our refinement type
inference (RTI) algorithm combines type constraints and abstract
interpretation to automatically verify safety propertiesof functional
ML programs with higher-order functions and recursive structures.
We show that the combination of syntactic type constraints and
semantic abstract interpretation enables the automatic verification
of properties that are currently beyond the scope of either technique
in isolation.

An ML Example. Figure 2(a) shows a simple ML program that
updates an arraya using the elements of the listxs. The program
comprises two functions. The first is a higher-order listindexed-
iterator, iteri, that takes as arguments a starting indexi, a (poly-
morphic) listxs, and an iteration functionf. The iterator goes over
the elements of the list and invokesf on each element and the in-
dex corresponding to the element’s position in the list. Thesecond
is a client,mask, of the iteratoriteri that takes as input a boolean
arraya and a list of boolean valuesxs, and if the lengths match,
calls the indexed iterator with an iteration functiong that masks the
jth element of the array.

Suppose that we wish to statically verify the safety of the array
reads and writes in functiong; that is to prove that wheneverg is
invoked,0 ≤ j < len(a). As this example combines higher-order
functions, recursion, data-structures, and arithmetic constraints on
array indices, it is difficult to analyze automatically using either
existing type systems or abstract interpretation implementations in
isolation. The former do not precisely handle arithmetic onindices,
and the latter do not precisely handle higher-order functions and are
often imprecise on data structures. We show how our RTI technique
can automatically prove the correctness of this program.

Refinement Types.To verify the program, we compute program
invariants that are expressed asrefinementsof ML types with pred-
icates over program values [3,19,29]. The predicates are additional
constraints that must be satisfied by every value of the type.A
base value, say of typeint, can be described by the refinement
type{ν :int | p} whereν is a specialvalue variablerepresenting
the type being defined, andp is a refinement predicatewhich con-
strains the range ofν to a subset of integers. For example, the type
{ν :int | 0 ≤ ν < len(a)} denotes the set of integersc that are
between0 and the value of the expressionlen(a). Thus, the un-
refined typeint abbreviates{ν :int | true}, which does not con-
strain the set of integers. Base types can be combined to construct
dependent function types, writtenx :T1 → T2, whereT1 is the type
of the domain,T2 the type of the range, and where the namex for
the formal parameter can appear in the refinement predicatesin T2.
For example, the type

x :{ν :int | ν ≥ 0} → {ν :int | ν = x+ 1}

is the type of a function which takes a non-negative integer param-
eter and returns an output which is one more than the input. Inthe
following, we writeτ for the type{ν :τ | true}. Whenν andτ are
clear from the context, we write{p} for {ν :τ | p}.



Safety Specification.Refinement types can be used tospecify
safety properties by encoding pre-conditions into primitive oper-
ations of the language. For example, consider the array reada.(j)
(resp. writea.(j)← e) in g which is an abbreviation forget a j
(resp.set a j e). By giving get andset the refinement types

a :αarray→ {ν :int | 0 ≤ ν < len(a)} → α ,

a :αarray→ {ν :int | 0 ≤ ν < len(a)} → α→ unit ,

we can specify that in any program the array accesses must be
within bounds. More generally, arbitrary safety properties can be
specified by givingassert the appropriate refinement type [29].
Safety Verification.The ML type system is too imprecise to prove
the safety of the array accesses in our example as it infers that g
has typej :int→ y :bool→ unit, i.e., thatg can be called with
any integer j. If the programmer manually provides the refine-
ment types for all functions and polymorphic type instantiations,
refinement-type checking [3, 12, 33] can be used to verify that the
provided types were consistent and strong enough to prove safety.
This is analogous to providing pre- and post-conditions andloop-
invariants for verifying imperative programs. For our example, the
refinement type system could check the program if the programmer
provided the types:

iteri :: i :int→ xs :{ν :α list | 0 ≤ len(ν)} →
(j :{i ≤ ν < len(xs)} → α→ unit)→ unit

g :: j :{0 ≤ ν < len(a)} → bool→ unit

Here, we omitted refinement predicates that are equal to true, e.g.,
for i in the type ofiteri.
Automatic Verification via RTI. As even this simple example il-
lustrates, the type annotation burden for verification is extremely
high. Instead, we would like to verify the program without requir-
ing the programmer to provide every refinement type. The RTI al-
gorithm proceeds in three steps. First, we syntactically analyze the
sourceprogram to generate subtyping constraints over refinement
templates. Second, we translate the constraints into an equivalent
simple imperativetarget program. Third, we semantically analyze
the target program to determine whether it is safe, from which we
conclude that the constraints are satisfiable and hence, thesource
program is safe. Next, we illustrate these steps using Figure 2 as
the source program.

2.1 Step 1: Constraint Generation

In the first step, we generate a system of refinement type constraints
for the source program [19, 29]. To do so, we (a) build templates
that refine the ML types with refinement variables that stand for
the unknown refinements, and (b) make a syntax-directed passover
the program to generate subtyping constraints that capturethe flow
of values. For the functionsiteri andg from Figure 2, with the
respective ML types

i :int→ xs :α list→ (j :int→ α→ unit)→ unit

j :int→ bool→ unit

we would generate the respective templates

i :int→ xs :{0 ≤ len(ν)} → (j :{κ1} → α→ unit)→ unit

j :{κ2} → bool→ unit

Notice that these templates simply refine the ML types with refine-
ment variablesκ1, κ2 that stand for the unknown refinements. For
clarity of exposition, we have added the refinementtrue for some
variables (e.g.,for the typeα andbool); our system would auto-
matically infer the unknown refinements. We model the lengthof
lists (resp. arrays) with an uninterpreted functionlen from the lists
(resp. arrays) to integers, and (again, for brevity) add therefinement
statingxs has a non-negative length in the type ofiteri.

After creating the templates, we make a syntax-directed pass
over the program to generate constraints that capture relationships
between refinement variables. There are two kinds of type con-
straints –well-formednessandsubtyping.

Well-formedness Constraints capture scoping rules, and ensure
that the refinement predicate for a type can only refer to variables
that are in scope. Our example has two constraints:

i :int; xs :α list ⊢ {ν :int | κ1} (w1)

a :bool array; xs :α list ⊢ {ν :int | κ2} (w2)

The first constraint states thatκ1, which represents the unknown
refinement for the first parameter passsed to the higher-order iter-
ator iteri, can only refer to the two program variables that are
in-scope at that point, namelyi andxs. Similarly, the second con-
straint states thatκ2, which refines the first argument ofg, can only
refer toa andxs, which are in scope whereg is defined.

Subtyping Constraints reduce the flow of values within the
program into subtyping relationships that must hold between the
source and target of the flow. Each constraint is of the form

G ⊢ T1 <: T2

whereG is anenvironmentcomprising a sequence of type bindings,
andT1 andT2 are refinement templates. The constraint intuitively
states that under the environmentG, the typeT1 must be a subtype
of T2. The subtyping constraints are generated syntactically from
the code. First consider the functioniteri. The call tof generates

G ⊢ {ν = i} <: {κ1} (c1)

where the environmentG comprises the bindings

G
.
= i :{true}; xs :{0 ≤ len(ν)};

x :{true}; xs′ :{0 ≤ len(ν) = len(xs)− 1}

the constraint ensures that at the callsite, the type of the actual is a
subtype of the formal. The bindings in the environment are simply
the refinement templates for the variables in scope at the point the
value flow occurs. The type system yields the information that the
length of xs′ is one less thanxs as the former is the tail of the
latter [18,33]. Similarly, the recursive call toiteri generates

G ⊢ {j : κ1 :→α→ unit} <:

{(j :κ1 → α→ unit)[i+ 1/i][xs′/xs]}

which states that type of the actualf is a subtype of the third
formal parameter ofiteri after applying substitutions[i+ 1/i]
and [xs′/xs] that capture the passing in of the actualsi + 1
andxs′ for the first two parameters respectively. By pushing the
substitutions inside and applying the standard rules for function
subtyping, this constraint simplifies to

G ⊢ {κ1[i/i+ 1][xs/xs′]} <: {κ1} (c2)

Next, consider the functionmask. The array accesses insideg
generate the “bounds-check” constraint

G′; j :{κ2}; y :{true} ⊢ {ν = j} <: {0 ≤ ν < len(a)} (c3)

whereG′ .
= a :bool array; xs :{0 ≤ len(ν)} has bindings for

the other variables in scope. Finally, the flow due to the third
parameter for the call toiteri yields

G′; len(a) = len(xs) ⊢ {j :κ2 → τ} <: {(j :κ1 → τ )[0/i]}



where for brevity we writeτ for bool→ unit, and omit the trivial
substitution[xs/xs] due to the second parameter. The last conjunct
in the environment captures the guard from theif under whose
auspices the call occurs. By pushing the substitutions inside and
applying standard function subtyping, the above reduces to

G′; len(a) = len(xs) ⊢ {κ1[0/i]} <: {κ2} (c4)

For brevity we omit trivial constraints like· ⊢ int <: int. If the
set of constraints constructed above is satisfiable, then there is a
valid refinement typing of the program [29], and hence the program
is safe.

2.2 Step 2: Translation to Imperative Program

Determining the satisfiability of the constraints requiressemantic
analysis about program computations. In the second step, our key
technical contribution, we show a translation that reducesthe con-
straint satisfiability problem to checking the safety of a simple, im-
perative program. Our translation is based on two observations.

Refinements are Relations.The first observation is that type re-
finements are defined throughrelations: the set of values denoted
by a refinement type{ν :τ | p} wherep refers to the program vari-
ablesx1, . . . , xn of the respective base typesτ1, . . . , τn is equiva-
lent to the set

{t0 | ∃(t1, . . . , tn) s.t.(t0, t1, . . . , tn) ∈ Rp ∧
t1 = x1 ∧ . . . tn = xn

}

whereRp is an(n + 1)-ary relation inτ × τ1 × . . . × τn defined
by p. For example, the set of values denoted by{ν :int | ν ≤ i}
is equivalent to the set:

{t0 | ∃t1 s.t.(t0, t1) ∈ R≤ ∧ t1 = i} ,

whereR≤ is the standard≤-ordering relation over the integers. In
other words, each refinement variableκ can be seen as the projec-
tion on the first co-ordinate of a(n+ 1)-relation over the variables
(ν, x1, . . . , xn), wherex1, . . . , xn are the variables in the well-
formedness constraint forκ (i.e.,the variables in scope ofκ). Thus,
the problem of determining the satisfiability of the constraints is
analogous to the problem of determining the existence of appropri-
ate relations.

Relations are Records.The second observation is that the problem
of finding appropriate relations can be reduced to the problem
of analyzing a simple imperative program with variables ranging
over relations. In the imperative program, each refinement variable,
standing for ann-ary relation, is translated into a record variable
with n-fields. Each subtyping constraint can be translated into a
block of reads-from and writes-to the corresponding records. The
set of all tuples that can be written into a given record on some
execution of the program defines the corresponding relation. The
entire program is an infinite loop, which in each iteration non-
deterministically chooses a block of reads and writes defined by
a constraint.

The arity of a relation, and hence the number of fields of the
corresponding record, is determined by the well-formedness con-
straints. For example, the constraint (w1) specifies thatκ1 corre-
sponds to a ternary relation, that is, a set of triples where the0th

element (corresponding toν) is an integer, the1st element (corre-
sponding toi) is an integer, and the2nd element (corresponding to
xs) is a list. We encode this in the imperative program via a record
variableκ1 with three fieldsκ1.0, κ1.1 andκ1.2.

Figure 3 shows the imperative program translated from the con-
straints for our running example. We use the subtyping constraints
to define the flow of tuples into records. For example, consider the
constraint (c2) which is translated to the block marked/*c2*/.
Each variable in the type environment is translated to a correspond-

ing variable in the program. The block has a sequence of assign-
ments that define the environment variables. For example, weknow
i has typeint, so there is an assignment of an arbitrary integer
to i. When there is a known refinement in the binding, the non-
deterministic assignment is followed by an assume operation (a
conditional) that establishes that the value assigned satisfied the
given refinement. For examplexs gets assigned an arbitrary value,
but then the assume establishes the fact that the length ofxs is non-
negative. Similarlyxs′ gets assigned an arbitrary value, that has
non-negative length and whose length is 1 less than that ofxs. The
LHS of (c2) reads a tuple fromκ1 whose first and second fields are
assumed to equal thei+ 1 andxs′ respectively. Finally, the triple
(ν,i, xs) is written into the recordκ1 which is the RHS of (c2).

Next, consider the translated block for the bounds-check con-
straint (c3). Here, the translation is as before but the RHS is a
known refinement predicate (that stipulates the integer be within
bounds). In this case, instead of writing into the record that defines
the RHS, the translation contains an assertion over the correspond-
ing variables that ensures that the refinement predicate holds.

Relational vs. Imperative Semantics.There is a direct correspon-
dence between the refinement-relations and the record variables
when the translated program is interpreted under a Relational se-
mantics, where (1) the records range over (initially empty)sets of
tuples, (2) each write adds a new tuple to the record’s set, and,
(3) each read non-deterministically selects some tuple from the
record’s set. Under these semantics, we can show that the con-
straints are satisfiable iff the imperative program is safe (i.e., no
assert fails on any execution) (Theorem 1).

Unfortunately, these semantics preclude the direct application
of mature invariant generation and safety verification techniques
e.g.,those based on abstract interpretation or CEGAR-based soft-
ware model checking, as those techniques do not deal well with
set-valued variables. We would like to have an imperative seman-
tics where each record contains a single value, the last tuple written
to it. We show that there is a syntactic subclass of programs for
which the two semantics coincide. That is, a program in the sub-
class is safe under the imperative semantics if and only if itis safe
under the set-based semantics (Theorem 2). Furthermore, weshow
a technique that ensures that the translated program belongs to the
subclass (Theorem 3).

The attractiveness of the translation is that the resultingpro-
grams fall in a particularly pleasant subclass of programs which do
not have any advanced language features like higher-order func-
tions, polymorphism, and recursive data structures, or variables
over complex types such as sets, that are the bane of semanticanal-
yses. Thus, the translation yields simple imperative programs to
which a wide variety of semantic analyses directly apply.

2.3 Step 3: Invariant Generation.

Together these results imply that we can run off-the-shelf abstract
interpretation and invariant generation tools on the translated pro-
gram, and use the result of the analysis to determine whetherthe
original ML program is typable.

For the translated program shown in Figure 3, the CEGAR-
based software model checker ARMC [28] finds that the assertion
is never violated, and computes the invariants:

κ1.1 ≤ κ1.0 ∧ κ1.0 < len(κ1.2)

0 ≤ κ2.0 < len(κ2.1)

which, when plugging inν, i andxs for the 0th, 1st, 2nd fields
of κ1 andν, a for the0th, 1st fields ofκ2 respectively, yields the
refinements

κ1
.
= i ≤ ν < len(xs) κ2

.
= 0 ≤ ν < len(a)



loop{ /∗c1∗/
i← nondet();
xs← nondet(); assume(0 ≤ len(xs));
xs′ ← nondet(); assume(0 ≤ len(xs′) = len(xs)− 1);
ν ← nondet(); assume(ν = i);
κ1 ← (ν, i, xs)

[] /∗c2∗/
i← nondet();
xs← nondet(); assume(0 ≤ len(xs));
xs′ ← nondet(); assume(0 ≤ len(xs′) = len(xs)− 1);
(t0, t1, t2)← κ1;
assume(t1 = i+ 1);
assume(t2 = xs′);
ν ← t0;
κ1 ← (ν, i, xs)

[] /∗c3∗/
a← nondet();
xs← nondet(); assume(0 ≤ len(xs));
(t0, t1, t2)← κ2;
j← t0;
assert(0 ≤ j < len(a))

[] /∗c4∗/
a← nondet();
xs← nondet(); assume(0 ≤ len(xs));
assume(len(a) = len(xs));
(t0, t1, t2)← κ1;
assume(t1 = 0);
assume(t2 = xs);
ν ← t0;
κ2 ← (ν, a, xs)

}

Figure 3. Translated Program

which suffice to typecheck the original ML. Indeed, these predi-
cates forκ1 andκ2 are easily shown to satisfy the constraints (c1),
(c2), (c3), and (c4).

3. Constraints
We start by formalizing constraints over types refined with predi-
cates. To this end, we make precise the notions of refinement predi-
cates (Section 3.1), refinement types (Section 3.2), constraints over
refinement types and the notion of satisfaction (Section 3.3).

A discussion of how such constraints can be generated in a
syntax-guided manner from program source is outside the scope
of this paper; we refer the reader to the large body of prior research
that addresses this issue [3,19,29,33].
Notation. We use uppercase (Z) to denote sets, lowercasez to
denote elements, and〈Z〉 for a sequence of elements inZ.

3.1 Refinement Logic

Figure 4 shows the syntax of refinement predicates. In our discus-
sion, we restrict the predicate language to the typed quantifier-free
logic of linear integer arithmetic and uninterpreted functions. How-
ever, it is straightforward to extend the logic to include other do-
mains equipped with effective decision procedures and abstract in-
terpreters.
Types and Environments.Our logic is equipped with a fixed set of
typesdenotedτ , comprising the basic typesint for integervalues,
bool for booleanvalues, andui, a family of uninterpreted types
that are used to encode complex source language types such as
products, sums, polymorphic type variables, recursive types etc..
We assume there is a fixed set of uninterpreted functions. Each
uninterpreted functionf has a fixed typeτf

.
= 〈τ i

f〉 → τ o
f . An

environmentis a sequence of variable-type bindings.

Expressions and Predicates.In our logic,expressionse comprise
variables, linear arithmetic (i.e.,addition and multiplication by con-
stants), and applications of uninterpreted functionsf. Note that as is
standard in semantic program analyses, complex operationslike di-
vision or non-linear multiplication be modelled using uninterpreted
functions. Finally,predicatescomprise atomic comparisons of ex-
pressions, or boolean combinations of sub-predicates. We write
true (resp.false) as abbreviations for0 = 0 (resp.0 = 1).
Well-formedness.We say that a predicatep is well-formedin an
environmentΓ if every variable appearing inp is bound inΓ andp
is “type correct” in the environmentΓ.
Validity. For each typeτ , we write U(τ ) to denote the set of
concrete values ofτ . An interpretationσ is a map from variablesx
to concrete values, and functionsf to maps fromU(〈τ i

f〉) toU(τ o
f ).

We say thatσ is valid underΓ if for each x :τ ∈ Γ, we have
σ(x) ∈ U(τ ). We say that a predicatep is valid in an environment
Γ, if σ(p) evaluates totrue for everyσ valid underΓ.

3.2 Refinement Types

Figure 4 shows the syntax of refinement types and environments.
Refinements.A refinementr is either a predicatep drawn from
our logic, or a refinement variable with pending substitutions
κ[y1/x1] . . . [yn/xn]. Intuitively, the former representknown re-
finements (or invariants), while the latter represent theunknownin-
variants that hold of different program values. The notion of pend-
ing substitutions [1,19] offers a flexible way of capturing the value
flow that arises in the context of function parameter passing(in the
functional setting), or assignment (in the imperative setting), even
when the underlying invariants are unknown.
Refinement Types and Environments. A refinement type
{ν :τ | r} is a triple consisting of avalue variableν denoting the
value being described by the refinement type, a typeτ describing
the underlying type of the value, and a refinementr. A refinement
environmentG is a sequence of refinement type bindings.

The value variables are special variables distinct from the
program variables, and can occur inside the refinement pred-
icates. Thus, intuitively, the refinement type describes the set
of concrete values of the underlying typeτ which addition-
ally satisfy the refinement predicate. For example, the refinement
type:{ν :int | ν 6= 0} describes the set of non-zero integers and,
{ν :int | ν = x+ y} describes the set of integers whose value
equals the sum of the values of the (program) variablesx andy.

Note that path-sensitive branch information can be captured
by adding suitable bindings to the refinement environment. For
example, the fact that some expression is only evaluated under the
if-condition thatx > 100 can be captured in the environment via a
refinement type bindingxb :{ν :bool | x > 100}.

3.3 Refinement Constraints and Solutions

Figure 4 shows the syntax of refinement constraints. Our refinement
type system has two kinds of constraints.
Subtyping Constraintsare of the form

G ⊢ {ν :τ | r1} <: {ν :τ | r2}

Intuitively, a subtyping constraint states that when the program
variables satisfy the invariants described inG, the set of values
described by the refinementr1 must besubsumed bythe set of
values described by the refinement typer2.
Well-formedness Constraintsare of the formΓ ⊢ {ν :τ | r}. In-
tuitively, a well-formedness constraints states that the refinementr
must be a well-typed predicate in the environmentG extended with
the bindingν :τ for the value variable.
Embedding.To formalize the notions of constraint validity and sat-
isfaction, we embed subtyping constraints into our logic. We define



the functionEmb(·) that maps refinement types, environments and
subtyping constraints to predicates in our logic.

Emb({ν :τ | p})
.
= p

Emb(x :T ;G)
.
= Emb(T )[ν/x] ∧ Emb(G)

Emb(∅)
.
= true

Emb(G ⊢ T1 <: T2)
.
= Emb(G)⇒ Emb(T1)⇒ Emb(T2)

Similarly, we define the functionShape(·) that maps refinement
types and environments to types and environments in our logic.

Shape({ν :τ | p})
.
= τ

Shape(x :T ;G)
.
= x :Shape(T );Shape(G)

Shape(∅)
.
= ∅

Validity. A subtyping constraint G ⊢ T1 <: T2 that does
not contain refinement variables isvalid if the predicate
Emb(G ⊢ T1 <: T2) is valid under environmentShape(G). A
well-formedness constraintΓ ⊢ {ν :τ | p} that does not contain
refinement variables isvalid if the predicatep is well-formed in the
environmentΓ.

Relational Interpretations. We assume, without loss of generality,
that each refinement variableκ is associated with a unique well-
formedness constraintx1 :τ1; . . . ;xn :τn ⊢ {ν :τ0 | κ} called
the well-formedness constraint forκ. In this case, we sayκ has
arity n + 1. Furthermore, we assume that wherever aκ of arity
n+ 1 appears in a subtyping constraint, it appears with a sequence
of n pending substitutions[y1/x1] . . . [yn/xn]. This assumption
is without loss of generality, as we can enforce it with trivial
substitutions of the form[xi/xi]. A relational interpretationfor κ
of arityn+1, is an(n+1)-ary relation inU(τ0)× . . .×U(τn). A
relational modelis a map from refinement variablesκ to relational
interpretations.

Constraint Satisfaction. A set of constraintsC is satisfiableif
for all interpretations for uninterpreted functionsf, there exists a
relational modelS such that, when each occurrence of a refinement
type{ν :τ | κ[y1/x1] . . . [yn/xn]} in C is substituted with

{ν :τ | ∃t1, . . . , tn.S(κ)(ν, t1, . . . , tn) ∧ t1 = y1 ∧ . . . tn = yn)}

every subtyping constraint after the substitution is valid. In this
case, we say thatS is asolutionfor C.

4. Imperative Programs
RTI translates the satisfiability problem for refinement type con-
straints to the question of checking the safety of an imperative pro-
gram in a simple imperative language IMP. In this section, we for-
malize the syntax of IMP programs and define the Relational se-
mantics and the Imperative semantics.

4.1 Syntax

Figure 5 shows the syntax of IMP programs. Aninstruction (I)
is a sequence of assignments, assumptions and assertions. Apro-
gram (P) is an infinite loop over a block, whose body is a
non-deterministic choice between a finite number of instructions
I1, . . . , In. Next, we describe the different kinds of instructions.
For ease of notation, we assume that there is only one base type τ ,
and letV denote the set of values of typeτ .

Variables. IMP programs have two kinds of variables. (1)basevari-
ables, denoted byν, x, y andt (and subscripted versions thereof),
which range over values of typeτ . (2) relation variables, denoted
by κ, each of which have a fixed arityn and range over tuples of
values or sets ofn-tuples of values depending on the semantics.

Base Assignments.IMP programs have two kinds of assignments
to base variables. Either (1) an expression over base variables
(cf. Figure 4) is evaluated and assigned to the base variable, or,

τ ::= Types:
| int base type of integers
| bool base type of booleans
| ui complex uninterpreted type

Γ ::= Environments:
| x :τ ;Γ binding
| ∅ empty

e ::= Expressions:
| x variable
| n integer
| e1 + e2 addition
| n× e affine multiplication
| f(〈e〉) function application

p ::= Predicates:
| e1 ⊲⊳ e2 comparison
| ¬p negation
| p1 ∧ p2 conjunction
| p1 ⇒ p2 implication

r ::= Refinements:
| p predicate
| κ[y1/x1] . . . [yn/xn] ref. var. with substitutions

T ::= {ν :τ | r} Refinement Types

G ::= Refinement Environments:
| x :T ;G binding
| ∅ empty

c ::= G ⊢ T1 <: T2 Subtype Constraints

w ::= Γ ⊢ T WF Constraints

Figure 4. Predicates, Refinements and Constraints.

I ::= Instructions:
| x← e assign expr
| x← nondet() havoc
| (t0, . . . , tn)← κ get tuple
| κ← (x0, . . . , xn) set tuple
| assume(p) assume
| assert(p) assert
| I1; I2 sequence

P ::= loop{I1[] . . . []In} Program

Figure 5. Imperative Programs: Syntax

(2) an arbitrary value of the appropriate base type is assigned
to the base variable,i.e., the variable is “havoc-ed” with a non-
deterministically chosen value.

Tuple Assignments.The operationsget tupleandset tuplerespec-
tively read a tuple from and write a tuple to a relation variable.

Assumes and Asserts.IMP programs have the standard assume
and assert instructions using predicates over the base variables (cf.
Figure 4). We writeskip as an abbreviation forassume(0 = 0).

4.2 Relational Semantics

We define the Relational semantics as a state transition system. In
this semantics,κ variables range oversets oftuples overV .

Relational States.A states♯ in the Relational semantics is either
the specialerror stateE or a map from program variables to values
such that every base variable is mapped to a value inV , and every
relation variable of arityn is mapped to a (possibly empty) set of
tuples inV n. LetΣ♯ be the set of all Relational-program states.



For a states♯ which is notE , variablex and valuev we write
s♯[x 7→ v] for the map which mapsx to v and every other keyx′ to
s♯(x′). We lift mapss♯ from base variables to values to maps from
expressions (and predicates) to values in in the natural way.

Initial State. The initial states♯0 of an IMP program in the Rela-
tional semantics is a map in which every base variable is mapped
to a fixed value fromV , and every relation variable is mapped to
the empty set.

Transition Relation. The transition relation is defined through a
Post♯ operator, shown in Figure 6, which maps a states♯ and an
instructionI to theset of states that the program can be inafter
executing the instruction from the states♯. We lift Post♯ to a set of
statesΣ̂♯ ⊆ Σ♯ in the natural way:

Post
♯(Σ̂♯, I)

.
=

⋃

{Post♯(s♯, I) | s♯ ∈ Σ̂♯}

Notice that the program halts if a get instruction is executed with
an empty relation variable, or anassume(p) is executed in a state
that does not satisfyp.

Safety. Let P be the programloop{I1[] . . . []In}. The set of
Relational-reachable statesof P, denotedReach♯(P) is defined by
induction as:

Reach♯(P, 0)
.
= {s♯0}

Reach♯(P,m+ 1)
.
=

⋃

{Post♯(Reach♯(P,m),Ij) | 1 ≤ j ≤ n}
Reach♯(P)

.
=

⋃

{Reach♯(P,m) | 0 ≤ m}

A programP is Relational-safeif E 6∈ Reach♯(P).

4.3 Imperative Semantics

Next, we define the Imperative semantics, as a state transition
system. In this semantics,κ variablesκ range over tuples overV .

Imperative States. In the Imperative semantics, each states is
either the specialerror stateE or a map from program variables
to values such that every base variable is mapped to a value inV ,
and every relation variable of arityn is mapped either to a tuple in
V n or to the specialundefinedvalue⊥. LetΣ denote the set of all
a Imperative-program states.

Initial State. The initial states0 of an IMP program in the Impera-
tive semantics is a map in which every base variable is mappedto
a fixed value fromV , and every relation variable is mapped to⊥.

Transition Relation. The transition relation is defined using aPost
operator, which is identical toPost♯ in the Relational semantics
except for the tuple-get and tuple-set instructions. Figure 6 shows
the operatorPost for get and set operations. Again,Post is lifted
to a set of states in the natural way. Notice that the program halts if
a get instruction is executed with anundefinedrelation variable, or
anassume(p) is executed in a state that does not satisfyp.

Safety. Let P be the programloop{I1[] . . . []In}. The set of
Imperative-reachable statesof P, denotedReach(P) is defined by
induction as:

Reach(P, 0)
.
= {s0}

Reach(P,m+ 1)
.
=

⋃

{Post(Reach(P,m), Ij) | 1 ≤ j ≤ n}
Reach(P)

.
=

⋃

{Reach(P,m) | 0 ≤ m}

A programP is Imperative-safeif E 6∈ Reach(P).

5. From Type Constraints to IMP Programs
In this section we formalize the translation from type constraints
into IMP programs and prove that the constraints are satisfiable if
and only if the translated program is safe.

Refinement Type Translation

[[{ν :τ | p}]]get
.
= ν ← nondet();

assume(p)

[[{ν :τ | p}]]set
.
= assert(p)

[[{ν :τ | κ[y1 . . . yn/x1 . . . xn]}]]get
.
= (t0, . . . , tn)← κ;

assume(y1 = t1);
...
assume(yn = tn);
ν ← t0

[[{ν :τ | κ[y1 . . . yn/x1 . . . xn]}]]set
.
= κ← (ν, y1, . . . , yn)

Binding Translation

[[x :T ;G]]
.
= [[τ ]]get; x← ν; [[G]]

[[·]]
.
= skip

Constraint Translation

[[G ⊢ T1 <: T2]]
.
= [[G]]; [[T1]]get; [[T2]]set

Constraint Set Translation

[[{c1, . . . , cn}]]
.
= loop{[[c1 ]][] . . . [][[cn]]}

Figure 7. Translating Constraints to IMP Programs

5.1 Translation

Figure 7 formalizes the translation from (a set of) refinement type
constraintsC to an IMP program[[C]]. We use the WF constraints to
translate each relation variableκ of arityn+1 into a corresponding
tuple variableκ of arity n+ 1.

The translation is syntax-driven. We translate each subtyping
constraintG ⊢ T1 <: T2 into a straight-line block of instructions
with three parts: a sequence of instructions that establishes the
environment bindings ([[G]]), a sequence of instructions that “gets”
the values corresponding to the LHS ([[T1]]get) and a sequence
of instructions that “sets” the (LHS) values into the appropriate
RHS ([[T2]]set). The translation for a set of constraints is an infinite
loop that non-deterministically chooses among the blocks for each
constraint.

Each environment binding gets translated as a “get”. Bindings
with unknown refinements are translated into tuple-get operations,
followed byassume statements that establish the equalities corre-
sponding to the pending substitutions. Bindings with knownrefine-
ments are translated into non-deterministic assignments followed
by a assume that enforces that the refinement holds on the non-
deterministic value.

Each “set” operation to an unknown refinement is translated
into a tuple-set instruction that writes the tuple corresponding to
the pending substitutions into the translated tuple variable. Finally,
each “set” operation corresponding to a known refinement is trans-
lated to anassert instruction; intuitively, in such constraints the
RHS defines an upper bound on the set of values populating the
type, and theassert serves to enforce the upper bound require-
ment in the translated program.

The correctness of the procedure is stated by the following
theorem.

THEOREM1. C is satisfiable iff[[C]] is Relational-safe.

The proof of this theorem follows from the properties of the
following functionα that maps a set̂Σ♯ ⊆ Σ♯ of Relational-states



Common Operations
Post♯(E, I)

.
= {E}

Post♯(s♯, I1; I2)
.
= Post♯(Post♯(s♯, I1), I2)

Post♯(s♯, x← e)
.
= {s♯[x 7→ s♯(e)]}

Post♯(s♯, x← nondet())
.
= {s♯[x 7→ c] | c ∈ V }

Post♯(s♯, assume(p))
.
=

{

{s♯} if s♯(p) = true

∅ otherwise

Post♯(s♯, assert(p))
.
=

{

{s♯} if s♯(p) = true

{E} otherwise

Tuple Operations: Relational Semantics
Post♯(s♯, (t0, . . . , tn)← κ)

.
= {s♯[t0 7→ v0] . . . [tn 7→ vn] | (v0, . . . , vn) ∈ s♯(κ)}

Post♯(s♯, κ← (x0, . . . , xn))
.
= {s♯[κ 7→ s♯(κ) ∪ {(s♯(x0), . . . , s♯(xn))}]}

Tuple Operations: Imperative Semantics

Post(s, (t0, . . . , tn)← κ)
.
=

{

{s[t0 7→ v0] . . . [tn 7→ vn]} if s(κ) = (v0, . . . , vn)

∅ if s(κ) = ⊥
Post(s, κ← (x0, . . . , xn))

.
= {s[κ 7→ (s(x0), . . . , s(xn))]}

Figure 6. Relational and Imperative Semantics: Other casesof Post identical to Post♯

to constraint solutions:

α(Σ̂♯)
.
= λκ.

⋃

{s♯(κ) | s♯ ∈ Σ̂♯}

The functionα enjoys the following property, which can be proven
by induction on the construction ofReach♯, that relates the satisfy-
ing solutions of the constraints to the Relational-reachable states of
the translated program. Theorem 1 follows from the following ob-
servations. IfS satisfiesC thenα(Reach♯([[C]]))(κ) ⊆ S(κ) for
all κ. If E 6∈ Reach♯([[C]]) thenα(Reach♯([[C]])) satisfiesC.

5.2 Read-Write-Once Programs

At this point, via Theorem 1, we have reduced checking satisfia-
bility of type constraints to the problem of verifying assertions of
IMP programs under the (non-standard) Relational semantics. Un-
fortunately, under these semantics, the program contains variables
(κ) which range oversetsof tuples. This makes it inconvenient to
directly apply abstract-interpretation based techniquesfor imper-
ative programs which typically assume the (standard) Imperative
semantics; each technique has to be painstakingly adapted to the
non-standard semantics.

We would be home and dry if we could prove the equivalence
of the Relational and Imperative semantics; that is, if we could
show that an IMP program was Relational-safe if and only if it was
Imperative safe. Unfortunately, this is not true.
Example. Consider the IMP program:

loop{
ν ← nondet();
κ← (ν)

[]

(t0)← κ;
ν ← t0; x← ν;
(t0)← κ;
ν ← t0; y ← ν;
assert(x = y)

}

This programis notRelational-safe as the set-operation in the first
instruction populatesκ with the set of all integers, and the get-
operation in the second instruction can assign different values to
integer values tox andy. However the programis Imperative-safe
as whenever the second instruction executes,κ will be undefined
or contain some arbitrary integer that is assigned to bothx andy,
which causes the assert to succeed.

This example pinpoints exactly why the two semantics differ. In
the Relational semantics, in any given loop iteration, different gets
on the sameκ can returndifferent tuples, while in the Imperative
semantics the gets are correlated and return the same tuple.

Read-Write-Once Programs.An IMP instruction is aread-write-
onceinstruction if any relation variableκ is read from and written
to at most once in the instruction. That is, read-write-oncemeans
at most one write and at most one read (and not at most one read
or write). An IMP program is aread-write-onceprogram if each
instruction in its loop is a read-write-once instruction. We can
show that for Read-Write-Once IMP programs the Relational and
Imperative semantics are equivalent.

THEOREM2. If P is a read-write-once IMP program thenP is
Relational-safeiff P is Imperative-safe.

To prove this theorem, we formalize the connection between the
reachable states under the two different semantics, using the func-
tion Expand, which maps a Relational-state to a set of Imperative
states:

Expand(s♯)
.
=















s |

s(x) = s♯(x) for base variables
s(κ) = 〈v〉 if 〈v〉 ∈ s♯(κ)
s(κ) = ⊥ if s♯(κ) = ∅
s = E if s♯ = E















We lift the function to sets of Relational states in the natural way:

Expand(Σ̂♯)
.
=

⋃

{Expand(s♯) | s♯ ∈ Σ̂♯}

Next, we can show that read-write-once instructions enjoy the fol-
lowing property, by case splitting on the form ofI .

LEMMA 1. [Step] If I is a read-write-once instruction then
Expand(Post♯(s♯, I)) = Post(Expand(s♯), I).

We use this property to show that the reachable states under the
different semantics are equivalent.

LEMMA 2. If P = loop{I1[] . . . []In} is a read-write-once pro-
gram, thenExpand(Reach♯(P)) = Reach(P).

PROOF. To prove thatReach(P) ⊆ Expand(Reach♯(P)), we show

∀m : Reach(P, m) ⊆ Expand(Reach♯(P))

by straightforward induction onm, noting thats0 ∈ Expand(s♯0),
andPost(Expand(s♯), I) ⊆ Post♯(s♯, I) for any Relational-state
s♯ ∈ Σ♯, instructionI, and any programP (not necessarily read-
write-once).



To show inclusion in the other direction, we prove

∀m : Expand(Reach♯(P,m)) ⊆ Reach(P)

by induction onm. For the base case,

Expand(Reach♯(P, 0)) = Reach(P, 0) ⊆ Reach(P)

by the definition of the initial states. By induction, assumethat

Expand(Reach♯(P,m)) ⊆ Reach(P)

Let s′ ∈ Expand(Reach♯(P,m+ 1)). By Lemma 1, eithers′ is
already inReach♯(P,m), in which case the inductive hypothesis
applies and hences′ ∈ Reach(P), or

s′ ∈ Post(Expand(Reach♯(P,m), Ij)

for somej. That is, there is as ∈ Expand(Reach♯(P,m) such that
s′ ∈ Post(s,Ij). From the induction hypothesiss ∈ Reach(P). As
Reach(P) is closed underPost, we concludes′ ∈ Reach(P). 2

5.3 Cloning

At this point, we have shown that the Imperative semantics ofread-
write-once programs are equivalent to the Relational semantics. All
that remains is to show that the translation procedure of Figure 7
produces read-write-once programs. Unfortunately, this is not true.

Example. Consider the following constraints:

∅ ⊢ {κ} , ∅ ⊢ {true} <: {κ} , x :κ;y :κ ⊢ {true} <: {x = y}

It is easy to check that on the above constraints, the translation
procedure yields the IMP program from the previous example,
which is not read-write-once.

The reason the translated program is not a read-write-once pro-
gram is that there can be constraintsG ⊢ T1 <: T2 in which κ
occurs in multiple places withinG andT1.

To solve this problem, we can simplyclonetheκ variables that
occur multiple times inside a constraint, and use differentclones at
each occurrence! We formalize this as a procedureClone that maps
a finite set of constraints to another finite set. The procedure works
as follows. For eachκ that is read upton times in some constraint,
we maken clones,κ1, . . . , κn, and

1. for theith occurence ofκ within any constraint, we use theith

cloneκi (instead ofκ), and,
2. for each constraint whereκ appears on the right hand side,

we maken clones of the constraints where in theith cloned
constraint, we useκi (instead ofκ).

The first step ensures that eachκ is read-once in any constraint,
and the second step ensures that the clones correspond to exactly
the same set of tuples as the original variableκ. We can prove that
Clone enjoys the following properties.

THEOREM 3. LetC be a finite set of constraints.

1. [[Clone(C)]] is a read-write-once program.
2. Clone(C) is satisfiable iffC is satisfiable.

It is easy to verify that[[Clone(C)]] is a read-write-once pro-
gram. Furthermore, any satisfying solution for the original con-
straints can be mapped directly to a solution for the cloned con-
straints. To go in the other direction, we must map a solutionthat
satisfies the cloned constraints to one that satisfies the original con-
straints. This is trivial if the solution for the cloned constraints
maps each cloneκi to the same set of tuples. We show that if the
cloned constraints have a satisfying solution, they have a solution
that satisfies the above property. To this end, we prove the follow-
ing lemma that states that foranyset of constraints, the satisfying
solutions are closed under intersection.

Program Time Invariant
(sec) Refinement Types

max 0.091 κ1.1 ≤ κ1.0 ∧ κ1.2 ≤ κ1.0
κx

.
= true, κy

.
= true, κ1

.
= x ≤ v ∧ y ≤ v

sum 0.071 0 ≤ κ2.0 ∧ κ2.1 ≤ κ2.0
κk

.
= true, κ2

.
= 0 ≤ v ∧ k ≤ v

foldn 0.060 0 ≤ κi.0 ∧ 0 ≤ κ3.0 ∧ κ3.0 < κ3.2
κi

.
= 0 ≤ v, κ3

.
= 0 ≤ v ∧ v < n

arraymax 0.135 0 ≤ κ4.0 ∧ 0 ≤ κ5.0 ∧
0 ≤ κ6.0 ∧ κg.0 < len(κg.1)

κ40
.
= ≤ v, κ5

.
= 0 ≤ v,

κ6
.
= 0 ≤ v, κg

.
= v < len(a)

mask 0.098 κ1.0 < len(κ1.4) ∧ κ1.1 ≤ κ1.0 ∧
0 ≤ κ2.0 ∧ κ2.0 < len(κ2.3)

κ1v < len(xs) ∧ i ≤ v,
κ2

.
= 0 ≤ v ∧ v < len(a)

samples 0.117 0 ≤ κ2.0 ∧ κ2.0 < len(κ2.4) ∧
0 ≤ κ3.0 ∧ κ3.0 < len(κ3.3) ∧ 0 ≤ κ6.0

κ2
.
= 0 ≤ v ∧ v < len(b),

κ3
.
= 0 ≤ v ∧ v < len(a), κ6

.
= 0 ≤ v

Table 1. Experimental evaluation using a predicate abstraction-
based verification tool on examples from [29]. The third column
presents the invariant for the translated program, and the resulting
refinement types.

LEMMA 3. If S1 andS2 are solutions that satisfyC thenS1∩S2
.
=

λκ.S1(κ) ∩ S2(κ) satisfiesC.

Thus ifS satisfies the cloned constraints then by symmetry and
Lemma 3 the solution that mapseachcloned variable to∩n

i=1S(κ
i)

also satisfies the cloned constraints, and hence, directly yields a
solution to the original constraints.

Finally, as a corollary of Theorems 1,2,3 we get our main result
that reduces the question of refinement type constraint satisfaction,
to that of safety verification.

THEOREM4. C is satisfiable iff[[Clone(C)]] is Imperative-safe.

While we state Theorems 1 and 3 as preserving satisfiability,the
proof shows how the solutions can be effectively mapped between
C and [[C]] (or [[Clone(C)]]. In particular, while the intersection
of two non-trivial solutions can be a trivial solution, it would be
guaranteed that in that case, the trivial solution satisfiesC. Stated in
terms of invariants, Lemma 3 states the observation that that there
may be several non-comparable inductive invariants to prove a
safety property, but in that case, the intersection of all the inductive
invariants is also an inductive invariant.

6. Experiments
We have implemented a verification tool for OCAML programs
based on RTI. We use the liquid types infrastructure implemented
in DSOLVE [29] to generate refinement type constraints from
OCAML programs. We use ARMC [28], a software model checker
using predicate abstraction and interpolation-based refinement, as
the verifier for the translated imperative program.

Table 1 shows the results of running our tool on a suite of small
OCAML examples from [29]. For array manipulating programs, the
safety objective is to prove array accesses are within bounds. For
MAX we prove that the output is larger than input values. ForSUM
we prove that the sum is larger than the largest summation term.

Table 2 presents the running time of our tool on the benchmark
programs for the Depcegar verifier [31]. We observe that despite of
our blackbox treatment of ARMC as a constraint solver we obtain
competitive running times compared to Depcegar on most of the
examples (Depcegar uses a customized procedure for unfolding



Program Time # iterations # predicates
boolflip.ml 2.17s 7 21
sum.ml 0.24s 5 14
sum-acm.ml 0.11s 1 3
sum-all.ml 3.51s 10 26
mult.ml 4.67s 10 25
mult-cps.ml 780.24s 11 27
mult-all.ml 18.44s 9 24
boolflip-e.ml 0.65s
sum-e.ml 0.01s
sum-acm-e.ml 0.02s
sum-all-e.ml 0.79s
mult-e.ml 0.01s
mult-cps-e.ml 7.69s
mult-all-e.ml 144.93s

Table 2. Experimental evaluation of our tool on Depcegar bench-
marks [31]. The third column presents the number of abstraction
refinment iterations required by ARMC. The last column givesthe
number of predicates discovered by ARMC. For the programs with
suffix “-e”, which are incorrect, we omit the number of iterations
and predicates and only show the time required by ARMC to find
a counterexample.

constraints and creating interpolation queries that yieldrefinement
types).

Most of the predicates discovered by the interpolation-based
abstraction refinement procedure implemented in ARMC fall into
the fragment “two variables per inequality.” The exampleMASK
required a predicate that refers to three variables, seeκ1. While our
initial experiments used a CEGAR-based tool, we expect optimized
abstract interpreters for numerical domains to also work well for
this class of properties.

7. Extensions and Related Work
7.1 Completeness

The soundness of safety verification for higher-order programs for
any domain follows from the soundness of constraint generation
(e.g.,Theorem 1 in [29]) and Theorem 4. Since the safety verifi-
cation problem for higher-order programs is undecidable, the tech-
nique cannot be complete in general. Even in the finite-statecase,
in which each base type has a finite domain (e.g.,booleans), com-
pleteness depends on the generation of type constraints. For exam-
ple, in our examples and in our implementation, we have assumed a
context insensitiveconstraint generation from program syntax,i.e.,
we have not distinguished the types of the same function at differ-
ent call points. This entails a loss of information, as the following
example demonstrates. Consider

let check f x y = assert (f x = y) in
check (fun a -> a) false false ;
check (fun a -> not a) false true

where the builtin functionassert has the type{ν :bool | ν} →
unit. The refinement template forcheck generated by our con-
straint generation process is

(x : {ν :bool | κ1} → {κ2})→ {κ3} → {κ4} → unit

which is too weak to show that the program is safe. This is because
the template “merges” the two call sites forcheck.

One way to get context sensitivity is throughintersection types
[12, 14, 20, 25]. For the above example, we can show type safety
using the following refined type forcheck:

∧ (x : bool→ {ν = x})→ {¬ν} → {¬ν} → unit
(x : bool→ {ν = ¬x})→ {¬ν} → {ν} → unit

It is important to note that Theorems 1 and 2 hold forany set
of constraints. Thus, one way to get completeness in the finite
state case is to generate refinement templates using intersection
types, perform the translation to IMP programs, and then using a
complete invariant generation technique for finite state systems.
The key observation (made in [20]) that ensures a finite number
of constraints, is that there is at most a finite number of “contexts”
in the finte state case, and hence a finite number of terms in the
intersection types. The bad news is that the bound on the number
of contexts isexpn(k), wheren is the highest order of any function
in the program,k is the maximum arity of any function in the
program, andexpn(k) is a stack ofn exponentials, defined by
exp0(k) = k, andexpn+1(k) = 2expn(k).

Fully context-sensitive constraints are used in [20] to show com-
pleteness in the finite case, at the price ofexpn(k) in every case,
not just the worst case. In our exposition and our implementation,
we have traded off precision for scalability: while we lose pre-
cision by generating context-insensitive constraints, weavoid the
expn blow-up that comes with full context sensitivity. However,it
has been shown through practical benchmarks that since the types
themselves capture relations between the inputs and outputs, the
context-insensitive constraint generation suffices to prove a variety
of complex programs safe [3,18,29].

When considering completeness properties in special cases, we
point out completeness wrt. the discovery of refinement predicates
in octagons/difference bounds abstract domains [24] and template-
based invariant generation for linear arithmetic [7] and extensions
with uninterpreted function symbols [5], which carries over from
respective verification approaches.

7.2 Related Work

Higher-Order Programs. Kobayashi [20, 21] gives an algorithm
for model checking arbitraryµ-calculus properties of finite-data
programs with higher order functions by a reduction to model
checking for higher-order recursion schemes (HORS) [26]. For
safety verification, RTI shows a promising alternative.

First, the reduction to HORS critically depends on a finite-state
abstraction of the data. In contrast, our reduction defers the data ab-
straction to the abstract interpreter working on the imperative pro-
gram, thus enabling the direct application of abstract interpreters
working over infinite domains. Since abstract interpretersover infi-
nite abstract domains are strictly more powerful than (infinite fam-
ilies of) finite ones [8], our approach can be strictly more powerful
for infinite-state programs.

Second, in the translation of an abstracted program to a HORS,
this algorithm eliminates Boolean variables by enumerating all
possible assignments to them, giving an exponential blow-up from
the program to the HORS. In contrast, our technique preserves the
Boolean statesymbolically, enabling the use of efficient symbolic
algorithms for verification. For example, for the simple example:

let f b1 ... bn x =
if (b1 || ... || bn) then lock x;
if (b1 || ... || bn) then unlock x

in let f (*) ... (*) (newlock ())

where we wish to prove that lock and unlock alternate. Kobayashi’s
translation [20] gives anexponentialsized HORS, with a version of
f for each assignment tob1,...,bn. In contrast, our reduction pre-
serves the source-level expressions and is linear, and amenable to
symbolic verification techniques (e.g., BDDs). Previous experience
with software model checking [2,16,17] shows that the number of
reachable states is often drastically smaller than2p wherep is the
number of Booleans. Thus, the pre-processing step that enumerates
Booleans may not lead to a scalable implementation.



Might [23] describeslogic-flow analysis, a general safety verifi-
cation algorithm for higher-order languages, which is the product of
a k-CFA like call-strings analysis and a form of SMT-based pred-
icate abstraction (together with widening). In contrast, our work
shows how higher-order languages can be analyzed directly via ab-
stract analyses designed for first-order imperative languages.

Inference of refinement types using conterexample-guided tech-
niques was recentrly identified as a promising direction [31,32]. In
contrast, our approach is not limited to CEGAR and facilitates the
applicability of a wide range abstract interpretation techniques for
precise reasoning about program data.

Software Verification. This work was motivated by the recent suc-
cess in software model checking for first-order imperative pro-
grams [2, 6, 16, 22], and the desire to apply similar techniques to
modern programming languages with higher order functions.Our
starting point was refinement types [14, 19], implemented inde-
pendent ML [33] to give strong static guarantees, and the work on
liquid types [18, 29] that applied predicate abstraction toinfer re-
finement types. By enabling the application of automatic invariant
generation from software model checking, RTI reduces the need
for programmer annotations in refinement type systems.
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