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Abstract

In this paper we propose a variable neighbourhood search (VNS) meta-heuristic

[25] for the university examination timetabling problem. In addition to a basic

VNS method, we introduce a variety of variants which further improve the quality

of the results produced by the technique. We also aim to demonstrate that the pro-

posed technique is capable of producing high quality solutions across a wide range

of benchmark problems. This high level of generality is one of the key features of

the VNS technique. In particular, its combination with a genetic algorithm which

intelligently selects which neighbourhoods to use for a given problem is shown to

be very successful.

1 Introduction
A very important factor which determines the success of a local search technique when

applied to a given problem is the neighbourhood employed during the search. The

neighbourhood is defined by a given move operator, for example all solutions which

can be reached from the current solution by moving a single element (moving an exam

to a new time slot in the case of examination timetable). The most basic of local search

methods is the steepest descent (or ascent for maximisation problems) technique which

has no method for escaping a local minimum and simply takes the steepest route down

to a nearby local minimum and terminates there since no move from within the same

neighbourhood can improve on the current solution. More sophisticated methodologies

such as simulated annealing [1] and tabu search [18] have a mechanism to escape from

local optima. Such methodologies have been very successful when applied to a wide

variety of search problems including university timetabling. Survey papers detailing

many of these techniques applied to exam timetabling problems include Carter and

Laporte [12], Schaerf [30], Burke and Petrovic [10], Burke et al. [7] and Petrovic and

Burke [27].

The issue of how much the choice of neighbourhood affects the quality of solutions

is considered by Thompson & Dowsland [32, 33]. The conclusion they arrive at is

that the utilisation of a more complex neighbourhood than the standard single move

neighbourhood can yield significant improvements in solution quality.
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In the late 1990s, Mladenović and Hansen [25] proposed the Variable Neighbour-

hood (VNS) meta-heuristic for solving difficult search problems. This approach changes

the neighbourhood during the search. It is both very versatile and very successful com-

pared to other local search techniques when applied to a range of different problem

domains [23].

The basic VNS meta-heuristic is a descent method, moving to a new solution if

and only if it is better than the current solution. Since the neighbourhoods are var-

ied regularly, there is no need to accept worsening solutions to escape local minima,

although variations of VNS do exist in which such moves are accepted (as will be dis-

cussed in section 2.2). The VNS meta-heuristic essentially samples a large number of

local minima by using a local search technique to bring the solution selected from the

neighbourhood to its nearest local optima. Potentially, any local search method can be

used in this part of the search and the solution arrived at will of course only be a local

minimum with respect to the neighbourhood used in the local search. The aim of our

research is to investigate variable neighbourhood search in the context of the university

timetabling problem.

1.1 Examination Timetabling
The exam timetabling problem, as encountered by universities and other teaching insti-

tutions can be thought of as the problem of assigning a given set of exams to a number

of time slots subject to a set of constraints /citeCarter96,BurkeElliman. The number

and variety of these constraints has increased markedly in recent years as a result of

greater numbers of students and larger modularisation of courses at many universi-

ties. This in turn causes the exam timetabling problem to be not only more difficult to

solve, but also potentially very different from year to year. The key elements common

to almost all exam timetabling problems include a set of exams to schedule, a given

arrangement of time slots (either in a fixed or variable length timetable) and a set of

student exam enrolments defining the clashes between exams.

The constraints on an exam timetabling problem can be divided into two categories,

known as hard and soft constraints. Hard constraints are defined as those which must

be satisfied in order for the solution to be considered feasible. Soft constraints are

considered to be less essential and violation of these is acceptable, but still undesirable.

The violation of these soft constraints is used in the evaluation of the quality of a given

feasible solution. In some cases, it is required only that a solution is feasible, but more

often a number of different solutions are evaluated with the aim of finding the best or

most suitable. Burke et al. [4], Burke & Petrovic [10] and Merlot et al. [24] discuss a

variety of side constraints.

One of the key factors in the development of meta-heuristic techniques is the con-

nectivity of the search space. This is largely defined by the neighbourhood used and

can have a major impact on the quality of solutions produced. Neighbourhoods which

allow complete or near-complete connectivity of the search space give potentially far

greater ability for the technique to reach a high quality solution. This is especially im-

portant if the quality of the initial solution fed to the search is low. If the search space

is highly disconnected as a result of using a bad neighbourhood, the reliance on the

initial solution becomes much greater since many good solutions will not be reachable
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by any technique using such a neighbourhood alone. In the case of exam timetabling,

the most commonly used is the single move neighbourhood in which a move consists of

reallocating a single exam to a new feasible time slot. This neighbourhood, when used

alone, can yield a disconnected search space since exams which clash with another

exam in every other time slot often cannot be moved at all.

The aim of our research is to develop a variable neighbourhood search (VNS) tech-

nique which focuses on using a variety of different neighbourhoods in the search in

order to increase the generality of the technique in the sense that it works equally well

on different examination timetabling problems whilst still giving high quality competi-

tive solutions. Section 2 introduces a generic variable neighbourhood search technique

and then discusses the application of the VNS technique to exam timetabling. A num-

ber of neighbourhoods are considered and some of the many variants of the basic VNS

which can be used to improve results are described. Section 3 presents a combined

genetic algorithm and VNS approach, VNS-GA, to exam timetabling to improve solu-

tion quality by using intelligent selection of neighbourhoods. Results and analysis for

both VNS and VNS-GA are presented in Section 4 and overall conclusions are given

in Section 5.

2 Variable Neighbourhood Search
The use of more than one neighbourhood within a search provides a very effective

method of escaping from a local optima. Namely, it is often the case that the current

solution, which is a local optimum in one neighbourhood is no longer a local optimum

in a different neighbourhood and can therefore be further improved using a simple de-

scent approach. This is the key to the success of the VNS technique presented here,

with a variety of neighbourhoods ensuring not only a far greater (potentially complete)

connectivity of the search space, but also enabling a simple, yet powerful search tech-

nique to yield high quality results.

The steps of the basic VNS meta-heuristic (refer to Hansen and Mladenović [25, 22]

for a more detailed description) are presented in figure 1.

Any finite number, kmax, of pre-defined neighbourhoods may be used within VNS.

The neighbourhoods are usually, in some sense, nested with kmax being the most di-

verse neighbourhood, although this is not a strict requirement. Stopping conditions

may be defined as for any local search technique. Three common examples are total

number of iterations, number of iterations without improvement and CPU time. In the

basic VNS, the move selected from the neighbourhood at step 2 (a) is generated at ran-

dom, avoiding any issues of cycling; also the local search is performed using a single

neighbourhood. There are a large number of variations of the basic VNS, with changes

possible to each step of the algorithm. Many of these are discussed in [22].

Our initial implementation of the VNS for exam timetabling was based on the basic

one presented in figure 1, to which a number of variations were sequentially added to

further improve performance.

The one major change from the basic VNS presented is that instead of continuing

the search with neighbourhood N1 each time an improvement is found in step 2 (c),

the search continues using the current neighbourhood which yielded the improvement.
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• Initialisation: Select the set of neighbourhood structures Nk, k = 1, . . . , kmax,

to be used in the search; find an initial solution x; choose stopping criteria;

• Repeat until stopping criteria is satisfied:

1. Set k := 1;

2. Until k = kmax, repeat:

(a) Shaking: Generate a point x′ at random from the kth neighbourhood

of x (x′ ∈ Nk(x));
(b) Local search: Apply a local search method with x′ as initial solution,

until a local optimum, x′′, is obtained;

(c) Move or not: If x′′ is better than the incumbent solution x then move

there (x← x′′), and continue the search with N1 (k ← 1); otherwise,

set k = k + 1;

Figure 1: The steps of the basic VNS meta-heuristic

The main reason for this is that it places slightly less reliance upon the ordering of the

neighbourhoods and focuses the search on each neighbourhood for as long as it yields

an improvement before moving to the next neighbourhood in the list. Experiments

with the basic VNS, always restarting with neighbourhood N1 after an improvement

have also been performed, but results so far have not been as good as with the modi-

fied one. Hence, further experiments are all performed with this modified basic VNS.

This allows further neighbourhoods to be incorporated easily without the need to con-

sider the ordering, since with this method the order only matters for determining which

neighbourhood the search begins with.

Two heuristics are employed for VNS initialisation: a greedy and a randomised

largest degree graph-colouring heuristic (both of which employ limited backtracking to

produce a feasible initial solution). The largest degree graph-colouring heuristic orders

exams on the basis of the number of clashes that they have with the other exams. In the

greedy variant, the next exam in the ordering is placed in the feasible time slot which

yields the least penalty. The randomised variant chooses for the next exam a random

feasible time slot. The greedy approach gives a higher quality of initial solution at the

expense of diversification whilst the randomised approach provides the opposite.

The two different initialisation techniques were chosen for a number of reasons.

Firstly, the greedy method produces much better initial solutions with respect to the

objective function and so may result in better, or at least faster solutions produced by

VNS with stopping conditions based on the number of iterations since the last im-

provement. However, this deterministic technique, utilising a backtracking method to

reassign exams if an infeasible solution is reached, may fail to find a feasible solution.

On the other hand, the random method does always find feasible solutions. Also, we

were interested to investigate how much the quality of the initial solution affects the

quality of solution produced by VNS. Many local search techniques, can be very de-

pendent on their initial solution, but it was felt that VNS might be able to avoid this
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dependence on the initial solution by still being capable of reaching all areas of the

search space using different neighbourhoods. The search space on which our VNS

operates consists of feasible solutions.

The local search part of the VNS method uses a simple steepest descent approach

which is fast and yields very good results. Other more complex local search techniques

could be considered. However, introducing a more complex local search technique

would involve a number of new parameters which have to be carefully tuned and will

notably increase the running time of the algorithm. Therefore, in order to keep the

number of parameters as small as possible a simple steepest descent approach was

chosen.

2.1 Neighbourhoods used within VNS
In the exam timetabling problem, neighbourhoods used in local search techniques gen-

erally consist of moving some subset of exams from their current time slot to a new

time slot. The number and identity of exams to move define a neighbourhood. Our

initial implementation of VNS used the following eight neighbourhoods:

1. Single move: a neighbourhood consists of all moves obtained by selecting a sin-

gle exam and moving it to a new feasible time slot. This neighbourhood is most

commonly used in single-neighbourhood local search techniques. However, it

can be quite limiting as many exams in a timetable have no other feasible slots

to move to.

2. Swap: a neighbourhood contains all feasible moves involving swapping the time

slots of a pair of exams, ei and ej . This is a very limited neighbourhood since it

requires that the two exams selected can move to each other’s time slot preserv-

ing the feasibility. Despite its limitations when used within a single neighbour-

hood technique, the Swap neighbourhood can prove very useful within a VNS

framework.

3. Move 2 exams randomly: This neighbourhood is formed from all pairs of Single

moves. Instead of picking a single exam to move to a new time slot, two exams

are chosen at random and moved to new feasible time slots, independently of

each other. This allows for a slightly more diverse change to the current solution

than the single move neighbourhood.

4. Move 3 exams randomly: As above but with three exams

5. Move 4 exams randomly: As above but with four exams

6. Move 5 exams randomly: As above but with five exams

7. Move a whole time slot: In an exam timetable, the n time slots are ordered from

1 to n by the value of the penalty cost that they incur. Rather than moving indi-

vidual exams between time slots, this neighbourhood moves an entire time slot,

selected at random, to a new position in the ordering (also randomly selected),

with the other periods being shuffled along accordingly. Moving entire time
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slots enables exams which would otherwise be unable to move (due to clashing

with exams in all other time slots) to move around the timetable, thus changing

the value of the penalty function. This can be very useful, especially if VNS is

seeded with a bad initial solution, since it allows for exploration of a wide area

of the search space.

8. Swap time slots: Similar to the previous neighbourhood, instead of moving a

single time slot to a new position in the ordering, this neighbourhood only affects

two randomly selected time slots, simply swapping all exams in one with all

exams in the other. Again, this allows for previously immobile exams to move

around the timetable.

The steepest descent local search uses the single move neighbourhood. All solu-

tions yielded by the VNS neighbourhood are taken to the nearest local minimum using

this neighbourhood. Therefore, VNS solutions produced in the single move neigh-

bourhood invariably led to the same local minimum by applying the steepest descent

search. A tabu list could be used to prevent the search from dropping straight back into

the same local minimum. However it was decided to replace neighbourhood 1 with

the more successful Kempe chain neighbourhood used by Thompson and Dowsland in

their simulated annealing technique [32].

The Kempe chain neighbourhood involves swapping a subset of exams in two dis-

tinct time slots. In our implementation, an exam e, currently in slot T1 and a new

time slot, T2, are selected at random, with the exams in the two time slots forming a

bi-partite graph, as in Figure 2, since only feasible solutions are allowed. The Kempe

chain is defined as the connected components of this bi-partite graph from a given start-

ing exam (the exams forming one such chain are shown in black in Figure 2). These are

the exams which clash with each other (indicated by an edge between the two exams)

and therefore must be switched to the other period as their clashing exams are moved.

The single move neighbourhood is a subset of the Kempe chain neighbourhood con-

sisting of all disconnected vertices (exams) in the bi-partite graph - these are the exams

which can be moved across to the new period without inducing a clash.

Figure 2 shows a simple Kempe chain move involving 2 time slots, T1 and T2

each containing 4 exams. If exam 1 is selected to be moved to slot T2, the Kempe

chain represented by the black circles in figure 2 is constructed resulting in exams 1,

2 & 3 moving to T2 and exams 5 & 8 moving across to T1 to maintain feasibility of

the solution and the bi-partite nature of the graph defined by time slots T1 and T2, as

shown in figure 3. Exam 6 is a disconnected node which could move from slot T2 to T1

in the single move sub-neighbourhood of the Kempe chain neighbourhood. All other

exams have clashes (represented by edges of the graph) with exam(s) in the other time

slot and so could not be moved in the single move neighbourhood. Exams 4 and 7 can

be exchanged in the Kempe chain neighbourhood, the equivalent of a swap move.

The Kempe chain neighbourhood eliminates the main failing of the single move

neighbourhood by enabling any exam within the timetable to be moved to a new time

slot. Every pair of time slots forms a bi-partite graph meaning that there will always

be a Kempe chain move defined by any exam. The largest Kempe chain move would

result in every exam being exchanged between two periods. Whilst in graph colouring
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Figure 2: A Kempe chain move before execution

this would not have any effect on the solution, in exam timetabling it does since the

ordering of the periods is important. However, unlike the simple move neighbourhood,

the swap time slots neighbourhood is not wholly contained within the Kempe chain

neighbourhood. For example, in Figure 2, no Kempe chain exists which would move

exam 6 across to T2 together with exams 5, 7 and 8 because it has no clashes with

exams in T1.

2.2 Variations of VNS for exam timetabling
One of the significant advantages of VNS is that it is a very modular technique which

allows for changes in almost any of the steps given in figure 1, to produce potentially

better results. A number of variations are listed below:

• Descent-ascent: Basic VNS is a ‘descent, first improvement method with ran-

domization’ [22]. A very simple change to the algorithm would be to make it a

descent-ascent method by accepting worsening moves with some probability in

a similar way to that used by simulated annealing.

• Best improvement [22]: Instead of taking the first random move from a sin-

gle neighbourhood, make a move to the best neighbourhood among all kmax of

them.

• Variable neighbourhood descent (VND) [22]: VND uses many neighbourhoods

during the local search phase of the VNS method as oppose to the more standard

use of just a single neighbourhood. Hansen and Mladenović [22] report that this

technique is crucial to obtain good results in certain problem domains.

• Biased VNS: In step 2 (a) of the basic VNS, it is possible to generate the solution

x′ by a number of different methods rather than purely at random. One such

method could be to choose the best from a random selection of moves from a
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Figure 3: The result of a Kempe chain neighbourhood move

given neighbourhood. The other approach is instead to select an exam at random

from the n exams adding the highest penalty to the timetable and use this exam

to define a move from the Kempe chain neighbourhood.

• More complex local search [22]: Instead of the steepest descent local search

technique, any other local search technique, such as simulated annealing, great

deluge or tabu search could also be used, with an appropriate stopping condition.

One of the main disadvantages of the current implementation, however, is the run

time so a more complex local search technique would be likely to increase this

still further.

• Problem-specific neighbourhoods: Since the structure of different exam time-

tabling problems can vary hugely, it may be the case that some neighbourhoods

work far better on one problem than another, and that discarding certain neigh-

bourhoods from the original set will not detract from the quality of solutions

produced. Even more, it may in fact improve solution quality by allowing the

search to spend longer in more promising neighbourhoods. In the implemen-

tation described here, the more neighbourhoods that are included, the fewer it-

erations are performed in each neighbourhood before the stopping condition is

met. Reducing the number of neighbourhoods to the best subset for the specific

problem may allow for further improvements to be found or for good solutions

to be found faster.

• Different initialisation strategies: Currently, two different initialisation strate-

gies to seed VNS are used. Section 4 presents results from VNS when initialised

by a greedy and a random construction technique. One of the objectives of this

comparison is to examine the importance of the initial solution to the quality of

8



the final solution produced by VNS. For most data sets, the greedy initialisation

technique produces far better starting solutions. However, there are a number of

other methods which can be used. For example, a constraint-satisfaction tech-

nique could prove to be very effective to find an initial feasible solution which

VNS can then further improve, since constraint-based techniques are especially

suited to finding feasible solutions without the need to consider the optimisation

of an objective function.

All of the described variations are investigated in the context of exam timetabling

problems. In the biased VNS method, two new neighbourhoods are added based on the

successful Kempe chain neighbourhood. The first of these samples a random 5% of

the total exams and selects the one adding the highest penalty to the current timetable.

This exam is then used to form a Kempe chain move in exactly the same way as when a

random exam is chosen. The second variation selects an exam at random from the 20%

of exams adding the highest penalty to the timetable, and continues with the Kempe

chain move as before.

The aim of adding these two neighbourhoods is to better utilise the strengths of the

Kempe chain neighbourhood which has the ability to move any exam in the timetable

to any other slot, unlike many simpler neighbourhoods. Selecting the first exam for the

Kempe chain purely at random will quite often lead to a worse solution if the exam

in question is already adding very little penalty to the timetable. It is hoped that by

biasing selection toward the most troublesome exams, which are also the exams which

can rarely move in the simpler neighbourhoods, better improvements can be found.

Results from this variation of VNS are presented in section 4 together with those of

basic VNS for comparison.

Also considered is the descent-ascent approach which includes an acceptance cri-

teria combining aspects from both simulated annealing and great deluge algorithm. In

order to maintain a descent method, only solutions which are less than 1% worse than

the current solution are considered, with on average 10 per cent of these being accepted.

This variant of the basic VNS adds in further parameters, but can yield some improve-

ment without these parameters having been tuned to each individual problem. Further

improvement may be possible with better tuning, but parameter tuning has not been

introduced into the algorithm since that would take away one of the major advantages

of VNS.

The best improvement and variable neighbourhood descent methods are not con-

sidered here because they involve far more significant changes to the algorithm and

also increase the run time of each iteration. Neighbourhoods consisting of up to five

Kempe chain moves were tested, but did not yield any successful results when used in

VNS. These are considered in Section 3. Also tested were variants of VNS utilising

great deluge or simulated annealing in place of the simple steepest descent local search

method, but again these introduced a large number of parameters and far longer run

times without yielding any improvement.

The other variation which was considered is the problem-specific neighbourhood
selection. In the early implementation described in this section, when a new neigh-

bourhood is identified which may add something to the performance of the algorithm

it is simply added to the existing set of neighbourhoods. If the stopping condition is
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extended to take account of the extra neighbourhoods, this should not detract from

the ability of the VNS meta-heuristic to find high quality solutions. However, it will

increase the run time of the algorithm. If the stopping condition is kept the same,

adding more and more neighbourhoods may cause performance to drop due to the

search spending less time in each neighbourhood. Statistics collated from many runs of

VNS on 11 benchmark problems show that for some problems a certain neighbourhood

very often results in an improvement whilst in other problems the same neighbourhood

is rarely successful. On the contrary, a different neighbourhood is most effective.

Rather than just use these fairly crude statistics to decide which neighbourhoods to

discard for each problem, the use of a genetic algorithm (GA) technique is proposed to

intelligently select the best neighbourhoods to include in the search for a given prob-

lem.

3 Combining VNS with a Genetic Algorithm to improve
solution quality

The main focus of VNS is on the neighbourhoods with the ability for the search to

pick solutions out of a variety of neighbourhoods providing a high degree of flexibility.

Section 2.1 considered initially just eight neighbourhoods with a further two added for

the Biased VNS technique.

The ease with which new neighbourhoods can be introduced into the technique al-

lows us to consider a far wider variety of neighbourhoods than the original eight defined

in section 2.1. Since exam timetabling problems differ in their structure it is likely that

different neighbourhoods will suit different problems. Increasing the number of neigh-

bourhoods tested and taking note of which neighbourhoods are used most frequently

when optimising different problems can give a good indication of this.

This section presents a genetic algorithm (GA) approach to intelligently selecting

a subset of neighbourhoods to use within VNS for a given problem. The number of

neighbourhoods is increased to 23 (Table 1) with the potential for more. A more de-

tailed discussion of these 23 neighbourhoods is given in section 3.1. As more analysis

is carried out on which neighbourhoods work best for which problems, giving a bet-

ter understanding of problem structure, more problem-specific neighbourhoods can be

incorporated into the algorithm. For instance, in problems were the density of clashes

(graph density) is very high many exams will be unable to move to a new time slot us-

ing generic neighbourhoods. More complex neighbourhoods may be developed which

allow these exams to move around more freely.

The idea of using a GA at a higher level of abstraction rather than being applied di-

rectly to the problem itself has been successfully implemented by Terashima et al. [31]

to evolve the configuration of constraint satisfaction methods. Ross et al. [29] also

comment that GAs may be better suited to searching for good algorithms rather than

acting on the problem itself. This work is strongly connected to recent work on hyper-

heuristics [5, 6] which also work at a higher level of abstraction to select from a variety

of low-level techniques the best one to apply to a problem. Han et al. [15, 19, 20, 21]

successfully utilise a GA within a hyper-heuristic framework to evolve an ordering of
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low-level heuristics applied to the trainer scheduling problem. The key difference be-

tween the work presented here and the work of Han et al. is that in their hyper-heuristic

framework, low-level heuristics are being ordered by the GA to be applied sequentially

to the problem, whereas in our implementation of VNS, all neighbourhoods used within

the technique are searched, but a move is only made within a given neighbourhood if it

fulfils the criteria for move acceptance.

The genetic algorithm is used to evolve a subset of neighbourhoods from a large

pool for use within the VNS framework. The approach is referred to hereafter as VNS-

GA with further possibilities for extension also considered. A simple chromosome

representation is used with fixed length equal to the total number of neighbourhoods

to select from. Each neighbourhood is represented by a number, but their ordering is

unimportant since the VNS method cycles through all neighbourhoods. The search

moves to the next neighbourhood only when the move selected from the current neigh-

bourhood is not accepted. If the move is accepted, the search continues in the same

neighbourhood rather than returning to the first neighbourhood. Neighbourhoods can

be repeated within the chromosome representation, but duplicates are removed when

the chromosome is translated to the actual set of neighbourhoods to be used within

VNS. The chromosome represents the set of neighbourhoods to be used within VNS.

This enables creation of many possible distinct subsets of the full neighbourhood set.

A chromosome in which all elements are the same would represent just that single

neighbourhood supplied to VNS.

Crossover and mutation operators are both implemented in a simple manner. A

percentage of the population of each generation is chosen to produce an equal number

of offspring. The rest of the next generation is selected directly from the chromosomes

of the current generation. In this implementation, 70 per cent of the chromosomes

are selected for crossover using a roulette wheel style selection based on their fitness

evaluation. Most of the 30 per cent of chromosomes to survive to the next generation

are also selected using the same roulette wheel method. The probability, P (xi), of a

chromosome xi being selected from the population Xg of chromosomes in generation

g is given in expression ( 1) with the fitness function given in expression ( 2)

P (xi) = fitness(xi)/(
∑

∀xj∈Xg

fitness(xj)) (1)

fitness(xi) = max{( max
∀xj∈X1

{V NS(xj)} × f)− V NS(xi), 0} (2)

V NS(xj) gives the solution penalty, according to the objective function, result-

ing from the application of the VNS algorithm with the neighbourhoods specified by

chromosome xj . If more than one VNS run per chromosome is used then this value

can be either the average or best across the runs for a given chromosome. f is the fit-

ness modifier. A lower value of f causes the better chromosomes to have a much larger

chance of roulette wheel selection than the worse chromosomes, whereas a higher value

gives worse chromosomes a better chance of being selected by making the difference

between fitness values of the best and worse chromosomes relatively much smaller.

A standard one-point crossover technique is used to produce the two offspring from

the two selected parents with the crossover point selected randomly. Figure 4 shows

11



an example of the crossover procedure for chromosomes of length 8 with the crossover

point indicated by the dashed line. Child 1 takes the front portion of the chromosome

from Parent 1 and the back portion from Parent 2 and Child 2 the opposite. Since

multiple copies of a neighbourhood are permitted in this representation there is no

need to perform any repair operator after the crossover. The interpretation of each

chromosome as a set of neighbourhoods is given to the right of figure 4.

Child 2 2 4 4 1 2 6 8 1

Child 1 1 5 3 3 5 1 5 7

Parent 2 2 4 4 3 5 1 5 7

Parent 1 1 5 3 1 2 6 8 1

Crossover point

� {1,2,4,6,8}

� {1,3,5,7}

� {1,2,3,4,5,7}

� {1,2,3,5,6,8}

Figure 4: The one-point crossover operator for chromosomes of length 8

The mutation operator acts after selection and crossover, changing an element

(gene) of a chromosome to a random neighbourhood with a given probability which

can be increased or decreased to alter the random element of the evolution.
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The basic steps of the VNS-GA procedure are given in Figure 5.

• Initialisation: Set the following parameters:

– Total number of generations, G

– Population size, n

– Number of independent runs of VNS using the neighbourhoods represented

by a chromosome, v

– Number of members of the population selected as parents for crossover, s

– Fitness modifier, f

– Mutation rate, m

The initial population X of chromosomes (x1, . . . , xn) is created, either at ran-

dom or by including some selection method.

• Repeat for G generations:

1. Calculate fitness of each chromosome in X using v runs of VNS

2. Select s/2 pairs of chromosomes from X using roulette wheel selection

and a random crossover point for each pair

3. Perform crossover between all s/2 pairs of parents to produce s children,

(c1, . . . , cs)

4. Select n − s − 1 chromosomes, (cs+1, . . . , cn−1), from the current popu-

lation, X , using roulette wheel selection

5. Set cn to be the best chromosome from population X

6. Perform mutation on all new chromosomes, (c1, . . . , cn) according to the

mutation rate, m

7. Set X = (c1, . . . , cn)

Figure 5: The steps of VNS-GA procedure

As discussed earlier, the fitness calculation in Step 1 of figure 5 can be calculated

either from the average result or the best result across the runs of VNS if v > 1. Step 5

causes the most promising chromosome from the last population to be carried through

to the new population automatically (elitist approach).

3.1 The Neighbourhoods
For experiments using the VNS-GA technique, 23 neighbourhoods were defined, from

which to select a subset for each problem (Table 1). ‘Type A’ represents the Kempe

chain move with first exam selected being the one which gives the highest penalty from

a random selection of 5% of the total exams, ‘Type B’ represents the Kempe chain

move with first exam selected at random from the 20% giving the highest penalty:
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1. Single random Kempe chain move

2. Swap two exams

3. Move two exams at random

4. Make two random Kempe chain moves

5. Move three exams at random

6. Make three random Kempe chain moves

7. Move four exams at random

8. Make four random Kempe chain moves

9. Move five exams at random

10. Make five random Kempe chain moves

11. Make one Kempe chain move (Type A)

12. Make one Kempe chain move (Type B)

13. Make two Kempe chain moves (Type A)

14. Make two Kempe chain moves (Type B)

15. Make three Kempe chain moves (Type A)

16. Make three Kempe chain moves (Type B)

17. Make four Kempe chain moves (Type A)

18. Make four Kempe chain moves (Type B)

19. Make five Kempe chain moves (Type A)

20. Make five Kempe chain moves (Type B)

21. Move a whole time slot

22. Swap time slots

23. Randomly order time slots

Table 1: Neighbourhoods defined for VNS-GA
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4 Results

4.1 VNS Results
A number of benchmark problems have been made publically available to test and

compare exam timetabling techniques. Of these, the most widely used are those given

by Carter et al. [13] for the uncapacitated exam timetabling problem. In these, the

number of time slots is fixed a priori and the aim is to spread clashing exams around

the timetable as much as possible. The objective function adds a penalty ws for a

timetable whenever a student must sit two examinations within s periods of each other,

where w1 = 16, w2 = 8, w3 = 4, w4 = 2, w5 = 1. The key features of these

problems are given in Table 2. Graph density is calculated as the ratio of the number

of exams that are in conflict with each other (i.e. have students in common) to the

square of the total number of exams. Results for these problems are reported as average

penalty per student. Results from the literature for a variety of methods applied to

these data sets are presented in Table 3. As can be seen from these results, a wide

variety of different techniques have been successful on these problems with no single

technique outperforming all others across the whole range of problems. Techniques

which are successful on one problem are often far less successful on other problems

when compared against different techniques.

Data No. of No. of No. of Graph No. of

Set exams students enrolments Density periods

CAR-S-91 682 16925 56877 0.13 35

CAR-F-92 543 18419 55522 0.14 32

EAR-F-83 190 1125 8109 0.27 24

HEC-S-92 81 2823 10632 0.42 18

KFU-S-93 461 5349 25113 0.06 20

LSE-F-91 381 2726 10918 0.06 18

STA-F-83 139 611 5751 0.14 13

TRE-S-92 261 4360 14901 0.18 23

UTA-S-92 622 21267 58979 0.13 35

UTE-S-92 184 2750 11793 0.08 10

YOR-F-83 181 941 6034 0.29 21

Table 2: Characteristics of uncapacitated benchmark problems [13]

Table 4 compares the results produced by the Basic VNS algorithm with the best

reported solution taken from Table 3. Figures in italics represent the best solution found

between the two initialisation techniques, VNS-RI using the randomised initialisation

heuristic, VNS-GI using the greedy version. Basic VNS uses neighbourhoods 1-8 from

Table 1, all using random move selection in step 2 (a) of the algorithm in Figure 1.

Table 5 gives the results of the Biased VNS approach when initialised by the two

different methods. Biased VNS-RI and Biased VNS-GI uses neighbourhoods 1-8 from

Figure 1 with two additional biased Kempe Chain neighbourhoods, as described in

section 2.2, one selecting the exam currently adding the largest penalty to the timetable
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Carter Caramia Burke & Di Casey & Merlot

Data et al. et al. Newall Gaspero Thompson et al.

Set (1996) (2001) (2003) (2002) (2003) (2003)

[13] [11] [8] [16] [14] [24]

CAR-S-91 7.1 6.6 4.6 5.7 5.4 5.1

CAR-F-92 6.2 6.0 4.0 - 4.4 4.3

EAR-F-83 36.4 29.3 36.1 39.4 34.8 35.1

HEC-S-92 10.8 9.2 11.3 10.9 10.8 10.6

KFU-S-93 14.0 13.8 13.7 - 14.1 13.5
LSE-F-91 10.5 9.6 10.6 12.6 14.7 10.5

STA-F-83 161.5 158.2 168.3 157.4 134.9 157.3

TRE-S-92 9.6 9.4 8.2 - 8.7 8.4

UTA-S-92 3.5 3.5 3.2 4.1 - 3.5

UTE-S-92 25.8 24.4 25.5 - 25.4 25.1

YOR-F-83 41.7 36.2 36.8 39.7 37.5 37.4

Table 3: Selected results from the literature on uncapacitated benchmark problems

from [13] (best results given)

Petrovic Abdullah Burke & Di Gaspero Burke Paquete

Data et al. et al. Newall & Schaerf et al. & Stützle

Set (2002) (2004) (2004) (2001) (2004) (2002)

[28] [2] [9] [17] [3] [26]

CAR-S-91 - 5.2 5.0 6.2 4.8 -

CAR-F-92 - 4.4 4.3 5.2 4.2 -

EAR-F-83 34.5 34.9 36.2 45.7 35.0 38.9

HEC-S-92 10.9 10.3 11.6 12.4 10.6 11.2

KFU-S-93 14.8 13.5 15.0 18.0 13.7 16.5

LSE-F-91 10.6 10.2 11.0 15.5 10.4 13.2

STA-F-83 159.9 150.3 161.9 160.8 159.1 158.1

TRE-S-92 8.0 8.1 8.4 10.0 8.3 9.3

UTA-S-92 - 3.6 3.4 4.2 3.4 -

UTE-S-92 - 24.2 27.4 29.0 25.7 27.8

YOR-F-83 36.7 36.1 40.8 41.0 36.7 38.9

Table 3: (cont.) Selected results from the literature on uncapacitated benchmark prob-

lems from [13] (best results given)
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Data Best reported Basic VNS-RI Basic VNS-GI

Set solution Best Average Best Average

CAR-S-91 4.6 5.10 5.29 5.07 5.24

CAR-F-92 4.0 4.20 4.39 4.17 4.30

EAR-F-83 29.3 33.56 36.33 33.70 36.35

HEC-S-92 9.2 10.41 11.08 - -

KFU-S-93 13.5 13.72 14.40 13.85 14.54

LSE-F-91 9.6 11.13 11.70 11.18 11.74

STA-F-83 134.9 156.86 157.12 156.86 157.15

TRE-S-92 8.0 8.48 8.88 8.49 8.84

UTA-S-92 3.2 3.49 3.59 3.40 3.49

UTE-S-92 24.2 25.10 25.94 25.18 26.01

YOR-F-83 36.1 36.80 38.70 36.77 38.47

Table 4: Results from the basic VNS meta-heuristic with random and greedy initialisa-

tions

from a random 5% sample, the other selects a random exam from the 20% of exams

adding the largest penalty. Again, the best result reported from Table 3 is included for

comparison.

Average and best results from 100 runs on a 750MHz Athlon are presented for both

Basic and Biased variants. The stopping condition is 2,500 iterations without improve-

ment after a minimum of 10,000 and the random move selection from neighbourhoods

causes run times to vary considerably between problems as well as across the 100 runs

on a single problem. On the smaller datasets, the algorithm generally terminates in the

order of 1-2 minutes, whereas run times for larger data sets range from 30 minutes to

90 minutes. Run times for results reported from the literature in Table 3 vary between

around 0.5 seconds for smaller datasets up to 15 minutes on the larger datasets.

From Table 4, it can be seen that the basic implementation of VNS fails to match

the best reported solutions from the literature on the 11 benchmark problems, but does

still provide high quality results across all problems. When compared with other tech-

niques from Table 3, the results from Basic VNS are highly competitive and beat the

results of each other technique on at least one problem, indicating that whilst it is un-

able to produce any best known solutions, it is highly consistent across the range of

problems. Methods from Table 3 which produce the best solution on one problem are

often outperformed by a few techniques on other data sets, showing that they are much

more suited to some problems than others.

Comparing the results of Tables 4 & 5 shows the clear improvement in solution

quality of introducing the two biased neighbourhoods. Apart from the anomalous STA-

F-83 problem, Biased VNS outperforms Basic VNS for all problems and significantly

also manages to produce a best known solution to the KFU-S-93 data set of 13.38

compared to the previous best of 13.5.

When comparing the two initialisation strategies, results are mixed with neither ini-

tialisation approach outperforming the other across all problems. For the Biased VNS

method, the random initialisation outperformed greedy initialisation on five problems,
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Data Best reported Biased VNS-RI Biased VNS-GI

Set solution Best Average Best Average

CAR-S-91 4.6 5.02 5.28 5.07 5.12

CAR-F-92 4.0 4.17 4.34 4.12 4.23

EAR-F-83 29.3 33.10 36.00 33.46 35.78

HEC-S-92 9.2 10.26 11.02 - -

KFU-S-93 13.5 13.38 13.87 13.38 14.03

LSE-F-91 9.6 10.66 11.33 10.93 11.58

STA-F-83 134.9 156.86 157.04 156.86 157.06

TRE-S-92 8.0 8.35 8.76 8.39 8.77

UTA-S-92 3.2 3.47 3.55 3.39 3.50

UTE-S-92 24.2 24.86 25.41 24.86 25.43

YOR-F-83 36.1 36.48 38.33 36.43 38.03

Table 5: Results from the VNS with biased neighbourhoods meta-heuristic with ran-

dom and greedy initialisations

whilst leading to inferior results on three problems and equal performance on the other

three. This in itself is quite significant however, implying that VNS has the capability

to overcome a seemingly bad initialisation to still produce equally high quality results.

Unsurprisingly, the average performance of the VNS initialised with the greedy tech-

nique was higher in a majority of cases, but not by a significant amount, and not on

all problems. Again, this shows that the VNS technique can take a range of highly

diverse initial solutions (for certain problems the random technique yields some initial

solutions which have twice the cost of others) and lead them to high quality solutions.

Further research is required to determine exactly how much the initial solution is

changed to produce the final solution using the two initialisation techniques. It may be

the case that the increased diversity of the random initialisation approach allows VNS

to more easily find high quality solutions. The less diverse greedy approach may start

the search of in a relatively bad region by placing certain exams in unfavourable time

slots (whilst still producing a solution with an overall lower penalty) which then have

to be corrected by the VNS algorithm.

Also worthy of note is that Biased VNS invariably leads to a higher level of con-

sistency in the quality of solutions produced with the best average performance (for

10 of the 11 problems). The average result from Biased VNS on some data sets also

outperforms the best result of some techniques from Table 3, showing that the method

is capable of producing good results consistently across a number of runs as well as

individual good results from a selection.

Table 6 presents the best results obtained by the descent-ascent variation of the

Biased VNS approach 1 compared to those of selected other techniques in the literature.

On the majority of datasets, this variation outperforms the pure descent Biased VNS

variant with only the EAR-F-83 data set proving to be an exception. However, further

analysis of the individual runs shows that the 33.10 result obtained by the Biased VNS-

RI (Table 5) technique was an anomalous result from the 100 runs with the second best

1These results are the best across both initialisation techniques

18



Data Abdullah Caramia Burke & Casey & Merlot Descent-

Set et al. et al. Newall Thompson et al. ascent

[2] [11] [8] [14] [24] Biased VNS

CAR-S-91 5.2 6.6 4.6 5.4 5.1 4.9

CAR-F-92 4.4 6.0 4.0 4.4 4.3 4.1

EAR-F-83 34.9 29.3 36.1 34.8 35.1 33.2

HEC-S-92 10.3 9.2 11.3 10.8 10.6 10.3

KFU-S-93 13.5 13.8 13.7 14.1 13.5 13.2
LSE-F-91 10.2 9.6 10.6 14.7 10.5 10.4

STA-F-83 150.3 158.2 168.3 134.9 157.3 156.9

TRE-S-92 8.1 9.4 8.2 8.7 8.4 8.3

UTA-S-92 3.6 3.5 3.2 - 3.5 3.3

UTE-S-92 24.2 24.4 25.5 25.4 25.1 24.9

YOR-F-83 36.1 36.2 36.8 37.5 37.4 36.3

Total Penalty 300.8 306.2 322.3 - 310.8 305.8

Table 6: Ascent-descent Biased VNS compared to results from the literature (best re-

sults given)

being only 33.88. In a method such as VNS, which involves a large random element,

there is always the possibility of any variant producing a very high quality solution on

a single run, but not consistently across many runs.

It can be seen from Table 6 that the descent-ascent Biased VNS method performs

very favourably compared to many current state of the art techniques, improving the

best known solution for the KFU-S-93 data set to 13.2. Perhaps more significantly is

the consistency of performance across the range of all 11 problems. The approach is

ranked 2nd or 3rd out of the 6 presented on the other 10 data sets, giving a total penalty

across all data sets second best among four approaches whose techniques were applied

to all data sets. This can be misleading as it may be biased heavily by one problem,

especially since the penalty for the STA-F-83 dataset accounts for as much of the total

as the other 10 datasets combined. This can be overcome by normalising the penalties

for each problem. Indeed, our technique compares favourably to that of Abdullah et al.

when measured across only those 10 datasets. From this there are clear indications that

VNS is very capable of producing high quality results across all data sets tested upon.

4.2 VNS-GA Results
VNS-GA was tested on the same 11 benchmark problems with certain parameters var-

ied between data sets. These parameters were those which affect the time taken by

the technique since our aim was to run VNS-GA on all problems for a similar amount

of time rather than for the exact same number of runs of VNS. The total number of

neighbourhood combinations evaluated 2 by running VNS at step 1 of figure 5 is given

by G×n×v with v determining how many times the same neighbourhood set is tested

for a given chromosome.

2including multiple evaluations of the same neighbourhood set
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In order to run all problems for roughly the same amount of time, an approximation

of the time taken for a single VNS run to give a value for G × n × v (for the given

amount of time) was calculated. This was approximate as run times can vary greatly

for a single problem, but it was not important that all problems had exactly the same

time since their results are not being compared against each other. For the experiments

reported in this paper, v was set to 1 with the exception of the HEC-S-92 and UTE-S-92

data sets whose fast run times allowed us to obtain results using v = 3. G and n were

either balanced equally or in a 2:1 or 1:2 ratio. Mutation rates of 0.002 (0.2%) and 0.01

(1%) were both tested with fitness multiplier, f , set at either 1.01 or 1.05.

The main aim of this work is to discover the potential performance of the VNS

algorithm under favourable conditions (selected neighbourhoods) rather than to evalu-

ate the GA itself. For this reason, it was deliberately decided not to carefully tune the

many GA parameters for our experiments. Instead, a few sets of values which looked

to give a balanced setup to run the experiments were selected. If the method is to be

used by exam timetablers who may not be experts in genetic algorithms, it is important

to examine the performance with a set of default parameters rather than with carefully

tuning ones. The experiments reported here are based on a variety of different param-

eters as described above, but these were not tuned, just selected in advance with no

knowledge of how any would perform. The version of VNS used is the descent-ascent

Biased VNS with the largest degree heuristic with randomisation initialisation (Biased

VNS-RI) as this proved to be the best combination overall from Section 4. The greedy

initialisation heuristic was not used here as it is less reliable at finding feasible initial

solutions and gives a lower diversity of solutions.

The focus is on the performance of the VNS technique with different neighbour-

hoods in order to show that results can be improved by selecting subsets of the large

set of neighbourhoods which may be more suitable to a problem so that more time can

be spent searching these neighbourhoods rather than those which are not contributing.

From the results obtained in these experiments, it should be possible to determine how

effective this technique is so that the GA itself can then be more carefully considered

to improve performance even further.

Table 7 gives the best results found by the VNS-GA algorithm on each data set and

gives a comparison with the previous best result from the VNS variations presented

in section 4 and the best known solutions reported in Table 3. The neighbourhoods

which were used to produce the best solutions are also given. It can easily be seen that

the VNS-GA method improves on the performance of the descent-ascent Biased VNS

with the 10 neighbourhoods used previously. Experiments were also carried out using

the full set of 23 neighbourhoods with VNS for all problems. In all cases these results

were at least as good as the previous best results with the 10 neighbourhoods, but were

not as good as the results from the VNS-GA. This indicates that some (or all) of the

additional 13 neighbourhoods are adding something useful to the ability of VNS, but

that selecting a subset of these 23 to focus on gives still better results.

In order to test whether the neighbourhoods which provided the best solutions given

in Table 7 are consistently better than using all 23 neighbourhoods or whether they just

happened to be the neighbourhoods which were being used in VNS while the random

element of the algorithm output that best result, a further series of tests were under-

taken. In the VNS-GA, a set of neighbourhoods was only tested for use within VNS
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Data Best Best Best Neighbourhood

Set Reported VNS VNS-GA Subset For

Solution Solution Solution Best Solution

CAR-S-91 4.6 4.9 4.6 {1,4-8,11-13,16,17,19-23}
CAR-F-92 4.0 4.1 3.9 {1,3-6,8-11,13-17,19-23}
EAR-F-83 29.3 33.1 32.8 {1,3,4,7,11,13-15,17,21-23}
HEC-S-92 9.2 10.3 10.0 {1-4,6,8,10-12,14,16,17,19-22}
KFU-S-93 13.5 13.2 13.0 {2,4,6,8-10,12-15,17-20,22}
LSE-F-91 9.6 10.4 10.0 {2,3,5-8,10,13,15-17,19,20,22,23}
STA-F-83 134.9 156.9 156.9 Many

TRE-S-92 8.0 8.3 7.9 {2,4,7-12,15,19,21-23}
UTA-S-92 3.2 3.3 3.2 {1-9,13,18-22}
UTE-S-92 24.2 24.9 24.8 {1-3,5-10,13-17,19,20,22,23}
YOR-F-83 36.1 36.3 34.9 {1,5,6,9,10,12-14,16,17,19,21,22}

Table 7: Best results obtained from the VNS-GA algorithm with neighbourhoods given

Data VNS with all VNS with selected

Set neighbourhoods neighbourhoods

Best Average Time (s) Best Average Time (s)

CAR-S-91 4.7 4.9 2751 4.6 4.9 3084

CAR-F-92 4.0 4.2 1605 3.9 4.1 1686

EAR-F-83 32.9 34.2 175 32.8 34.1 162

HEC-S-92 10.2 10.6 28 10.0 10.6 28

KFU-S-93 13.2 13.6 633 13.0 13.4 673

LSE-F-91 10.1 10.6 359 10.0 10.8 345

TRE-S-92 8.3 8.4 244 7.9 8.2 218

UTA-S-92 3.3 3.4 2358 3.2 3.4 2040

UTE-S-92 24.9 25.1 67 24.8 25.0 73

YOR-F-83 35.2 36.4 124 34.9 36.6 126

Table 8: Results from VNS comparing all neighbourhoods with the ‘best’ subset of

neighbourhoods

a single time (v = 1), except for the two problems for which v = 3 was also tested.

Table 8 shows the results of running VNS 100 times (v = 100) with the neighbourhood

sets suggested in Table 7. Results are compared to those produced by 100 runs of VNS

with the full set of 23 neighbourhoods. Average run times for the technique are also

given in both cases with experiments carried out on a P4 1.8 GHz Athlon PC.

Results from table 8 are fairly inconclusive with regard to the merits of using se-

lected neighbourhoods rather than just using all 23. Using selected neighbourhoods,

the average result is better in five of the problems whilst using all 23 neighbourhoods

provides a better average for two of the problems. In all cases the difference between

the two sets of results is small. The STA-F-83 data set was excluded from further ex-

periments because the best solution found by VNS is always 156.86 irrespective of the

technique or neighbourhood selection and this solution is found regularly across 100

runs. Further analysis would be needed to investigate the reasons for this strange be-

haviour, but for the purposes of this research, VNS produces a competitive result on
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this data set with any selection of neighbourhoods.

4.2.1 Notes on Results

There are a number of points to note from the results presented in tables 7 & 8 together

with the raw data produced by the experiments. It is clear that the VNS-GA is capable

of producing the best results of all the VNS variants tested on all problems, although on

many problems the difference between this method and supplying the VNS algorithm

with all 23 neighbourhoods is relatively small. Also the use of selected neighbourhoods

with the same stopping conditions, based on the number of iterations without improve-

ment, gives no advantage in terms of the time taken by the algorithm to find solutions.

However, it is the case that the selected neighbourhoods presented in table 7 enabled

VNS to obtain the best results whereas no other combination of neighbourhoods was

able to produce results of that quality.

A major aim of this work was to show that VNS can provide highly competitive

results and the results shown demonstrate that this is the case, irrespective of whether

the GA was successful at selecting neighbourhoods or not. Having shown that VNS

is capable of such high quality results, the next step is to give VNS the best chance

of repeating that quality of result on a consistent basis. Comparing the average results

from Table 8 with the best results reported in the literature (Table 3) confirms that even

the average performance over 100 runs of VNS can outperform the best results of a

number of specially designed meta-heuristic techniques.

The disadvantage of VNS is that the run time to obtain these results is notably

longer than that of other meta-heuristic techniques. However, analysis of the individual

runs of the algorithm shows that the vast majority of improvement takes place very

quickly, the remainder of the time is then spent making relatively small improvements.

Therefore, in common with many local search techniques, there is a trade-off between

run time and solution quality. High quality solutions can be obtained in a quarter of

the time taken for the results given, but for best performance the longer run time is

required.

As regards the effectiveness of the GA for selecting neighbourhoods, clearly more

research needs to be carried out to determine whether the method is successful at evolv-

ing the ‘best’ subset(s) of neighbourhoods for a given problem, but results from the

relatively untuned GA presented here give a lot of promise. One obvious drawback of

the method compared to a more conventional GA is that the fitness function is calcu-

lated using VNS which involves a very high random element meaning that the same

chromosome will be evaluated with a different fitness every time, unlike a standard GA

fitness function which returns the same fitness for identical chromosomes. This can be

significantly improved by increasing the value of v to 10 or more and using the average

VNS result across the v runs to calculate chromosome fitness from. This would also

allow the GA to evolve the neighbourhoods more obviously than it does currently by

improving the consistency.

In the current GA implementation, with v = 1, the total fitness of each successive

generation is very varied for most problems with only the larger data sets tested show-

ing an obvious initial evolution. This is largely because of this variable fitness calcula-

tion causing a chromosome which may have been given a high fitness in one generation
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to have a relatively low fitness in the next generation. The higher the value of v, the

more similar the fitness evaluation will be for two identical chromosomes meaning that

when the fitter chromosomes are selected they represent sets of neighbourhoods which

consistently give high quality results rather than just being able to produce a single

good result. Further tuning of the other parameters of the GA, especially the popula-

tion size, fitness multiplier and the mutation rate could also significantly improve the

consistency of its performance. Combined with increasing the number of VNS runs per

chromosome, v, tuning the fitness multiplier will give a much more consistent selection

of the best chromosomes resulting in a convergence of the GA to a set of neighbour-

hoods which should be capable of giving highly consistent performance both in terms

of best and average results.

The implementation described in this paper contains just 23 neighbourhoods, many

of which are very similar in terms of what they do. It is possible however to implement

a huge variety of far more complex neighbourhoods which can easily be added into

VNS to give a much larger pool of neighbourhoods. Some of these could be specifically

designed with particular problems in mind. The more that is known about the structure

of a given problem, the easier it may be to develop a neighbourhood specifically for

that problem which takes into account its main features and how they affect the search

process. For a technique to be used by people with expertise in exam timetabling

rather than in optimisation techniques, this can be a significant advantage. Whilst many

methods require a high level of knowledge of the actual optimisation technique in order

to make improvements, new neighbourhoods for VNS can be developed using domain

knowledge instead.

5 Conclusions
The Variable Neighbourhood Search (VNS) approach presented in this paper has been

shown to produce solutions of a high quality across a range of benchmark data sets,

producing a best reported result on one medium sized data set and performing consis-

tently on most other data sets using the Biased VNS method with 10 neighbourhoods.

A Biased VNS variation was developed and tested against the Basic VNS. Results

from this Biased VNS have shown significant improvement over the Basic VNS on

many of the data sets tested and are very competitive with current state of the art tech-

niques. Further improvements were yielded by the addition of an ascent mechanism

similar to that of simulated annealing. The best results from this approach compare

very favourably with techniques reported in the literature and it proves robustly com-

petitive across all data sets.

One significant advantage of the Basic VNS approach is that it involves very few

parameters apart from the selection of the neighbourhoods. All of these are easily im-

plemented since only a random move is required rather than an exhaustive search of the

neighbourhood. With a high degree of modularisation, neighbourhoods can be added

and taken away easily, any local search technique can be used and the method of move

acceptance altered. Basic VNS also has a large number of potential improvements,

which, whilst adding more parameters can be used to improve performance. The one

notable disadvantage to the VNS implementation described here (so far) is the time
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taken on large problems which can be as much as 90 minutes for a single run. Whilst

run time is less crucial for exam timetabling than many other combinatorial optimisa-

tion problems, since exams are generally only taken once or twice a year with a fair

degree of planning time, it is still an area which needs improvement.

Another variant of VNS was proposed, utilising a genetic algorithm to intelligently

select the neighbourhoods for use within VNS from an increased selection. A set of

23 neighbourhoods was considered, but this can be increased by adding many more

diverse neighbourhoods which may be much more suited to certain problems than oth-

ers. The neighbourhoods so far considered are fairly general rather than being targeted

at specific problem features. As a result of this and the GA not having been carefully

tuned (a deliberate effect), the results of the VNS-GA compared to VNS applied with

all 23 neighbourhoods are not as impressive as they perhaps could be, but still yield

very high quality results. The ability of the technique to easily incorporate a wide va-

riety of differing neighbourhoods allows it to successfully fulfil our aim of increasing

the generality of a technique to be successfully applied to exam timetabling problems.

Best known solutions compared to those published at the time of writing have been

found to four benchmark data sets with solutions equal to the best known found for

two more data sets. Results on a further five problems are also highly competitive with

state of the art techniques, indicating that the proposed VNS-GA method is capable of

producing high quality solutions, even better than those achieved with the Biased VNS,

under the right conditions. Those conditions involve the evolution of a set of neigh-

bourhoods which can provide better solutions than simply including all implemented

neighbourhoods within VNS.

This high level of generality is one of the key aspects of our research. Many dif-

ferent meta-heuristics have been applied to the benchmark data sets used within this

paper, but most struggle to produce high quality solutions across the whole range of

problems, when compared against each other. The variants of VNS proposed in this

paper have succeeded in producing high quality results across a wider range of prob-

lems than many of these previous techniques. With a large number of further variants

and improvements it is quite likely that these results could be improved still further.

The inclusion of more complex and problem-structure specific neighbourhoods in the

VNS-GA technique should also help to further increase the generality of the method.

For those problems on which these neighbourhoods provide no improvement, the GA

will remove them from the subset of neighbourhoods used within the VNS.

A number of methods for improving the performance of the GA with particular

focus on its consistency have been considered. Most notable amongst these is to run

VNS 10 or more times for each chromosome and to take an average result for the

fitness function rather than a single run. This should result in a much better evolution

of neighbourhoods, but at the cost of significantly increased running time. Combining

the VNS-GA with a case based reasoning system to store the best set of neighbourhoods

for previously solved problems which can be used with VNS for new similar problems

could help to alleviate the problem of running time. This would be done by allowing

the GA to evolve the best sets of neighbourhoods for problems within a case base.

When a new problem is required to be solved, the most similar problem from the case

base will be matched and the set of neighbourhoods used for that problem retrieved to

be used for the new problem.
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6 Future Work
Due to the modular neighbourhood structure of VNS, the technique can be adapted

more easily than many single neighbourhood techniques and be applied to exam time-

tabling problems with more complex side constraints. New neighbourhoods can be

added and tested easily, which are specifically designed for the side constraints en-

countered. For instance, if time window constraints are included, new neighbourhoods

can be implemented which specifically target exams which are scheduled outside of

their time window in order to satisfy that constraint. Further work is required to fully

investigate the application of VNS to problems with a wider range of side constraints,

but results presented in this paper indicate that the use of a number of different neigh-

bourhoods in the search can yield very high quality results across a broad range of

problems.

With the increasing complexity of exam timetabling problems in many universities,

we believe that the proposed VNS techniques can be adapted easily to take into account

any new side constraints without taking away from the generality of the method.
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