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Abstract

Segmentation is a popular technique for discovering
structure in time series data. We address the largely open
problem of estimating the number of segments that can be
reliably discovered. We introduce a novel method for the
problem, called Pete. Pete is based on permutation testing.

The problem is an instance of model (dimension) selec-
tion. The proposed method analyzes the possible overfit
of a model to the available data rather than uses a term
for penalizing model complexity. In this respect the ap-
proach is more similar to cross-validation than regulariza-
tion based techniques (e.g., AIC, BIC, MDL, MML). Fur-
ther, the method produces ap value for each increase in the
number of segments. This gives the user an overview of the
statistical significance of the segmentations. We evaluate
the performance of the proposed method using both syn-
thetic and real time series data. The experiments show that
permutation testing gives realistic results about the number
of reliably identifiable segments and that it compares favor-
ably with the Monte Carlo cross-validation (MCCV) and
commonly used BIC criteria.

1. Introduction

Time series segmentation is an instance of clustering
analysis. It addresses the following data mining problem:
given a time seriesT , find a partitioning ofT to segments
that are internally homogeneous. Depending on the appli-
cation, the goal could be to locate stable periods of time,
to identify change points, or to simply compress the orig-
inal time series into a more compact presentation. In this
paper, we are concerned with the discovery of interesting
features in data rather than with compression as such. For
an overview to methods and approaches to time series seg-
mentation see, e.g., [7, 8, 13, 5, 6].

As an example application, consider the analysis of bios-
tratigraphic data collected from microfossils accumulated

and preserved in lake sediments [4, 11]. Paleoecologists ob-
tain deep cores of sediment and analyse them layer by layer.
Deeper layers correspond to distant points in time and the
topmost layers are the most recent ones. Typically such data
spans a period from hundreds to thousands of years. In each
layer (time point), the species composition of some suitable
organisms is analysed. The abundances of these species in
the different sediment layers form a multidimensional time
series, where homogeneous segments correspond to envi-
ronmentally relatively stable periods and segment bound-
aries to more significant changes in the environment.

We introduce a novel method,Pete, for estimating the
number of segments that can be reliably found in a given
time series. The method is based on permutation tests on the
available data. Instead of defining a data independent mea-
sure for model complexity, like penalized likelihood based
approaches, it only measures the dataset specific overfit re-
sulting from increased model complexity, and is in this re-
spect similar to cross-validation techniques.

Another recent application for time series segmentation
is in context sensitivity of mobile devices. Being able to
measure and sense the environment is not enough: a prob-
lem that remains is how to recognize different contexts from
the measurements. An approach proposed recently is to seg-
ment the measurement time series and, in the spirit of un-
supervised learning, to identify different contexts with the
discovered homogeneous segments [6]. Again, the number
of segments to be discovered has a significant effect on the
results.

In a nutshell, the Pete algorithm can be described as
follows. The given time series is segmented in steps tom = 1; 2; : : : segments. The segmentation can be done
with any segmentation algorithm; all that Pete needs from
each segmentation is the amount of error that remains (or
the goodness of fit). Pete recognizes overfitting by analyz-
ing at each segmentation stepm the reduction of error. The
relative reduction is contrasted to the respective reduction�Also at Nokia Research Center



in the case there no segment structure in the data. If the re-
duction is not significantly better in the observed data then
segmentation is stopped.

2. Background and definitions

2.1. Time series and segmentations

A time seriesT = (x(t)j1 � t � n) is a finite set ofn
samples labeled by time points1; 2; : : : ; n. A segment ofT
is a set of consecutive time pointsST (a; b) = (tja � t �b). An m-segmentationSmT (m � n) of time seriesT is a
partition ofT tom non-overlapping segmentsSmT = fST (ai; bi)j1 � i � mg
such thata1 = 1, bm = n, andai = bi�1+1 for 1 < i � m.
In other words, anm-segmentation splitsT to m disjoint
time intervals. For simplicity, the segments are denoted byS1; : : : ; Sm.

Usually the goal is to find homogeneous segments from
a given time series. For instance, in paleoecological stud-
ies an objective is to find periods of time where the species
composition and thus also the climate has been relatively
stable. In such a case the segmentation problem can be
described as constrained clustering: data points should be
grouped by their similarity, but with the constraint that all
points in a cluster must come from successive time points.

We assume that the segmentation is based on fitting a
(simple) function within each segment, and on searching for
a segmentation that results in a good overall fit. Usually the
function is a constant or linear function, or a polynomial of
a higher but limited degree, fitted to approximate the values
within the segment.

2.2. The error of a segmentation

A good segmentation fits the data well and has a small
error. The estimation error is usually defined as a positive
function of the distances between the actual values in the
time series and the values given by the functions within seg-
ments.

Let T be a time series of lengthn and SmT =fS1; : : : ; Smg 2 Sm an m-segmentation, whereSm de-
notes the set of all possiblem-segmentations ofT . Let �i
denote the vector of parameters for the function in segmentSi. (For a constant function there obviously is only one pa-
rameter and for a non-continuous linear function there are
two parameters per segment.)

The error e(SmT ) = e(SmT ; �1; �2; : : : ; �m) (1)

of a segmentation describes how far the model, i.e., the
function consisting of the local functions in the segments,

is from the data. The error function is usually the sum of
squared errors or a function of the (log) likelihood in prob-
abilistic settings. Since different approaches base the seg-
mentation on different error measures, we do not assume
any particular segmentation algorithm or error function. We
do assume that the modeling errore(S1T ), e(S2T ); : : : for a
given segmentT is a positive non-increasing function of the
number of segments.

2.3. Finding good segmentations

Suppose that finding the parameter values� =(�1; : : : ; �m) that (approximately) minimize the error func-
tion for a given segmentationSmT is a tractable task, e.g.,
computation of the least squares line. Given that� is easily
available the question remains how to explore the setSm
for good solutions: the search space is exponential inn, the
length of the time series.

The optimalm-segmentation can be characterized in a
recursive way so that dynamic programming can be used to
find it (e.g. [6]). Unfortunately, dynamic programming is
computationally intractable for many real data sets. Con-
sequently, heuristic optimization techniques such as greedy
top-down or bottom-up techniques are frequently used to
find good but suboptimalm-segmentations [6, 7].

In this paper, we do not address the problem of how to
find good segmentations. We simply assume one of the
many available methods is used.

2.4. Relative reduction of error

Recall thate(SmT ) is the error of segmentationSmT . ThenRR(mjT ) = e(Sm�1T )� e(SmT )e(Sm�1T ) (2)

is the relative reduction of error whenm segments are used
instead ofm � 1 segments. The Pete method will analyze
the relative reduction of error as the number of segments is
increased and stop segmentation when statistically signifi-
cant reductions are not achieved any more.

The assumptions we make about the underlying segmen-
tation algorithm and the error function can be summarized
as follows. For a fixed time seriesT and a given segmen-
tation algorithm, the errore(S1T ), e(S2T ); : : : is a positive
non-increasing function of the number of segments. This
follows naturally if the power of the local functions is con-
stant, as is usually the case. Obviously thenRR(mjT ) is in[0; 1℄ for all m > 1.
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Figure 1. A noisy piece-wise linear time series (left). Abso lute error (middle) and relative reduction
of error (right) as a function of the number of segments.

3. Estimating the number of segments

3.1. The method

We now introduce the Pete algorithm for determining an
appropriate number of segments in a given time series. The
idea is perhaps best conveyed by a simple example. We
will justify the use of permutation tests more formally in
the following subsection.

Imagine a piecewise linear time series consisting of, say,
around 20 segments, with some noise in the data (Figure 1,
left). Segmenting the time series intom = 2; 3; : : : ; 20
segments keeps improving the fit and decreasing the er-
ror, as more and more of the true segments of the data
are matched (solid line in the middle panel of Figure 1).
With m = 21; 22; : : : segments the error keeps decreasing
as well, but the reduction of error is due to noise in the data.
We devise a method that tests if the reduction of error is
likely to be due to noise or due to some structure in the
data.

So how to tell if the reduction of error is due to noise?
Let T be the given time series of lengthn, and letT be a
similar random time series consisting of noise only and of
no non-random structure. What we want to do is to test the
alternative hypothesish1 : RR(mjT ) > RR(mjT ) against
the null hypothesish0 : RR(mjT ) = RR(mjT ). If we
can test the null hypothesis and the observed reduction of
error is very unlikely to result from noise, then (at least)m
segments can be considered justified.

Where to obtain random time seriesT that are somehow
representative of the properties of the original time seriesT ,
without making any assumptions aboutT? The short an-
swer is to use permutations ofT : randomly permute the or-
der of the datapoints, and the result is a random time series
with value distribution identical toT . Figure 1 shows the
absolute errors (middle) and their relative reductions (right)
for the time series (left) and for one randomly permuted
time series. For the random time series with no temporal
structure the error decreases constantly — but remarkably

slowly. The original and the permuted time series do not
have similar reductions of error until about 22 segments.

The null hypothesis can be tested by generating a number
of random timeseriesT having the same value distribution
asT and counting how oftenRR(mjT ) � RR(mjT ). This
(approximated) probability of getting reductionRR(mjT )
by chance is thep value of the data under the null hypothe-
sis. If it is low, e.g. below 0.05, thenRR(mjT ) is unlikely
to result from noise andm segments are justified.

Table 1 gives the Pete algorithm. To sum it up: we pro-
pose to generate random permutations of the given time se-
ries and to compare the reduction of error in the original
data to that of permuted data sets, and to stop segmentation
when a relatively large fraction (say, 0.05) of the permuted
data sets has at least as good reduction of error as the origi-
nal data set. Throughout this paper we use a cutoff value of
0.05 for thep value.

3.2. Statistical justification for the method

We next go through the approach more formally. De-
note byMT the set of all time series of lengthn whose
value distribution is identical with the given time seriesT
of lengthn. Further, letT be a uniformly distributed ran-
dom time series inMT .

Let IT (T ;m) be an indicator (a Bernoulli random vari-
able) for whetherT results in no smaller reduction of error
thanT when segmented tom segments:IT (T ;m) = � 1 if RR(mjT ) � RR(mjT )0 otherwise.

(3)

Let us denote bypT (m) the probability ofRR(mjT ) �RR(mjT ), i.e., ofIT (T ;m) = 1.
The p value of them-segmentation ofT , denotedpT (m), can be estimated as follows. First, we havepT (m) = PTi2MT IT (Ti;m)jMT j : (4)



Algorithm Pete
Input : time seriesT , segmentation algorithmA, error

functione, number of permutationsN , cutoff valuep0 for p value
Output : number of reliably identifiable segments
Method:
1. GenerateN random permutationsTi of T
2. Use segmentation algorithm A to computee(S1T )

and eache(S1Ti), i.e., errors with one segment
3. Form := 2; : : : ; n (wheren is the length ofT ):

3.1. Use A to segmentT and eachTi tom segments
3.2. Letr := jfTi : RR(mjTi) � RR(mjT )gj=N be

the fraction of permutations where the reduction
of error was at least as good as withT

3.3. If r > p0 then returnm� 1
4. Returnn

Table 1. Pete permutation procedure for esti-
mating the number of segments

Second, permutations can be used to approximate the right
hand side of Equation 4: instead of summing over allTi 2 MT , we sum over a random sample fromMT , ob-
tained using random permutations of the original time se-
riesT .

Permutation testing is a special case of Monte Carlo in-
tegration: thep value is estimated withN random points
asp̂NT (m) = 1N NXi=1 IT (Ti;m) � E(IT (T ;m)) = pT (m) (5)

whereT1; T2; : : : ; TN are uniform random samples fromMT . Random sampling fromMT can be carried out ef-
ficiently by simply generating random permutations ofT ,
since the setMT is exactly the same as the set of all permu-
tations of time seriesT .

Figure 2 illustrates the Monte Carlo estimated distribu-
tion of RR(mjT ) (m = 2; : : : ; 50) as well as the relative
reduction of the observed time series (Figure 1) obtained in
1000 random permutations. The region wherep � 0:05,
i.e., where the relative reduction is statistically significant,
is drawn with stronger lines.

We emphasize that thep valuepT (m) is used only as
a tool to decide when to stop segmentation. It should not
be thought of as a statement about the probability of any
exact number of segments. Also, we obviously do not ex-
pect the data to actually consist of any constant or linear
segments, even when evidence for several segments is dis-
covered. Segmentation itself is a tool for discovering useful
structure in the data, and constant and linear segments are
suitable classes of concepts to be used in such an analysis.

p>0.05
p<=0.05

RR(T)

5 10 15 20 25 30 35 40 45 50

#segments (m)

0.01
0.02
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0.2
0.3

RR (log-scale)

probability

Figure 2. Monte Carlo approximated probabil-
ities p[RR(mjT ) = xjT ℄of the relative reduc-
tion (RR) given the time series T of Figure 1
(left) and the number of segments.

3.3. Related work

The problem of determining an appropriate number of
segments is a special case of estimating the number of di-
mensions of a model. The question is about overfitting: how
to avoid too complex models that fit noise in addition to the
’true signal’.

There are several approaches for determining the dimen-
sion of a model. They can be roughly divided into two
groups: (1) some measure model complexity without regard
to the data, as well how well a model fits the data, (2) some
only analyze the fit to the data.

(1) Penalized likelihood, e.g., MDL, MML, BIC, AIC,
SIC and structural risk minimization [1, 12, 3, 16, 17], and
generally all regularization based approaches to estimatean
unknown target function, specify a cost for the model com-
plexity and then minimize the sum of the model complexity
and error. In thepure Bayesian approachthe full probability
model for all variables of the application domain, includ-
ing model dimensionm, is defined, including (data inde-
pendent) prior distributions. The Bayesian approach can be
considered as an instance of the penalized likelihood with-
out asymptotically derived complexity term.

(2) Cross-validationis is a general and well-understood
technique for addressing overfitting. In particular,Monte
Carlo cross-validation, a variant of the standardv-fold
cross-validation, has been successfully applied to model di-
mension selection [14, 15].The generalized likelihood ra-
tio test [2] is an example of a test on the increase in the
model likelihood, compared to an assumed underlying dis-
tribution. There are techniques that try to locate a knee in
the error or likelihood curve (cf. Figure 1, middle). The



broken stick model[10] is widely used by paleoecologists
in the zonation problem. The broken stick model gives the
expected amount of variance (error) accounted for by a seg-
ment, under the assumption that those variances follow the
broken stick distribution. It is primarily applicable in top-
down segmentation, where splits are added incrementally to
an existing segmentation.

The permutation test method Pete differs significantly
from methods in the first category since it does not assign
any data-independent cost to model complexity. It does
have an analogy to the generalized likelihood ratio test [2]
when the error function is the log-likelihood function. How-
ever, the biggest difference to most methods in the second
category is that Pete does not assume any particular distri-
bution for the data or the error function. Cross-validationis
clearly the closest match to Pete in these respects.

4. Experiments

We evaluated Pete against BIC and MCCV using both
synthetic and real data. Since the real data has no “right”
answers, we focus here on the synthetic cases.

4.1. Generation of synthetic data

We generated simulated data in order to assess the per-
formance of Pete in controlled settings. The data was gen-
erated using random piecewise constant models. The per-
formance was evaluated with respect to signal to noise ratio
(SNR).

For the piecewise constant time series, the constants
were generated from the normal distribution N(0,�lo
), and
noise was added from the normal distribution N(0,�). The
change points were drawn from a uniform distribution. In
data generation,� was a constant and the signal to noise ra-
tio SNR = �lo
� was adjusted by varying the variance�lo

of the signal (Figure 3). The synthetic data sets consisted of
100 data points each.

4.2. Evaluation methodology

The true number of statistically identifiable segments is
not known for the data sets with noise, so we do not have
any right answers to the number of segments, except for
the extreme cases. Without any noise (SNR! 1) exactly
the original number of (noiseless) segments should ideally
be identified; and with noise alone (SNR! 0), only one
segment should be discovered. Sensitivity to the original,
noiseless segments was used as the basis for the numerical
results, despite these shortcomings.

The following parameters were used in estimating the
number of segments. Segmentations to piecewise constant
functions were done with the greedy top-down method, and

the error function was the sum of squared errors (which is
proportional to log-likelihood function with normal noise).
A cutoff valuep � 0:05 was used to decide whether to
continue segmentation. 2500 permutations were used to es-
timate thep values. Finally, all results with the synthetic
data sets were averaged over 100 similarily generated ran-
dom data sets.

The prediction accuracy obtained by Pete was evaluated
against the penalized likelihood-based BIC-score [12] and
Monte Carlo cross-validation [14, 15].

We evaluated the performance of BIC in two ways: (i) in
a realistic setting, in which the variance of noise was esti-
mated from the residuals (maximum likelihood), and (ii) in
an unrealistic setting in which the true variance of noise was
given as a parameter (we call this “oracle BIC” to reflect the
fact that the variance is not known for real data sets). The
first setting gives a practical benchmark for the performance
of the method, and the second setting gives an (unfair) up-
per limit for the performance of BIC. For the permutation
tests there obviously is no need to estimate the variance of
noise.

Monte Carlo cross-validation (MCCV) or ’repeated-
learning testing’ was carried out as follows. Given a time
seriesT , randomly selected 50% of time points inT are as-
signed to the test set, and the remaining 50% constitute the
training set. This procedure is repeatedM times, givingM
paired test setsT testi and training setsT traini (1 � i �M ).
For each number of segmentsm = 1; 2; : : :, the training
setT testi is used for segmentation and the segmentation er-
ror is then computed in the corresponding test setT traini .
In the MCCV procedure we choose the numberm of seg-
ments that minimizes the average of test errors. The average
is taken over several random splitsM to reduce variance in
the estimates.

Recent experiments indicate that MCCV might give
more reliable results thanv-fold cross-validation in terms of
choosing the correct number of cluster components [14, 15].
We adopted in our experiments split fraction 50% since it is
reasonably robust across a variety of problems [14]. The
number of splits was chosen to beM = 100.

4.3. Results

Figure 4 gives a summary of the experimental compar-
isons between Pete, BIC, Monte Carlo Cross-validation and
the imaginary “oracle BIC”. SNR decreases and the amount
of noise increases from top to bottom. The left and right
columns differ only in the number of segments. Except in
the very noisy bottom row, Pete and “oracle BIC” quite con-
sistently peak at the actual number of segments and have
the highest density region roughly around it. BIC, instead,
tends to position its estimations systematically to smaller
values, and so does MCCV. MCCV tends to make “flat”
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Figure 3. Two example time series consisting of 7 piecewise c onstant segments and two different
levels of noise (SNR=2 and 10) (left panel). P values for segmentations of paleoecological data sets
(middle and right panel)

predictions, i.e., the variance is large. The expected num-
ber of segments is however closer to the original number
than in the results from BIC. All methods — quite expect-
edly — find less and less segments as the amount of noise
is increased.

Based on the results, Pete is a most competitive ap-
proach. It outperforms BIC and MCCV almost constantly.
Pete compares well even with the non-existing “oracle BIC”
or the “BIC upper limit”.

An interesting phenomena is that Pete sometimes gives
very small estimates for the number of segments, even with
large SNR (little noise). This is probably due to the permu-
tation test being conservative and predicting a small num-
ber of segments if evidence for more segments is not very
strong. It is also possible that a singlep value above the
cutoff value stops segmentation prematurely. Overall, the
cutoff value obviously has a direct effect on the number of
segments. We do no not believe, however, that increasing
the value from 0.05 to get more segments would give better
results. On the contrary: it is likely that spurious segments
would then be discovered. Analysis of this is a topic for
future research.

4.4. Real data

We applied Pete to three real-world data sets from the
field of paleoecology. Paleoecological analysis of the first
data set is presented in [9] and the two other data sets have
been discussed in [4].

The first data set (Tsuolbmajavri) consists of chirono-
mid assemblages collected from a lake sediment in north-
ern Lappland. It is composed of 51 chironomids in 148
sediment layers [9]. The other two data sets (Dallican and
Hockham)1 are sediment cores consisting of pollen data [4].
Dallican data set consists of 23 pollen taxa in 80 time points,
and Hockham data set consists of 132 pollen taxa in 163
time points. The high dimensionality with respect to the

length of the time series makes segmentation of these data
sets very challenging. (Obviously, dimensionality reduc-
tion techniques could be useful here, but they are outside
the scope of this paper.)

Middle and right panels of Figure 3 shows thep value
curves obtained for Tsuolbmajavri, Dallican and Hockham
data sets, respectively (top-down algorithm, sum of vari-
ances within segments as error function, 10000 permuta-
tions). With a cutoff valuep � 0:05, thep value curves can
be interpreted to indicate that the Dallican data set consists
of 6 segments, and that there are only two reliably identifi-
able segments in the Hockham data set. For the chironomid
data set of Tsuolbmajavri it seems, in turn, that it is possible
to identify 23 segments.

5. Conclusions and future work

We have introduced a new method, called Pete, for es-
timating the number of segments in time series data. Pete
compares the quality of segmentations of the given data to
the quality of segmentations of its random permutations.

We evaluated the performance of Pete against BIC and
MCCV using synthetic time series. Experimental results
show that Pete is very competitive: it was able to give
very realistic estimations about the number of segments,
and clearly and consistently seems to outperform BIC and
MCCV in this task. However, permutations are computa-
tionally heavy and not necessarily suitable for time critical
systems.

BIC was used here as a representative of a family of
methods that use a model complexity term for model selec-
tion. Unlike many methods based on Occam’s Razor, the
proposed method does not use such a term. This is achieved
by examining the derivative of the error function (relative

1. We acknowledge Keith D. Bennett and European Pollen Database for
permission to use Hockham and Dallican data sets and Atte Korhola and
Heikki Olander for permission to use Tsuolbmajavri data-set



reduction of error), e.g., the likelihood function, with re-
spect to the derivates of the errors in a control group, as the
model complexity is increased.

Cross-validation is the closest match to Pete in an im-
portant respect: the available data alone is used to select the
model. No model complexity term nor assumptions about
the data are needed. The subtle difference is that cross-
validation holds out a part of the available data as a test
set to estimate how well a model learned from the rest of
the data actually generalizes. The permutation procedure in
turn uses the full data set and its permutations to estimate
the probability of obtaining a good model (in the sense of
a small training error) just by chance. One reason for the
inferior performace of cross-validation in our experimental
results might be due to the size of the data set used to build
the model: permutation tests use all of the available data
whereas cross-validation holds back a fraction (50% in our
experiments, selected based on results in [14]).

Possible future research issues include the following top-
ics.

(i) The effect of different segmentation algorithms and
error functions. For instance, consider greedy top-down
segmentation that adds one segment boundary at a time
without moving the existing ones. Instead of permuting
the whole time series we could permute each segment sep-
arately, just like the top-down method tests the effect of a
split in each existing segments, to obtain ap value that more
closely matches the selected induction principle.

(ii) The approach we presented here is based on using
a random sample from a data-dependent control group in
model selection. Which kind of problems could this ap-
proach be generalized to?

(iii) Multidimensional data sets. Our current artificial
data sets are one dimensional (in addition to time) but many
of the interesting applications, such as the paleoecological
data, are multidimensional. More tests are needed in this
front.

(iv) An analysis of thep values. The longer the time
series, the morep values are generated, and the more likely
it is that some seem to indicate significant results, just by
chance. For instance, what can be said of isolated smallp
values, such as the ones in two of our ecological data sets
(Figure 3, middle)? Do they indicate a larger number of
segments, or are they just random effects? Currently we
bend towards the latter assumption.
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Figure 4. Distributions for the estimated number of segment s obtained by the proposed permutation
test (Pete), BIC, Monte Carlo cross-validation (MCCV) and “ oracle BIC”. The true number of segments
is 8 (left column) or 13 (right column). Each graph is obtaine d using 100 random data sets.


