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AbstractA Historical Application Pro�ler for Use by Parallel SchedulersRichard GibbonsMaster of ScienceGraduate Department of Computer ScienceUniversity of Toronto1997Scheduling Algorithms that use application and system knowledge have been shown tobe more e�ective at scheduling parallel jobs on a multiprocessor than algorithms thatdo not. This thesis focuses on obtaining such information for use by a scheduler in anetwork of workstations environment.The log �les from three parallel systems are examined to determine the best wayof categorizing parallel jobs for storage in a job database and the job information thatwould be useful to a scheduler. A Historical Pro�ler is proposed that stores informationabout programs and users, and manipulates this information to provide schedulers withexecution time estimates. Several preemptive and non-preemptive versions of the FCFS,EASY and Least Work First scheduling algorithms are compared to evaluate the utilityof the pro�ler. It is found that both preemption and the use of application executiontime estimates obtained from the Historical Pro�ler lead to improved performance.
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Chapter 1IntroductionStudies have indicated that existing networks of workstations (NOWs) are not being usedat full capacity. Douglis and Ousterhout's examination of the Sprite operating system'sprocess migration facilities [DO91] �nds that even during the daytime on weekdays, overtwo-thirds of workstations are idle. Similarly, Mutka and Livny's study of the usage of13 to 20 workstations over 9 months [ML91, Mut92] discovers that even at the busiesttimes, 55% of capacity is available. More recent analysis by Arpaci, et al. of a clusterof 53 workstations [ADV+95] �nds that the total number of idle workstations remainedroughly constant, such that more than 60% of workstations were available at any givenmoment.Such �ndings encourage viewing a network of workstations as a single system withexcess capacity, rather than as multiple distinct machines intended for individual use.This idea immediately leads one to consider methods of improving the performance andfunctionality of such a system. One such method would be to use the excess capacity ofNOWs to run parallel jobs. This, in e�ect, is treating the NOW as a parallel machine.Previously, most parallel programming was done on parallel processors. HoweverNOWs are becoming increasingly popular as a substitute. Anderson, Culler and Patter-son attribute this trend to several factors [ACP95]. NOWs o�er a signi�cantly betterprice-performance ratio than a massively parallel processor (MPP). They do not havethe one to two year lag that exists between the release of a new processor and its use inan MPP. Furthermore, since workstations generally already include an operating system,1



Chapter 1. Introduction 2NOWs do not su�er to the same extent from the complications and high cost of creatingan entirely new operating system. Additionally, with the large excess capacity of NOWs,existing NOWs can be used as a parallel machine with little additional cost.The study by Arpaci, et al. [ADV+95] con�rms the viability of running parallel andsequential workloads simultaneously on NOWs. Using simulations based on traces andbenchmarks, they demonstrate that it is possible to provide acceptable service to inter-active users while still allowing parallel jobs to have good performance. The techniquein this study is to allow the coscheduling of parallel jobs using processors that have beenidle for at least three minutes. To ensure that interactive users are not inconvenienced,parallel threads are migrated as soon as interactive use of a workstation resumes, anda daily limit is set on how many times parallel jobs can run on a given machine. Thistechnique relies on the facts that, in general, a constant number of machines are idle atany time, and 95% of idle time is spent in intervals longer than 10 minutes, even thoughhalf of the idle periods are less than three minutes long.These �ndings support the argument that doing parallel computation on NOWs isboth feasible and desirable. However, for parallel applications to be commonly runon networks of workstations, operating system support for these applications in thisenvironment is required. The support needed ranges from infrastructure to help parallelapplications run on several machines and communicate with each other, to software tomake the development of programs in this environment easier. This thesis will focus onone particular area that requires support, parallel job scheduling.Much research has focused on parallel job scheduling in multiprocessors, and thearea is still open to inquiry. It seems natural that many of the scheduling results thatapply to multiprocessor systems may also apply to scheduling parallel jobs in a NOWenvironment. However, on closer examination, this may not be so self-evident, becausethe job mixes found in the two environments may be very di�erent. Because machinesin the NOW environment may be less reliable than the processors in a multiprocessorand communication may be slower, users may choose to run di�erent types of jobs in thetwo environments. This is even more likely to be true if the users have access to botha multiprocessor and a NOW acting as parallel machine. Despite these misgivings, it is



Chapter 1. Introduction 3still worthwhile considering results obtained in multiprocessor environments.Previous research in these multiprocessor environments has indicated that knowledgeof application characteristics can improve the performance of parallel system schedulers[MEB90, PD89, GST91, MEB91, Wu93, AS97, PS96]. However, very few practical meth-ods of determining application characteristics for use by a scheduler have been suggestedor implemented [DAC96, NVZ96b, NVZ96a].1.1 ObjectivesThe overall goal of this thesis is to determine a reasonable way for scheduling algorithmsfor parallel jobs executing on a NOW to achieve better performance by using knowledgeof the historical resource usage of individual applications. This will be done by analysisof parallel job patterns on production networks of workstations, and by implementingand analyzing scheduling algorithms that can take advantage of this workload character-ization. The resulting system will be tested and evaluated on a sixteen node network ofworkstations.Chapter 2 will discuss previous results that impact this work. It presents both earlierworkload characterization studies, and analysis of the characteristics of parallel applica-tions. It then describes some parallel scheduling algorithms that use application knowl-edge. This chapter is intended to provide a broad overview of relevant research precedingthis thesis.The parallel workloads of one multiprocessor machine and two networks of worksta-tions are examined in chapter 3. The goal of this analysis is to identify commonalitiesamong the workloads in the three production sites. This examination contributes to thedetermination of features of the workload that are both predictable and useful in im-proving scheduling e�ectiveness. The primary focus will be methods of classifying jobsso that the coe�cients of variation for wall clock execution time and processor time ofeach class will be relatively small.Chapter 4 will use the results of Chapter 3 when specifying the implementation of a\database", called the historical pro�ler, that contains information about the historical



Chapter 1. Introduction 4resource usage of applications. The purpose of this chapter is to present the issuesassociated with creating a Historical Pro�ler in a NOW environment. To this end, it willpresent several features that a pro�ler should have to be useful to a scheduler. Methodsof storing the data that consider the tradeo� between storage space and amount of detailare proposed. Finally, this chapter presents algorithms for transforming raw executiontime data about jobs into approximate execution time functions more easily used by thescheduler. The execution time function for an application indicates its expected executiontime as a function of the number of processors it is allocated.Chapter 5 contains a discussion of the issues associated with implementing schedulersthat use the Historical Pro�ler. This chapter serves a dual purpose. First, it introducesthe algorithms to be used to test the performance of the Historical Pro�ler. Second, itindicates the di�culties encountered in designing several parallel schedulers in a NOWenvironment. Several preemptive and non-preemptive variants of three scheduling al-gorithms are examined, First Come First Serve (FCFS), Least Estimated Work First(LEWF), and Lifka's EASY [Lif95].These scheduling algorithms are used to test the performance of the Historical Pro-�ler. Chapter 6 evaluates the performance of these algorithms in scheduling parallelapplications to run on a NOW, using information from the Historical Pro�ler. It com-pares this performance to the performance of the algorithms when perfect knowledgeof execution times of the applications is available. The workload used to evaluate thealgorithms is presented, followed by analysis of the results of the experiments. The goalis to determine how well these scheduling algorithms perform when using the pro�ler,relative to the ideal.



Chapter 2Context and Previous WorkThis chapter presents results preceding the work in this thesis. Section 2.1 discusses loadbalancing on networks of workstations and the Load Sharing Facility, LSF [LSF96]. Sec-tion 2.2 presents previous workload characterization studies and techniques. Section 2.3brie
y summarizes methods for characterizing parallel applications. Section 2.4 discussesthe EASY scheduler, followed by Section 2.5 which presents other scheduling algorithmsthat could potentially use workload information, if it were available. This section moti-vates Section 2.6, which describes methods that scheduling algorithms currently use toobtain workload information.2.1 Load Balancing on Networks of WorkstationsLoad balancing on NOWs has been investigated for over a decade. Several NOWmodelingand simulation studies [ELZ86, MTS90] support the hypothesis that relatively simple loadbalancing algorithms can result in large improvements in the average execution times ofjobs. A simulation using job traces from production VAX machines [Zho88] con�rmsthese �ndings. Zhou �nds that under a moderate load of approximately 60% processorutilization, mean response times improve by 30-60%, and that even with light loads, theperformance of every host improves. A more recent UNIX study by Harchol-Balter andDowney [HBD96] analyses the lifetime distributions of processes and proposes a policyfor preemptive migration. Using trace-driven simulations, they show that their policy5



Chapter 2. Context and Previous Work 6reduces mean delays by 35-50% compared to non-preemptive migration where jobs canonly be migrated before they have started.Many implementations and algorithms for load balancing have been proposed. Earlye�orts include Leblang and Chase's implementation of a parallel make on a networkof workstations [LC87] and Theimer's techniques for �nding hosts for remote execution[TL89]. A more recent study by Kunz using an arti�cial workload [Kun91] examines theuse of di�erent host workload descriptors to determine where to schedule processes. Hediscovers that using the node with the minimal number of tasks in the run queue leadsto the most e�cient dispatching of jobs.Implementations of distributed operating systems, such as V [Che88] and Sprite[DO91], provide support for load sharing. However, subsequent research, on systemssuch as the Condor [LLM88] and Utopia [ZZWD93], focuses on implementing load shar-ing in a layer on top of the workstation operating system. In particular, LSF version 2.2,a commercial version of Utopia, is the load sharing system used in this thesis.LSF, Load Sharing Facility [LSF96], provides transparent interactive and batch loadbalancing on a heterogeneous NOW. LSF is implemented on top of UNIX and a shared �lesystem. It dynamically provides resource information, including number of processors,relative speed, and physical memory available on each host, and load information suchas processor load, available memory/swap space, and I/O and paging activity. LSFautomatically selects the hosts on which to run a job, based on the resource requirementsof the job, and the current load conditions. Restrictions and resource limits may bespeci�ed for queues, for users, or for hosts. Accounting systems record the resourceusage of all jobs on the system in log �les.Minimal support for parallel jobs is provided by LSF through a generic interface.Parallel applications that use packages such as PVM or MPI can be started by LSF'sbatch interface using shell scripts provided by LSF or written by the application pro-grammers. An Application Programming Interface (API) provides programmers withaccess to most of LSF's features, including the remote execution of threads. This the-sis will focus on enhancing LSF's batch execution features using the LSF API and LSFaccounting mechanisms.



Chapter 2. Context and Previous Work 72.2 Workload CharacterizationThe primary goal of resource allocation algorithms, including scheduling algorithms, isto provide the workload on the system with e�ective access to system resources. Themeaning of \e�ective" depends on the resource being allocated, the workload, and thesystem. As a result, when creating a scheduler, it is useful to examine the workload thatwill be scheduled.Many workload characterization studies of parallel and sequential applications exe-cuting on di�erent platforms exist. However, there are none that deal speci�cally withNOWs running parallel production workloads. This could be because running paralleljobs on NOWs is a new approach, so little data is available. However, despite this lackof data, there are other workload characterization studies that are of interest.An early study by Agrawala, Mohr and Byrant [AMB76] on a two processor Univacworkload presents several techniques used frequently in workload characterization studies.They discuss di�erent job models and the use of clustering theory in the classi�cation ofjobs.A di�erent approach is used in a uniprocessor modeling study by Devarakonda andIyer [DI89]. This study uses cluster analysis and state-transition modeling of trace �lesfrom a UNIX system to create a job model. This model is able to predict execution timewith a high correlation to the actual execution time. The errors are relatively small,with 80% of jobs falling within half a standard deviation of the predicted value. Thelog �les also have the interesting property that 21% of executables account for 92% ofjobs. Any program with the same path and name is considered the same executable;if two programs are in di�erent directories but have the same name, they will still beconsidered di�erent executables1. These results indicate that, in sequential systems atleast, it should be possible for a scheduler to use historical data to accurately predictapplications' execution time.Since the presumption of this thesis is that the NOW is being used as a parallel1For the work in this thesis, a slightly di�erent method is used. Executables are classi�ed onlyby name, not by path. As a result, any two programs with the same name but possibly in di�erentdirectories are still considered the same executable.



Chapter 2. Context and Previous Work 8machine, multiprocessor workload characterizations are more relevant to this researchthan uniprocessor studies. Several studies of multiprocessor machines exist. Pasquale,Bittel, and Kraiman present a workload characterization of a production Cray X-MPbased on two months of data from 1989 [PBK91]. Their clustering analysis shows that88% of the jobs accounted for less than 2% of the processor time. However, 2% of jobsused 86% of the processor time, 77% of the memory space-time product, and 21% of theI/O time. They analyse the arrival rate of jobs, and �nd a common pattern of workloadincreasing from 8:00am to noon, remaining roughly constant until 5:00pm, and thendecreasing until 9:00pm.An earlier study of job arrival patterns in a multiprocessor was done by Calzarossaand Serazzi [CS85]. They analyse 14 one-day periods using polynomial-�tting techniquesto derive functions for the arrival rate based on the time of day and cluster analysis to�nd groups of applications that have similar arrival behaviour. They verify their �ndingswith a second set of data from a di�erent month.The most complete characterization of a multiprocessor system, an iPSC/860 hyper-cube, is presented by Feitelson and Nitzberg [FN95]. This study categorizes jobs bydegree of parallelism and analyses each category in terms of the number of jobs, averageprocessor time, cumulative processor time, and type of jobs. Furthermore, they analysejob submission rate, average job length, and job interarrival times in terms of time ofday. They conclude by pro�ling both user activity in terms of number of jobs submittedand applications used, and applications in terms of the number of times each applicationis run and the variance in execution length. Some of their interesting results include:1. A small number of large jobs consume most of the resources.2. Despite the fact that system-wide job run times and interarrival times have a highcoe�cient of variation, the job run times of multiple executions of the same appli-cation on the same number of nodes tend to have a coe�cient of variation less thanone.The �rst �nding is also supported by Pasquale, et al.'s study [PBK91]. These re-sults indicate that while the overall distribution of job execution times in the system is



Chapter 2. Context and Previous Work 9hyperexponential, it should still be possible to predict the execution times of individualapplications.The most recent studies of multiprocessors are Hotovy's examinations of a productionIBM SP2 system [Hot96, HSO96]. These are the only workload characterization studiesthat note that the system utilization increases over a nine month period. He observes anincrease in both the weekly backlog and median wait times. He examines the number ofjobs and the processor time by the number of processors requested, and observes thatmost jobs requested a number of nodes that is a power of two. Hotovy's results di�erfrom those of Feitelson, et al. and Pasquale, et al. in that the average job duration doesnot clearly increase for an increased number of processors. Instead, the duration is thehighest for sequential jobs, then decreases for up to sixteen processors. The durationthen increases for up to 32 processors but levels o� for jobs requiring more processors.Preliminary analysis of more recent log �les of the same site by Parsons [Par97] appearsto con�rm this increasing trend for small numbers of processors, followed by a levelingo� for jobs using more processors. This system is examined in more detail in Section 3.1.Each of these studies has focused on speci�c systems. However, it is also worthwhileexploring the methodology of workload characterization. Calzarossa and Serazzi [CS93]do this when they examine the common features of workload characterization studies.They present a �ve step methodology for the analysis of workloads and the constructionof arti�cial workloads.1. Formulation of the characterization level and basic components.2. Choice of instrumentation.3. Collection of data.4. Analysis of data using partitions, parameter distributions, sampling, static charac-terizations, dynamic characterizations, and the construction of models.5. Determining the validity of the model on other data.They also suggest parameters on which to focus for various studies. Unfortunately,they do not address the workload characterizations of NOWs; they primarily emphasize



Chapter 2. Context and Previous Work 10network issues. For parallel applications, they suggest a focus on many characteristics ofsuch applications, including those presented in the next section.2.3 Parallel Application CharacterizationWorkload characterization is important for resource allocation, but it is also worthwhileto investigate the system at a �ner granularity, the individual applications. The analysisof characteristics of parallel applications is valuable since systems software can be writtento optimize the performance of such applications. However, there are many di�erent waysthat applications can be analysed. This section will present some of those methods.One technique is to measure characteristics of applications using simulations whilevarying the size of data sets or various application parameters. There are many studiesof this type. Woo, et al.'s analysis of the SPLASH-2 programs [WOT+95], 12 benchmarkprograms for shared address multiprocessors, takes this approach. Using execution-drivensimulations, it analyses the programs in terms of speedup, load balancing, working sets,communication to computation ratio, and spatial locality. Cypher, et al. [CHKM93]do a similar study on eight parallel scienti�c applications running on two di�erent mul-tiprocessor architectures. They analyse the applications in terms of memory, I/O, andprocessing requirements, communication to computation ratio, message tra�c, scalingof problem size and scaling of the number of processors. A further study of this type isdone by Nguyen, Vaswani and Zahorjan [NVZ96a]. They examine several applicationsin the Perfect [CKPK90] and Splash-2 [WOT+95] benchmark suites running on a KSR-2in terms of speedup and sources of slowdown. The major problem with such studies isthat it is di�cult to tell whether the applications studied really are representative ofapplications in production systems.A similar technique that determines how system characteristics a�ect performanceis to execute representative applications on di�erent con�gurations of a system. Lantz,Nowicki and Theimer conducted an early study of this type examining a client/serversystem [LNT85]. Using graphics and text benchmarks, they found that the bandwidthof the network had only a small role in determining the performance of the system. Moreimportant factors were the speed of the machines involved and the transport protocol.



Chapter 2. Context and Previous Work 11All the studies presented thus far focus on actual applications. However, much theo-retical work has addressed more general models of parallel applications. Sevcik discussesthe many di�erent levels and types of theoretical characterizations [Sev89]. Low levelcharacterizations such as data dependency graphs and task precedence graphs exist. Theformer deals with operations on data that are required to be sequential, while the latterdecomposes an application into dependencies between purely sequential tasks. However,in practice, such low level characterizations can be both di�cult to obtain for largeapplications and di�cult to use.Higher level characterizations have been proposed, and some of the de�nitions of termsused in higher level parallel application characterization appear in Table 2.1. Amdahl[Amd67] established an in
uential approach to characterizing parallel applications byidentifying a limit on the speedup of an application with p processors, S(p), based onthe fraction f of the application that is intrinsically sequential:S(p) � 1f + (1 � f)=p (2.1)The execution time function, T (p), is a popular way of characterizing an applicationin terms of the number of processors it uses. T (p) is the execution time with p processors.This characterization has the bene�t that it can generally be measured easily by runningthe application several times with di�erent numbers of processors.Various methods of de�ning the parallelism of an application in terms of a singlenumber have been proposed, including the minimum and maximum parallelism. Eager,Zahorjan, and Lazowska investigate the use of average parallelism, A, and the tradeo�between speedup and e�ciency for varying numbers of processors [EZL89]. The speedupand e�ciency functions are de�ned in terms of the execution time function:S(p) = T (1)T (p) (2.2)E(p) = S(p)p (2.3)Eager, et al. note that speedup and e�ciency are inversely related to each other, soboth measurements cannot simultaneously be low for any allocation of processors. They



Chapter 2. Context and Previous Work 12Table 2.1: Application CharacteristicsCharacteristic De�nitionExecution Time A function that for any p is equal to the duration of theFunction T (p) application executing on p processors.Speedup Function The ratio of the execution time for the application runningS(p) on one processor to the execution time of the applicationon p processors.E�ciency Function The ratio of the speedup for the application using pE(p) processors to p.Average Parallelism The average number of busy processors during theexecution of an application if an unlimited number areavailable.Maximum Parallelism The maximum number of busy processors during theexecution of an application if an unlimited number areavailable.Minimum Parallelism The minimum number of busy processors during theexecution of an application if an unlimited number areavailable.Processor Working The number of processors that maximizes the product ofSet (pws) the speedup and e�ciency functions.!(p) The ratio of the time required for an application toexecute on p processors to the time required on anin�nite number of processors.



Chapter 2. Context and Previous Work 13also note that the average parallelism can approximate the knee of the graph of speedupversus execution time.Ghosal, Serazzi and Tripathi [GST91] expand on this work by actually �nding the kneeof the speedup versus execution time graph. The processor working set (pws) is de�nedas the value of p that minimizes the ratio of the execution time to the e�ciency, T (p)E(p), or,correspondingly, maximizes the product of the speedup and e�ciency. Conceptually, thepws attempts to indicate with a single parameter the threshold at which the gain in thespeedup of an application is worth the marginal cost of using an additional processor.Methods of characterizing the parallelism of applications are also a popular researchtopic. Majumdar, Eager and Bunt [MEB91] propose a function that provides an indica-tion of the variability in parallelism:!(A) = AS(A) = T (A)T (1) (2.4)This function is the execution time attainable by a job with A processors when pro-cessor sharing, using time-slicing, is employed.A more detailed way of characterizing the parallelism of an application is in terms ofthe parallelism pro�le [Sev89]. The parallelism pro�le of an application is a graph of themaximum number of processors that an application can use at various times during itsexecution.One problem with many of these characterizations is that they rely on knowledge ofthe execution time function. It is possible to measure the execution time function, butto get a smooth curve from incomplete data, a model of the function is required. Severalfunctions have been proposed as models, and at least two representations are used severaltimes in the literature.Dowdy [Dow88] proposes an execution signature of the following form to characterizean application by execution rate �(p):�(p) = pC1p+ C2 (2.5)The variables C1 and C2 are constants speci�c to the application. From this expres-sion, the execution time function may be derived:



Chapter 2. Context and Previous Work 14T (p) = 1�(p) = C1p + C2p = C1 + C2p (2.6)The main alternative to Dowdy's model is Sevcik's model [Sev94]. Sevcik's moregeneral proposed model for the execution time function is based on four parameters.The work of an application is represented as W . A function �(p) represents the degree towhich work is not evenly spread among processors. The increase in work per processordue to parallel processing is �, while the communication delays and other delays thatincrease with p are represented by the product �p. Sevcik's formulation is:T (p) = �(p)Wp + � + �p (2.7)Dowdy's formulation (equation 2.6) is an instance of Sevcik's formula, whereW = C2,�(p) = 1, � = C1 and � = 0. Wu [Wu93] characterizes applications in terms of bothDowdy's and Sevcik's forms, and �nds applications where Dowdy's form has large errors.The problem arises because Dowdy's execution signature is a non-decreasing functionin p. However, for any parallel application, there is a point where the congestion andcommunication overhead become so great that assigning an additional processor to theapplication slows it down rather than speeding it up. Sevcik's function does not have thesame disadvantage, since it has the �p term to deal with this situation.2.4 The EASY SchedulerWhen investigating scheduling, it is worthwhile examining popular current algorithms inorder to judge both the performance of the algorithms and the requirements of users.Users are starting to demand the availability of certain features in scheduling software[RSLS95]. One response to this demand has been Lifka's creation of the ExtensibleArgonne Scheduling sYstem (EASY). EASY [Lif95] was designed with the help of usersof the IBM SP system on which it was originally intended to run. Since that time, it hasbecome increasingly popular and has been adopted by other sites [SCZH96].EASY was designed according to users' goals of fairness, simplicity, predictability,exclusive access to nodes, and support for di�erent job types. To satisfy the goal ofsimplicity, there are twelve UNIX-like commands with intuitive functions. Yet, despite
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Table 2.2: Scheduling TermsCharacteristic De�nitionstatic scheduling The number of processors assigned to a job cannot changeafter that job has begun execution.dynamic scheduling The number of processors assigned to a job can changeafter a job has begun execution.preempt Temporarily stop the execution of a job or a thread.resume Continue the execution of a preempted job or thread.migrate Move a job or thread that was running on one or moreprocessors to continue execution on a di�erent processoror set of processors.adaptive The number of processors assigned to a job when itinitially begins execution is determined by the scheduler.non-adaptive The number of processors that must be assigned to a jobis speci�ed by the user, not the scheduler.run to completion Once started, a job executes to completion with nopreemption or migration.coscheduling All the threads of a job are run simultaneously ondi�erent processors.space-sharing Jobs have exclusive access to the processors assignedto them.



Chapter 2. Context and Previous Work 16this simplicity, EASY is able to meet all the other goals. To ensure that the users'exclusive access to nodes does not compromise the fairness of access, an accountingsystem is included. Each user has a limited quota of processor-minutes. After that quotahas been exceeded, the user is not allowed to submit any more jobs.Fairness and predictability are implemented using a static scheduling scheme basedon FCFS with back�lling. When a job is submitted, the user must specify the durationof the job. Any job that fails to complete within the speci�ed duration is killed. TheFCFS with back�lling algorithm means that jobs are run in strict �rst come �rst serveorder, except when a job can be run on available processors without delaying the startof any other job submitted before it. This algorithm ensures that, at any time, users cansee the current schedule of every job in the system, and know that a submitted job willstart execution no later than the time re
ected in the current schedule.The main drawback of this scheme is that it is far from optimal for either responsetime or e�ciency. In an e�ort to remedy this situation somewhat, a new implementationof EASY is planned that allows executing jobs access to available nodes [SCZH96]. If arunning job could use more processors than it currently has, it can request access to idlenodes as long as the request will not delay other jobs.2.5 Selected Scheduling ResultsWorkload characterization results from Section 2.2 suggest that parallel application per-formance is predictable, while the success of EASY, described in Section 2.4, indicatesthat users are willing to specify limits on the run-time of applications. These resultsnaturally lead to the question of whether knowledge of application characteristics canimprove the performance of scheduling algorithms. The majority of results indicate thatthe answer is \yes".Majumdar, Eager and Bunt's simulation [MEB90] of an arti�cial workload running ona shared memory multiprocessor compares the mean response time using FCFS and RR(round-robin) policies to SNPF and SCDF schedulers. SNPF allocates processes to thejob with the smallest number of processors not yet allocated. Thus, jobs that demandfew processors will, in e�ect, be scheduled before jobs that demand more processors.



Chapter 2. Context and Previous Work 17SCDF, smallest cumulative demand �rst, allocates free processors to the job with theleast cumulative demand, where the cumulative demand is the product of the number ofprocessors the job uses and the length of the job. The study discovers that the greaterthe variability in demand, the more bene�cial is the additional workload knowledge thatSNPF and SCDF possess, and the better is the performance of algorithms that usepreemption.An alternative technique used in several other studies is to use instead knowledgeof the processor working set for scheduling. Ghosal, et al. [GST91] use four benchmarkapplications running on a sixteen transputer machine to compare various static schedulingalgorithms that use the pws. They suggest allocating to jobs a number of processorsequal to their pws (the PWS rule) as a viable scheduling strategy, although they notethat allocating the pws does not maximize average speedup. They do not compare indepth their algorithms using the processor working set to any other algorithms.A synthetic workload-based simulation by Majumdar, Eager and Bunt [MEB91], how-ever, does compare the performance of algorithms using the pws to algorithms using otherapplication characteristics. This study focuses on the identi�cation and use of appropri-ate application characteristics for scheduling. It �nds that the PWS rule yields nearoptimal performance for many workloads. Majumdar, et al. also suggest other staticscheduling algorithms that use knowledge of both A, the average parallelism of the ap-plication, and !(A), and the execution time attained by a job using A processors whenprocessor sharing is used among the active threads. Furthermore, they propose a form ofdynamic scheduling, program behaviour-based scheduling, where the number of processorsassigned to an application changes whenever the speedup or average parallelism of theapplication changes. Not surprisingly, this type of scheduling leads to lower average re-sponse times than static scheduling, where the number of processors cannot change afterthe application has started executing.A study by Chiang, Mansharamani, and Vernon [CMV94] a few years later seems tocontradict these results. It �nds that algorithms that use average parallelism and theprocessor working set perform worse than alternative static policies that do not use suchinformation. Using simulation and an arti�cial workload, Chiang, et al. discover that



Chapter 2. Context and Previous Work 18both adaptive static partitioning with a maximum limit on the number of processorsallocated, ASP-max, and shortest demand �rst with a maximum limit on number ofprocessors allocated, SDF-max, perform better than policies using A and pws. WithASP-max, a new job is allocated either all the idle processors in the system, or itsmaximum parallelism. When a job completes, its processors are allocated in a roundrobin fashion to jobs waiting in an FCFS queue. SDF-max schedules jobs in order ofincreasing demand with an upper limit on the number of processors assigned to a each job.Chiang, et al. also determine that EQ, a dynamic policy that assigns an equal number ofprocessors to all the jobs in the system (up to maximumparallelism), outperforms all theother policies presented. They explain the contradictions to previous studies by citingdi�erences in the policies and workloads examined. This result is veri�ed by Parsons andSevcik [PS95].Sevcik is responsible for two studies examining the use of knowledge of applicationbehaviour when scheduling. In the �rst [Sev89], he compares several static schedulingalgorithms that use knowledge of average parallelism, system load, and minimum andmaximum parallelism. His simulations lead to the conclusion that at low loads, knowl-edge of average parallelism is su�cient. However, at higher loads, schedulers that useadditional information can improve mean response times.In the second study, Sevcik [Sev94] examines several special cases of allocating Pprocessors to N applications for which execution time functions (equation 2.7) are known.He derives optimal allocations to minimize average response time for one application onP processors, N applications on two processors, N identical applications on P processors,and two applications on P processors.Several other researchers propose scheduling algorithms based on the execution signa-tures and speedup functions of applications. Park and Dowdy [PD89] note that executionsignatures may be obtained experimentally, and may be used to calculate correspondingspeedup functions. They observe that such a function may be used in scheduling to max-imize the throughput of a system. They support this assertion by presenting an iterativemethod that can be used by a dynamic scheduler to determine the optimal allocation ofprocessors to jobs.



Chapter 2. Context and Previous Work 19Wu [Wu93] uses Sevcik's execution time function (equation 2.7) to analyse severalparallel applications in a non-uniform memory access (NUMA) environment. He thenshows that a static scheduling algorithm using information about the execution timefunction outperforms a dynamic scheduling scheme where the applications notify thesystem of how many processors they would like. He explains this result by the overheadsassociated with the dynamic policy.Simulations by Anastasiadis and Sevcik [AS97] of three workloads continue this lineof research. This study demonstrates that, at high loads, static algorithms that useworkload knowledge can outperform an EQ policy with no overhead. At lower loads theEQ algorithm remains better because it is a dynamic scheduling strategy. They alsoshow that SDF-max does not generally perform better than SDF as is claimed in thestudy by Chiang, Mansharamani, and Vernon [CMV94]. Rather, the maximum limit onthe number of processors assigned to an application simply optimizes the performance ofthe algorithm for a particular workload and arrival rate.Parsons and Sevcik [PS96] provide additional results about the performance of schedul-ing algorithms that use the execution time function. This research focuses on the bene�tsof application knowledge of applications with various memory requirements. This mod-eling study shows that, if there is no correlation between the execution time and memorysize of jobs, a dynamic algorithm with knowledge of the execution time function onlymoderately outperforms an EQ algorithm. However, if memory requirement and execu-tion time are correlated, the algorithm with knowledge outperforms the EQ algorithmby a large margin. Parsons and Sevcik propose several algorithms to take advantage ofthis result and �nd, using simulations, that at all loads, the algorithms using applicationknowledge are able to outperform EQ. They note that the jobs in the study have vastlydi�erent execution time functions, and that a workload of jobs with less diverse executiontime functions would not bene�t from the same performance improvements.A similar study of dynamic schedulers based on Dowdy's execution signature (equa-tion 2.5) is described by Brecht and Guha [BG96]. They �nd that algorithms that useapplication characteristics such as jobs' remaining work, e�ciency, and processor workingset are able to outperform a simple EQ algorithm. In particular, an algorithm that con-



Chapter 2. Context and Previous Work 20siders both the remaining work of jobs and their e�ciency results in the most signi�cantimprovements in performance. Like Parsons and Sevcik [PS96], Brecht and Guha pointout that the possible improvement over EQ is a�ected by the variability in executiontimes, the e�ciency of jobs, and the system load.2.6 Methods for Ascertaining Application Charac-teristicsIt is clear from �ndings in Section 2.5 that knowledge of application characteristics canbe used to improve the performance of a scheduler. This section will discuss methodsthat have been used to gather information about application characteristics.One method of measuring application parallelism is a tool created by Kumar [Kum88].His tool inserts statements into application code to determine ideal parallelism, whichis the ultimate level of parallelism attainable by the code if it were to run with nooverhead on an in�nite number of processors. However, the tool as proposed has a majordisadvantage. It requires special versions of an application to be created and run todetermine the application characteristics. Such a procedure greatly inconveniences usersof the system. A similar disadvantage exists with an idea Sevcik [Sev94] presents, ofhaving the user provide estimates of execution characteristics.Another approach is to measure application characteristics at run time. Dusseau,Arpaci and Culler [DAC96] use this method with their implicit scheduling technique fordistributed time-shared workloads. Local schedulers use communication and synchroniza-tion events that are implicit in parallel applications to estimate load imbalances. Thelocal schedulers are able to determine from this data when to schedule parallel applica-tions so that that multiple processes in a job have a high probability of being scheduledsimultaneously. It does this without passing around any global information such as mes-sages to synchronize clocks. Simulations for arti�cial workloads show that this methodyields response times no more than 25% longer than for coscheduling algorithms (de�nedin Table 2.2), and for coarse-grained algorithms can be 25% better. This method has theadvantage of not requiring extra e�ort from either the application programmer or theuser to achieve acceptable scheduling.



Chapter 2. Context and Previous Work 21Nguyen, Vaswani and Zahorjan [NVZ96b, NVZ96a] use a combination of code in-strumentation and hardware monitors to determine run time characteristics of iterativeapplications. These studies assume that the behaviour of future iterations of loops willbe similar to the behavior of past iterations of the same loop. By determining the ex-ecution times of the loop over several iterations with varying processor allocations, thescheduler is able to estimate the speedup characteristics of the application. Simulationsof a variety of workloads indicate that a variant of the EQ scheduler that uses runtimeinformation, ST-EQUI, is able to outperform an EQ scheduler that does not. Further-more, the performance of ST-EQUI is almost comparable to that of a scheduler thatuses perfect information about the application. The main disadvantage of this methodis that, thus far, it requires that the application programmer instrument his code.An alternative method of determining application characteristics is to keep a historicaldatabase containing data on every job that has been run on the system. Despite resultsdiscussed in Section 2.2 that seem to indicate that this approach holds some potential,it has not been implemented by anyone up to now, but will be addressed in this thesis.



Chapter 3Workload CharacterizationWhen designing parallel scheduling algorithms, it is useful to analyze the workloadson both multiprocessing systems and networks of workstations running parallel jobs.Such analysis provides an idea of the important characteristics of jobs running on suchmachines. For this thesis, in particular, such analysis is critical, since this work focuseson the creation of a Historical Pro�ler to be used by parallel job scheduling algorithms.Before such a pro�ler can be created, it is necessary to decide what information could beuseful to a scheduler. An analysis of workloads lets us do this.Ideally, this workload analysis would focus on the parallel jobs running on productionnetworks of workstations. Unfortunately, there are several di�culties with this strategy.The �rst is that traces of production sites are generally not available. Either the site doesnot support detailed traces, or the traces contain con�dential information. A further dif-�culty is that the use networks of workstations as multiprocessors is only now starting tobecome feasible with the development of high-speed networks and networking protocols.As a result, there are few sites that execute parallel jobs on networks of workstations in aproduction mode. Additionally, in some of cases where parallel jobs are run on networksof workstations, the jobs are actually run on a single multiprocessor workstation on thenetwork.To reduce these di�culties, this thesis will examine not only the parallel workloads ontwo production networks of workstations, but also the multiprocessor workload describedby Hotovy, et al. [Hot96, HSO96]. The characterization of parallel applications in amultiprocessor environment may be relevant to networks of workstations used as parallelmachines. In both cases, the goal is to run parallel jobs in an environment that has22



Chapter 3. Workload Characterization 23multiple processors and communication paths between the processors. However, it maybe that, due to the slower communication in NOWs and the distributed memory of thesystems, users run di�erent jobs or di�erent versions of the same jobs on NOWs than theyrun on multiprocessors. Despite these potential problems, we will consider multiprocessorworkload characterizations relevant to a NOW environment.Three sites will be examined. The multiprocessor site, the Cornell Theory Center IBMSP2, is examined in Section 3.1. The two network of workstations sites are the anonymousUniversity1 research site, described in Section 3.2, and the NASA Lewis site, addressedin Section 3.3. In each case, the focus will be on the parallel jobs that are running on thesystems, and the sequential jobs will be ignored. A brief description of each system willbe presented, and the log �les will be analyzed. This analysis will be limited to aspectsof the workload that are potentially useful to a parallel job scheduler, and that can easilybe stored in a database. Section 3.4 summarizes the relevant conclusions that may bedrawn from the workload analysis.3.1 Cornell Theory Center IBM SP2The Cornell Theory Center IBM SP2 consists of 512 processing nodes, each of which hasfrom 128 MB to 2048 MB of memory, and 2 GB of disk capacity for swap space. Thereare two types of nodes, wide and thin nodes. Wide nodes have four times the cache andfour times the bandwidth between the cache and memory relative to thin nodes. Duringthe 169 days of log �les, the number of nodes available for batch jobs varied from 200 to430. There were a total of 54,042 batch jobs, of which 25,831, or 48%, were parallel.The system has �ve queues based on the maximum execution time of jobs: 15-minute,3-hour, 6-hour, 12-hour, and 18-hour. The 15-minute queue has the highest priority,while the rest of the queues have equal priority. If a job exceeds the maximum durationallowed in a given queue, the job is killed. LoadLeveler, the scheduler used in this system,supports a space sharing run to completion policy. To ensure that jobs eventually receiveservice, it increases the priority of the jobs that have waited the longest to receive service.Users are allowed to have a maximum of two jobs simultaneously executing, althoughmore are permitted to be in the queues.
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Figure 3.1: Cornell Theory Center: Parallel Job Submission Rate vs. Time of DayHotovy, et al. [Hot96, HSO96] analyzed several features of this workload, which arepresented brie
y here. They noted that over the six-month time period, the use of themachine, measured by user-node time, increased, but the number of jobs declined. Thisdi�erence was caused by a large (250%) increase in the duration of jobs and an increasein the average number of processors used by each job. Throughout the entire time period,the system had an average utilization of only 60%, where the utilization is the percentageof processors allocated to active jobs. During most of the period, the number of queuedjobs increased, as did the average wait time. In terms of parallelism, over half of thejobs were serial, but these jobs accounted for only 8.6% of the user-node time. 55% ofparallel jobs requested a number of nodes that was a power of two. Hotovy did not �nda clear relationship between the number of processors and the job duration. He foundthat sequential jobs had the longest job duration. The duration decreased for jobs using2 to 16 processors, and then increased again for jobs of higher parallelism.Several aspects of this workload were not analyzed by Hotovy, but are useful forscheduling, in particular, the number of jobs submitted by time of day. This informationis relevant, because it has been shown [Sev94, PS96] that static schedulers should reducethe number of processors allocated per job when the load increases. Thus, knowledgeof when the load is likely to increase in the future is useful. Figure 3.1 shows this, for
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Figure 3.2: Cornell Theory Center: Number of Parallel Jobs vs. Interarrival Time(adapted from Hotovy, et al.'s paper [HSO96])both weekdays and weekends. This graph is extremely similar to the ones presented byFeitelson and Nitzberg [FN95] and by Pasquale, et al. [PBK91], with a peak at noon,and a low at 8:00 am. A graph of the number of jobs dispatched by time of day looksvery similar, but is smoother, as would be expected. The interarrival time graph for theCornell Theory Center site, in Figure 3.2, based on work by Hotovy, et al. [HSO96], hasa shape extremely similar to that of a corresponding graph presented by Feitelson andNitzberg [FN95].Hotovy performs no analysis of the variance of job run times for the system, individualjobs, or queues. However, such data is useful, since it provides an indication of the possibleperformance improvements attainable by the scheduling algorithm. It also shows whichstatistics are useful to store in a database for use by a scheduler. This analysis of thevariance of run times is presented in Table 3.1. The relatively high system-wide coe�cientof variation1 for both the wall-clock time and the processor time is noteworthy. The higherthe value, the more di�erences there are among the jobs and the more potential bene�tthere is from a scheduler that distinguishes among jobs. If the scheduler can classify jobsinto categories that have lower coe�cients of variation, it should be able to to schedule1The coe�cient of variation, or C.V. is the ratio of the standard deviation to the mean of thedistribution.



Chapter 3. Workload Characterization 26Table 3.1: Cornell Theory Center: Wall clock time and Processor time Averages andCoe�cients of VariationType Wall Avg. Wall C.V. Processor Avg. Processor C.V.System-wide 6314 5.5 84603 4.3By user 6315 3.9 84894 2.9By parallelism 6202 4.6 76516 2.815 min queue 714 18.9 1870 3.73 hour queue 3690 10.0 25286 3.66 hour queue 5781 1.7 85880 3.012 hour queue 17935 3.8 280292 1.718 hour queue 30072 1.5 377261 1.75 < Num. Jobs < 20 6626 1.5 198099 1.9Num Jobs � 20 6198 4.7 75329 2.8the entire system more e�ectively.One possible classi�cation is to divide the jobs based on the user initiating the jobs,with the premise that each user tends to initiate jobs with similar characteristics. Ta-ble 3.1 shows this category. Each number for the classi�cations by user is calculated toonly include users who ran more than �ve jobs. Each user is given a weighting in theaverages and coe�cients of variation proportional to the number of jobs that user ran.The results indicate that overall there is less variance in both wall clock and processortime when jobs are classi�ed this way. Alternatively, jobs can be classi�ed based ontheir parallelism. Using a weighted average as with user, this classi�cation, too, resultsin a lower coe�cients of variation. It might be expected that a reasonable classi�cationwould be by queue, since di�erent queues, by de�nition, are supposed to contain di�erenttype of jobs. This intuition is validated by Table 3.1, where most of the queues havelower coe�cients of variation than the system, especially the longer queues. The twoexceptions are the wall clock time for the 15 minute and 3 hour queues. This result couldbe due to users using these queues for development, testing, and debugging, while thelonger queues were used exclusively for production jobs.



Chapter 3. Workload Characterization 27Perhaps the most natural way of classifying jobs is by the executable that is run,since it seems likely that multiple executions of the same executable should performsimilarly. Unfortunately, the Cornell Theory Center log �les do not contain any meansto directly identify the executable that was used, so this hypothesis cannot easily betested. However, close analysis of the number of jobs by number of processors requestedshows some interesting clustering. As Hotovy notes [Hot96], requesting a power of twonumber of processors seems popular. Similarly, requesting multiples of 10 and 25 seemspopular. In contrast, many of the processor allocations that are not powers of two, ormultiples of 10 or 25, have not been requested at all. This situation makes it particularlynoticeable when an allocation is popular, but does not obviously fall into one of the threepopular categories. It seems reasonable that, in many of these cases, a single executablethat requires a speci�c number of processors is being run. Isolating these cases can givea hint about the variance of executables.Table 3.1 shows the results of dividing the jobs into two sets. All the jobs with thesame degree of parallelism are placed in the same category. For each category, if thenumber of job executions in that category is greater than �ve and less than 20, it is putin one set. If the number of job executions is greater than or equal to 20, it is put inthe other set. The weighted averages and weighted average coe�cients of variation ofboth sets are in Table 3.1. As is expected, the C.V. of the �rst set is relatively small,supporting the hypothesis that individual executables have low coe�cients of variation.Further evidence that supports this hypothesis is that the users who ran the most jobs(presumably using the SP2 for many di�erent tasks with di�erent executables) tendedto have a higher C.V. than users who ran fewer jobs (presumably using system onlyoccasionally, with a single executable.) Thus, although the results are by no meansconclusive, there is some evidence that individual executables have a lower coe�cient ofvariation than the overall system.3.2 University1 Network of WorkstationsUniversity1 (which shall remain anonymous) does parallel computing research using anetwork of workstations running LSF. The system has 85 users using IBM RS/6000



Chapter 3. Workload Characterization 28Table 3.2: Wall Clock Average and Coe�cient of Variation for the University1 and NASALewisType Univ1 Avg. Univ1 C.V. NASA Avg. NASA C.V.System-wide 242 4.1 35115 3.9By user 232 4.1 35049 2.5By queue 146 3.8 35839 2.8By parallelism 209 3.6 35282 2.9By executable 64 0.6 42124 2.0By executable, user, parallel. 60 0.6 46490 1.5and DEC Alpha workstations. There are short, normal, and long queues for each typeof machine, as well as a single queue for all parallel jobs. The log �les for this sitecover 440 days and 16,000 jobs. The default LSF scheduling algorithms of round-robin,FCFS, and fairshare are used to schedule the system. Fairshare schedules jobs basedon queue priority, user id, how much processor time the user has used recently, andthe amount of time the job has been in the queue. Each user is allocated by the systemadministrator a number of shares of the system, and the scheduler gives the user processortime proportional to the number of shares. The scheduler uses an FCFS policy. However,if a user has used a small proportion of their share of processing time relative to the otherusers, their jobs are given high priority and skip over the other jobs in the queues.Unfortunately, there are several di�culties with the analysis of data from this site.Much of the resource information acquired by LSF and recorded in the log �les is inac-curate for parallel jobs. The only data that are accurate are wall clock times, job names,user ids, numbers of jobs, numbers of processors used, and queues used. In addition, only90 of the 16,000 jobs are parallel, less than 1%, and these jobs are submitted by only twousers to two queues. Thus, it is impossible to make generalizations from these log �les,although it is possible to identify some trends.Among the parallel jobs, the maximum degree of parallelism is seven, while the av-erage is 4.6. As indicated by Table 3.2, University1 has a high system-wide coe�cientof variation for wall-clock execution time, but the weighted average C.V. of the sets of



Chapter 3. Workload Characterization 29jobs partitioned by parallelism is lower, similar to the results from the Cornell TheoryCenter. The weighted average C.V. by queue is also slightly lower. The results also indi-cate that classifying jobs by the name of the executable leads to a very small coe�cientof variation. This is due to the fact that the very long running executables were onlyrun a few times, but pushed up the average execution time and the C.V. of the entiresystem. A classi�cation by executable, user, and parallelism is also e�ective, with a C.V.of only 0.6. This classi�cation seems reasonable since di�erent users may use the sameexecutables in di�erent ways, and the executables are likely to perform di�erently basedon the number of processors.A graph of the number of submissions by time of day has roughly the same shapeas that of the Cornell Theory Center SP2, but is based on too few jobs to support anystrong conclusions.3.3 NASA Lewis Network of WorkstationsThe NASA Lewis network of workstations is used by 25 users for simulations, analysisand code development. It, like the University1 site, also runs LSF. The system consistsof 60 SUN, HP, SGI, and IBM RS/6000 workstations running primarily over an Ethernetnetwork, but also over FDDI and ATM networks. The queues are con�gured for short,regular, long, and night jobs. Additional queues exist for parallel jobs that use PVM,although the majority of parallel jobs are submitted to the regular queue. The defaultLSF scheduling algorithms described in Section 3.2 are used. The log �les for NASALewis contain data for 3,682 jobs over a period of 152 days.NASA Lewis data has a higher proportion of parallel jobs than University1, with 395parallel jobs, about 11% of all jobs. Ten users submitted all the parallel jobs run on thesystem. The maximumdegree of parallelism is 23, while the average is 6.1. Thus, despitethe high ratio of users to workstations, the parallelism is relatively low. This could be dueto slow communications and the overhead of distributed memory; jobs actually slow downwhen they are run on too many processors. Nevertheless, analysis of the parallel jobson the NASA Lewis system is more signi�cant than the analysis of University1's parallelworkload due to the higher proportion of parallel jobs. Unfortunately, the limitations of
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Figure 3.3: NASA Lewis: Parallel Job Submission Rate vs. Time of DayLSF's log-�le records for parallel jobs, mentioned in the previous section for University1,constrain the analysis of the workload on this site, too.Figure 3.3, which shows the parallel job submission rate versus the time of day, has asimilar shape to the Cornell Theory Center's corresponding Figure 3.1. The associatedinterarrival time graph, in Figure 3.4, is extremely jagged due to the low number ofjobs, which makes it di�cult to compare to the corresponding multiprocessor graph inFigure 3.2. However, the jobs appear to have a broader distribution of arrival times;there are several jobs which have very short interarrival times and several that have verylong interarrival times. This is expected, considering the small number of jobs distributedover a large interval.Table 3.2 contains the average wall clock times and coe�cients of variation for theNASA Lewis site. Similar to both the Cornell Theory Center site and the University1site, this site has a relatively high system-wide C.V. of 3.9. Like both of the other sites,classifying the jobs into various categories results in a lower weighted average C.V. for thecategories. Classifying jobs by user, queue, and parallelism resulted in a small decreasein the C.V., while classifying by executable was more e�ective. A classi�cation by exe-cutable, user, and number of processors proved most e�ective, with a weighted averageC.V. of 1.5. This result indicates that the wall clock execution time of an executable run
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Figure 3.4: NASA Lewis: Number of Parallel Jobs vs. Interarrival Timeby a given user on a given number of processors tends to have low variability.3.4 ConclusionsBoth the results of the previous sections and the results of Feitelson and Nitzberg [FN95]and Pasquale, et al. [PBK91] indicate that, across many systems, the submission rate ata given time of day is predictable. All the graphs of the submission rate versus time ofday, including Figure 3.1 and Figure 3.3, have a similar shape. Such a shape is expected,since it mirrors the work activity of a typical person during a typical day. Naturally, theusage of the system is expected to increase at 9:00 am when people generally start work.The graphs of job interarrival times were less consistent, but still reasonably similar.Because of this extreme similarity, it would be useful putting such data in a database,but this would not help a lot. If a scheduler were to only consider the \average" workload,to plan for such a workload on an extraordinary day, such as a holiday, it could allocateresources in an ine�cient manner. Thus, a more complicated historical model wouldbe necessary. However, a simpler and more e�ective strategy might be one that takesinto account the current load and extrapolates the future load using a static model ofthe changes in submission rate at di�erent times of the day. Thus, although the resultsindicate that the systems have consistent submission rates based on time of day, this



Chapter 3. Workload Characterization 32does not necessarily imply the best strategy for a scheduler would be to use complicatedmodels derived from the historical data.On the other hand, analysis of the log �les does indicate that it is useful classifying jobsinto categories, since categories can be found that have a lower average variability in wallclock execution time than the overall system. In particular, although categorizing jobs byqueue, user, and parallelism are e�ective, it appears that the most e�ective categories arebased on the executable being run, or a combination of the executable, user, and degreeof parallelism. This result is intuitive, since the characteristics of executables should notchange to a large degree during di�erent executions, particularly if the jobs are startedby the same user with the same number of processors. One reasonable case where thismight not be true is where di�erent jobs based on a single executable treat di�erentproblems sizes (e.g., di�erent matrix sizes in a matrix factorization algorithm). In thiscase, it may be possible to classify a job not only by the executable, user, and numberof processors, but also by the job's memory usage. Unfortunately, due to limitations inthe data available, this hypothesis cannot be tested by examination of the log �les weanalyse.The most important result of the analysis of these log �les is that the use of histor-ical information should be useful to a scheduler to predict the future behavior of jobs.According to these workloads, the most useful classi�cation of jobs is by executable, userand degree of parallelism.
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Chapter 4The Implementation of theHistorical Pro�lerResults of Chapter 3 indicate that classifying parallel jobs allows reasonable predictionsof the wall-clock execution times of jobs. In particular, categorizing jobs according tothe executable name, degree of parallelism, and user name leads to smaller coe�cients ofvariation for each of the categories than the coe�cient of variation for the entire system.These results naturally lead to the idea of predicting jobs' resource requirements basedon historical data.Such predictions would be extremely useful to scheduling algorithms. As discussedin Section 2.5, many results indicate that knowledge of application characteristics isbene�cial when scheduling parallel jobs. In particular, Sevcik [Sev94] has shown methodsof calculating the optimal schedule based on knowledge of the applications' executiontime functions. As a result, a method that provides some indication of applications'characteristics is valuable.Although researchers have used a variety of techniques to determine the applicationcharacteristics (see Section 2.6), in accordance with the results of Chapter 3, the approachdiscussed here will be using a \database" containing historical information about jobs, aHistorical Pro�ler. A �rst step in designing such a component is de�ning the importantfeatures that should be supported. Analysis of the ways job information is used by thescheduling algorithms described in Sections 2.5 and 2.6 shows that three main featureswould be useful.1. A method of obtaining an estimate of the time a job will take to execute, with some34



Chapter 4. The Implementation of the Historical Profiler 35indication of the possible error in the estimate.2. A method of approximating the execution time function for a given job, includingerror ranges. This feature can be used by a scheduling algorithm to �nd a good pro-cessor allocation to jobs in order to maximize e�ciency or minimize mean responsetime.3. Hypothesis testing that allows schedulers to ask questions such as, \Based on his-torical data, can we be 95% con�dent that the mean execution time of job A atleast n minutes longer than the mean execution time of job B?".This chapter will discuss the implementation of a Historical Pro�ler that supportsthese three features in the NOW environment.4.1 The EnvironmentThe experimental platform consists of a network of workstations environment, with 16IBM RS/6000 UNIX workstations communicating over Ethernet, Fast Ethernet, andATM networks. The Ethernet network will be the primary network used for all experi-mentation. This system is used exclusively for parallel applications and systems research;none of the workstations is intended for general, daily interactive use.The development of a Historical Pro�ler and scheduling algorithms for parallel jobsin this environment requires system support in several areas. First, there must be jobmanagement facilities accessible by the scheduler. The scheduler must be able to learnwhat jobs are in the system and their current status. Furthermore, it must be able tomodify the status of jobs to take actions such as starting a given job on a particular set ofprocessors. Similarly, there must be host management facilities accessible to the schedulerso that the scheduler can know which hosts are available. To obtain information for theHistorical Pro�ler, accounting information about all batch jobs in the system must beavailable. Other features that are useful, but not strictly requiring system support, arequeue management facilities and a user interface for submitting and modifying jobs.The commercial Load Sharing Facility [LSF96, ZZWD93] from Platform Computingsupports many of these requirements. LSF allows access to system information through



Chapter 4. The Implementation of the Historical Profiler 36the LSF Application Programming Interface (API). LSF supports access to all the jobinformation required and allows an external scheduler to modify jobs to specify whenand on which processors each job will be started. It also provides both host and queuemanagement facilities that enable an external application to determine the status of eachhost and queue. Furthermore, using the account and event log �les that LSF maintains,historical information about jobs and system events is available. LSF also provides aconvenient graphical user interface for submitting jobs and monitoring the system.One di�culty with the LSF API is that accessing information requires crossing addressspaces. In addition, it does not provide a convenient way to store state information to beused by scheduling algorithms (e.g., the amount of time that the job has been suspended).These di�culties are handled by another layer, the Job and System Information Cache(JSIC). The JSIC, developed by Eric Parsons [Par97] with help from the author, storesjob, queue, and host information in the scheduler's address space. To update this data, itperiodically polls LSF using the LSF API. The JSIC also abstracts the LSF API interfaceinto a form more easily used by schedulers and the Historical Pro�ler. For instance, itprovides a function call for moving a job between queues, and another for specifying thehosts on which a job will run.Using these two layers has several advantages and disadvantages. A major advantageis that they greatly simplify the development of scheduling algorithms and the applica-tion pro�ler. They provide the infrastructure required by all the scheduling algorithms,without requiring extensive design, programming, and testing. In addition, since LSFis commercial software, many of the di�culties with fault tolerance associated with adistributed environment are solved by LSF. For instance, if the machine running thescheduler should crash, LSF can automatically start the scheduler on another machine,transparently to the users of the system.Perhaps the primary advantage is that LSF is used at production sites. As a result, itmay be possible in the future to incorporate the algorithms developed into these sites forboth improved performance and further research. Furthermore, LSF can be used on manydi�erent platforms. Thus, software developed on top of LSF in a portable language suchas C++ is likely to be portable too. As a result, the Historical Pro�ler and the scheduling



Chapter 4. The Implementation of the Historical Profiler 37algorithms developed in this thesis should be easily portable to di�erent platforms.However, there are several disadvantages to using the LSF and JSIC layers. First,source code for LSF is unavailable since the software is commercial, so LSF cannot bemodi�ed or patched. Second, this choice tends to restrict any software developed to useonly features supported by LSF. For instance, since LSF does not record in the account�les the processor time for parallel jobs1, this information is not easily accessible to thehistorical pro�ler. Third, LSF was not originally intended for this type of use, but ratherhas its own algorithms for determining where and when to run jobs. As a result, anyscheduling algorithm built on top of LSF is required to con�gure the system in such away that LSF will \decide" to schedule only those jobs that the scheduler wants to run.Despite these disadvantages, the use of the LSF and JSIC layers is justi�able, since agreat deal of e�ort would be required to build infrastructure that is already provided byLSF.Limitations in the current version of LSF a�ect the pro�ler directly in several ways.Information about resource usage for parallel jobs is not reliable. As a result, the mostnatural measure of the \work" done by an executable, the processor time, cannot be usedin this environment. Similarly, determining the problem size by the amount of memoryused is also not feasible. For this version of LSF, as a substitute for using processor timeto measure the work of a job, the wall clock execution time will be used. The system,including the interface, will be designed so that in future releases when better informationis available, it can be easily used in estimates.4.2 The InterfaceThe Historical Pro�ler is a C++ object-oriented design consisting of two object classes,the Pro�ler and the ExecutionTime classes. A Pro�ler object stores and retrieves jobhistorical data. ExecutionTime objects, which store information about a speci�c job, arereturned by the Pro�ler object in response to queries about a job. An ExecutionTimeobject is an approximate execution time function for a job, with associated error ranges.It ensures that a scheduler trying to determine processor allocations does not incur the1This problem is expected to be remedied in a future release of LSF.



Chapter 4. The Implementation of the Historical Profiler 38overhead of calling the Pro�ler more than once.The public methods of the Pro�ler class are shown in Figure 4.1. The updateProfiler()method has to be called by the scheduler periodically to ensure that the Pro�ler has themost up-to-date information available. The three features of (i) obtaining an estimateof execution time, (ii) obtaining an approximation of the execution time function, and(iii) hypothesis testing are provided using the getEstimate(), getExecTimeFunction(),and compareJobEstimates() methods, respectively. All of these methods identify jobsby the name of the executable and the user who ran the executable. In Chapter 3, it wasfound that classifying jobs by both the executable name and user name led to relativelylow coe�cients of variations. Thus, this is a reasonable way of identifying jobs.The pro�ler uses two other pieces of information for all its estimates: the attainedwall clock time, attainedWallClock, and the maximum memory usage, memSize. Theattained wall clock time is the length of time that the job under consideration has beenrunning, while the maximum memory usage is the maximum amount of memory that ithas used thus far in its execution. The attained wall clock time is used in the predictionsso that the longer the job has run, the longer the total execution time will be predictedto be. If the job has already run for ten minutes, the prediction for the total job durationwill exclude the data for jobs that ran less than ten minutes. The inclusion of the memorysize metric is based on the premise that the problem size has a positive correlation to theexecution time of an executable, and the maximum memory used gives an indication ofthe problem size.The getEstimate() method predicts the execution time for the speci�ed job thatuses the speci�ed number of processors, numProcs. When the method is called, theconfidenceDesired input must be a value between zero and one, specifying the percent-age con�dence desired for the con�dence interval. The estimated mean total executiontime is returned in estimate, while confidenceIntervalSize is set to a value equal tohalf the width of the con�dence interval.The getExecTimeFunction()method returns an ExecutionTime object for the spec-i�ed executable name, user, maximum memory size, and wall clock execution time com-bination. This object may be used to determine execution time con�dence intervals for



Chapter 4. The Implementation of the Historical Profiler 39updatePro�ler()Inputs:NoneOutputs:NonegetEstimate()Inputs:string executionCommand string user int numProcs
oat attainedWallClock 
oat memSize 
oat con�denceDesiredOutputs:Boolean status 
oat estimate 
oat con�denceIntervalSizegetExecTimeFunction()Inputs:string executionCommand string user 
oat memSize
oat attainedWallClockOutputs:ExecutionTime ExecutionTimeFunctioncompareJobEstimates()Inputs:
oat di�erence 
oat con�dence string executionCommandAstring executionCommandB string userA string userBint numProcsA int numProcsB 
oat attainedWallClockA
oat attainedWallClockB 
oat memSizeA 
oat memSizeBOutputs:boolean truthValueFigure 4.1: The Interface to the Pro�ler Class



Chapter 4. The Implementation of the Historical Profiler 40estimateTime()Inputs:
oat numProcs 
oat con�denceOutputs:
oat estimate 
oat errorFigure 4.2: The Interface to the ExecutionTime Classdi�erent processor allocations.The compareJobEstimates() method does hypothesis testing, comparing the pro-jected execution times of two jobs, A and B. Both jobs are identi�ed by executablename, user, maximum memory size, wall clock execution time, and number of proces-sors, as with getEstimate(). This method returns a boolean indicating whether withcon�dence confidence, the mean total execution time of job A is greater than or equalto difference times the mean total execution time of job B.The ExecutionTime interface, shown in Figure 4.2, consists of a single method,estimateTime(). When this method is called with the speci�ed number of processorsnumProcs, it will return an estimate for the mean total wall clock execution time for thejob. If confidence is speci�ed to be between zero and one, then error will be set tohalf of the width of a con�dence interval based on the value confidence.4.3 The Design4.3.1 OverviewThe Historical Pro�ler obtains all of its information from the accounting �les from LSF.However, searching all the data in the log �les for all historical executions of a singleexecutable whenever a scheduler requests information about that executable would beextremely costly. To deal with this di�culty, the application pro�ler has its own perma-nent repository to store data in a more appropriate format.
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Figure 4.3: High-level Design of the Historical Pro�lerFigure 4.3 shows the structure of the Historical Pro�ler. At the bottom is LSF,which obtains data about the jobs from the log �les. The Job and System InformationCache calls functions in the LSF API to read this data. It then converts LSF's datastructures into its own data structures, and stores the information in the HistoricalPro�ler repository.When the scheduler at the top of Figure 4.3 requests information from the HistoricalPro�ler, the pro�ler �rst asks the JSIC to update the information in the Historical Pro�lerRepository. Then the Historical Pro�ler reads the information from the Historical Pro�lerRepository, and transforms the data into the format requested by the scheduler. If thescheduler requests a single estimate or the testing of a hypothesis, the result is returnedto the scheduler. If, instead, the scheduler requests the execution time function, theHistorical Pro�ler creates an ExecutionTime object for the speci�ed job. Subsequently,the scheduler can request, from the ExecutionTime object, the evaluation of the job'sexecution time function T (p), where p is the number of processors assigned to the job.



Chapter 4. The Implementation of the Historical Profiler 424.3.2 Historical Pro�ler Repository DesignThe Historical Pro�ler Repository contains all the data used by the Historical Pro�lerfor predicting job execution times. Thus, the design of the repository depends primarilyon the data required by the pro�ler. However, a secondary issue of some importance isminimizing the permanent storage space required for the repository. These two criteriaare the primary factors a�ecting the design of the repository.As noted in Section 4.2, schedulers request information based on executable nameand user name. Thus, since information is always requested based on these criteria, it isnatural to index jobs by the combination of executable and user names. Of course, thismeans that if a user has not run a particular executable, or an executable has never beenrun before, the pro�ler will be unable to �nd information in the repository. To remedy thisde�ciency, the pro�ler also stores data for each executable name irrespective of user, andfor the entire system, irrespective of both executable and user. As a result, the pro�leralways has data available for predicting execution times, though if the executable hasnever been run before, the estimate may have a high error.Obtaining an approximation of the execution time function for a job requires esti-mates of the job's execution time for several di�erent processor allocations. In addition,since the interface allows the execution time estimates to vary depending on the currentexecution time and the memory usage, this data must also be available in the repository.Furthermore, error calculations require knowledge of the number of data points. Thesefactors lead to the development of the structures shown in Figure 4.4.The repository consists of ExecEntry structures, one for each executable-user pair.Each ExecEntry has an index, a date when this entry was last modi�ed, a numExecutedinteger specifying the number of jobs included in this structure, and a three-dimensionalRunEntry array, runTimeTotal. The RunEntry array contains the data used to estimaterun times. Its dimensions are based on the three ways the scheduler can further de�ne aparticular job: by the number of processors, execution time so far, and memory usage.Although memory usage is unavailable in this version of LSF, it is included here for usewith future versions.To �nd information about a particular executable, user, number of processors, exe-
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oat timeTotal
oat timeSquared
oat procTotal
oat numEntriesgRunEntryArray Structure fRunEntry theArray[MAX MEM ENTRIES]gExecEntry Structure fstring indextime dateint numExecutedRunEntryArray runTimeTotal[MAX PROC ENTRIES][MAX EXEC TIME ENTRIES]�ndRunEntry()Inputs:
oat numProcs 
oat execTime 
oat memSizeOutputs:RunEntry foundRunEntryg Figure 4.4: The Historical Pro�ler's Internal Design



Chapter 4. The Implementation of the Historical Profiler 44cution time, and memory usage combination, the Historical Pro�ler �rst �nds the ap-propriate ExecEntry structure in the repository using information about the executableand user. Then it calls the findRunEntry() method with the number of processors,execution time, and memory usage to �nd in the runTimeTotal array the appropriateRunEntry structure containing the desired data.Each RunEntry consists of data for determining an execution time estimate and errorfor a speci�ed combination of number of processors, execution time, and memory usage.It includes a numEntries �eld for the number of jobs used to obtain this data. ThetimeTotal �eld is the sum of the execution times of each of the jobs included in thisentry, while the timeSquared �eld is the sum of the squares of the execution times. These�elds can be used to calculate the average and standard deviation of execution times.For this version of the Historical Pro�ler, the times in these �elds are wall clock times.However, when processor times are available in LSF, these will be more appropriate timesto use. A single RunEntry could contain data for di�erent numbers of processors, sinceeach RunEntry consists of a subset of the entire range of processor allocations. As aresult, procTotal �eld is required, containing the sum of the number of processors usedfor all the jobs included in the entry. Combined with the numEntries �eld, this may beused to calculate the average number of processors for all the jobs that �t in this subsetof processor allocations.Each executable and user combination has an ExecEntry structure containing multi-ple RunEntry structures, each with di�erent average numbers of processors. As a result,it is possible to obtain from these RunEntry structures several execution time and stan-dard deviation estimates for di�erent numbers of processors. If more than two pointsare available (due to the job being run at least three times with di�erent processor allo-cations), these estimates may be used to approximate an execution time function. Themethod of actually approximating the function is discussed in detail in Section 4.3.3.Thus far, this design leaves several issues unresolved. The �rst is the size of therunTimeTotal array and the related issue of determining the functions to map from thenumber of processors, execution times, and memory usage to an index this array. Sincethe array is three-dimensional, increasing the size of one dimension of the array tends to



Chapter 4. The Implementation of the Historical Profiler 45greatly increase the permanent storage space required for the repository. As a result, thenatural way of indexing \number of processors" dimension of the runTimeTotal arrayby the actual number of processors is infeasible. Instead, it is necessary to group severalprocessor allocations into a single category. Since speedup curves of jobs tend to havedecreasing slope for increasing number of processors (as the ine�ciencies due to parallelprocessing get more and more signi�cant), �ner granularity of data is desirable for fewprocessors, while coarser granularity is su�cient for a greater number. As a result, alogarithmic function dlog(n)e for n processors will be used to categorize the data. Thisfunction yields categories for one, two, three and four, �ve to eight, and nine to sixteenprocessors. Similar logarithmic functions, with di�erent bases, will be used for the otherdimensions of the array.A disadvantage of this design is every job is weighted equally. If the use of a particu-lar executable changes, the information in the repository will be slow to re
ect the newusage, and the estimates will be inaccurately re
ecting outdated information. It wouldbe more desirable to weight more recent jobs more heavily than older jobs. Unfortu-nately, such weighting would greatly complicate the calculation of con�dence intervals.The calculation of con�dence intervals assumes that every job is distributed around anactual mean, and every job is as relevant as every other job. Weighting jobs di�erentlycontradicts these assumptions. One possible solution is to scale down the weighting ofthe existing data by a constant multiplier whenever RunEntry is updated. However, ifthis multiplier is anything other than one, the error estimates obtained by the currentmethod are invalidated. In this thesis, such a weighting will not be used.An unresolved di�culty is dealing with jobs whose processor allocations are not con-stant throughout the execution of the job. This is an important issue, since it is likelythat in the future, dynamic schedulers will become more prevalent due to their good per-formance. This thesis will avoid the issue and focus only on jobs with constant processorallocations.



Chapter 4. The Implementation of the Historical Profiler 464.3.3 Methods of Estimating Executable InformationThe repository can supply all the data required by the Historical Pro�ler, but the pro�leris required to manipulate this information into a form usable by the scheduler. In par-ticular, the pro�ler has to be able to make estimates of job lengths and approximationsof execution time functions, and do hypothesis testing. Error estimation and hypothesistesting both require some assumptions about the distribution of the data being examined.In this case, the assumption will be that the execution times are Normally distributedabout an actual mean. This Normal distribution will be approximated by a Student-tdistribution.Sevcik's execution time function (Equation 2.7) is more general than most alterna-tives. The execution time function (Equation 2.6) based on Dowdy's execution signatureis non-increasing, whereas Sevcik's function is not. The fact that Sevcik's function canincrease is particularly important in a distributed environment with high communica-tion overheads, since it is likely that some jobs will slow down when run on too manyprocessors. In order to simplify approximations, the �(p) term that appears in Sevcik'sfunction will be approximated by a constant � term. Thus, the execution time functionused in approximations will be: T (p) = �Wp + �+ �p (4.1)Least squares is a standard way of approximating functions such as the executiontime function. However, the data is not evenly distributed. It could be that a user runsa job once with one processor, and ten times with sixteen processors. In this case, it isinappropriate to give both estimates the same weighting. Thus, a weighted least squaresapproximation is more reasonable. This method of approximating equations is discussedin detail by Draper and Smith [DS81]. Brie
y, this method requires solving the followingformula for b: b = (X 0V �1X)�1X 0V �1Ywhere



Chapter 4. The Implementation of the Historical Profiler 47b = 2666664 �W�� 3777775 ; Y = 2666664 t1...tn 3777775 ;X = 2666664 p�11 1 p1... ... ...p�1n 1 pn 3777775 ; V = 2666664 �21 0 00 . . . 00 0 �2n 3777775The execution time function has three terms. The three terms of the b matrix forwhich we solve are the three coe�cients in Sevcik's execution time function. The Y matrixcontains n observed execution times with di�erent processor allocations, p1; :::pn. The Xarray contains the evaluation for the speci�ed processor allocations of the indeterminatesin the three terms in Sevcik's function. Thus, since the coe�cients in Sevcik's function forwhich we are solving are multiplied by 1p , 1, and p, X contains the a row containing theevaluation of these entries for each observed execution time. For instance, if the executiontime for the executable were available from when a job was run on two processors, one rowof X array would be [ 12 1 2 ]. V is a diagonal matrix containing standard deviations ofthe execution time estimates in Y . Error bounds and con�dence intervals for equationsderived by this formula may be calculated. With an allocation of p0 processors, a �con�dence interval for an execution time estimate Y0 based on n observations is:Y0 � t(n; 1 + �2 )qX 00(X 0V �1X)�1X0where: t(n; 1 + �2 ): Student-t functionX0 = 2666664 p�101p0 3777775To further clarify the procedure used to obtain these estimates, an example is useful.Suppose an executable were run a total of sixty times, some of which were with oneprocessor, some with four processors, and some with eight processors. Furthermore,suppose the observed average execution times with each of these processors were 8350,2500, and 1700 seconds respectively and the observed standard deviations were 4175,



Chapter 4. The Implementation of the Historical Profiler 481250, and 850 respectively. Then:Y = 2666664 835025001700 3777775 ;X = 2666664 1 1 114 1 418 1 8 3777775 ; V = 2666664 4175 0 00 1250 00 0 850 3777775We can then calculate b to be:b = 2666664 �W�� 3777775 = (X 0V �1X)�1X 0V �1Yb = 0BBBBB@2666664 1 14 181 1 11 4 8 37777752666664 14175 0 00 11250 00 0 1850 37777752666664 1 1 114 1 418 1 8 37777751CCCCCA�1 �2666664 1 14 181 1 11 4 8 37777752666664 14175 0 00 11250 00 0 1850 37777752666664 835025001700 3777775b = 2666664 800030050 3777775The approximation for the execution time function for this executable would be:T (p) = 8000p + 300 + 50pThus, the estimate for the amount of time the job would take to complete with 16processors would be 1600 seconds. A 95% con�dence interval C for the estimate is:C = Y0 � t(n; 1 + �2 )qX 00(X 0V �1X)�1X0C = 1600 � t(60; 1 + 0:952 ) �vuuuuuuuut� 116 1 16 � 0BBBBB@2666664 1 14 181 1 11 4 8 37777752666664 14175 0 00 11250 00 0 1850 37777752666664 1 1 114 1 418 1 8 37777751CCCCCA�1 2666664 116116 3777775



Chapter 4. The Implementation of the Historical Profiler 49C = 1600 � 2:0 � p8006:48 = [1421; 1779]In the Historical Pro�ler, ExecutionTime objects encapsulate data for solving theseequations. An ExecutionTime object stores b, the execution time function which is thesolution to Equation 4.3.3, and the (X 0V �1X)�1 term of Equation 4.3.3. The Execution-Time objects can use this information to estimate the execution time and a con�denceinterval for a job using a speci�ed number of processors.If a scheduler requests an execution time estimate rather than the execution timefunction, the Historical Pro�ler calculates the execution time based on an execution timefunction approximation. It uses the executable name, user name, current execution dura-tion, and maximummemory size inputs to �nd the three or more data points required tocalculate the execution time function. Then the execution time function is evaluated forthe speci�ed number of processors to obtain the execution time estimate and con�denceinterval that are returned. It could be that there is insu�cient data to approximate anexecution time function, but there is data available for a speci�ed number of processors.This could happen if a user only runs a particular job using the same number of proces-sors each time. In this case, an estimate and con�dence interval for the execution timeare calculated using standard techniques. The estimate is the average execution time forthat number of processors, while the con�dence interval is estimated using an assumptionof a Student-t distribution and the standard deviation of the observations. If there isstill not enough data, the data for the executable including all users is used to providean estimate. If there is still insu�cient information, then all executables ever run in thesystem are used.This method of estimating run times has the major disadvantage that the estimateof the remaining run time could be less than the run time already attained. This isunreasonable, particularly considering that information about the attained run time isavailable and used by the Historical Pro�ler when making its predictions. In this case, ifthe sum of the estimate E and three times the con�dence interval requested is still lessthan the run time already attained, R, a new estimate E 0 will be used:



Chapter 4. The Implementation of the Historical Profiler 50E0 = dRE � 0:5e � EThus, the estimate increases in multiples of E as the job duration increases.Hypothesis testing comparing the mean execution times for two jobs identi�ed byname, user, number of processors, current execution duration, and memory usage is theremaining feature provided by the historical pro�ler. The mean execution times andstandard deviations are calculated for the speci�ed jobs with the speci�ed allocationsof processors. Using the assumptions that the distributions of run times are Normal,standard statistical techniques using the Student-t distribution determine whether toaccept the hypothesis. Allen's formulation [All78] of these equations follows. The twojobs, x and y have, based on n and m observations, mean execution times estimates of �xand �y and sample standard deviations of sx and sy. The hypothesis is that the di�erencein the actual mean execution times is greater than d0, or ��x � ��y > d0. With con�dence�, the hypothesis is true if t > t(v; �), where t(�; v) is the Student-t function, andt = �x� �y � d0q(s2x=n) + (s2y=m)v = ((s2x=n) + (s2y=m))2(s2x=n)2=(n � 1) + (s2y=m)2=(m � 1)For example, suppose x and y have been run 30 and 40 times respectively, and areobserved to have mean execution times of 700 and 300 seconds and standard deviations of900 and 500. If we want to determine if x is 95% likely to have an actual mean executiontime more than 300 seconds greater than y, we calculate t and v to be:t = 700 � 300 � 300q(9002=30) + (5002=40) � 0:5484v = ((9002=30) + (5002=40))2(9002=30)2=(29) + (5002=40)2=(39) � 42:29Since 0.5484 is less than t(42:29; 0:95) � 1:682, the hypothesis is not supported.A similar hypothesis would be true if a con�dence of only 60% were requested, since0:5484 > t(42:29; 0:95) � 0:255.



Chapter 5Schedulers that Use ApplicationKnowledgeIn order to evaluate the usefulness of the Historical Pro�ler to schedulers, it is necessaryto compare the performance of various scheduling algorithms. In this thesis, only staticalgorithms, algorithms that do not permit applications to change the number of requestedprocessors, will be examined. In addition, all of the algorithms will be space-sharingalgorithms; jobs will have exclusive access to the processors they are assigned. Eightvariants of three basic algorithms will be compared:1. First Come, First Serve (FCFS)2. First Come, First Serve Fill (FCFS-�ll)3. Least Estimated Work First (LEWF)4. Least Estimated Work First Fill (LEWF-�ll)5. Least Estimated Remaining Work First (LERWF)6. Least Estimated Remaining Work First Fill (LERWF-�ll)7. EASY-kill8. EASY-preemptiveAlthough many of the complications of implementing scheduling algorithms in a NOWenvironment are overcome by developing it on top of the LSF and JSIC layers, some51



Chapter 5. Schedulers that Use Application Knowledge 52di�culties are simply abstracted to a higher level. Instead of making the UNIX hostsperform the actions speci�ed by the scheduling algorithm, the problem becomes makingLSF perform the actions speci�ed by the scheduling algorithm. Additionally, there aresometimes distributed systems issues that are not handled by LSF or the JSIC.This chapter will discuss issues associated with designing and implementing each ofthese scheduling algorithms in the NOW environment described in Section 4.1. First, thegeneral design that all the algorithm have in common will be discussed in Section 5.1.Then each of the algorithms will be de�ned and their use in this context will be justi�ed.Finally, in Section 5.7, the heuristics used by preemptive disciplines to assign processorswill be discussed.5.1 Structure of AlgorithmsAll the non-preemptive algorithms have a very similar high-level design. All the algo-rithms have two queues, a pending queue and a running queue. No jobs in the pendingqueue execute, while all jobs in the running queue1 execute. Jobs are initially submittedto the pending queue. Whenever a job �nishes, the algorithm sorts the pending queueand selects the �rst job in this queue. If su�cient processors are free to run the job, thejob is scheduled by assigning the hosts for the job, and moving it to the running queue.The pseudo-code for this algorithm is shown in Figure 5.1.There are two di�erent ways this general scheduling algorithm can be modi�ed tocreate speci�c scheduling algorithms. First, the sort procedure on line 3 can be modi�ed.By changing the sorting method, di�erent algorithms can be created. For instance, ifthe sort routine sorts the jobs in increasing order of submission times, the schedulingdiscipline will be First Come First Serve.The second way of changing the functionality of the algorithm is by setting thefillingOn 
ag (in lines 6 and 17) to TRUE. If this 
ag is FALSE, the algorithm willschedule the jobs in strictly the order speci�ed by the sorting algorithm. For instance,if the sorting algorithm has a 1-processor job followed by a 16-processor job and there1Since all the jobs in the running queue execute, this queue actually functions as a set; all jobs havethe same priority and are treated the same way. However, this set is implemented using an LSF queue,so, for consistency, the queue terminology will be used.
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1 while (TRUE) {2 numFreeProcessors = findNumFreeProcessors()3 sortJobs(pendingQueues)4 currJob = getFirstEntry(pendingQueue)56 while (fillingOn == TRUE AND7 getNumProcessors(currJob) > numFreeProcessors)8 currJob = getNextEntry(pendingQueue)910 while (getNumProcessors(currJob) <= numFreeProcessors) {11 assignFreeHosts(currJob)12 removeFromQueue(currJob, pendingQueue)13 addToQueue(currJob, runningQueue)14 numFreeProcessors = numFreeProcessors - getNumProcessors(currJob)15 currJob = getNextEntry(pendingQueue)1617 while (fillingOn == TRUE AND18 getNumProcessors(currJob) > numFreeProcessors)19 currJob = getNextEntry(pendingQueue)20 }2122 waitForJobCompletion()23 } Figure 5.1: Pseudo-code for Scheduling Algorithms



Chapter 5. Schedulers that Use Application Knowledge 54are 16 processors in the system, the 1-processor job will run, the 16-processor job andall other jobs in the queue will be blocked, leaving 15 processors idle. If this 
ag is true,the order of activation will no longer be strict. Instead, if there are available processorsbut the �rst job in the sorted pending queue requires more processors than are available,the algorithm will search through the pending queue looking for another job that can usethose processors. If it �nds such a job, it starts that job immediately. So according tothis algorithm, if there are 16 processors in the system, and the �ve jobs in the orderedqueue require one, sixteen, nine, seven and six processors respectively, the jobs requiringone, nine and six processors are started.LSF and the Job and System Information Cache provide much of the basic function-ality required to implement the scheduling algorithm. Initial submittal of the jobs canbe done by users through LSF's batch interface. Since the JSIC queries LSF to obtaininformation about the state of the system whenever a job changes state (arrives, �nishes,suspends, resumes, etc.), determining the number of free processors (as in line 2 of thealgorithm) is a simple function call to the JSIC. The combination of the JSIC and LSFalso contains the queue management functionality required in lines 4, 7, 11, 12, 14 and17, as well as a way to assign speci�c processors to jobs, as in line 10. As would beexpected from load-balancing software, LSF supports the remote execution of paralleljobs so that jobs are started when they are moved to the run queue.The preemptive algorithms have a similar structure, but the pseudo-code for thealgorithms becomes quite complex. Instead of sorting only the jobs in the pendingqueue, the jobs in both queues are given an absolute ordering in the system. Then it isdetermined, using a similar method of allocating processors in order of the jobs in thequeues, which jobs are to be running and which jobs are not. If a job is not supposedto be running but currently is in the run queue, the job is moved to the pending queueand suspended. If a job is supposed to be running, but is currently in the pending queueand has never been started, it is assigned processors and moved to the run queue to startit. If a job is supposed to be running, but is currently suspended, and the processors onwhich it was running are free, the job is resumed and moved to the running queue. Thus,overall the algorithm is mostly the same, except for some extra details for preemption



Chapter 5. Schedulers that Use Application Knowledge 55and resumption, and the fact that all the jobs in the system are examined rather thanjust those in the pending queue.5.2 First Come, First ServeFCFS is a very basic run-to-completion scheduling algorithm. Arriving jobs are placedin a �rst in, �rst out queue. The �rst job in the queue is blocked (as are all jobs thatarrived later than that job) until at least as many processors as it requested are free.The job is then removed from the queue and run on the requested number of processors.The whole process is repeated for the next job in the queue whenever a job is completedand there are new processors available for assignment.This algorithm is attractive for its simplicity. However, it has the disadvantages ofgenerally having both poor e�ciency and poor mean response times (since, in the no-�llversion, a running job requiring a single processor can block the entire queue if the �rstjob in the queue requests every processor). However, in the context of the thesis, despitethe fact that it does not use application knowledge, this algorithm is worthwhile forcomparison for several reasons. First, it is a simple, well-known baseline for comparingalgorithms. Second, it is very similar to the EASY-kill scheduler, so comparisons betweenthese two algorithms are interesting. Finally, the algorithm is used in some productionsystems.The design and implementation of this scheduler is simple; it has the same basicstructure of Figure 5.1. In order to ensure the FCFS property, the sorting algorithm thatis used on the third line of this algorithm sorts in order of increasing submission time.For the basic FCFS algorithm, fillingOn is set to FALSE so that there is strict FCFSordering. In order to get the �lling version of the algorithm, FCFS-�ll, the fillingOn
ag is set to TRUE. For a description of the e�ects of �lling, see Section 5.1.5.3 Least Estimated Work FirstLeast Estimated Work First is a run-to-completion policy that is similar to FCFS, butuses a di�erent queuing order. Instead of ordering jobs by submission time in line 3 of



Chapter 5. Schedulers that Use Application Knowledge 56Figure 5.1, jobs are ordered by increasing estimated execution time. The result is thatjobs expected to be short are run �rst, while jobs expected to be long wait for all theshort jobs to �nish.This strategy is worthwhile because it leads to a low mean response time in many sit-uations, and provably optimal average response times in some situations (e.g. schedulingon sequential machines and scheduling parallel applications with perfect speedup thatcan be assigned any number of processors [Sev94]). This algorithm is appropriate forstudy in this context because it requires some knowledge of the characteristics of theapplications.The design of the LEWF algorithm is largely the same as general scheduling algorithm.The only additional issues that are raised by this algorithm are the methods of estimatingthe execution time. There are many di�erent ways of obtaining estimates, includinghaving the user inform the scheduler, having the application inform the scheduler itself,and obtaining the data from an outside source such as the Historical Pro�ler. In thisthesis, two methods will be used to obtain estimates by all algorithms that require them.The �rst will be the application giving the scheduler perfectly accurate information aboutits run time. The second will be using the Historical Pro�ler. The estimate from thepro�ler will be calculated by requesting a con�dence interval for the execution time forthe job. The estimate will be the sum of the estimate and half the 95% con�denceinterval. In other words, it will be equal to the greatest value in a con�dence intervalthat has a 95% chance of including the mean.As with FCFS and FCFS-�ll, there is a �lling version of LEWF called LEWF-�ll.This is the same algorithm as LEWF, but has the fillingOn 
ag set to TRUE, whereaswith LEWF, this 
ag is FALSE. This 
ag ensures that a job will not be blocked if thereare su�cient processors available to run the job, as described in Section 5.1.5.4 Least Estimated Remaining Work FirstLeast Estimated Remaining Work First is similar to LEWF, but instead of being run-to-completion, LERWF is a preemptive discipline. Whenever a job �nishes or a new jobarrives, all the jobs in the system are ordered by estimated remaining execution time.



Chapter 5. Schedulers that Use Application Knowledge 57Then, in order, jobs are assigned their requested numbers of processors until not enoughprocessors are available to ful�ll the requirements of the next job in the queue. If the�rst job in the queue cannot run, all the jobs with estimated execution duration greaterthan that job will be blocked. Any jobs that were previously running, but are no longerassigned processors are preempted. Any preempted jobs that are reassigned processorsare resumed.As would be expected, this algorithm has many of the bene�ts of LEWF, with theadditional bene�t of allowing long running jobs to be preempted to make way for newly-submitted jobs. It is particularly interesting for use with the Historical Pro�ler, since theHistorical Pro�ler's job duration predictions increase as the length of the job increases.At the same time, the actual work done increases, so the amount of work remainingdecreases. The di�erence between the two is likely to lead to estimates that decreaseas the job is run. However, as soon as the job duration becomes large enough that thepro�ler excludes a set of data for jobs that were shorter than the current duration, theestimate will increase suddenly before resuming the decreasing trend. The result maybe similar to a multi-level feedback queue, where a job runs at a high priority for a fewminutes, but priority decreases as the job ages.The addition of preemption to the LEWF algorithm to form LERWF leads to somecomplications. The process of preemption is relatively easy. The job is moved to thepending queue for preemption, and back to the running queue for resumption. LSF willsuspend any job that is moved to the pending queue. However, there is no migration forparallel jobs, only preemption. As a result, not only do there have to be the requirednumber of processors available when a paused job continues, but the available processorsmust include the processors on which the job was running originally.There are several methods of ensuring that, with high probability, the original pro-cessors are available. One would be to �nd the optimal scheduling so that the correctprocessors are available when they are required. With multiple suspended jobs and mul-tiple queued and running jobs, this solution is both complicated and computationallyexpensive. Instead, a simple heuristic approach can be used. The processors that areneeded the soonest by the pending jobs will be the last to be assigned to new jobs. As a



Chapter 5. Schedulers that Use Application Knowledge 58result, the processors required by the next suspended job will have a higher probabilityof being free when the job is ready to run. However, if a paused job is scheduled to run,but at least one processor it requires is in use, the paused job (and all other jobs in thepending queue) will be delayed until the processors become available. This heuristic isnot optimal, but it is both simple and computationally feasible. One alternative to thisheuristic is discussed in Section 5.7.One additional overhead of preemption is speci�c to the use of LSF. Whenever apreempted job is resumed, it takes some time for LSF to restart that job. It requires upto 30 seconds from the time a suspended job is �rst moved to the run queue to whenit actually starts running. This extra overhead is not negligible, particularly with analgorithm like LERWF, where a single long-running job can potentially be preemptedand resumed many times as shorter jobs arrive.As with all the other algorithms already described, there is a �lling variant of theLERWF algorithm, LERWF-�ll. Section 5.1 describes how this �lling algorithm is dif-ferent from the regular algorithm.5.5 EASY-killLifka's EASY scheduler [Lif95], discussed in Section 2.4, is a FCFS with back�lling algo-rithm which has proven popular in some multiprocessor environments. Users appreciateits simplicity and predictability. The perceived \fairness" and the bene�ts of knowingthe latest time that a job will start compensates for the ine�ciencies arising from thescheduling strategy. In Lifka's implementation, users are required to provide estimates ofjob durations, and if jobs exceed these durations, they are killed. This implementationwill be similar, but perfectly accurate \estimates" and Historical Pro�ler estimates willbe used instead of user estimates. The algorithm will, like Lifka's algorithm, kill jobsthat exceed their predicted run times.For several reasons, this algorithm is of interest. The �rst reason follows from theresults of the chapter 3. In some multiprocessor systems, parallel jobs make up almost50% of the workload, while in the NOW environment, parallel jobs are still relativelyinfrequent (11% in one environment we examined and less than 1% in the other.) The



Chapter 5. Schedulers that Use Application Knowledge 59availability of a popular and familiar multiprocessor scheduler in the NOW environmentcould encourage users to view the NOW as a parallel system, rather than as just worksta-tions. This may make them more comfortable running parallel jobs in the environment.A second reason is that, thus far, the EASY algorithm has not been implemented in aNOW environment, so the issues associated with a distributed implementation have notbeen explored. Also, EASY is suited to a distributed environment because it does notrequire preemption, migration, or reallocation of processors. A �nal reason is that withEASY, whenever a user submits a job, a maximum limit on the execution time must beprovided. The scheduler uses this data to predict when jobs can be scheduled, and todetermine when it can perform back�lling without delaying previously submitted jobs.It should be noted that this algorithm is very similar to FCFS-�ll, but slightly di�er-ent. In FCFS-�ll, jobs will not be blocked from running if there are su�cient processorsavailable to start the job. With EASY, the back�lling property is slightly di�erent. Jobswill only be back�lled if they do not delay a previously submitted job. Thus, in EASY,a job A can be blocked from running even if there are su�cient available processors tostart the job. This will happen if starting job A now will result in a previously submittedjob B being unable to start at some later time (due to job A running on the processorsrequired by job B when B is scheduled to start). If EASY and FCFS-�ll are presentedwith the same set of jobs submitted at the same time, EASY might not immediately runall the jobs that FCFS-�ll does, even if there are processors available. However, if thereare processors available, FCFS-�ll will not delay starting any job that EASY starts.5.5.1 High Level DesignSince this algorithm is more complicated than the other algorithms, a discussion of thedesign of the algorithm requires more detail. Figure 5.2 shows the structure of EASY.The idealized model of EASY as a single queue where jobs are ordered for executionusing a FCFS algorithm with back�lling is replaced with a two queue model, as withthe other algorithms discussed. The two queues appear at the bottom of Figure 5.2.The Job and System Information Cache and LSF layers are the next two layers, as theyare in the Historical Pro�ler. As before, they supply data to the scheduler and save
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Chapter 5. Schedulers that Use Application Knowledge 61information for quick access. Above the JSIC is the EASY scheduler itself. It has itsown data structures, the Processor Allocation List and the Dependency List, which arediscussed in Section 5.5.3. One additional layer not required by the other algorithmsis the EASY Interface layer. This layer permits users to query the scheduler to �ndinformation speci�c to the EASY scheduler that is unavailable through LSF.The overall structure of the algorithm is very similar to the algorithm presented inFigure 5.1 with the fillingOn 
ag set to TRUE. The sort algorithm of line 3 would sortin order of increasing submission time, as with FCFS. The primary di�erence is in the�lling. Instead of starting a job when it is not on the front of the queue, but thereare su�cient processors available, more analysis has to be done. The schedule of priorsubmitted jobs has to be deduced. If scheduling that job to run now would mean thata prior submitted job would be delayed because it requires a processor that would be inuse by the current job, the current job cannot be started.5.5.2 InterfaceThe functionality provided by LSF is su�cient for the interfaces of the other disciplines.However, EASY has several features which LSF does not support directly:� getjid: returns the job id of the job running on the speci�ed node.� spfree: returns the status of the various nodes. Since EASY and LSF have di�erentviews of the system, the status according to LSF can di�er from the status accordingto EASY.� spwhat: returns the number of processors currently free, and the amount of timefor which they will be free.� spwhen: for an existing job, returns the latest time that job will start execut-ing. For a hypothetical job speci�ed by a number of processors and a maximumexecution time, returns the latest time for that job to start executing.� spq: returns a list of all the jobs in the system, with their estimated or actual starttimes.



Chapter 5. Schedulers that Use Application Knowledge 62� spusage: returns a list of each node in the system, the user currently using thenode, and the time by which the user will �nish using the node.Perhaps surprisingly, implementing this interface is one of the most di�cult tasksin creating EASY in a NOW environment. The di�culty arises due to the distributednature of the system. There is a single scheduling algorithm for the entire system onone machine in the system. However, users on di�erent workstations have to be ableto interface with this central scheduler. Thus, the EASY Interface module is requiredto allow the users of individual workstations to communicate with the single EASYscheduler. The EASY Interfaces must query LSF to determine on which workstationthe EASY scheduler is running. LSF has this information since LSF is responsible forstarting the EASY scheduler originally. The EASY interfaces can then establish theirown socket interfaces to the scheduler for communication.Despite these interface issues, LSF and the Job and System Information Cache arestill able to handle many of the other interface requirements. For example, Interfaceissues such as job submission and queue management, handled by these layers for theFCFS algorithm discussed in Section 5.2, are also relevant for EASY.5.5.3 Implementation IssuesThe primary goal when implementing EASY was for the implementation to be robust,while the secondary goal was e�ciency. Robustness is particularly important in a dis-tributed environment where workstations and networks can fail. The algorithm is im-plemented so that whenever a job �nishes, every job in the entire system is rescheduled.This strategy is required, since if a job �nishes prematurely, it could potentially changethe time when every other job is scheduled to start. This feature also ensures that anychanges in the scheduling strategy due to temporary errors in the system are correctedas soon as any job �nishes.EASY has two primary structures to provide functionality that is unavailable in theJSIC or LSF layers, the processor allocation list and the dependency list. Due to ef-�ciency concerns, it is undesirable to reschedule the entire system whenever a new jobarrives, or a user queries the system. As a result, it is necessary for EASY to maintain a



Chapter 5. Schedulers that Use Application Knowledge 63processor allocation list, from which the current schedule can be deduced. The processorallocation list may be quickly examined to determine information such as when the usageof particular processors is scheduled to change.The second internal structure retained is the dependency list. With EASY, it ispossible to specify that a job cannot start until another job has �nished. Although LSFprovides this feature when it is doing the scheduling directly, it is not in our context,so it is necessary to duplicate this functionality inside EASY using the dependency list.This list contains all the jobs that cannot start until some other speci�ed job �nishes.Whenever the system is rescheduled, EASY must consult this list to ensure that it doesnot start a dependent job before the prior job �nishes.5.6 EASY-PreemptiveEASY-preemptive is very similar to EASY. The algorithm is the same, except that insteadof killing a job when its time expires, EASY-preemptive preempts the job and moves itto the back of the FCFS queue, just as if it had been resubmitted. The estimate of theduration of the job is set to its original value. Then, instead of starting the job at theappropriate time, EASY resumes the job. As a result, the predictability of EASY ismaintained, but jobs are not killed.This algorithm is included in this study for several reasons. The primary reason is thatusing the Historical Pro�ler with EASY has one major disadvantage. When the maximumexecution time elapses, EASY kills the job. However, the Historical Pro�ler is unlikely toalways make perfect predictions; it is probable that jobs will arise that run longer thanthe duration predicted by the pro�ler. Hence, some jobs will be prematurely killed. TheEASY-preemptive scheduler attempts to remedy this problem. This algorithm may stillnot be usable in practice, since swap space is required for the preempted jobs, but it isan improvement over EASY. A second reason this algorithm is examined is to comparethis algorithm to both LERWF, the only other preemptive algorithm, and the originalEASY algorithm.The design of the EASY-preemptive algorithm is essentially the same as the designfor EASY. The main di�erence is that the scheduler has to store information about the



Chapter 5. Schedulers that Use Application Knowledge 64preempted jobs so that it can resume them at the appropriate time on the same processorsthat they originally were using. The heuristic used when assigning processors is identicalto the algorithm than for LERWF. Newly started jobs are assigned the processors requiredby the suspended job that will run next only if there are no other processors available.If a job cannot resume because a processor it was using is unavailable, it waits until theprocessor is available.EASY and EASY-preemptive both already have their own method of back�lling.Consequently, it does not make sense to have special \�ll" versions of these two schedulers.5.7 Processor Assignment Heuristics for PreemptiveDisciplinesThe preemptive algorithms currently use a simple heuristic to determine which processorsto assign to which jobs. For any job that is about to run, the scheduler attempts to avoidassigning any processor required by the next preempted job in the pending queue. Thisstrategy helps to ensure that these processors are not in use when the preempted job issupposed to run. In an attempt to improve the performance of the preemptive algorithm,a slightly di�erent method for assigning processors is tested.The problem with the original policy is that it does not take into account the totalnumber of processors in the system when assigning processors to a new job. Supposethere are a total of sixteen processors. The suspended job with the least work requiresnine, and the job to be started requires eight. It is of no use to avoid assigning theprocessors required by the suspended job to the new job because the two jobs cannotever run concurrently anyway. Avoiding allocating them in this case has no bene�t, andcan actually hurt.Suppose that you have the jobs in Table 5.1 with a LERWF-�ll algorithm using thispoor method of allocating processors. First A is submitted and started on processors 1to 3. Then B is; it preempts A and is assigned processors 2 to 16, avoiding processor 1since it is required by A. Now suppose that C is submitted. B is the next job to run, soC has to avoid the processors that B wants to use. So it has to use processor 1, since it isthe only processor that B has not been allocated. So C is allocated processors 1, and 4 to



Chapter 5. Schedulers that Use Application Knowledge 65Table 5.1: An Ine�cient LERWF Allocation ProcedureJob Remaining Work # Processors Processors AssignedA 300 3 1-3B 200 15 2-16C 100 7 To be determinedTable 5.2: LERWF Assigning Processors to JobsJob Remaining Work # Processors Processors AssignedA 300 2 15-16B 200 7 7-14C 150 2 13-14D 100 11 1 - 11E 50 6 To be determined9. Despite the fact that it should be possible to run jobs A and C at the same time sincethere are enough free processors, with this processor allocation it is not possible, becauseboth A and C require processor 1. This is a problem that is particularly noticeable withthe �ll variant of LERWF where many long jobs requiring few processors are started dueto the �lling.One alternative method of assigning processors uses two rules. First, whenever a newjob is assigned processors, the suspended jobs are �rst examined to see which jobs canrun immediately, at the same time as this job. If there are such jobs, the processorsrequired for those jobs are assigned last to this job. If there are are still more processorsavailable than can be used for both the current job and the suspended jobs that can beimmediately run, the processors used by suspended jobs that could potentially be run atthe same time as the current job are assigned last.An example can help to clarify these policies. Suppose we have jobs in Table 5.2 in asystem with sixteen processors, numbered from one to sixteen. Job E is the job that hasjust arrived. Before it arrives, Jobs C and D will be running, since they have the least



Chapter 5. Schedulers that Use Application Knowledge 66remaining work, and they can run at the same time. Job A will also be running, sinceits processors are not being used by C or D. When E arrives, it is noted that E and Dcannot run concurrently, because seventeen processors would be required. D has morework remaining, so it is suspended. Now the problem is determining which processors toassign to E. First, it looks at the jobs that could potentially be run concurrently. A, B, orC can be. C has the least remaining work, so it should de�nitely be resumed; therefore,E will not be assigned the processors required by C. If both E and C are running, thenB cannot be resumed, since B requires a processor, number 14, that will be in use by C.This leaves A, which can be resumed, so the processors assigned to A cannot be assignedto E. So after the �rst set of decisions, A can be assigned any processors except numbers13 to 16.Next, it is necessary to consider the second rule that processors assigned to jobs thatcould potentially be run concurrently with E should not be assigned. Obviously, D cannotever run at the same time as E, since there are insu�cient processors. However, if C wereto �nish, E and B could run at the same time. Therefore, E should also not be assignedthe processors required by B, processors 7-12. At this point, there are no more jobsthat could potentially be started at the same time as E, so the processors that have notalready been eliminated are assigned to E, up to the number requested by E. So E wouldend up running on processors 1-6. If B had required eight processors rather than seven,and the extra processor was not one being used by jobs A or C, E would have been forcedto use one of the processors required by B, since E has to be started.This alternative method initially appears as though it could be an improvement overthe other algorithm, since it appears to increase the probability that small jobs canrun concurrently in the system. However, some informal experimentation indicates thatthis is not true. In fact, this alternative method of assigning processors has a worseperformance, by 5 to 25%. The cause of this seems to be that this strategy tends toassign the same processors to all the jobs requiring few processors. If there is a longrunning job requiring few processors that is at the front of the queue, all the other jobsthat are run in the mean time end up being assigned the same processors. So when thelong job �nishes, none of the remaining jobs are able to run concurrently. The original



Chapter 5. Schedulers that Use Application Knowledge 67algorithm does not su�er from this problem to the same extent. Instead, near the endof the test, most of the processors are required by approximately the same number ofpreempted jobs.It is clear from these results that the particular heuristic a preemptive algorithm usesfor assigning processors can a�ect the performance of the algorithm a great deal. Theoriginal algorithm appears better according to experimental results, and is the algorithmused in the rest of this thesis. Further research and experimentation is still required to�nd a better heuristic.



Chapter 6Evaluation of AlgorithmsThis chapter discusses the methods of testing the performance of the schedulers presentedin the previous chapter, and presents the results of such tests. The primary criterion bywhich performance will be judged is mean response time. The response time for a job isthe amount of time the job spends in the system, from the time it is submitted until itcompletes. The version of EASY that kills job will be excluded from the mean responsetime calculations, since the killed jobs make comparisons meaningless. Secondary factorsthat will be examined include the utilization, the total time required to process all jobs,the number of jobs killed and suspended, and the number of times any particular job issuspended. The utilization is the average percentage of processors running jobs duringthe test.Section 6.1 discusses the methods of evaluating the di�erent scheduling algorithms.The test workload, the arrival rate, and the data initially available to the pro�ler areexamined. Section 6.2 presents and analyses the results of the experiments.6.1 MethodThere are several factors that can a�ect the performance of the scheduling algorithmsand comparisons among these algorithms. This section will discuss the factors that cana�ect performance and how these factors will be dealt with when testing the algorithms.It will discuss the characteristics of test workload and the issues associated with theHistorical Pro�ler. A summary of the parameters used in the experiments is presentedin Table 6.1. 68



Chapter 6. Evaluation of Algorithms 69Table 6.1: Parameters Used in the ExperimentsNumber of Executables 13Number of Jobs 200Interarrival Time Distribution ExponentialInterarrival Time Mean 150 sPro�ler estimate greatest value in a 95% con�dence intervalNumber of Processors Distribution UniformMinimum number of processors 2Maximum number of processors 16One of the main factors that can a�ect the apparent performance of a scheduler is thetest workload. For instance, FCFS and LEWF algorithms perform identically if everyjob is exactly the same, but very di�erently if there is a high variance in execution times.The workload consists of parallel applications that can either be real or synthetic. Realapplications are somewhat simpli�ed versions of typical applications that are used in pro-duction environments. The SPLASH-2 benchmarks [WOT+95] would be an example ofthis type of application. Synthetic applications are special applications that are designedto resemble real applications, but have less complexity. Therefore, their characteristicsare both predictable and modi�able. We choose to use synthetic applications due totheir 
exibility and predictability. Because of these traits, it is relatively easy to runseveral tests with the assurance that each scheduling algorithm treats precisely the sameset of jobs with the same characteristics. A di�culty with choosing to experiment withreal applications is that few parallel algorithms have been ported to run reasonably onNOWs.In the experiments, one synthetic application with characteristics that can be spec-i�ed by command line parameters will be used to simulate multiple applications. Thissynthetic application is a simple program that takes as parameters a Dowdy fractionparameter, the total work in seconds, and the processors on which to run. The job isinitially started on one processor. It spawns identical threads on all the other processors.



Chapter 6. Evaluation of Algorithms 70All the threads go to sleep for a period of time t. After the sleep time elapses, all thethreads of the job terminate and the job �nishes. The sleep time t is calculated as follows:t = W � (D + 1 �Dp ) (6.1)whereW is the total work parameter, D is the Amdahl's fraction sequential \parameter"(discussed in section 2.3), and p is the number of processors parameter. This equation is avariant of Dowdy's execution time function (Equation 2.6), derived by setting W = C1+C2 and D = C1W . By varying the parameters, this application can simulate applicationswith di�erent amounts of work and di�erent e�ciencies. Since all of the schedulingalgorithms provide exclusive access to machines, the scheduling results are not a�ectedby the fact that none of the jobs do real work. The jobs act as a \place-holders",indicating which processors are in use. This allows real use of the system to continueduring the tests without a�ecting the results signi�cantly.Since the Historical Pro�ler uses information based on executable name for job pre-dictions, the test workload is required to have di�erent executables. In this case, thereare thirteen executables, each an instance of the synthetic application. Each executablehas a fraction sequential with value 0.001, 0.01, or 0.1, a unique average amount of work,and a unique coe�cient of variation in work. In order to obtain realistic estimates ofthe work and variance in work, the NASA Lewis workload is used. This set of log �lesis chosen because it is a NOW system, and contains more parallel jobs than the otherNOW system.The work parameter to pass to the synthetic application to simulate the di�erentexecutables is derived from these NASA Lewis log �les as follows. The �rst twelveexecutables of the workload have mean work equal to 1120 of the product of the numberof processors and the mean execution time for the twelve most frequently run parallelexecutables. The thirteenth job comprises all the other parallel executables that wererun in the system (approximately 35% of the jobs). The 1120 scaling factor is used so thata test with many jobs �nishes in a reasonable amount of time. Of course, this scalingsubstantially increases the impact of the scheduling overhead on the results of the tests.In addition to the mean work, some variability in the applications' run times is re-



Chapter 6. Evaluation of Algorithms 71Table 6.2: Arti�cial Workload: Executable Speci�cationsExecutable Fraction (%) Mean time (s) C.V. Frac. Sequential DTest1 14.4 5778.8 1.9 0.1Test2 14.4 106.9 3.7 0.01Test3 11.6 6.2 2.1 0.001Test4 4.0 165.7 0.8 0.01Test5 3.8 703.2 1.4 0.001Test6 3.5 122.0 1.1 0.1Test7 2.8 184.9 1.0 0.01Test8 2.5 4980.4 1.5 0.1Test9 2.3 2.4 0.5 0.01Test10 2.0 4.7 1.0 0.001Test11 1.7 11.1 1.1 0.01Test12 1.5 360.9 1.2 0.1Test13 35.4 1147.2 3.9 0.01quired, so that all the jobs for a given executable do not run for the same duration. Inthis case, the coe�cients of variation for the applications are chosen to be the same as thecoe�cients of variation for the corresponding executables in the NASA workload. Thecoe�cient of variation for the thirteenth executable is chosen similarly, but taking intoaccount all the remaining jobs in the system. The speci�cations for all these executablesare shown in Table 6.2.The actual work W required for a given job in Equation 6.1 is randomly determinedbased on the mean and variance associated with the corresponding executable. If thecoe�cient of variation is less than one, an Erlang distribution of work is assumed, if equal,an exponential distribution, and if greater, a hyperexponential distribution. Suppose Mis the mean of the distribution, C is the coe�cient of variation, and rand() is a functionthat returns a random number between 0 and 1. To calculate the work for a job with anErlang distribution, the following formulas [SLTZ77] are used.



Chapter 6. Evaluation of Algorithms 72i = rand(); k = d 1C2e; T = 1 � (k � 1)C2; a = T + pkTC2 + 1WErlang = 8><>: Pki=1( �Mk�1+a log(rand())) if i < aPk+1i=1 ( �Mk�1+a log(rand())) otherwiseTo calculate the work for an exponential distribution, the following equation is used:WExp = �M log(rand())For the hyperexponential distribution, these equations are used:i = rand(); a = 12 0@1�sC2 � 1C2 + 11AWHyp = 8><>: �M2a log(rand()) if i < a�M2(1�a)log(rand()) otherwiseTo determine which executable to run next, a random determination is made. Theprobability of a given executable being the next job submitted is equal to the proportionof the number of jobs for this executable in the NASA Lewis workload. The experimentconsists of executing two hundred jobs.Since the jobs described will complete faster if they have more processors, the distri-bution of the processors required for the jobs can a�ect the results. In these experiments,only parallel jobs are used. Thus, jobs can use between 2 and 16 processors. The numberactually required for a given job is randomly chosen from a Uniform distribution overthe integers two to sixteen.At this point, the applications that will be used in the tests have been speci�ed interms of work, number of processors, and execution time functions. However, anotherfactor can a�ect the performance of the simulated system: the interarrival times of jobs.One option is to submit all two hundred jobs at once, as though a large batch workloadwere submitted. However, this type of workload is not very realistic if di�erent executa-bles are in the workload. Thus, the approach used for the tests is to have pseudo-randominterarrival times between jobs. The interarrival times are chosen from an Exponentialdistribution with a mean time of 150 seconds. This number was chosen so that over a long



Chapter 6. Evaluation of Algorithms 73enough period, the utilization of the system with e�cient scheduling, would approach75%. Thus, the system will generally have jobs executing, but not have long queues ofwaiting jobs.The other factor that can signi�cantly a�ect the results is the initial state of theHistorical Pro�ler repository. It is desirable to have some data, since otherwise it willrequire too many jobs to execute before the Historical Pro�ler has any impact on thescheduling algorithm. As a result, in our experiments, the repository is seeded by twenty-�ve random executions of each of the thirteen executables.The other pro�ler issue is the type of estimates that are used for the tests. Asdiscussed in Chapter 4, the estimates provided by the pro�ler include error estimates interms of a con�dence interval. In all the tests requiring an estimate of the executiontime for a job obtained from the pro�ler, the estimate will be equal to the greatest valuein a 95% con�dence interval about the mean. Speci�cally, it will be equal to the sumof the estimate and the confidenceInterval values that are returned by a call togetEstimate().In order to ensure a fair test of the algorithms, a single sequence of pseudo-randomnumbers is used. Thus, in a single experiment, every algorithm must handle the exactsame jobs submitted at the exact same times, and the repository contains the exact sameinformation.6.2 ResultsThis section will discuss the results of the experiments in which di�erent schedulers areused to schedule a particular test workload. Table 6.3 classi�es the algorithms examinedby their preemptability, whether they use �lling, and the type of knowledge they usefor their predictions. In this table and the rest of the chapter, the variants of EASYthat do not kill jobs will be referred to as EASY, while the variant that does kill jobswill be referred to as EASY-kill. This section will examine each of the dimensions ofthis table. Section 6.2.1 will discuss the relative performance of the non-preemptivealgorithms. Section 6.2.2 compares the performance of the algorithms that use �llingto those that do not. Following this is Section 6.2.3 which compares the performance



Chapter 6. Evaluation of Algorithms 74Table 6.3: Classi�cation of AlgorithmsNon-Preemptive PreemptiveNon-Filling Filling Non-Filling FillingNo Knowledge FCFS FCFS-�llApprox. Knowledge EASY-kill-pro LEWF-�ll-pro EASY-pre-pro LERWF-�ll-proLEWF-pro LERWF-proExact Knowledge EASY-act LEWF-�ll-act LERWF-act LERWF-�ll-actLEWF-actof the non-preemptive algorithms to the corresponding preemptive algorithms. Finally,Section 6.2.4 will compare the performance of the di�erent algorithms using no knowledge,imperfect knowledge, and perfect knowledge.The results for this chapter are summarized in Table 6.4. In this table, the averageresponse time is calculated as the average time from when a job is submitted until it�nishes. The wait time is the average time from when a job is submitted until it �rstbegins executing. The total time is the time required for completing all 200 jobs. Theutilization, U , is calculated using the set of all jobs in the test, J , where, for a job i 2 J ,pi is the number of processors used by that job, and ti is the run time of the job. In thefollowing equation for utilization, T is the total time required for the test and P is thenumber of processors in the system (in our case, sixteen):U = Pi2J pitiTP6.2.1 The Relative Performance of the Non-Preemptive Sched-ulersTable 6.4 contains the result of using di�erent schedulers to schedule the test workload.To judge the relative performance of the algorithms it is worthwhile comparing the per-formance of the simplest non-�lling, non-preemptive versions of the algorithms usingperfect service time knowledge, FCFS, EASY-act and LEWF-act. Figure 6.1 shows the
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Table 6.4: Performance of Scheduling Algorithms (\pro" means use of the pro�ler, \act"means use of actual service times)Algorithm Kill Susp./# times Resp.(s) Wait (s) Total Time (s) Util. (%)FCFS 0 0 6480 6251 43986 64.6FCFS-�ll 0 0 2284 2056 37609 75.0EASY-act 0 0 2361 2138 36684 74.7EASY-kill-pro 24 0 11 602 29781 58.9EASY-pre-pro 0 24/43 2429 1864 40130 69.9LEWF-act 0 0 1031 804 41760 67.3LEWF-pro 0 0 2965 2738 39116 71.6LEWF-�ll-act 0 0 926 697 39271 72.0LEWF-�ll-pro 0 0 1259 1031 38234 74.0LERWF-act 0 31/124 908 469 44456 63.7LERWF-pro 0 25/121 2404 1565 48017 61.5LERWF-�ll-act 0 34/135 855 267 42684 67.3LERWF-�ll-pro 0 38/163 1678 389 45441 65.81Note: This time is not given because 24 long-running jobs were killed. If this fact is ignored, the meanresponse time is 763.
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FCFS EASY-act LEWF-actFigure 6.1: The Non-Preemptive Schedulers' Mean Response Timesrelative performance of these three algorithms. The wait times in this �gure are highrelative to the execution times because most jobs have to wait in the pending queue for arelatively long time before they begin executing. If the job interarrival times were longer,this wait time would be shorter.The FCFS algorithm has the worst response time by far and also has relatively poortotal time for the test. This is an expected result, since jobs requiring only a few secondsof run time might wait a long time for a longer job to �nish. This can be seen by therelatively large wait time for this algorithm. The total time required for the entire exper-iment is also high, almost comparable to some of the preemptive scheduling algorithms,despite the fact that the overhead for this algorithm is relatively low. This algorithm isthe only algorithm that does not use any application knowledge for scheduling.The EASY-act algorithm is the FCFS algorithm with back�lling. If there are availableprocessors, and a job can run on those processors without delaying previous jobs, thatjob will be run. The addition of back�lling greatly improves both the response time andthe total time for the entire test. Short jobs have a good chance of being run relatively



Chapter 6. Evaluation of Algorithms 77quickly on the available processors, since, due to their short run time, they are unlikelyto delay other jobs.The other non-preemptive scheduler using accurate estimates, LEWF-act, has thebest response time of all the non-preemptive schedulers. This is an expected result,since it means that shorter jobs will not have to wait for longer jobs to �nish. This isevident from the relatively low wait time. The total time required for the experimentis reasonable, but not great. However, the throughput of the algorithm could still beimproved by attempting to use as many processors as possible, rather than least work�rst, if the variances in run times within a group of jobs are low. If all the jobs haveapproximately the same run time, the order in which the jobs are run will not changethe mean response time much. If it is possible to pack the jobs to make use of the idleprocessors, then both the throughput and mean response times will improve. This isdone by LEWF-�ll.Thus, as expected, the most basic algorithm, FCFS, was the worst, EASY was better,and LEWF was the worst. This ordering provides a basis for comparing the other variantsof these algorithms.6.2.2 The Value of FillingFilling is the �rst addition to the basic algorithms which will be examined. Figure 6.2compares the mean response times for �lling and non-�lling algorithms. Since the variantsof LEWF order the queues in an attempt to minimize the mean response time, it was notclear that changing this ordering by using �lling would lead to improved response times.However, the experiments show that in general, �lling improves both the response timesand the total time required to process the 200 jobs.It is intuitive that FCFS would be improved by the addition of �lling, so the resultsare not surprising. The average response time is reduced by almost two-thirds, while thetotal time required decreases by 17%. The addition of �lling to FCFS means that jobsthat could not be started if strict ordering were used can be started earlier. Thus, thewait times decrease, as is evident from the test, and, since more jobs are being run atonce, the throughput increases and total time required for the test decreases.
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LERWF-fill-proFigure 6.2: The Impact of Filling on Mean Response TimesThe e�ects on the Least Work First algorithms are more interesting. In all cases, �llingimproves the mean response times and the total times. For LEWF-act and LEWF-�ll-act,the mean response times and total times improve by 11% and 6%, respectively. Similarresults are evident for LERWF-act and LEWRF-�ll-act, where the times improve by 6%and 4%, respectively.For the four algorithms using the pro�ler, the results are more extreme. LEWF-�ll-pro's mean response time is only 42% of the mean response time of LEWF-pro. The totaltimes improve slightly. The results for LERWF are similar, with the �lling version hav-ing a mean response time of approximately two-thirds that of the non-�lling algorithm.LERWF-�ll-pro is particularly noteworthy for its short mean wait time compared to themean response time. Jobs are started quickly, hence the short mean wait time. But theyare also frequently preempted, leading to the large di�erence in mean response time andthe mean wait time.Thus, �lling is relatively more helpful with the algorithms that use the pro�ler. Thisresult may be because, with the non-�lling algorithms, inaccurately long estimates forjobs requiring few processors do not hurt the performance nearly as much in the �ll



Chapter 6. Evaluation of Algorithms 79version, since these jobs are likely to be started relatively early regardless of the estimates.To a certain extent in the non-preemptive algorithms, these gains are reduced when along running job requiring few processors is used to \�ll", and it later delays a shortrunning job requiring many processors. However, it is evident from the results of theseexperiments that this tradeo� is de�nitely worthwhile.In summary, in every case, �lling leads to improved response times and reduced totaltimes. It is more important for those algorithms that use less knowledge than it is forthose that use more.6.2.3 The Value of PreemptionPreemption is the second addition to the basic algorithms that will be examined. It isworthwhile distinguishing preemptive schedulers from the non-preemptive schedulers be-cause the preemptive schedulers require the additional complexity of preemption. Thus,although the preemptive algorithms may have better performance, when actually decid-ing which algorithm to use, it is necessary to consider also the additional implementatione�ort required for preemption and the additional potential for error because of the com-plexity.In this case, there are �ve pairs of algorithms that di�er only in that one is preemp-tive and the other is not, EASY-kill-pro and EASY-pre-pro, LEWF-act and LERWF-act,LEWF-pro and LERWF-pro, LEWF-�ll-act and LERWF-�ll-act, and LEWF-�ll-pro andLERWF-�ll-pro. The relative performances of the �nal four pairs of algorithms is dis-played in Figure 6.3. Another comparison might be made between the preemptive versionand non-preemptive versions of EASY that use perfect data. However, such a comparisonis uninteresting because no jobs are preempted, and so the algorithms lead to the exactsame schedule and have the exact same performance (that of EASY-act).A comparison of the performance of the non-preemptive EASY scheduler using thepro�ler to the performance of a preemptive version of the same scheduler is meaningless.EASY-kill-pro, the version without the preemption, disposes of all the jobs faster thanany other algorithm. But this is because twenty four long running jobs are killed by thescheduler when they exceed the estimate. Thus, the average response time is unde�ned,
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LERWF-fill-proFigure 6.3: The Impact of Preemption on Mean Response Timessince these killed jobs never complete. The same twenty-four jobs are preempted byEASY-pre-pro. Because EASY-pre-pro does not kill jobs due to inaccurate estimates, itis the better algorithm. The percentage of jobs killed, 12%, is noteworthy. This givessome indication of the degree to which the job execution times exceeded the mean. Thepro�ler was requested to return a con�dence interval such that there was 95% chance theactual mean duration for jobs of a given executable be within that interval. The highestvalue in this con�dence interval was the estimate of the job duration. Thus, from thelarge number of jobs killed, we can deduce that a relatively large number of jobs hadexecution times greater than the estimated mean, even when a high estimate of the meanwas used.The LEWF-act and LERWF-act algorithms, the �rst and second bars in Figure 6.3,make a more interesting comparison. The non-preemptive algorithm has a mean responsetime 14% longer than the preemptive version. As is evident from the big 71% di�erencein the wait times of the algorithms, this improved mean response time is due to the factthat long jobs that are running can be preempted in order to run shorter jobs. In the



Chapter 6. Evaluation of Algorithms 81non-preemptive version, if a long job starts running, subsequently arriving shorter jobsmust wait until that long job �nishes if there are too few available processors. Becausepreempted jobs require more wall-clock time from when they are �rst started to whenthey �nish, the di�erence in the average response time and the average wait time is higherfor LERWF-act than for LEWF-act, but this increase is still less than the improvementin average wait time. The total time for the preemptive algorithm to process all the jobsis longer than the total for the non-preemptive algorithm, perhaps due to the overheadof resumption mentioned in Section 5.4 (the description of the LERWF algorithm).The results for LEWF-pro and LERWF-pro are presented as the next two bars inFigure 6.3. Unlike the previous two algorithms, however, these algorithms use imperfectinformation when scheduling. As with perfect information, the non-preemptive algorithmhas a 23% longer average response time than the preemptive algorithm. The improve-ment in response times arises from the reduction in wait times for jobs, for the reasonsdescribed in the previous paragraph. The total time required to process all the jobs is23% higher for the preemptive scheduler than for the non-preemptive scheduler, due pri-marily to the overhead associated with the 121 preemptions and resumptions. Comparingthese two algorithms reveals one disadvantage of using the pro�ler with non-preemptivealgorithms: the estimate at �rst is relatively inaccurate due to the large con�dence in-terval that is used. With preemptive algorithms, poor estimates can be remedied as itbecomes apparent that a long job is running, but this is not possible with non-preemptivealgorithms.The relative performance of LEWF-�ll-act and LERWF-�ll-act helps to con�rm thatpreemption improves the mean response time, but increases the total time required forthe experiment. The preemptive version in this case had an 8% improvement in meanresponse times and was 12% worse for the total time required.The LEWF-�ll-pro and LERWF-�ll-pro algorithms o�er seemingly contradictory re-sults. In this case, the non-preemptive algorithm has a better average response time by33%. This is not due to jobs being started later; the average wait time for the preemptivealgorithm is less than 38% of the wait time of the non-preemptive algorithm. Rather,this poor response time is due to overhead of preemption and the limitations of the



Chapter 6. Evaluation of Algorithms 82current heuristic for allocating processors (which was discussed in Section 5.7). All thejobs that require few processors are often assigned the same processors, so that severaljobs of this type cannot run concurrently. Jobs are started relatively quickly, but afterthey are suspended, it takes a long time before they are resumed. This hypothesis issupported by the fact that this algorithm easily has the highest average suspended timefor all suspended jobs. It is expected that improved heuristics for assigning processorscould reduce the mean response time for LERWF-�ll-pro, but identifying such improvedheuristics is left to future research.In summary, preemption generally lowers the mean response times. However, a goodheuristic for assigning processors to jobs is required to achieve the maximum bene�ts forpreemption.6.2.4 The Value of KnowledgeIt is di�cult to determine improvements in the performance of scheduling algorithms dueto the use of the Historical Pro�ler because the algorithms that use the pro�ler not onlyuse application knowledge, but require application knowledge. Thus, it is impossible tocompare the performance of an algorithm not using the pro�ler to the same algorithmusing it. As a result, to compare the e�ects of knowledge, comparing di�erent algo-rithms is required. Three di�erent levels of knowledge will be compared: no knowledge,imperfect knowledge, and perfect knowledge. No knowledge will be represented by thevariants of FCFS, imperfect knowledge will be represented by the algorithms that usethe Historical Pro�ler (the algorithms with a \-pro" su�x), while perfect knowledge willbe represented by the algorithms that use the actual execution times of the applications(the algorithms with a \-act" su�x.) The �rst two algorithms in Figure 6.4 are the twoFCFS algorithms. Every other pair of algorithms in the �gure consists of one schedulerusing perfect application knowledge and the same scheduler using imperfect knowledge.Is Knowledge Bene�cial?Comparing the use of no knowledge to the use of any knowledge, even imperfect knowl-edge, shows clearly that knowledge is highly bene�cial. Both FCFS and FCFS-�ll are
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LERWF-fill-proFigure 6.4: The Impact of Knowledge on Mean Response Timesmuch worse than the LEWF and LERWF algorithms that use the same type of �lling.In the case of FCFS, the poorest comparable algorithm is LEWF-pro, which still has amean response time less than half that of FCFS. The preemptive version of this algorithm,LERWF-pro, improves on this performance slightly, while the algorithms that use perfectknowledge have mean response times less than one sixth of that of FCFS. The perfor-mance of FCFS-�ll is also poor. Once more, there is almost a 50% improvement in meanresponse times using LEWF-�ll-pro. LRWF-�ll-pro, despite the problems in allocatingprocessors described in section 5.7, has a mean response time less than three-quartersthat of FCFS-�ll. The algorithms that use perfect knowledge again outperform FCFS-�ll, this time with mean response times of approximately two-�fths of that of FCFS-�ll.Thus, schedulers using the knowledge-based Least Work First strategy outperform by awide margin comparable FCFS algorithms in all the cases examined.Comparing the variants of FCFS to EASY-act and EASY-pre-pro does not reveala signi�cant di�erence. Both of these EASY variants outperform FCFS, but this is anunfair comparison since both algorithms use back�lling. Thus, it is more appropriate tocompare them to FCFS-�ll. Both variants of EASY have slightly worse response times



Chapter 6. Evaluation of Algorithms 84than FCFS-�ll, less than 10% worse. It would be expected that these three algorithmswould have similar performance, since they are very similar disciplines. (For a discussionof the similarities and di�erences, see Section 5.5.) The reason EASY does not performbetter despite its use of application knowledge is because the knowledge is mainly beingused to provide predictability to users, not to improve mean response times. The onlyway the additional knowledge improves the performance is by allowing EASY to back�lljobs without violating the FCFS property of the algorithm. Since the FCFS-�ll algorithmcan already do similar �lling, this does not lead to a di�erence in performance.Thus, with the exception of EASY, the use of even imperfect knowledge improvesmean response times a great deal over the use of no knowledge.The Impact of the Accuracy of Knowledge on Non-Preemptive DisciplinesIt is now worthwhile examining in more detail the improvements over FCFS that arepossible due to the use of knowledge. In particular, it is interesting comparing theimprovements over FCFS in mean response time that are attainable using imperfectknowledge to the improvements attainable using perfect knowledge. This provides andindication of what fraction of the potential improvement due to knowledge is attainableusing the Historical Pro�ler. First, we will examine the non-preemptive schedulers.For the LEWF algorithm, the improvement over FCFS due to imperfect knowledge islarge, but still is not close to the possible improvement with perfect knowledge. LEWF-pro has mean response times 46% as long as FCFS, while LEWF-act has mean responsetimes of only 16% as long. Both algorithms outperform FCFS in terms of total time, too,with total times of only 95% for LEWF-act and 89% for LEWF-pro of that of FCFS.The higher throughput of the algorithm using imperfect knowledge is due to the fact thatthe job length estimates to a large extent depend on the number of processors assignedto a job. Therefore, jobs requiring few processors in general have high estimates, andtend to be run after the jobs requiring many processors. This is particularly true dueto the large con�dence intervals being used for the estimates, which tend to increase thedependence of the estimate on the number of processors, and reduce the dependence onthe executable name. As a result, the jobs requiring many processors, which have to be



Chapter 6. Evaluation of Algorithms 85run by themselves in general anyway, tend to run �rst. The jobs requiring few processorsrun last, but since they require so few processors, several jobs can be run at once, leadingto very few processors being idle.With the �lling versions of the LEWF algorithm, LEWF-�ll-act and LEWF-�ll-pro,imperfect knowledge does not hurt the algorithm nearly as much. The mean responsetime of LEWF-�ll-act is approximately 41% of the mean response time of FCFS-�ll, whilethe LEWF-�ll-pro is 55% of FCFS-�ll. Thus, only a 14% di�erence relative to FCFS-�llremains to be overcome by improving the accuracy of knowledge. The mean responsetimes of these two algorithms are so close because inaccurately long estimates for jobsrequiring few processors do not hurt the mean response time nearly as much in the non-�lling versions of the algorithms. Such jobs requiring few processors are likely to bestarted relatively early regardless of the estimates. In terms of the throughput, both al-gorithms are very similar. The total time required for both experiments is approximately4% worse than with FCFS-�ll.Thus, for the non-preemptive schedulers, the accuracy of knowledge is more impor-tant for the non-�lling algorithms. The �lling algorithm using imperfect knowledge hasperformance only slightly worse than the same algorithm using perfect knowledge.The Impact of the Accuracy of Knowledge on Preemptive DisciplinesThe preemptive LERWF algorithms have similar results to the non-preemptive LEWFalgorithms. The non-�lling scheduler using the pro�ler, LERWF-pro, has an averageresponse time equal to 37% of the average response time for FCFS. For the schedulerusing perfect information, LERWF-act, the average response time is 14% of that of FCFS.In terms of throughput, LERWF-pro shows a 9% increase over FCFS, while LEWF-actshows a 1% increase. The 23% di�erence in mean response times is not caused bydi�culties in distinguishing between di�erent executables. In general, the jobs are runin the \correct" executable order so that the executables with the least work are runbefore the ones with more. The problem arises in distinguishing between di�erent jobsinvolving the same executable. In this case, the jobs requiring more processors are run



Chapter 6. Evaluation of Algorithms 86�rst, since it is expected that the more processors available, the shorter the job1 (a resultthat may not necessarily be true in a real workload). As a result, when the pro�ler isused for scheduling, several jobs with short execution times but requiring few processorsare delayed until the end of the test, after longer jobs with more processors have �nished.It is expected that this di�culty would be overcome to a large degree if the jobs' memoryusage were taken into account (assuming a correlation exists in general between memoryusage and execution length).LERWF-�ll-pro requires an even larger percentage improvement to achieve the per-formance of LERWF-�ll-act. In this case, LERWF-�ll-pro has a mean response timeequal to 73% of that of FCFS-�ll, while LERWF-�ll-act has a mean response time of37% of that of FCFS-�ll. The total times for the tests are 21% and 13% worse thanFCFS-�ll, respectively. The problem with LERWF-�ll-pro, as discussed in Section 5.7, isthe heuristic for assigning processors to jobs. Near the end of the test, many preemptedjobs require the same processors and thus cannot be run simultaneously. Since the meanresponse time of LEWF-�ll-pro is much lower than that of LERWF-�ll-pro, it is alsoclear that it is possible to improve the response times of this algorithm signi�cantly.For EASY-act and EASY-pre-pro, there is not much di�erence between the perfor-mance using perfect and imperfect knowledge. The average response time using imperfectinformation with EASY-pre-pro is only 3% worse than the version using perfect infor-mation, even when taking into account the overhead due to preemption. The utilizationis almost 5% lower. The preemptive algorithm has a lower average wait time, but morethan makes up for it because jobs require longer, on average, to complete. There arethree potential causes of this. First, there is additional overhead associated with pre-empting jobs. Second, preempted jobs require more wall-clock time from when they are�rst started until they �nish. Third, inaccurate estimates have an e�ect on back�lling.Because high estimates are used (as explained in Section 6.2.3), fewer jobs can be back-�lled without risking violating the guarantee that no job will be delayed by any job with1This is caused by the jobs that were used to seed the pro�ler's repository. For any job, the amount ofwork was selected according to the workload distribution, and the number of processors was selected froma uniform distribution. The run time of that job was then calculated to be approximately proportionalto the ratio of the work to the number of processors, leading to a negative correlation between the runtime and the number of processors.



Chapter 6. Evaluation of Algorithms 87a later submission time. Despite these factors, the performance of the two algorithmsis very close. This implies that EASY-pre-pro could be an alternative to EASY at siteswhere the users want the bene�ts of EASY, but want to have the option of allowing thescheduler to estimate job run times.Thus, for the preemptive schedulers, the mean response times using imperfect knowl-edge are good, but are farther from the ideal than for the non-preemptive schedulers.Overall, the schedulers using the imperfect information of the pro�ler vastly outperformthe FCFS schedulers. For all but the LERWF-�ll-pro algorithms, the algorithms usingthe pro�ler get 75% of the way to the minimum average response time attainable usingperfect information.6.2.5 SummaryThe experiments lead to the following main results.1. Out of the three basic, non-preemptive algorithms, FCFS is the worst, EASY-actis better, and LEWF-act is the best.2. Filling reduces the mean response times attainable for all disciplines.3. Preemption reduces the mean response times attainable for most disciplines.4. The heuristic that the preemptive disciplines use for assigning processors to jobshas a large impact on the mean response times attainable using those disciplines.5. Schedulers that use application knowledge can attain lower mean response timesthan those that do not.6. In many cases, schedulers that use the imperfect knowledge from the pro�ler can at-tain most of the possible knowledge-related improvements to mean response times.



Chapter 7Conclusions and Future WorkAnalysis of log �les obtained from one multiprocessor system and two NOWs showedthat classifying jobs by executable, user and degree of parallelism led to coe�cients ofvariation in wall-clock run time much lower than for all the jobs in the entire system.This led to the idea that it is possible to estimate run times for jobs classi�ed in this waymuch more accurately than would be possible only using information about the entiresystem.A database called a Historical Pro�ler was proposed in Chapter 4 to take advantageof this result. To increase the reliability of the software and decrease the developmenttime, the pro�ler was built on top of LSF and a Job and System Information Cache.This design choice made it relatively easy to obtain the data required by the pro�ler andfacilitates putting the pro�ler into practice at a production site. The one disadvantageit had was that it constrained the design to the information and mechanisms providedby LSF.It was decided that the pro�ler should have three features that would be useful to ascheduler:1. A method of obtaining an execution time estimate with an error tolerance.2. A method of obtaining an approximate execution time function with error ranges.3. Hypothesis testing that can determinewhether, with a particular level of con�dence,one job's mean execution time will be greater than another's by a speci�ed amount.The pro�ler consists of two parts. The lower part is a repository containing data that88



Chapter 7. Conclusions and Future Work 89is indexed by executable and user, but further classi�es jobs by the number of processorsused, the memory usage, and the execution time. This design allows the pro�ler toobtain accurate predictions by classifying jobs according to executable, user, and levelof parallelism. It also allows the estimates to become even more accurate if the problemsize is inferred from the memory usage and as the execution of the job progresses. If theduration of the job is known to be greater than a particular value, any historical jobsthat did not run at longer than the current duration can be ignored when estimating thejob's execution time.The second half of the pro�ler, above the repository, consists of functions for e�cientlymanipulating the repository data into a form easily usable by the scheduler. Thesefunctions are needed because several complicated statistical techniques are required totransform the raw data to support the three speci�ed features.In order to test the Historical Pro�ler, scheduling disciplines were required. Chapter 5introduced three basic algorithms, FCFS, LEWF, and EASY, with �lling and non-�llingversions of the �rst two algorithms. In addition, preemptive variants of LEWF andEASY were proposed. These algorithms were chosen because they were either well-known, or simple, or known to have good performance in certain situations. Much of thefunctionality required to implement the algorithms was already provided by function callsto LSF or the JSIC. Without this support, the implementation would have been muchmore di�cult. It would have been necessary to build an interface for submitting jobs andexamining the status of jobs, hosts and queues. A method of starting, preempting andresuming parallel jobs on a network of workstations would have had to be implemented.Finally, information about the resource usage of all jobs in the system would have hadto be obtained for use by the Historical Pro�ler. With LSF, the log �les already storemost of the required information.The most important results of this thesis arose from the experiments discussed inChapter 6. Of the non-preemptive algorithms, LEWF had the best response time, fol-lowed by EASY, while FCFS was worst, and this ordering was evident for most of thevariants of these three algorithms. The addition of preemption proved to be bene�cialfor most of the algorithms that exploited it. For most algorithms, it resulted in smaller



Chapter 7. Conclusions and Future Work 90mean response times. For the version of EASY that used the pro�ler, the addition of pre-emption resulted in jobs not being killed when the pro�ler returned inaccurate estimates.Filling also proved bene�cial; it reduced the mean response times for all the algorithmsexamined.The results of further experiments resolved the primary issue of whether the use ofapplication knowledge derived from historical data could be used to improve the perfor-mance of a scheduler. The addition of knowledge was bene�cial in all cases. Schedulersusing even the imperfect knowledge of the pro�ler signi�cantly outperformed the FCFSalgorithms that used no knowledge. In all but one case, the algorithms using the Histor-ical Pro�ler were able to achieve over 75% of the performance improvements possible bythe addition of knowledge. For the remaining algorithm, LERWF-�ll-pro, there was stilla large improvement over the no knowledge case, even though the performance was notnearly as close to the performance of the comparable algorithm using perfect knowledgeas for the other algorithms. Overall, it is clear that the improvements in mean responsetimes due to using the Historical Pro�ler are substantial. The pro�ler is e�ective atpredicting the characteristics of jobs.7.1 Future ResearchThis work may be extended in a number of ways. The parameters for testing the existingalgorithms can be varied, the functionality of the Historical Pro�ler can be extended,and di�erent scheduling disciplines can be examined. The subsequent three sectionswill discuss these di�erent approaches to extending the results. First, other experimentsusing the current algorithms will be discussed in Section 7.1.1. This will be followedin Section 7.1.2 by a discussion of improvements related to the the Historical Pro�ler.Finally, Section 7.1.3 will propose di�erent scheduling disciplines that could be used forfurther experimentation.7.1.1 Varying the Parameters of the ExperimentsThere are several parameters in the test that could potentially a�ect the performance ofthe Historical Pro�ler and the scheduling disciplines examined. Further experimentation



Chapter 7. Conclusions and Future Work 91could be done to determine the sensitivity of the results to the parameters used in theexperiments. For instance, only one sequence of synthetic jobs was used for all the ex-periments. Additional experiments using di�erent sequences of pseudo-random numbersto generate the synthetic workload would help increase con�dence in the validity of theresults.Another parameter of the experiments was the interarrival times of jobs. The in-terarrival times were calculated so that the average utilization would be approximately75%. Since the utilization of real systems vary, it would be worthwhile to varying theinterarrival times to see how the relative performances of the algorithms change when theutilization changes. In particular, the performance of the algorithms with jobs havinginterarrival times of zero would be interesting, since such tests would imitate the e�ectsof a large batch submission or a night queue that only starts processing its jobs after aparticular time.Tests with a more realistic workload could be done to verify the results of this thesis.A parallel workload from a NOW site could be used to \generate" the applications thatare to be scheduled. Synthetic applications with all the characteristics of the applicationsfrom the log �les could be submitted to the scheduler with the same interarrival timesas existed in the original system. If a number of NOW sites were used, such experimentswould provide strong evidence of the desirability of a given algorithm. A tool for gener-ating a workload from an LSF log �le in such a manner would be extremely valuable forboth tuning a scheduler for a speci�c site and for systems software testing and evaluation.This technique was not used for this research for three reasons. First, because thereare few parallel jobs in the NASA Lewis log �les that are distributed over a period ofseveral months, the interarrival times are too long to make the test interesting. Second,there is not enough variability in the number of processors allocated to jobs. Finally,there are not enough jobs in the log �les to both seed the Historical Pro�ler and havedi�erent jobs for the test.However, upon more thought, these di�culties can be remedied. The actual inter-arrival times in the log �les can be ignored, and replaced by shorter, pseudo-randomlygenerated interarrival times as was done for the actual experiments. The lack of variabil-



Chapter 7. Conclusions and Future Work 92ity in the number of processors can be remedied by assuming or calculating an executiontime function for each executable. This calculation could be done when there is enoughdata available for the executable; otherwise, assuming the executable conforms to a setof random values chosen from a reasonable range would be su�cient. Once this exe-cution time function is known, a random number of processors can be assigned to thejob, as was done in this thesis. The �nal di�culty of too few jobs is a more di�cultproblem. One solution is to continue to seed the database with random jobs, as was donein these experiments, and use the \actual" jobs from the log �les only for the jobs thatare scheduled.Alternatively, installing the schedulers at existing production LSF sites could be in-teresting. It would be di�cult to make the same direct comparisons between the meanresponse times of the algorithms as were done in this thesis, since di�erent jobs with dif-ferent interarrival times would be scheduled. However, such installations would allow theinvestigation of many issues. For instance, if the workload did not evolve signi�cantly andthe tests were conducted over a relatively long period of time, using di�erent schedulingalgorithms would allow general comparisons of mean response times. The number of jobsin the queues at various times of the day could also be examined. In addition, the users'reactions to the use of di�erent schedulers would be worthwhile investigating. Thus, thisapproach could lead to many interesting results.7.1.2 Improvements Related to the Historical Pro�lerIn addition to examining the e�ects of changing the parameters of the workload, it isalso worthwhile investigating the e�ects of changing the various inputs to the HistoricalPro�ler. First, it would be interesting to determine the sensitivity of the schedulers tothe initial job data that the Historical Pro�ler has available. In the experiments for thisthesis, the pro�ler was seeded with a history of 25 jobs for each executable. The resultsof experiments without initial data available to the pro�ler or with more data availablefor some executables than others could also prove interesting. Such tests are particularimportant considering that if the pro�ler were installed at a production site, it wouldinitially have no information about any executables.



Chapter 7. Conclusions and Future Work 93A second Historical Pro�ler parameter worth examining is the con�dence intervalused in the estimates. In particular, the non-�lling algorithms might be improved byusing less conservative estimates from the pro�ler. Currently, the estimate is equal togreatest value in a 95% con�dence interval. If instead a much smaller con�dence intervalwere used, say 60%, jobs with high variability would have relatively lower estimates andwould be scheduled sooner. Such a change would have a positive e�ect for short jobsthat are instances of executables with highly variable run times, since these jobs wouldbe less likely to wait for longer running jobs. However, it would have a negative e�ectfor long jobs that are instances of executables with highly variable run times since longjobs could run before shorter jobs. Thus, the overall e�ect is uncertain.There are several features of the Historical Pro�ler that could be changed to improvethe performance of the pro�ler and the strength of the results of the experiments. First,because of limitations in the current version of LSF, neither the processor time northe memory usage were used by the pro�ler for making estimates. It is likely that theinclusion of this data will increase the accuracy of predictions and reduce the di�erence inmean response times between the schedulers using perfect and imperfect information. Ofcourse, for such information to a�ect the results of the experiments, a more complicatedworkload speci�cation would have to be used that includes both processor time andmemory usage. Real applications may have to be used, which would greatly complicatethe testing.A further improvement would be to add methods that do not focus on predicting themean run time for executables, but instead can say with some con�dence that a given jobwill �nish in a certain amount of time. This could be done in the following way. Supposethat there is a given job that is an instance of a particular executable with an observedmean execution time with coe�cient of variation greater than one. A method in theHistorical Pro�ler could use a hyperexponential cumulative distribution function withthe speci�ed mean and variance to estimate a duration such that the actual duration ofthe job will be less than this estimate a speci�ed percentage of the time. Such estimateswould likely be more useful than the current predictions of the remaining execution time.To make the functioning of the Historical Pro�ler consistent, several changes would



Chapter 7. Conclusions and Future Work 94be required, but the basic design could stay the same. All the job information required isalready in the repository, and methods of calculating the mean and coe�cient of variationalready exist. The execution time function predictions of the Historical Pro�ler would stillbe useful if the pro�ler were modi�ed in this way; estimates of the mean and coe�cient ofvariation would still be required, and dynamic and adaptive schedulers would still requireknowledge of the execution time function to determine how many processors to allocateto speci�c jobs. The main changes would be adding new methods to the pro�ler interfaceand adding a way to generate a cumulative distribution function with a speci�ed meanand coe�cient of variation. In addition, for consistency, a new type of hypothesis testing,which compares the distribution functions of jobs rather than just mean response timeswith a con�dence tolerance, would have to be implemented.A further expansion of the Historical Pro�ler combined with the idea presented inthe previous section of generating a workload from log �les could lead to a very powerfulscheduling combination. The pro�ler could be used not only to predict the executiontimes of individual jobs, but also to determine the scheduling algorithm to use at a givensite.Finally, there are several features of the Historical Pro�ler that were not used totheir full potential by any of the tests. Hypothesis testing was not used at all. Theapproximation of the execution time function was used by the algorithms, since theyobtained their point estimates for the execution time from the calculated execution timefunction. However, the algorithms used did not take full advantage of this feature in theway that a dynamic algorithm could. These algorithms will be discussed in more detailin the next section.7.1.3 Additional Scheduling Disciplines Worth ExaminingThis thesis only discussed non-adaptive space sharing scheduling algorithms that did notpermit the migration of jobs. This is a small subset of all scheduling algorithms; it isworthwhile considering the performance of the pro�ler with other types of schedulingdisciplines.Many of the performance problems of the LERWF algorithms were attributed to the



Chapter 7. Conclusions and Future Work 95methods of assigning processors. The problems arose because preempted jobs could notresume if the processors that they required were being used by another job, even if therewere a su�cient number of available processors in the system. This problem would beavoided if the scheduling algorithms supported migration since suspended jobs would nolonger be required to use speci�c processors. It is likely that this addition would especiallyimprove the performance of the scheduling algorithms using imperfect information, sincethese algorithms tended su�er from this problem more than those that used perfectinformation. Thus, the di�erence in the mean response times of migratory versions ofthe LERWF algorithm using perfect and imperfect information would probably be smallerthan the di�erence for the non-migratory versions examined in this thesis.An examination of dynamic algorithms that use the pro�ler would be particularlyinteresting. Currently, the pro�ler does provide execution time function approximationsfor executables. As shown by Sevcik [Sev94], knowledge of the actual execution timefunctions can be used by dynamic algorithms to �nd the processor allocations that achieveclose to optimal average response times. Thus, the approximated execution time functionis likely to be useful to a dynamic algorithm. It would be worthwhile comparing theperformance of dynamic algorithms that attempt to use the execution time functionapproximation to minimize mean response time to EQ, a dynamic algorithm that assignsan equal number of processors to each job in the system and that has been shown tohave good performance over a large range of workloads [PS95].However, as mention in Section 4.3.2, actually using the Historical Pro�ler to obtainthese execution time function approximations is complicated by the fact that dynamicjobs are being scheduled. With the static algorithms, it is relatively easy to approximatethe execution time function. A number of point estimates of the executable executiontimes with di�erent numbers of processors can be found. A curve can be �tted to thesepoint estimates to obtain the execution time function, as was done in this thesis. However,with dynamic algorithms, the processor allocations can change. If the allocations change,such point estimates are no longer well-de�ned. If a job runs on four processors for tenminutes, and then starts running on eleven processors for another ten minutes, it isunclear how to use these times to approximate an execution time function. It does not



Chapter 7. Conclusions and Future Work 96make sense to derive a single point estimate for a speci�c number of processors fromsuch a job. Thus, a more complicated method is required for the Historical Pro�ler toapproximate the execution time functions for dynamic jobs. This method is left to futureresearch.Future work is still required to address many of the issues raised by this thesis.However, the most important issue, the issue on which other results can be built, hasbeen resolved. It has been shown that it is feasible to use a historical pro�ler to storeinformation about previously run parallel jobs, and that this information can be used topredict the characteristics of future jobs. These predictions can improve the performanceof schedulers substantially.
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