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1 Introduction

Since its introduction, the declarative programming paradigm has been successfully
adopted by a vast community of IT researchers and practitioners. As in the case of
logic programming, the separation of logic aspects from control aspects long advo-
cated by Robert Kowalski [20] enables the programmer to more easily write correct
programs, improve and modify them. In recent years, the declarative programming
philosophy has had a visible impact on new emerging disciplines. Examples are
multi-agent interaction protocol specification languages, which rely on declarative
concepts such as commitments [29] or expectations [3] and make an extensive use of
rules, and declarative service flow specification languages such as DecSerFlow [30].

Although declarative technologies improve readability and modifiability, and help
reducing programming errors, what makes systems trustworthy and reliable is formal
verification. Since the temporal dimension in these settings plays a fundamental role,
a natural choice would be to check temporal logic specifications using mainstream
program verification technology such as model checking. However, it is well known
that the construction of the input for model checking algorithms takes a consider-
able amount of resources. This is especially true if we consider that the translation
of a linear time temporal logic (LTL, [14]) formula into an automaton is a very hard
problem, even with small sized formulae, and it becomes undecidable for variants
of temporal logic with explicit representation of time, such as metric temporal logic
(MTL, [5]) and timed propositional temporal logic (TPTL, [4]) with dense time [31].
By adopting an approach based on logic programming (LP), a system’s specifica-
tions can be directly represented as a logic formula, handled by a proof system with
no need for a translation. Therefore, we address the problem of verifying such spec-
ifications using abductive logic programming (ALP), and in particular the SCIFF
framework. SCIFF is an ALP language and proof system for the specification and
run-time verification of interaction protocols. From a practical viewpoint, SCIFF
has some advantages with respect to LTL, in that it enables reasoning with uni-
versally and existentially quantified variables, constraint logic programming (CLP)
constraints and quantifier restrictions [10]. It has an explicit representation of time,
which can be modelled as a discrete or as a dense variable, depending on the con-
straint solver of choice. We address the verification problem using a “generative”
extension to the SCIFF abductive proof-procedure, called g-SCIFF, which can be
used to prove system properties at design time, or to generate counterexamples of
properties that do not hold. Via g-SCIFF, we can carry out a goal-directed verifica-
tion task, starting from declarative specifications and without having to generate an
automaton. The experiments we run to compare the performance of g-SCIFF and
that of other model checkers support our claims and motivate us to pursue this line
of research.

We continue this article by giving the necessary technical background on SCIFF.



In Section 3, we discuss the application domains and we propose some examples of
specification and verification in the context of business process management (BPM).
Section 4 presents our verification method based on g-SCIFF. Sections 5 and 6 dis-
cuss and evaluate it, also experimentally, in relation with other verification tech-
niques. Section 7 concludes.

2 The SCIFF language and proof-procedure

SCIFF was initially proposed to specify agent interaction protocols [3], and it has
also been successfully applied to business process [9, 24], electronic contract [2],
and Web service choreography specification [1]. SCIFF specifications consist of an
abductive logic program, i.e., a triplet (P,ZC,A) where P is a logic program (a
collection of clauses), ZC is a set of integrity constraints (IC) and A is a set of
abducible predicates. SCIFF considers events as first class objects. Events can be,
for example, sending a message, or starting an action, and they are associated with
a time point. Events are identified by a special functor, H, and are described by an
arbitrary term. SCIFF uses ICs to model relations among events and expectations
about events. Expectations are abducibles identified by functors E and EN. E
are “positive” expectations, and indicate events to be expected. EN are “negative”
expectations and model events that are expected not to occur. Event and time
variables can be constrained by means of Prolog predicates or CLP constraints [19];
the latter are especially useful to specify orderings between events and quantitative
time constraints (such as delays and deadlines). An IC is a forward body = head
reactive rule which links happened events and expectations. Typically, the body
contains a conjunction of happened events, whereas the head is a disjunction of
conjunctions of positive and negative expectations. The intuition is that when the
body of a rule becomes true (i.e., the involved events occur), then the rule fires, and
the expectations in the head are generated by abduction. For example, H(a,T) =
EN(b,T") defines a relation between events a and b, saying that if a occurs at time
T, b should not occur at any time. Instead, H(a,T) = E(b,7") ANT" < T + 300 says
that if @ occurs, then an event b should occur no later than 300 time units after a.

To exhibit a correct behavior, given a goal G and a triplet (P,ZC,A), a set
of abduced expectations must be fulfilled by corresponding events. The concept
of fulfillment is formally captured by the SCIFF declarative semantics [3], which
intuitively states that P, together with the abduced literals, must entail G A ZC,
positive expectations must have a corresponding matching happened event, and
negative expectations must not have a corresponding matching event.

The language is associated with a proof-procedure which checks the compliance
of a narrative of events with the protocol specifications, by matching events with
expectations. Such a unification can be checked by the SCIFF proof-procedure dy-
namically, as occurring events are detected (run-time monitoring and checking) or



after execution, based on a given narrative of events (log-based, a posteriori check-
ing). The SCIFF proof-procedure enjoys termination, soundness, and completeness
properties with respect to its declarative semantics [3]. It is implemented in SICStus
4, and its implementation features a unique design, that has not been used before in
other abductive proof-procedures. First, the various transitions in the operational
semantics are implemented as constraint handling rules (CHR, [16]).! The second
important feature is its ability to interface with constraint solvers: both with the
CLP(FD) solver and with the CLP(R) solver embedded in SICStus. The user can
thus choose the most suitable solver for the application at hand, which is an impor-
tant issue in practice. It is well known, in fact, that no solver dominates the other,
and we measured, in different applications, orders of magnitude of improvements
by switching solver. In this paper, we report the results obtained with the CLP(R)
solver, which is based on the simplex algorithm, and features a complete propagation
of linear constraints.

3 Business processes: specification and verification

If we take some time to skim through recent BPM, Web service choreography, and
multi-agent system literature, we will find a strong push for declarativeness. In
the BPM context, Wil van der Aalst and Maja Pesic recently proposed a declarative
service flow language (DecSerFlow, [30]) to specify, enact, and monitor service flows.
Their claim is that declarative languages fit better than procedural ones with the
autonomous nature of services. To motivate their claim, the authors show a simple
example with two activities, A and B, which can be executed multiple times but
exclude each other, i.e., after the first occurrence of A it is not permitted to do B
anymore and after the first occurrence of B it is not permitted to do A. This could
be expressed declaratively via a simple LTL expression: —(0A A ¢B). But in a
procedural language, such as the most commonly used business process execution
language for web services, BPELAWS [6], and the like, it is difficult to specify
the above process without implicitly introducing additional assumptions and choice
points. LTL does not need to introduce such additional objects. This is also true
of LP rules. For example, in SCIFF we could use two ICs, H(a,T) = EN(b,T")
and H(b,T) = EN(a,T"), to define precisely the same model without introducing
additional constraints.

The case for declarative approaches is equally strong in other domains. In [32],
Pinar Yolum and Munindar Singh motivate very convincingly the case for the adop-
tion of a “social” semantics for agent interaction protocols grounded on the declar-
ative notion of commitment. They take the position that protocols should not only

LOther proof-procedures [11] have been implemented on top of CHR, but with a different design:
they map integrity constraints (instead of transitions) into constraint handling rules. This choice
gives more efficiency, but less flexibility.



constrain the actions of the participants, but also recognize the open and dynamic
nature of interaction. In particular, to promote autonomy, protocol specifications
should not be over-constrained, and they should be flexible enough to support het-
erogeneity, i.e., they should enable agents to adopt different strategies to carry out
their interactions. Such a flexibility is achieved by using declarative formalisms to
specify interaction, as opposed to rigid flow charts or, e.g., Petri nets.

Another area in which declarative approaches are becoming increasingly popular
is contract specification and negotiation in virtual enterprises. In [17], Guido Gov-
ernatori points out that the need to formalize business rules explicitly has become
increasingly essential, and the use of logic modeling techniques is beneficial for rea-
soning about contracts, because it helps anomaly detection, hypothetical reasoning
to investigate the effects of changes to contract clauses, and debugging.

In this article, we focus on the BPM domain. We use DecSerFlow [30] as a
declarative flow specification language. Fig. 1 shows the DecSerFlow specification
of a payment protocol. Boxes represent instances of activities. Numbers (e.g., 0;
N..M) above the boxes are cardinality constraints that tell how many instances of
the activity have to be done (e.g., never; between N and M). Edges and arrows
represent relations and temporal relations between activities. Double line arrows
indicate alternate execution (after A, B must be done before A can be done again),
while barred arrows and lines indicate negative relations (doing A disallows doing
B). Finally, a solid circle on one end of an edge indicates which activity activates
the relation associated with the edge. For instance, the execution of accept advert
in Fig. 1 does not activate any relation, because there is no circle on its end (a
valid model could contain an instance of accept advert and nothing else), register
instead activates a relation with accept advert (a model is not valid if it contains
only register). If there is more than one circle, the relation is activated by each one
of the activities that have a circle. Arrows with multiple source and/or destinations
indicate temporal relations activated by either of the sources and satisfied by either
of the destination actions. The parties involved—a merchant, a customer, and a
banking service to handle the payment—are left implicit.

In our example, the six left-most boxes are customer actions, payment done/
payment failure model a banking service notification about the termination status of
the payment action, and send receipt is a merchant action. The DecSerFlow chart
specifies relations and constraints among such actions. If register is done (once or
more than once), then also accept advert must be done (before or after register) at
least once. No temporal ordering is implied by such a relation. Conversely, the
arrow from choose item to close order indicates that, if close order is done, choose
item must be done at least once before close order. However, due to the barred arrow,
close order cannot be followed by (any instance of) choose item. The 0..1 cardinality
constraints say that close order and send receipt can be done at most once. 1-click
payment must be preceded by register and by close order, whereas standard payment



accept register
advert 0.1

1-click payment send
payment done receipt

standard payment
payment failure

Figure 1. A sample DecSerFlow model

needs to be preceded only by close order (registration is not required). After 1-click or
standard payment, either payment done or payment failure must follow, and no other
payment can be done, before either of payment done/failure is done. After payment
done there must be at most one instance of send receipt and before send receipt there
must be at least a payment done. Sample valid models are: the empty model (no
action done), a model containing one instance of accept advert and nothing else, and
a model containing 5 instances of choose item followed by a close order. A model
containing only one instance of 1-click payment instead is not valid.

The semantics of DecSerFlow is given in [30] in terms of LTL formulae, each one
associated with a relation or constraint in the chart. The conjunction of all these for-
mulae (“conjunction formula”) gives the semantics of the entire chart. Conversely, in
[24] Montali and colleagues have shown how to automatically translate a DecSerFlow
chart into a SCIFF program.

For example, the relation between accept advert and register corresponds to the
LTL formula (Qregister) = (Qaccept advert) and to the following IC:

H(register, T) = E(accept Advert,T").

The barred arrow from close order to choose item corresponds to the LTL formula
O(close order = —({)choose item)) and to the following IC:

H(closeOrder, T) = EN(chooseltem, T') NT' > T.

Finally, the relation between payment done and send receipt corresponds to the
LTL formula (J(payment done = {send receipt))A((Osend receipt) = ((—send receipt)l{/payment done))
and to the following two ICs:

H(paymentDone, T) = E(receipt, 'Y NT' > T
H(receipt, T) = E(paymentDone, T'Y NT' < T.



A DecSerFlow chart is thus a good starting point to compare two verification
methods: model checking LTL formulas, and our method, based on SCIFF.

Let us consider some examples of verification on the model. From now on, we
only use the DecSerFlow notation for both specifications and properties to verify. In
the literature, properties are often classified as safety or liveness properties. A safety
property is a universal property: intuitively, it ensures that nothing bad will ever
happen (whenever the specifications are respected). A liveness property is, instead,
existential: it ensures that something good will eventually happen.

A first, simple type of verification is known in the BPM domain as checking for
dead activities. This is a liveness property. We want to check whether a given activ-
ity, say send receipt, will ever be executed at all. To verify, we add a 1..* cardinality
constraint on the activity. If the extended specification becomes unfeasible, it means
that send receipt will never be executed in any possible valid model, indicating that
probably there is a mistake in the design. In our example, a verifier should return
a positive answer, together with a sample valid execution, such as: choose item —
close order — standard payment — payment done — send receipt, which amounts to
a proof that send receipt is not a dead activity.

Let us consider a more elaborated example. We want to check whether it is
still possible to have a complete transaction, if we add some constraints such as:
the customer does not accept to receive ads, and the merchant does not offer stan-
dard payment. To verify, we add a 0 cardinality constraint on accept advert and
on standard payment, and a 1..* cardinality constraint on send receipt, expressing
that we want to obtain a complete transaction (see Fig. 2(a)).? Such an extended
specifications is unsatisfiable. A verifier should return a negative answer.

0 1.*
accept 1 * accept send
advert - advert receipt
send *
0 receipt a) 1. b)
standard 1-click
payment payment

Figure 2. Two sample queries: checking (a) existential and (b) universal properties.

Let us now consider a safety property. A merchant wants to make sure that
during a transaction with 1-click payment a receipt is always sent after the customer
has accepted the ads. To verify, we extend the specifications with the query’s nega-
tion, which is an existential query ( “does there exist a transaction executing 1-click
payment in which accept advert is not executed before send receipt?”). The negated
query corresponds to the relations shown in Fig. 2(b). Given the model, this query

2This technique is also used to avoid vacuous answers, in which the model is trivially satisfied if
nothing happens.



should succeed, since there is no temporal constraint associated with accept ad-
vert, thus accept advert does not have to be executed before send receipt in all valid
models. The success of the existential negated query amounts to a counterexample
against the initial (universal) query. A verifier should produce such a counterexam-
ple: choose item — close order — register — 1-click payment — payment done — send
receipt — accept advert. That could lead a system designer to decide to improve the
model, for example, by introducing an arrow from accept advert to send receipt.

Let us finally consider an example of a query with explicit time. We adopt
an extended DecSerFlow notation with explicit time, proposed in [24]. In such a
notation, arrows can be labeled with (start time, end time) pairs. The meaning of an
arrow labelled (75, T ) linking two activities A and B is: B must be done between T
and T, time units after A. A labeled barred arrow instead indicates that B cannot be
executed between T and T, time units after A. In this way we can express minimum
and maximum latency constraints. For instance, express that B must occur after A
and at most 12 time units after A, which amounts to a maximum latency constraint
on the sequence A... B, we connect A to B using a (0, 12) labelled arrow.

0

accept 1-click 0.8) payment

advert payment done
standard payment
payment failure

(0,8)
send
receipt
1.7

Figure 3. Sample query concerning verification of properties on models with explicit
time.

The query depicted in Fig. 3 shows several such constraints, plus a 0 cardinality
constraint on accept advert (the customer does not accept ads). The intuition behind
the query is: “s there a transaction with no accept advert, terminating with a send
receipt within 12 time units as of close order, given that close order, 1-click payment,
and standard payment cause a latency of 6, 3, and 8 time units?” It turns out that
the specification is unfeasible, because the 0 cardinality constraint on accept advert
rules out the 1-click payment path, and the standard payment path takes more than
12 time units. A verifier should return failure.



4 Verification using g-SCIFF

The problems of run-time and a-posteriori verification of compliance are already
effectively addressed by SCIFF [3]. In this section we discuss static verification.

Existing formal verification tools rely on model checking or theorem proving.
However, a drawback of most model checking tools is that they typically only ac-
commodate discrete time and finite domains. Moreover, the cardinality of domains
impacts heavily on the performance of the verification process, especially in relation
to the production of a model consisting of a state automaton. On the other hand,
theorem proving in general has a low level of automation, and it may be hard to
use, because it heavily relies on the user’s expertise [18].

We propose a verification method which starts from SCIFF specifications and
presents interesting features from both approaches. Like theorem proving, its perfor-
mance is not heavily affected by domain cardinality, and it accommodates domains
with uncountable elements, such as dense time. Similarly to model checking, it
works in a push-button style, thus offering a high level of automation. Our method
uses the g-SCIFF proof-procedure, which also insists on the SCIFF language. In
fact, the implementation of SCIFF and g-SCIFF are a part of the same distribution
package, which is freely available.?

In the style of [27], we do verification by abduction: in g-SCIFF, event literals
are abduced as well as expectations, in order to model all the possible evolutions
of the system being verified. SCIFF and g-SCIFF work by applying the transitions
sketched in the following, until a fix-point is reached:

Unfolding substitutes an atom with its definitions in P;

Propagation given an implication (a(X) A R) = H and an abduced literal a(Y’),
generates the implication (X =Y A R) = H;

Case Analysis Given an implication (¢(X) A R) = H in which ¢ is a constraint
(possibly the equality constraint ‘=’), generate two children: ¢(X)A (R = H)
and —c(X);

Splitting distributes conjunctions and disjunctions;

Logical Equivalences performs usual replacements: true = A with A, etc.;
Constraint Solving posts constraints to the constraint solver of choice;
Fulfilment declares fulfilled;

e an expectation E(p,t) if there is a corresponding literal H(p, ), or

3See http://lia.deis.unibo.it/sciff/
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e an expectation EN(p,t) if there is no matching literal H(p,t) and it
cannot happen in the sequel (e.g., because a deadline has expired);

Violation declares violated an expectation: symmetrical to fulfilment;
Fulfiller if an expectation E(p,t) is not fulfilled, abduces an event H(p, t);

Consistency imposes consistency of the set of expectations, by which E(p,t) and
EN(p,t) cause failure.

Most of the transitions above are common to the two proof-procedures, but only
g-SCIFF uses the fulfiller transition to generate narratives of events (“histories”).
To do so, it applies the rule E(P,T) — H(P,T), which fulfills an expectation by
abducing a matching event (possibly with variables). Fulfiller is applied only at the
fix-point of the other transitions. SCIFF and g-SCIFF also exploit an implementa-
tion of reified unification (a solver on equality/disequality of terms) which takes into
consideration quantifier restrictions [10] and variable quantification. Histories are
thus generated intensionally, and hypothetical events can contain variables, possibly
subject to CLP constraints.

Verification of properties is conducted as follows. A liveness property can be
passed to g-SCIFF as a goal containing positive expectations: if the g-SCIFF proof-
procedure succeeds in proving the goal, the generated history proves that there exists
a way to obtain the goal via a valid execution of the activities. A safety property ¢
can be negated (as in model checking), and then passed to g-SCIFF as a goal G = —¢.
If the g-SCIFF proof-procedure succeeds in finding a history which satisfies G, such
a history is a counterexample against ¢.

The examples shown in Section 3 are correctly handled by g-SCIFF. The first
one (check for dead activity) completes in 10ms,? the second one (Fig. 2(a)), in
20ms, the third one (Fig. 2(b)) in 420ms, and the last one (Fig. 3) in 80ms.

5 Some considerations

A most prominent feature and, in our opinion, a major advantage of the approach
we present, with respect to other approaches to verification in the same application
domains, is the language, as we have discussed earlier. It is declarative and it
accommodates explicit time and dense domains. A software engineer can specify
the system using a compact, intuitive graphical language such as DecSerFlow, then
the specification is mapped automatically on to a SCIFF program. Using g-SCIFF,
It is possible to verify the specification’s properties. Using SCIFF it is possible
to monitor and verify at run-time that the execution of an implemented system

4Experiments have been performed on a MacBook Intel CoreDuo 2 GHz machine.
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complies with the specifications. This eliminates the problem of having to produce
two sets of specifications (one for static and one for run-time verification) and of
verifying that they are equivalent.

Let the language aside, the main difference with model checking is that queries
are evaluated top-down, i.e.; starting from a goal. Thus, no model needs to be
generated, which eliminates a computationally expensive step. By going top-down,
the verification algorithm only considers relevant portions of the search space, which
can boost performance. On the downside, the performance strongly depends on the
way SCIFF programs are written, with respect to the property we are verifying. Due
to the left-most, depth-first search tree exploration strategy inherited from Prolog
by SCIFF, the order of clauses influences the performance, and so does the ordering
of atoms inside the clauses. However, this does not impact on soundness.

A major drawback of our approach is that it does not always guarantee termina-
tion, as opposed to unbounded model checkers, which typically guarantee that the
verification algorithm terminates even when checking formulae producing models of
infinite length, such as, for instance, O(a — ¢a). In general, g-SCIFF would not
terminate in such a case - although it does terminate if it is used with finite do-
mains, such as discrete time and limited time span. However, g-SCIFF implements
a work-around to address this deficiency, similar to the one used in bounded model
checking. In particular, g-SCIFF can be invoked in bounded mode, which restricts
the number of actions generated by g-SCIFF. In this way, g-SCIFF does not guar-
antee completeness in the general case, but it is still able to say that, for example, a
query fails with models consisting of at most IV actions. Another technique imple-
mented by SCIFF is iterative deepening, which can be used to address similar cases
at the cost of a worse performance. However, we emphasize that we are proposing
g-SCIFF for use in application domains in which interactions are expected to even-
tually terminate. A typical DecSerFlow model does not contain infinite loops—at
least, not intentionally. In particular, all DecSerFlow relations individually produce
loop-free SCIFF programs, and specifications such as the one we presented earlier do
not have this problem. Thus, although a combination of DecSerFlow relations can
indeed produce infinite loops, we can consider them to be uncommon cases which
can be verified by using g-SCIFF with iterative deepening.

6 Experimental evaluation

These considerations led us to believe that in the application domain under con-
sideration g-SCIFF could be a valid alternative to other verification methods. We
run an extensive experimental evaluation to substantiate our guess. We followed on
the results of an experimental investigation conducted by Kristin Rozer and Moshe
Vardi on LTL satisfiability checking [26], by which it emerges that the symbolic ap-
proach is clearly superior to the explicit approach, and that NuSMV [12] is the best

12



performing model checker in the state of the art for the benchmarks they considered.
We thus chose to run our benchmarks to compare g-SCIFF with NuSMV. Rozer and
Vardi also describe a reduction of LTL satisfiability to model checking, which we
adopted for experimenting with NuSMV:

1. Map activities on to boolean variables (1=execution);
2. Build a universal model M, capable to generate all activity execution traces;

3. Build a “conjunction-formula” ¢ of the DecSerFlow specifications together
with the query to verify (see Section 3), following the translation described in
[30;

4. Model check —¢ against M: if the model checker finds a counterexample, ¢ is
satisfiable and the counterexample is in fact an execution trace satisfying the
DecSerFlow specifications and query.

It is worth noticing that explicit model checkers, such as SPIN, in our experi-
ments could not handle in reasonable time a DecSerFlow chart such as the one we
described earlier. We thus focus on the comparison with symbolic model checkers
only. Unfortunately, the comparison could not cover all relevant aspects of the lan-
guage, such as some temporal aspect, because neither NuSMV nor any other model
checker cited in [26] offers all of the features offered by SCIFF. As a future work, we
plan to compare the performance of g-SCIFF against that of other model checkers
for MTL or TPTL [5, 4]. However, since existing MTL tools seem to use classical
model checking and not symbolic model checking, our feeling is that g-SCIFF would
largely outperform them on these instances.

standard payment
stepN-1
failure

start
failure

step1
failure

stepN
failure

start
payment

step complete
N payment

Figure 4. Parametric extension to the model presented in Fig.1

To the best of our knowledge, there are no benchmarks on the verification of
declarative protocol specifications. We created our own, starting from the sam-
ple model introduced in Section 3, Fig. 1, and extending the standard payment
activity as follows. Instead of a single activity, standard payment consists of a
chain of N activities in alternate succession: | start payment o:»’ step 1 ‘o:o’ step 2 ‘o:\/o

. o:>o’ step N ‘m’ complete payment |, in which every two consecutive steps are linked
by an alternate succession relation. Moreover, we model a possible failure at each of

13



these steps (start failure, step 1 failure, ...). This extension to the model is depicted
in Fig. 4. Additionally, we add a K..* cardinality constraint on action payment fail-
ure, meaning that payment failure must occur at least K times. The new model is
thus parametric on N and K. We complicated the model in such a way to stress
g-SCIFF and emphasize its performance results in both favorable and unfavorable
cases. We compared g-SCIFF with NuSMV on two sets of benchmarks:

1. the existential query presented in Section 3, Fig. 2(a);
2. a variation of the above, without the 0 cardinality constraint on std payment.

Of the two benchmarks, the first one concerns verification of unsatisfiable spec-
ifications and the second one verification of satisfiable specifications. The latter re-
quires producing an example demonstrating satisfiability, which generally increases
the runtime. The input files are available on a Web site.® The runtime resulting
from the benchmarks is reported in Appendix A. Fig. 5 shows the ratio NuSMV /g-
SCIFF runtime, in Log scale. It turns out that g-SCIFF outperforms NuSMV in

y
16403 1

Figure 5. Chart showing the ratio NuSMV/g-SCIFF runtime, in Log scale.

most cases, up to several orders of magnitude: g-SCIFF does comparatively better
as N increases, for a given K, whereas NuSMV improves with respect to g-SCIFF and
eventually outperforms it, for a given N, as K increases. This is the case, because
NuSMV’s runtime is somehow proportional to the size of the LTL formula to be
checked, whereas g-SCIFF’s runtime heavily depends type of query it has to answer
to, rather than on its length, and on the order of clauses and on the type of functors

5The 0 cardinality constraint is set on the start payment activity.
See http://www.lia.deis.unibo.it/research/climb/iclpO8benchmarks.zip.
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used in the SCIFF program, rather than on the program size. This suggests that
suitable heuristics that choose how to explore the search tree could help improve the
g-SCIFF performance. This is subject for future research.

7 Related Work and Conclusion

We conclude by discussing other related approaches to verification, starting by those
using ALP. Alessandra Russo et al. [27] exploit abduction for verification of declar-
ative specifications expressed in terms of required reactions to events. They use the
event calculus (EC) and include an explicit time structure. Global systems invari-
ants, and in particular safety properties, are proved by refutation, and adopting a
goal-driven approach similar to ours. The main difference concerns the underlying
specification language: while Russo et al. rely on a general purpose ALP proof proce-
dure which handles EC specifications and requirements, we adopt a language which
directly captures the notion of occurred events and expectations, whose temporal
relationships are mapped on CLP constraints. In this way, for the time structure
we can rely on a variety of CLP domains (e.g., integers, reals, just to mention the
two most relevant ones).

The idea of using CLP to perform model checking is also exploited by Giorgio
Delzanno and Andreas Podelski [13], who propose to translate a procedural system
specification into a CLP program. Safety and liveness properties, expressed as CTL
formulas, are then checked by composing them with the translated program, and by
calculating the least and the greatest fix-point sets respectively. Their methodology
greatly resembles classic model checking, and applies to classic procedural models.
Our approach instead targets a domain in which system specifications are mainly
declarative, and a procedural model is not elicitable or it does not exist at all.
Moreover, as in standard model checking, the solution discussed in [13] does not
support any reasoning with time constraints, we instead exploit CLP constraints to
support dense and discrete time reasoning.

In [15], Michael Fisher and Claire Dixon propose a clausal temporal resolution
method to prove satisfiability of arbitrary propositional LTL formulae. The approach
is two-fold: first, the LTL formula is translated in to a standard normal form (SNF),
which preserves satisfiability; then a resolution method, encompassing classical as
well as temporal resolution rules, is applied until either no further resolvents can
be generated or false is derived, in which case the formula is unsatisfiable. From
a theoretical point of view, clausal temporal resolution always terminates, while
avoiding the state-explosion problem; however, the translation to SNF produces large
formulas, and finding suitable candidates for applying a temporal resolution step
makes the resolution procedure exponential in the size of the formula. Furthermore,
in case of satisfiability no example is produced.

Bounded and unbounded model checking have also been addressed by means of
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SAT technologies. Bounded model checking addresses the problem of verifying the
validity of a formula within k transitions of a system. One represents with boolean
formulas the initial state of the system I(Yp), the transition relation between two
consecutive states T'(Y;,Y;+1), and the (denied safety) property F(Y;). Then, the
property is verified in the set of states 0. ..k if and only if the formula [22]

k k
I(Yo) A (/\ T(nmﬂ) A (\/ F(Y»)
i=0 i=0
is unsatisfiable. SAT-based unbounded model checking is based on similar formulas,
but it also adds formulas that verify loop freedom (as in induction-based unbounded
model checking [28]) or use SAT specific features (as in interpolant-based unbounded
model checking [23]). In all cases, the transition function should be unfolded for a
set of possible states, which makes the boolean formula quite large. Indeed, modern
SAT solvers can handle millions of boolean variables, but even generating a large
SAT can be costly.

A different research direction aims to extend propositional LTL to accommo-
date quantitative time constraints. For example, the timed requirement of Fig. 3,
stating that a receipt is expected by 12 time units after executing accept advert,
can be expressed in timed propositional temporal logic (TPTL, [4]) as follows:
Oz.(accept_advert — Qy.(y—x < 12Asend_receipt)) and more compactly in met-
ric temporal logic (MTL, [5]) as: O(accept_advert — {<j2send receipt). Several
tools have been developed to verify real-time systems w.r.t. timed temporal logics.
One of them uses the TRIO language, a metric extension of first-order temporal
logic, for modeling critical real-time systems. Unfortunately, the approaches pro-
posed to model check TRIO specifications often give away with important features
of the initial language, in the effort to obtain a decidable and tractable specification
language. In a typical setting, the time domain is reduced to natural numbers, there
is no quantification over time variables, no states, no events, and the language can
range only on finite domains. Such a restricted language can then be efficiently
translated onto a Promela alternating Biichi automaton using the Trio2Promela
tool[8], or encoded as a SAT problem in Zot [25], to perform bounded SAT check-
ing. Other tools rely instead on timed automata [7]. For example, Uppaal [21] is an
integrated environment for modeling and verifiying real-time systems as networks of
timed automata; it supports a limited set of temporal logic properties to perform
reachibility tests. A timed automaton is a finite-state Biichi automaton extended
with a set of real-valued (constrained) variables modeling clocks. As in standard
explicit model checking, building and exploring (product of) timed automata is a
very time and space-consuming task, made even more complex due to presence of
such clocks.

We are aware that our method needs a more extensive theoretical and experi-
mental evaluation, and a more thorough comparison with other related approaches.
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This will be our next research direction. What we have achieved so far is the defini-
tion of a method and an ALP based proof-procedure, g-SCIFF, which draws from a
high-level, graphical specification language such as DecSerFlow to perform verifica-
tion tasks easily and efficiently. We envisage g-SCIFF to be a part of a framework
that provides a suite of specification and verification tools for the designer of BPM
service flows and interaction protocols. In this sense, an important feature of g-
SCIFF is that it insists on the same SCIFF language used for interaction protocol
specification and run-time monitoring and verification.
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A Experimental results

Results of the experiments described in Section 6 and summarized in Fig. 4.
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\ 0 1 2 3 4 5

0 0.01/0.20 0.02/0.57 0.03/1.01 0.02/3.04 0.02/6.45 0.03/20.1
1 0.02/0.35 0.03/0.91 0.03/2.68 0.04/4.80 0.04/8.72 0.04/29.8
2 0.02/0.46 | 0.04/1.86 | 0.05/4.84 | 0.05/10.8 | 0.07/36.6 | 0.07/40.0
3 0.03/0.54 0.05/2.40 0.06/8.75 0.07/20.1 0.09/38.6 0.10/94.8
4 0.05/0.63 0.05/2.34 0.08/9.51 0.10/27.1 0.11/56.63 0.14/132

5 0.05/1.02 0.07/2.96 0.09/8.58 0.12/29.0 0.14/136 0.15/134

Table 1. Results of first benchmark (SCIFF/NuSMYV), in seconds

\ 0 1 2 3 4 5

0 0.02/0.28 0.03/1.02 0.04/1.82 0.05/5.69 0.07/12.7 0.08/37.9
1 0.06,/0.66 0.06/1.67 0.07/4.92 0.08/9.21 0.11/17.3 | 0.15/57.39
2 0.14/0.82 0.23/3.44 0.33/8.94 0.45/22.1 0.61/75.4 0.91/72.86
3 0.51/1.01 1.17/4.46 1.87/15.87 3.77/41.2 5.36/79.2 11.4/215

1 1.97/1.17 | 4.79/443 | 10.10/17.7 | 26.8/52.2 | 61.9/116 166268

5 5.78/2.00 16.5/5.71 48.23/16.7 120/60.5 244/296 446/259

Table 2. Results of second benchmark (SCIFF/NuSMYV), in seconds
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