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Abstract and preserved in lake sediments [4, 11]. Paleoecologists ob
tain deep cores of sediment and analyse them layer by layer.
Segmentation is a popular technique for discovering Deeper layers correspond to distant points in time and the
structure in time series data. We address the largely opentopmost layers are the most recent ones. Typically such data
problem of estimating the number of segments that can bespans a period from hundreds to thousands of years. In each
reliably discovered. We introduce a novel method for the layer (time point), the species composition of some sugtabl
problem, called Pete. Pete is based on permutation testing. organisms is analysed. The abundances of these species in
The problem is an instance of model (dimension) selec-the different sediment layers form a multidimensional time
tion. The proposed method analyzes the possible overfitseries, where homogeneous segments correspond to envi-
of a model to the available data rather than uses a term ronmentally relatively stable periods and segment bound-
for penalizing model complexity. In this respect the ap- aries to more significant changes in the environment.
proach is more similar to cross-validation than regulariza We introduce a novel methodPete for estimating the
tion based techniques (e.g., AIC, BIC, MDL, MML). Fur- number of segments that can be reliably found in a given
ther, the method producesgpavalue for each increase inthe  time series. The method is based on permutation tests on the
number of segments. This gives the user an overview of thewvailable data. Instead of defining a data independent mea-
statistical significance of the segmentations. We evaluatesure for model complexity, like penalized likelihood based
the performance of the proposed method using both syn-approaches, it only measures the dataset specific overfit re-
thetic and real time series data. The experiments show thatsulting from increased model complexity, and is in this re-
permutation testing gives realistic results about the nemb  spect similar to cross-validation techniques.
of reliably identifiable segments and that it compares favor  Another recent application for time series segmentation
ably with the Monte Carlo cross-validation (MCCV) and s in context sensitivity of mobile devices. Being able to
commonly used BIC criteria. measure and sense the environment is not enough: a prob-
lem that remains is how to recognize different contexts from
the measurements. An approach proposed recently is to seg-
1. Introduction ment the measurement time series and, in the spirit of un-
supervised learning, to identify different contexts wittet
Time series segmentation is an instance of clusteringdiscovered homogeneous segments [6]. Again, the number
analysis. It addresses the following data mining problem: of segments to be discovered has a significant effect on the
given a time serieg’, find a partitioning ofl" to segments ~ resullts.
that are internally homogeneous. Depending on the appli- In a nutshell, the Pete algorithm can be described as
cation, the goal could be to locate stable periods of time, follows. The given time series is segmented in steps to
to identify change points, or to simply compress the orig- m = 1,2,... segments. The segmentation can be done
inal time series into a more compact presentation. In this with any segmentation algorithm; all that Pete needs from
paper, we are concerned with the discovery of interesting €ach segmentation is the amount of error that remains (or
features in data rather than with compression as such. Foithe goodness of fit). Pete recognizes overfitting by analyz-
an overview to methods and approaches to time series seging at each segmentation stepthe reduction of error. The
mentation see, e.g., [7, 8, 13, 5, 6]. relative reduction is contrasted to the respective reducti
As an example application, consider the analysis of bios-
tratigraphic data collected from microfossils accumudate *Also at Nokia Research Center



in the case there no segment structure in the data. If the reis from the data. The error function is usually the sum of
duction is not significantly better in the observed data then squared errors or a function of the (log) likelihood in prob-

segmentation is stopped. abilistic settings. Since different approaches base the se
mentation on different error measures, we do not assume

2. Background and definitions any particular segmentation algorithm or error functiore W
do assume that the modeling erediSt.), e(S%), ... for a

2.1. Time series and segmentations given segmerit’ is a positive non-increasing function of the

number of segments.

A time seriesT” = (z(t)|1 < t < n) is afinite set o
samples labeled by time points2, .. ., n. A segment ofl’
is a set of consecutive time points (a,b) = (tla <t <
b). An m-segmentatior} (m < n) of time seriesT" is a

2.3. Finding good segmentations

partition of T' to m non-overlapping segments Suppose that finding the parameter valugs =
Sm = {Sp(ai, b;)|1 < i < m} (_01, . .,Gm). that (approximgtely).minimize the error func-
tion for a given segmentatiof7 is a tractable task, e.g.,

suchthat; = 1,b, = n,anda; = b;—1+1forl <i < m. computation of the least squares line. Given thi easily

In other words, arm-segmentation split§’ to m disjoint available the question remains how to explore the&gt
time intervals. For simplicity, the segments are denoted by for good solutions: the search space is exponentia) the
S1,...,8m. length of the time series.

Usually the goal is to find homogeneous segments from 1, o5timalm-segmentation can be characterized in a
a given time series. For instance, in paleoecological stud- o rsive way so that dynamic programming can be used to
ies an objective is to find periods of time where the speciesq it (e.g. [6]). Unfortunately, dynamic programming is
composition and thus also the climate has been relativelyomp ationally intractable for many real data sets. Con-
stable. ' In such a case the segmentation problem can bgeqently, heuristic optimization techniques such asdyree

described as constrained clustering: data points should bqop-down or bottom-up techniques are frequently used to
grouped by their similarity, but with the constraint thalt al find good but suboptimah-segmentations [6, 7].

oints in a cluster must come from successive time points. .
P b In this paper, we do not address the problem of how to

We assume that the segmentation is based on fitting a_. q d ati We simol £ th
(simple) function within each segment, and on searching for ind good segmentations. - We simply assume one ot the
many available methods is used.

a segmentation that results in a good overall fit. Usually the
function is a constant or linear function, or a polynomial of
a higher but limited degree, fitted to approximate the values 5 4 Re|ative reduction of error
within the segment.

2.2. The error of a segmentation Recall thak(S3) is the error of segmentaticf%?. Then

A good segmentation fits the data well and has a small e(S1) — e(Sm)
error. The estimation error is usually defined as a positive RR(m|T) = T e T
function of the distances between the actual values in the e(Sy )
time series and the values given by the functions within seg-
ments. is the relative reduction of error when segments are used

Let T be a time series of lengtm and ST = instead ofm — 1 segments. The Pete method will analyze
{S1,...,Sm} € S, anm-segmentation, whers,, de- the relative reduction of error as the number of segments is
notes the set of all possibte-segmentations df'. Let 6; increased and stop segmentation when statistically signifi
denote the vector of parameters for the function in segmentcant reductions are not achieved any more.

S;. (For a constant function there ObViOUSly is Only one pa- The assumptions we make about the under|ying segmen-
rameter and for a non-continuous linear function there are tation algorithm and the error function can be summarized

()

two parameters per segment.) as follows. For a fixed time serié8 and a given segmen-
The error tation algorithm, the erroe(SL), e(S2),... is a positive
e(SI) = e(S2, 61,0, ... 00m) ) non-increasing function of the number of segments. This

follows naturally if the power of the local functions is con-
of a segmentation describes how far the model, i.e., thestant, as is usually the case. Obviously t#&R(m|T) is in
function consisting of the local functions in the segments, [0, 1] for all m > 1.
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3. Estimating the number of segments slowly. The original and the permuted time series do not
have similar reductions of error until about 22 segments.

The null hypothesis can be tested by generating a number
of random timeserie$ having the same value distribution

We now introduce the Pete algorithm for determining an as7' and counting how ofte®R(m|7) > RR(m/|T). This
appropriate number of segments in a given time series. The(approximated) probability of getting reductiddR(m|T')
idea is perhaps best conveyed by a simple example. Weby chance is the value of the data under the null hypothe-
will justify the use of permutation tests more formally in sis. Ifitis low, e.g. below 0.05, theRR(m|T) is unlikely
the following subsection. to result from noise angh segments are justified.

Imagine a piecewise linear time series consisting of, say, Table 1 gives the Pete algorithm. To sum it up: we pro-
around 20 segments, with some noise in the data (Figure 1pose to generate random permutations of the given time se-
left). Segmenting the time series into = 2,3,...,20 ries and to compare the reduction of error in the original
segments keeps improving the fit and decreasing the er-data to that of permuted data sets, and to stop segmentation
ror, as more and more of the true segments of the datawhen a relatively large fraction (say, 0.05) of the permuted
are matched (solid line in the middle panel of Figure 1). data sets has at least as good reduction of error as the origi-
With m = 21,22,... segments the error keeps decreasing nal data set. Throughout this paper we use a cutoff value of
as well, but the reduction of error is due to noise in the data. 0.05 for thep value.

We devise a method that tests if the reduction of error is
likely to be due to noise or due to some structure in the 3.2, Statistical justification for the method
data.

So how to tgll if the redu.ction of error is due to noise? We next go through the approach more formally. De-
Let T' be the given time series of length and let7T be a note by My the set of all time series of length whose

similar random time series consisting of noise only and of |56 distribution is identical with the given time seris
no non-random structure. What we want to do is to test theof lengthn. Further, let7 be a uniformly distributed ran-

alternative hypothesig; : RR(m|T') > RR(m|T) against
the null hypothesigy : RR(m|T) = RR(m|T). If we

can test the null hypothesis and the observed reduction o
error is very unlikely to result from noise, then (at least)
segments can be considered justified.

Where to obtain random time serigsthat are somehow
representative of the properties of the original time s£fie
without making any assumptions abdii® The short an-
swer is to use permutations 6t randomly permute the or- et us denote by (m) the probability of RR(m|T) >
der of the datapoints, and the result is a random time seriesRR(m|T), i.e., of I7(T,m) = 1.
with value distribution identical td@". Figure 1 shows the The p value of the m-segmentation ofl’, denoted
absolute errors (middle) and their relative reductiongt(f) pr(m), can be estimated as follows. First, we have
for the time series (left) and for one randomly permuted
time series. For the random time series with no temporal YT emy Ir(Tiym)
structure the error decreases constantly — but remarkably pr(m) = | M|

3.1. The method

dom time series M.

Let I7(7, m) be an indicator (a Bernoulli random vari-
fable) for whethef7” results in no smaller reduction of error
thanT when segmented t@ segments:

1 if RR(m|T) > RR(m|T)

Ir(T,m) = { 0 otherwise.

3)

(4)




Algorithm Pete

Input: time seriesI’, segmentation algorithm, error
functione, number of permutationd’, cutoff value
p' for p value

Output: number of reliably identifiable segments

Method:

1. GeneratéV random permutation®; of T'

2. Use segmentation algorithm A to compafér)

and eacte(S7), i.e., errors with one segment

Form :=2,...,n (wheren is the length ofl"):

3.1. Use A to segmerit and eacly; to m segments

3.2. Letr:= |{T; : RR(m|T;) > RR(m|T)}|/N be
the fraction of permutations where the reduction
of error was at least as good as with

3.3. Ifr > p' thenreturnrm — 1

Returnn

3.

Table 1. Pete permutation procedure for esti-
mating the number of segments

probability

0.01

0.05
RR (log-scale)

Figure 2. Monte Carlo approximated probabil-
ities p[RR(m|T) = z|T]of the relative reduc-
tion (RR) given the time series T of Figure 1
(left) and the number of segments.

3.3. Related work

Second, permutations can be used to approximate the right

hand side of Equation 4: instead of summing over all
T; € Mr, we sum over a random sample frobr, ob-
tained using random permutations of the original time se-
riesT.

Permutation testing is a special case of Monte Carlo in-
tegration: thep value is estimated wittV random points
as

N

. 1

pr (m) = N > Ir(Ti,m) ~ E(Ir(T,m)) = pr(m) (5)
i=1

where 71, Tz, ..., Ty are uniform random samples from

Mr. Random sampling frond/r can be carried out ef-
ficiently by simply generating random permutationsTaf
since the seM 7 is exactly the same as the set of all permu-
tations of time serie¥'.

Figure 2 illustrates the Monte Carlo estimated distribu-
tion of RR(m|T) (m = 2,...,50) as well as the relative

The problem of determining an appropriate number of
segments is a special case of estimating the number of di-
mensions of a model. The question is about overfitting: how
to avoid too complex models that fit noise in addition to the
‘true signal’.

There are several approaches for determining the dimen-
sion of a model. They can be roughly divided into two
groups: (1) some measure model complexity without regard
to the data, as well how well a model fits the data, (2) some
only analyze the fit to the data.

(1) Penalized likelihoode.g., MDL, MML, BIC, AIC,

SIC and structural risk minimization [1, 12, 3, 16, 17], and
generally all regularization based approaches to estiarate
unknown target function, specify a cost for the model com-
plexity and then minimize the sum of the model complexity
and error. In thepure Bayesian approache full probability
model for all variables of the application domain, includ-

reduction of the observed time series (Figure 1) obtained ining model dimensiomn, is defined, including (data inde-

1000 random permutations. The region where< 0.05,
i.e., where the relative reduction is statistically sigrafit,
is drawn with stronger lines.

We emphasize that the value pr(m) is used only as

pendent) prior distributions. The Bayesian approach can be
considered as an instance of the penalized likelihood with-
out asymptotically derived complexity term.

(2) Cross-validatioris is a general and well-understood

a tool to decide when to stop segmentation. It should nottechnique for addressing overfitting. In particulltonte
be thought of as a statement about the probability of any Carlo cross-validation a variant of the standard-fold

exact number of segments. Also, we obviously do not ex-

cross-validation, has been successfully applied to maeel d

pect the data to actually consist of any constant or linear mension selection [14, 15]The generalized likelihood ra-
segments, even when evidence for several segments is digio test[2] is an example of a test on the increase in the

covered. Segmentation itself is a tool for discovering ukef

model likelihood, compared to an assumed underlying dis-

structure in the data, and constant and linear segments ar&ibution. There are techniques that try to locate a knee in
suitable classes of concepts to be used in such an analysisthe error or likelihood curve (cf. Figure 1, middle). The



broken stick moddl0] is widely used by paleoecologists the error function was the sum of squared errors (which is
in the zonation problem. The broken stick model gives the proportional to log-likelihood function with normal noijse
expected amount of variance (error) accounted for by a seg-A cutoff valuep < 0.05 was used to decide whether to
ment, under the assumption that those variances follow thecontinue segmentation. 2500 permutations were used to es-
broken stick distribution. It is primarily applicable inge timate thep values. Finally, all results with the synthetic
down segmentation, where splits are added incrementally todata sets were averaged over 100 similarily generated ran-
an existing segmentation. dom data sets.

The permutation test method Pete differs significantly = The prediction accuracy obtained by Pete was evaluated
from methods in the first category since it does not assignagainst the penalized likelihood-based BIC-score [12] and
any data-independent cost to model complexity. It does Monte Carlo cross-validation [14, 15].
have an analogy to the generalized likelihood ratio test [2]  We evaluated the performance of BIC in two ways: (i) in
when the error function is the log-likelihood function. How  a realistic setting, in which the variance of noise was esti-
ever, the biggest difference to most methods in the secondmnated from the residuals (maximum likelihood), and (ii) in
category is that Pete does not assume any particular distri-an unrealistic setting in which the true variance of noise wa
bution for the data or the error function. Cross-validati®n  given as a parameter (we call this “oracle BIC” to reflect the

clearly the closest match to Pete in these respects. fact that the variance is not known for real data sets). The
first setting gives a practical benchmark for the perfornganc
4. Experiments of the method, and the second setting gives an (unfair) up-

per limit for the performance of BIC. For the permutation
We evaluated Pete against BIC and MCCV using both tests there obviously is no need to estimate the variance of
synthetic and real data. Since the real data has no “right”"0!S€-

answers, we focus here on the synthetic cases. Monte Carlo cross-validation (MCCV) or ’'repeated-
learning testing’ was carried out as follows. Given a time
4.1. Generation of synthetic data seriesI’, randomly selected 50% of time pointsihare as-

signed to the test set, and the remaining 50% constitute the

We generated simulated data in order to assess the pert_ra!nlgg set. Tgtsesptroc?jdurg 1S repeg%};mtlas%gl\ln]g\;/fM
formance of Pete in controlled settings. The data was gen_galre t?f‘t se bf ?n training s_etl,-é ( h L= .)'
erated using random piecewise constant models. The per: O €ach NUMDET o segments = 1,2,..., the training

test ; i i _
formance was evaluated with respect to signal to noise ratioS€tZi - IS used for segmentation and the segmentation er
(SNR) ror is then computed in the corresponding testE&t".

For the piecewise constant time series, the constantén the '\;l]CCV. p.ro.cedu;]e we choos? the numbeloI]seg-
were generated from the normal distribution N(Q,), and ments that minimizes the average of test errors. The average

noise was added from the normal distribution N¢, The is taken over several random split$ to reduce variance in

change points were drawn from a uniform distribution. In the estimates. ) o ) .

data generation; was a constant and the signal to noise ra- Recelntb;axperlTenr:s '][‘C:écate thatl'g/IC'CV. might gl;/e

tio SNR = Zi== was adjusted by varying the varianeg, more reliable resu ts thanfold cross-validation in terms o

of the signal (Figure 3). The synthetic data sets consisted o choosing the correct number of cluster components [14, 15].

100 data points each. We adopted in our experiments split fraction 50% since it is
reasonably robust across a variety of problems [14]. The

4.2. Evaluation methodology number of splits was chosen to bé = 100.

The true number of statistically identifiable segments is 4-3. Results
not known for the data sets with noise, so we do not have
any right answers to the number of segments, except for Figure 4 gives a summary of the experimental compar-
the extreme cases. Without any noise (SNRoo) exactly isons between Pete, BIC, Monte Carlo Cross-validation and
the original number of (noiseless) segments should ideallythe imaginary “oracle BIC". SNR decreases and the amount
be identified; and with noise alone (SNR 0), only one of noise increases from top to bottom. The left and right
segment should be discovered. Sensitivity to the original, columns differ only in the number of segments. Except in
noiseless segments was used as the basis for the numeric#the very noisy bottom row, Pete and “oracle BIC” quite con-
results, despite these shortcomings. sistently peak at the actual number of segments and have
The following parameters were used in estimating the the highest density region roughly around it. BIC, instead,
number of segments. Segmentations to piecewise constartends to position its estimations systematically to smalle
functions were done with the greedy top-down method, andvalues, and so does MCCV. MCCV tends to make “flat”
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Figure 3. Two example time series consisting of 7 piecewise ¢ onstant segments and two different
levels of noise (SNR=2 and 10) (left panel). P values for segmentations of paleoecological data sets
(middle and right panel)

predictions, i.e., the variance is large. The expected num-length of the time series makes segmentation of these data
ber of segments is however closer to the original number sets very challenging. (Obviously, dimensionality reduc-
than in the results from BIC. All methods — quite expect- tion techniques could be useful here, but they are outside
edly — find less and less segments as the amount of noisehe scope of this paper.)
is increased. Middle and right panels of Figure 3 shows thesalue
Based on the results, Pete is a most competitive ap-curves obtained for Tsuolbmajavri, Dallican and Hockham
proach. It outperforms BIC and MCCV almost constantly. data sets, respectively (top-down algorithm, sum of vari-
Pete compares well even with the non-existing “oracle BIC” ances within segments as error function, 10000 permuta-
or the “BIC upper limit”. tions). With a cutoff value < 0.05, thep value curves can
An interesting phenomena is that Pete sometimes givesbe interpreted to indicate that the Dallican data set ctgsis
very small estimates for the number of segments, even withof 6 segments, and that there are only two reliably identifi-
large SNR (little noise). This is probably due to the permu- able segments in the Hockham data set. For the chironomid
tation test being conservative and predicting a small num-data set of Tsuolbmajavri it seems, in turn, that it is pdssib
ber of segments if evidence for more segments is not veryto identify 23 segments.
strong. It is also possible that a singlevalue above the
cutoff value stops segmentation prematurely. Overall, the 5. Conclusions and future work
cutoff value obviously has a direct effect on the number of
segments. We do no not believe, however, that increasing We have introduced a new method, called Pete, for es-
the value from 0.05 to get more segments would give bettertimating the number of segments in time series data. Pete
results. On the contrary: it is likely that spurious segrsent compares the quality of segmentations of the given data to
would then be discovered. Analysis of this is a topic for he quality of segmentations of its random permutations.

future research. We evaluated the performance of Pete against BIC and
MCCYV using synthetic time series. Experimental results
4.4. Real data show that Pete is very competitive: it was able to give

very realistic estimations about the number of segments,

We applied Pete to three real-world data sets from the and clearly and consistently seems to outperform BIC and
field of paleoecology. Paleoecological analysis of the first MCCV in this task. However, permutations are computa-
data set is presented in [9] and the two other data sets havéionally heavy and not necessarily suitable for time caitic
been discussed in [4]. systems. _ '

The first data set (Tsuolbmajavri) consists of chirono- ~ BIC was used here as a representative of a family of
mid assemblages collected from a lake sediment in north-methods that use a model complexity term for model selec-
ern Lappland. It is composed of 51 chironomids in 148 tion. Unlike many methods based on Occam’s Razor, the
sediment layers [9]. The other two data sets (Dallican and Proposed method does not use such aterm. This is achieved
Hockham} are sediment cores consisting of pollen data [4]. by examining the derivative of the error function (relative
Dallican data set consists of 23 pollen taxain 80 time points 1. We acknowledge Keith D. Bennett and European Pollen Ratafor
and Hockham data set consists of 132 pollen taxa in 163pemission to use Hockham and Dallican data sets and Attackaand
time points. The high dimensionality with respect to the Heikki Olander for permission to use Tsuolbmajavri data-se



reduction of error), e.g., the likelihood function, with-re
spect to the derivates of the errors in a control group, as the
model complexity is increased.

Cross-validation is the closest match to Pete in an im- [
portant respect: the available data alone is used to sékect t
model. No model complexity term nor assumptions about
the data are needed. The subtle difference is that cross-
validation holds out a part of the available data as a test
set to estimate how well a model learned from the rest of
the data actually generalizes. The permutation procedure i
turn uses the full data set and its permutations to estimate
the probability of obtaining a good model (in the sense of
a small training error) just by chance. One reason for the [
inferior performace of cross-validation in our experimadnt
results might be due to the size of the data set used to build [
the model: permutation tests use all of the available data
whereas cross-validation holds back a fraction (50% in our
experiments, selected based on results in [14]).

Possible future research issues include the following top-
ics.

(i) The effect of different segmentation algorithms and
error functions. For instance, consider greedy top-down

segmentation that adds one segment boundary at a time[lo]

without moving the existing ones. Instead of permuting
the whole time series we could permute each segment sep-

arately, just like the top-down method tests the effect of a 17

splitin each existing segments, to obtaimealue that more
closely matches the selected induction principle.

(i) The approach we presented here is based on using
a random sample from a data-dependent control group in
model selection. Which kind of problems could this ap-
proach be generalized to?

(iii) Multidimensional data sets. Our current artificial
data sets are one dimensional (in addition to time) but many
of the interesting applications, such as the paleoecaddbgic
data, are multidimensional. More tests are needed in this
front.

(iv) An analysis of thep values. The longer the time
series, the morg values are generated, and the more likely
it is that some seem to indicate significant results, just by
chance. For instance, what can be said of isolated gmmall [
values, such as the ones in two of our ecological data sets
(Figure 3, middle)? Do they indicate a larger number of

[

segments, or are they just random effects? Currently we [16]

bend towards the latter assumption.
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