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Abstract
This paper presents a new approach to controlling shape memory alloy
(SMA) actuators with hysteresis compensation by using a neural network
feedforward controller and a sliding-mode based robust feedback controller.
SMA actuators exhibit severe hysteresis, which is often responsible for
position inaccuracy in a regulation or tracking system and may even cause
instability in some cases. A single SMA wire actuator is used in this
research. A testing system, which includes a wire stand, a linear bearing, a
bias spring, a position sensor, a programmable current amplifier and a
PC-based digital data acquisition and real-time control system, is used to
test the SMA wire actuator in both open- and closed-loop fashions. The
proposed control includes two major parts: a feedforward neural network
controller, which is used to cancel or reduce the hysteresis, and a
sliding-mode based robust feedback controller, which is employed to
compensate uncertainties such as the error in hysteresis cancellation and
ensures the system’s stability. The feedforward neural network controller is
designed based on the experimental results of open-loop testing of the wire
actuator. With the proposed control, tests of the SMA actuator following
sinusoidal commands with different frequencies and magnitudes are
conducted. The experiments show that the actual displacement of the SMA
actuator with the proposed control closely followed that of the desired
sinusoidal command.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Tracking control of shape memory alloy (SMA) actuators is
essential in many applications such as vibration control [1, 2]
and robotic applications [3]. However, due to hysteresis, an
inherent nonlinear phenomenon [4] associated with SMAs [5],
tracking control of SMA actuators is a challenging task. This

3 Author to whom any correspondence should be addressed.

has motivated the authors to conduct research into tracking
control of SMA actuators with hysteresis compensation.

Various methods have been proposed to compensate for
hysteresis. Crúz-Hernandez and Hayward [6] have discussed
in their paper the use of phasers for compensation of the hys-
teresis by shifting the phase of the periodic signal in a piezo-
electric actuator. Webb and Lagoudas [7] have presented an
adaptive hysteresis model for on-line identification and closed-

0964-1726/03/020223+09$30.00 © 2003 IOP Publishing Ltd Printed in the UK 223

http://stacks.iop.org/SMS/12/223


G Song et al

loop compensation. Song and Quinn [8] have demonstrated
the use of a sliding-mode based robust controller for tracking
control of an SMA wire. Elahinia and Ashrafiuon [3] applied
variable structure control to an SMA actuated manipulator.
Hughes and Wen [9] have implemented the Preisach model
in the control of an SMA wire actuator to provide bending
force to a flexible aluminum beam. Majima et al [10] also
used the Preisach model to feedforward cancel the hysteresis
in an SMA actuator in addition to a feedback controller. Ge
and Jouaneh [11] have used a combination of feedforward con-
troller and a feedback loop (proportional, integral plus deriva-
tive control) to reduce hysteresis in actuators represented by
the Preisach model.

Neural networks, which possess properties of nonlinear
function mapping and self-adaptation, have been used to model
hysteresis [12–15] and, in some cases, to compensate for
hysteresis [16, 17]. However, there are very limited studies of
the use of neural networks for hysteresis compensation in SMA
actuators [17]. In this research, a new approach is proposed
to control SMA actuators with hysteresis compensation by
using a neural network controller and a sliding-mode based
robust controller. The feedforward neural network controller
is used to cancel or reduce the hysteresis. Different from
the approaches used in [16, 17], a sliding-mode based robust
controller is used in this approach to compensate uncertainties
such as the error in hysteresis cancellation and to ensure system
stability. The neural network structure used in this paper
is different from those in [16, 17]. Experiments have been
conducted and show that the actual displacement of the actuator
can closely follow that of the desired sinusoid command.

2. Basics about shape memory alloys

SMAs are smart materials which have the ability to return
to a predetermined shape when heated. When an SMA is
cold, or below its transformation temperature, it has a very
low yield strength and can be deformed quite easily into
any new shape—which it will retain. However, when the
material is heated above its transformation temperature it
undergoes a change in crystal structure which causes it to
return to its original shape. During its phase transformation,
an SMA generates an extremely large force when encountering
resistances or experiences a significant change in dimensions
when unrestricted.

The unique properties of SMAs make them a potentially
viable choice for actuators. SMA actuators have over the years
been used in a spectrum of applications. When compared
with piezoelectric actuators, SMA actuators offer the salient
advantage of being able to generate either larger deformations
or larger forces, though at a much lower operating frequency.
At present, only SMAs with a one-way shape memory
effect have good mechanical properties and only this type
of SMA material has been widely implemented. SMAs can
be conventionally fabricated into different shapes. The most
widely used are SMA wires. As illustrated in figure 1, a shape
memory wire actuator is used to lift a weight. SMA wires
can be precisely embedded into the face sheet of a structure of
interest, such as a helicopter blade, and can actively alter the
shape of the structure in a desired fashion.
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Figure 1. An SMA wire as an actuator.

The most common shape memory material is an alloy
of nickel and titanium called Nitinol, or NiTi, which was
discovered at the Naval Ordnance Laboratory in the 1960s.
This particular alloy has very good electrical and mechanical
properties, long fatigue life and high corrosion resistance. As
an actuator, it is capable of up to 5% strain recovery and
500 MPa restoration stress with many cycles. For example,
a Nitinol wire of 0.508 mm diameter can generate as much
as 70 N blocked force. Nitinol also has resistance properties
which enable it to be actuated electrically by Joule heating.
When an electric current is passed directly through the wire,
it can generate enough heat to cause the phase transformation.
In most cases, the transition temperature of the SMA is chosen
such that room temperature is well below the transformation
point of the material. Only with the intentional addition of heat
can the SMA be actuated.

The special properties of SMAs result from a phase
transformation in their crystal structure when cooled from
the stronger, high-temperature cubic form (austenite) to the
weaker, low-temperature parallelogram form (martensite).
Figure 2 illustrates phase transformations of an SMA wire
actuator. Assume that the SMA wire is initially at a
low temperature and is in its martensite state (point A in
figure 2). Upon heating, the SMA wire will experience a phase
transformation to the cubic stronger austenite and the wire will
contract in its length (point B in figure 2). Upon cooling, the
SMA wire will transfer from austenite to the weaker martensite
phase (point C in figure 2). At this stage, the crystal structure
of the SMA is in a twinned parallelogram form. In general,
its strength in terms of Young’s modulus in martensite is
three to six times less that in austenite. When an external
tension force is applied to the wire, the wire can be easily
stretched (point D in figure 2). During this process, the twinned
martensite becomes detwinned martensite upon application
of an external force. When the external force is removed,
the wire remains in its deformed shape (point A in figure 2)
until it is heated again. Figure 3 depicts the length of SMA
wire versus its temperature during the phase transformation.
Obviously, the transformation exhibits a hysteretic effect, in
that the transformations on heating and on cooling do not
overlap. This hysteretic effect adversely affects precision
control of SMA actuators and may even cause the system to
experience instability. Compensation of the hysteresis is a
major concern during the design of control systems for SMA
actuators.

224



Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller

Heat

High Temperature

Cool

R emove Force

Force

L ow Temperature

Deform

A

B

C

D

Heat

Cool

e

Force Force

Deform

B

C

Cubic Form
High Temperature

SMA Wire

Remove Force

Deformed SMA Wire Deformed SMA Wire

Detwinned
Parallelogram
Form

Detwinned
Parallelogram
FormLow Temperature

Twinned
Parallelogram
Form
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Figure 3. The hysteresis associated with SMAs.

3. Experimental set-up

An experimental set-up (figure 4) was built to provide the
capability of testing and positioning feedback control of a
single SMA wire actuator under the load condition of a bias
spring. Since the SMA wire only has a one-way shape memory
effect, the design with a bias spring is commonly used in SMA
actuators to achieve two-way control actions [18]. This design
configuration is adopted in the SMA test stand. In this SMA
test stand, the SMA wire is attached between two wire supports.
One wire support is attached to a slider that is free to slide
through a linear bearing. The slider is attached to a bias spring
which pre-tensions the SMA wire. The tip of a linear variable
differential transformer (LVDT) is placed against the slider to
detect its position. Though a linear bearing is employed to
reduce the friction effect, this bearing still exhibits nonlinear
stick–slip friction to some degree.

In this experiment, a nickel–titanium (Nitinol) SMA wire
(30.48 cm in length and 0.381 mm in diameter) is used. This
Nitinol wire has a phase transformation temperature of 90 ◦C
and a hysteresis width of about 20 ◦C. Control systems can be

Figure 4. The single SMA wire test stand.

designed and implemented using dSPACE® data acquisition
and a real-time control system with MATLAB® /Simulink.
An output voltage from the real-time control system is sent
to a programmable power supply. In this research, the power
supply is set in constant-voltage control mode. The power
supply amplifies the voltage by a factor of four and then applies
the amplified voltage to the SMA wire, which results in a
direct current in the shape memory wire and in turn heats the
wire. The heating of the wire to a temperature above 90 ◦C
causes a phase transformation from the weak martensite to the
strong austenite, which is seen as a contraction of the wire.
The contraction of the wire causes additional deformation of
the spring. The LVDT sensor is used to measure the wire
displacement. This displacement is then fed back to the
real-time control system. Once the current is cut off and
the heat is removed, the wire will eventually experience a
phase transformation from austenite back to martensite as its
temperature drops below 70 ◦C. In this weak martensite phase,
the bias spring will pull the SMA wire actuator and stretch it
back to its cold length. An actuation cycle is completed.
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Figure 5. The applied voltage and measured current.
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Figure 6. Displacement of the SMA wire actuator with the
sinusoidal input current.

4. Modeling SMA wire hysteresis using neural
networks

Hysteresis is an inherent property of SMA actuators and it is
affected by many factors such as loading condition, operating
frequency and maximum applied voltage. Also nonlocal
hysteretic behavior has been experimentally observed [19]. It
is not the intention of this section to completely model the
hysteretic effect of an SMA actuator. Instead, the hysteresis
is modeled under the bias spring loading condition and
the SMA actuator will operate under the maximum applied
voltage. The operating frequency will not be considered
during the modeling. This will simplify modeling, but at
the expense of introducing modeling error. Though it is
expected that the neural network model of the hysteresis can
feedforwardly cancel or significantly reduce the actuator’s
hysteretic behavior, this modeling error will result in
incomplete cancellation of the hysteresis during feedforward
control when the operating frequency varies. The error
associated with the incomplete cancellation of the hysteresis
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Figure 7. The hysteresis loops (displacement versus voltage).
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Figure 8. The neural network (NN) inverse training block diagram.

will be considered in the feedback controller design and will
be compensated by a sliding-mode based robust controller.

To obtain training data, the SMA wire is excited using a
sinusoidal signal with a frequency of 1/60 Hz and a magnitude
varying from 0.4 to 2.6 V. The applied voltage and the
resulting current are shown in figure 5. The time history
of the displacement of the SMA wire actuator is shown in
figure 6. Though the applied voltage signal is sinusoidal, the
displacement of the actuator is not quite sinusoidal due to the
hysteresis of the SMA actuator. Figure 7 shows the relationship
between the displacement of the SMA wire actuator and the
applied voltage.

Figure 7 clearly demonstrates the hysteresis of the SMA
wire actuator. The hysteresis loops observed have an average
width of 2 V. The curves are not very smooth, and this can be
attributed to the ambient conditions, which are not controlled.
Another observation that can be clearly made is that the SMA
wire actuator is not fully repeatable since the ambient condi-
tions are uncontrolled. Therefore, multiple hysteresis loops
are observed. However, for the purpose of modeling one rep-
resentative hysteresis loop will be used. A neural network is
designed as the inverse model of the plant. A multilayer feed-
forward neural network is trained using the same data gener-
ated from the plant that are used to train the plant model. The
neural network controller is designed to model the variation of
voltage as a function of displacement. For this purpose, the
neural network toolbox in MATLAB® was utilized. The train-
ing methodology can be depicted schematically, as in figure 8.
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Figure 9. Schematic of the neural network inverse model.

The same data used for training the plant model are
used to train the inverse model. The tagging scheme is
the same, and similar tag data are used in conjunction with
displacement and voltage information to generate the training
signal. After tests with different combinations of number of
layers and number of neurons in each layer, the neural network
structure shown in figure 9 is adopted by considering factors
such as modeling accuracy and training time. The adopted
feedforward network has a four-layered architecture, with two
hidden layers. The first hidden layer consists of four ‘tansig’
neurons. The second hidden layer consists of five ‘tansig’
neurons. The network has two inputs, the voltage and the
tag, and one output, displacement. The training is done using
the representative hysteresis loop. The trained neural network
models the inverse behavior of the shape memory wire with a
good degree of accuracy. This means that the neural network is
able to model the functional hysteretic dependence of voltage
on displacement. However, the neural network requires a ‘tag’
signal as an input, which indicates whether the position is
increasing or decreasing. The inverse modeling results are
shown in figure 10. The training results, as is evident from
figure 10, are very good. The root mean square error of the
training is 0.0332 V.

5. Control system design

The proposed controller will have both feedforward and
feedback actions. The feedforward action is mainly the neural
network’s inverse model of the hysteresis of the SMA actuator
and it is designed to cancel or significantly reduce the hysteretic
effect. The feedback action involves a linear proportional
plus derivative (PD) control and a nonlinear sliding-mode
based robust controller. The robust controller is designed to
compensate the residual hysteresis and other nonlinearities to
ensure the system’s stability.

To assist the feedback control design, we define the control
errors as

e = y − yd, ė = ẏ − ẏd (1)

where yd and ẏd are the desired position and velocity
respectively. Also we define auxiliary control variables r and
ṙ by

r = ė + λe, ṙ = ë + λė (2)

where λ is a positive constant. The surface defined by r = 0
represents the ‘sliding surface’, so that, when the dynamics are
restricted to this surface, e = 0 and ė = 0 is an asymptotically
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Figure 10. Results of the inverse model.

stable equilibrium point with a global basin of attraction
(within r = 0). Therefore, when the system is restricted to
the sliding surface, the control errors diminish as t → ∞.

Utilizing the auxiliary control variable r , the tracking
controller is proposed as

i = iNN + i f − kDr − ρ tanh(ar ) (3)

where kD and a are positive constants. The functions of each
control action in equation (3) are discussed as follows.

(1) The −kDr is a linear feedback action functioning as a PD
control. Proportional control is used to decrease steady-
state error and increase responsiveness of the actuator. The
derivative control is to increase damping and to stabilize
the actuator. In experiment, an appropriate value of the P
gain (−kDλ) has to be used since a large value may cause
overshot and oscillations and a small value may result in
larger steady state error and a slower response.

(2) The iNN is the neural network inverse controller as shown
in figure 5. This control action is used to feedforward
cancel or significantly reduce the hysteresis of the SMA
wire actuator. Since the hysteresis loops are nonrepeatable
(as shown in figure 7) and other factors such as operating
frequencies are not considered during modeling, this
feedforward term will not exactly cancel the hysteretic
effect. The residual effect will be dealt with by the
sliding-mode based robust compensator. It is worthwhile
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Figure 12. Tracking control results (1/60 Hz command frequency).

pointing out that the magnitude of this residual hysteresis
is bounded since the neural network inverse controller
is off-line trained and its magnitude is bounded. Please
note that this neural network inverse controller is for the
actuator under the bias spring loading condition.

(3) The i f is a feedforward current and it is defined as

i f = k f (T ẏd + yd) (4)

where k f is a positive constant gain and T is a positive
time constant. This feedforward current is designed to
provide the approximate amount of current required for

the SMA actuator to follow the desired path. The actuator
system with a bias spring is approximately a first-order
system with a time constant T if the current is considered
as the input and the displacement is considered as the
output. However, this first-order model does not include
the hysteretic nonlinearity. The effect of the mass of
the moving parts and viscous friction in this system are
neglected.

(4) The −ρ tanh(ar ) is a sliding-mode based robust
compensator and is used to compensate for the hysteresis
of the actuator and to increase control accuracy and
stability. The control parameter ρ is an estimated upper
bound on the residual hysteresis and other nonlinearities
associated with the actuator system. In this paper, ρ is
also called robust (R) gain. Other nonlinearities include
stick–slip friction associated with the moving parts such
as the linear bearing. The constant a determines local
gain near the origin when r is very small. Therefore, a
larger value of a results in a smaller steady state error.
However, a larger value of a also has more tendency to
excite the flexible mode of the system. The value of awill
be experimentally determined by considering the above
factors.

A block diagram illustrating the control system design
is shown in figure 11. As shown in figure 11, the low-pass
filter with a cut-off frequency of 10 Hz is used filter out
high-frequency noise in the signal from the LVDT sensor.
The saturation function is used to limit the magnitude of the
command signal so that the amplified voltage is less than 4 V
to ensure the safe operation of the SMA wire actuator.

As pointed out earlier, in this control approach, r = 0
functions as the sliding surface, on which the system is
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asymptotically stable, i.e. the control error is zero. In order
to force the system onto the sliding surface, we employ the
so-called smooth robust controller −ρ tanh(ar). The robust
compensator is continuously differentiable with respect to the
control variable r , and it generates a smooth control action.
Compared with the commonly used bang–bang or saturation
robust controllers, the smooth robust controller has advantages
in ensuring both smooth control input and ultimately achieving
uniform global stability of the closed-loop system [20].

6. Experimental results

The single SMA wire test stand (figure 4) is used for the ex-
perimental verification of the controller shown in equation (3).
Though the training of the neural network feedforward term is

based on the data using 1/60 Hz actuation signal with a max-
imum displacement of 8 mm, commands with other frequen-
cies and maximum displacements will be tested to examine the
effectiveness and robustness of the proposed controller [21].
Five tests are conducted. During the tests, the SMA wire ac-
tuator is required to follow sinusoidal waves with frequencies
of 1/15, 1/30, 1/60 and 1/120 Hz respectively. In the case
of 1/30, 1/60 and 1/120 Hz, the wire actuator is instructed to
move with a stroke of 8 mm. A stroke of 2 mm is also required
for the case of 1/60 Hz. For the case of 1/15 Hz, the max-
imum displacement is 2 mm. The controller parameters are:
λ = 4.0, KD = 0.5, ρ = 0.25, a = 0.5 and k f = 0.25.

In the first case, the command (desired output) has a fre-
quency of 1/60 Hz and a displacement of 8 mm. The exper-
imental results for the displacement of the SMA actuator are
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Figure 16. Tracking control results (1/30 Hz command frequency).

shown in figure 12. It is clear that the SMA actuator closely
follows the command signal. The transient performance is sat-
isfactory and there is no overshoot. To better view the tracking
performance of the SMA actuator under the proposed robust
control, position error is plotted separately in figure 13. The
maximum error observed is less than 0.15 mm, which is less
than 2% of the total stroke. The RMS error is 0.0805 mm.
Considering that the system itself has a tendency to exhibit
multiple hysteretic loops under the same operating condition,
these results may be considered to be very good. Hence, in-
tegrating the sliding-mode feedback control with the neural
network inverse hysteresis controller is found to be very effec-
tive in compensating for the hysteresis in SMA wire actuation,
hence achieving more accurate tracking control for voltage ac-
tuation of the wire. The cyclically large error peaks observed
are due to the response of the inverse controller near the sat-
uration ends of the hysteresis loops, in part due to truncation
errors. The applied voltage is shown in figure 14 and action of
the neural network feedforward control is shown in figure 15.

In cases 2 and 3, the SMA wire actuator is required to
follow sinusoidal commands with a stroke of 8 mm and with
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Figure 17. Tracking control results (1/120 Hz command
frequency).

Table 1. Summary of experimental results [21].

Case Frequency (Hz) Stroke (mm) RMS error (mm)

1 1/60 8 0.0805
2 1/30 8 0.064
3 1/120 8 0.0927
4 1/60 2 0.1018
5 1/15 4 0.1387

frequencies of 1/30 and 1/120 Hz respectively. The tracking
control results are shown in figures 16 and 17 respectively.
The root mean square error observed in case 2 is 0.064 mm.
In fact, upon looking at the comparison plot in figure 16, the
desired and actual position plots cannot be discerned. Similar
satisfactory results are observed in case 3. In cases 4 and 5,
the SMA actuators are required to move 2 mm at 1/60 Hz and
4 mm at 1/15 Hz respectively. Increased errors are observed at
these strokes (2 and 4 mm). However, the errors are still kept
at low values. The additional error associated with case 5 is
introduced since 1/15 Hz is the upper limit of the bandwidth
for this SMA wire actuator and there is hardly enough time
for the heat to be removed from the wire during its cooling
process. Table 1 summarizes RMS errors for all five cases for
the purposes of comparison.

These experimental results demonstrate convincingly that
the proposed method of hysteresis compensation using neural
networks and a sliding-mode based controller is very effective
for tracking control of SMA actuators.

7. Conclusions

In this paper, a new approach employing a neural network
controller and a sliding-mode based robust controller is pro-
posed to control SMA actuators with hysteresis compensation.
The feedforward neural network controller is used to cancel or
reduce the hysteresis of the SMA actuator and the sliding-
mode based robust controller compensates uncertainties such
as the error in hysteresis cancellation and to ensure the sys-
tem’s stability. A single-wire SMA actuator is used as the con-
trol object in this research. A testing system, which includes
a wire stand, a linear bearing, a bias spring, a position sen-
sor, a programmable current amplifier and a PC-based digital
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data acquisition and real-time control system, is used to imple-
ment the proposed controller. The experimental results show
that the actual displacement of the actuator closely followed
that of the desired sinusoid command with various frequencies
and maximum displacements. For the case with a reference
signal of a frequency of 1/60 Hz and a maximum displace-
ment of 8 mm, the maximum error observed was 0.15 mm,
which is less than 2% of the total stroke, and the RMS error
was 0.0805 mm. These results demonstrate that the proposed
method of hysteresis compensation using neural networks and
a sliding-mode based controller is very effective. Future work
will involve training a neural network to model the inverse of
multifactor-dependent hysteresis and its implementation.
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