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Intensity variation poses a fundamental problem for sensory discrimination because changes in the response of sensory neurons as a
result of stimulus identity, e.g., a change in the identity of the speaker uttering a word, can potentially be confused with changes resulting
from stimulus intensity, for example, the loudness of the utterance. Here we report on the responses of neurons in field L, the primary
auditory cortex homolog in songbirds, which allow for accurate discrimination of birdsongs that is invariant to intensity changes over a
large range. Such neurons comprise a subset of a population that is highly diverse, in terms of both discrimination accuracy and intensity
sensitivity. We find that the neurons with a high degree of invariance also display a high discrimination performance, and that the degree
of invariance is significantly correlated with the reproducibility of spike timing on a short time scale and the temporal sparseness of
spiking activity. Our results indicate that a temporally sparse spike timing-based code at a primary cortical stage can provide a substrate
for intensity-invariant discrimination of natural sounds.
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Introduction
A fundamental goal in neuroscience is to understand what mech-
anisms underlie the perception of natural stimuli (Nelken, 2004;
Felsen and Dan, 2005). An important problem in this area is to
clarify the neural basis for perceptual invariance, i.e., the stability
in our perception of natural stimuli such as faces, odors, or
words, despite large variations in stimulus parameters, e.g., size,
concentration, or intensity (Logothetis and Sheinberg, 1996;
Stopfer et al., 2003). Such perceptual invariance is particularly
surprising given the sensitivity of neurons in early stages of sen-
sory processing to stimulus intensity and remains a difficult com-
putational problem for artificial systems (Riesenhuber and Pog-
gio, 2000). Auditory cortex is thought to be important for
processing natural sounds (Rauschecker, 1998; Nelken, 2004),
and recent studies have begun to investigate cortical discrimina-
tion of natural sounds (Orduna et al., 2005; Woolley et al., 2005;
Narayan et al., 2006; Schnupp et al., 2006). A common naturally
varying parameter of natural sounds is intensity, which can come
about, for example, by simply changing the distance between the
listener and the sound source. However, the impact of intensity
changes on cortical discrimination remains unknown. We ad-
dressed this problem in songbirds, a model system that shows
striking similarities to humans in the context of speech (Doupe

and Kuhl, 1999) using natural stimuli consisting of conspecific
songs.

Materials and Methods
Electrophysiology. Recordings were obtained from adult male zebra
finches (Taeniopygia guttata). Before the day of recording, birds were
anesthetized with isoflurane for fixation of a head-support pin and to
mark the location of field L on surface of the skull at 1.5 mm lateral and
1.2 mm anterior to the bifurcation point of the midsagittal sinus. After at
least 2 d for recovery, birds were anesthetized with urethane and tungsten
electrodes (resistance between 1.2 and 4.0 M�) were advanced into the
brain.

The search stimulus used was a single representative zebra finch song
at a sound level of 75 dB sound pressure level (SPL; measured using Radio
Shack sound level meter #33-2055, with C-weighting). After identifica-
tion of an auditory unit ( p � 0.05, using a paired t test for rate during
stimulus against background firing rate), the full stimulus ensemble was
presented. The ensemble consisted of two recorded conspecific songs
played at 6 dB increments in sound level between 45 and 81 dB SPL
(corresponding to the range �18 to 18 dB in figures). A 6 dB increase in
stimulus amplitude corresponds to a doubling of the amplitude. Each
stimulus was repeated 10 times in a randomly interleaved manner. We
recorded activity at 39 sites. Of these sites, 25 sites showed better than
75% discrimination (performance halfway between chance and perfect
discrimination) at any amplitude, and were subjected to further analysis.
The remaining sites that discriminated poorly between the songs at all
amplitudes, and would have appeared invariant for this trivial reason,
were not considered here. We collected a second dataset using five dif-
ferent conspecific songs instead of two played in 5 dB increments from 55
to 75 dB SPL. We recorded from 22 sites, of which 9 showed better than
60% performance (performance halfway between chance and perfect
discrimination) at any amplitude. As before, each stimulus was repeated
10 times randomly interleaved.

Units were first isolated visually and further isolated using a custom-
made spike-sorting algorithm based on principal components analysis of
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the spike waveforms after the recording session by clustering principal
component values and cross-correlations of waveform shape. To quan-
tify the quality of isolation, we calculated the number of interspike inter-
vals �1 ms, presumably indicating violations of the refractory period.
Sites with �1% of violations were considered to be putative single units.
Nine of 25 of the neurons in our two-song discrimination dataset were
single units by this criterion. The remaining were small clusters of mul-
tiunits. One neuron showed a period of very low firing rates. Those trials
were removed from the analysis. We found no statistically significant
correlation between the metric quantifying the quality of the unit isola-
tion and invariance [correlation coefficient (CC) � �0.0419, p � 0.842]
or other response properties (for performance, CC � 0.179, p � 0.393;
for sparseness, CC � �0.0108, p � 0.959; for intrastimulus Rcorr, CC �
0.238, p � 0.253).

Recording locations were identified using Nissl-stained 50 �m para-
sagittal slices, based on recording depth and using anatomical bound-
aries of field L as described by Fortune and Margoliash (1992). Intensity-
invariant neurons were distributed throughout field L, where auditory
neurons were found based on the coordinates of the recording sites (me-
dial/lateral, anterior/posterior, and depth), suggesting that intensity-
invariant neurons are not localized to a specific locus within field L.

Data analysis and statistics. To quantify the dissimilarity between spike
trains, we used a spike distance metric (van Rossum, 2001). Spike distance
matrices were further analyzed and visualized using multidimensional scal-
ing (MDS) based on Kruskal-Shepard metric scaling using open source soft-
ware (ggobi software package, gvis plugin; www.ggobi.org). MDS is a useful
method for visualizing high-dimensional data in a smaller number of di-
mensions (e.g., two or three) based on the distance between points. To visu-
alize the clustering of spike trains obtained for different songs and intensities,
we applied MDS to the distances between the spike trains in our dataset given
by the spike distance matrix. Neural discrimination performance was quan-
tified using a classification method based on the spike distance (Machens et
al., 2003), used previously in field L (Narayan et al., 2006; Wang et al., 2007).
The analysis was performed using a temporal resolution of 10 ms and a
duration of 1 s. The optimal temporal resolution in these experiments did
not differ from what was observed in previous studies and was quite similar
across different intensities.

To quantify the degree of invariance, we used an invariance index.
First, we calculated the root mean squared of fractional change between
the performance at the template intensity X0 and performances at the
other intensities Xi (i � �18, �12, �6, 6, 12, 18 dB), where N is the
number of nontemplate amplitudes tested:

V � �1

N�
i

�Xi � X0

X0
� 2

.

We then linearly rescaled this value to obtain an invariance index I be-
tween 0 and 1 as follows: I � 3(1/3 � V ).

This index has a value of 1 for a perfectly flat intensity invariance curve
and a value of 0 for a triangular curve with 100% performance at the
template level and at chance level (50%) at the extremes. For the dataset
using five songs, we used the same equation modified to make the two
datasets comparable and used a normalization and scaling such that a
value of 0 would be obtained if the curve was triangular and reached
down to chance level (20%) at 18 dB away from the center amplitude.

To quantify reliability of spike trains, we used a correlation-based
similarity measure (Schreiber et al., 2003), Rcorr. Rcorr is a measure of
similarity between spike trains, which takes into account both spike reli-
ability (absence of missing spikes) and spike timing precision. The value
of Rcorr ranges between 0 and 1, with 1 indicating high similarity between
spike trains. To calculate Rcorr, spike trains were convolved with a Gauss-
ian kernel with SD of 10 ms.

To quantify sparseness of neural activity, we used a previously de-
scribed measure (Vinje and Gallant, 2000), using bin sizes of 10 ms to
compute the firing rate distributions. We calculated the sparseness across
all the trials for each stimulus and then averaged the sparseness value over
all of the stimuli.

One of our aims was to quantify the correlation between invariance
and other response parameters. We first calculated CC using the Pearson

product moment test between the raw variables. However, the raw cor-
relation coefficient may be biased by the heteroscedasticity evident in the
data (e.g., see Fig. 3A). A standard statistical method for dealing with such
data is to use a transformation on the variables before calculating the CC
(Sokal and Rohlf, 1995). In particular, the arcsine transformation is ef-
fective for variables that represent proportions (Sokal and Rohlf, 1995), a
criterion satisfied by all of our variables. Therefore, we also calculated the
CC after using an arcsine transformation on the variables (see supple-
mental Fig. 4, available at www.jneurosci.org as supplemental material).
Both the raw CC and the CC after using the arcsine transformation are
reported. Although all results were significant without the transforma-
tion ( p � 0.05), the arcsine transformation increased both the strength
and the significance of the CC in all cases.

Results
We began by probing how field L neurons respond to variations
in the intensity of conspecific songs. Figure 1 illustrates two neu-
rons from our database with strikingly different response charac-
teristics. Neuron 1 (left) was highly sensitive to amplitude
changes over a range of 36 dB (Fig. 1B–D). This neuron re-
sponded to higher song intensity with an increase in firing rate
(Fig. 1D), a feature reminiscent of neurons in the auditory pe-
riphery. In contrast, the firing rates and spike trains of neuron 2
(right) changed relatively little with changes in intensity.

From a perceptual point of view, a critical question is not
whether the response changes per se, but whether the system can
discriminate and recognize objects despite such changes. In other
words, can the neural responses account for intensity-invariant
recognition? To address this question, we used a variety of meth-
ods to quantify and visualize the degree of invariance in neural
discrimination of songs. Figure 2, A and B, shows, in color code,
a dissimilarity (distance) matrix between the spike trains elicited
by two songs, each played at different intensities, for the two
neurons shown in Figure 1, with cooler colors representing more
similar and warmer colors more dissimilar spike trains. Discrim-
ination that is robust to intensity variation would require high
levels of similarity between spike trains elicited by the same song,
and low levels of similarity between spike trains elicited by the
different songs, regardless of intensity. This pattern is observed
for the relatively invariant neuron (neuron 2) (Fig. 2B), but not
for the sensitive neuron (neuron 1) (Fig. 2A). We used MDS to
visualize the clustering of pairwise distances that make up the dis-
similarity matrices. Figure 2C shows the MDS clustering for the sen-
sitive neuron shown in Figure 2A, indicating two clusters that are
discriminable at high intensities but merge at lower intensities. For
this neuron, the different intensities (different colors) are also or-
dered in a graded manner. In contrast, the MDS for the invariant
neuron (Fig. 2D) shows two distinct clusters as indicated by marker
shape, one for each song, and there is more overlap between different
intensities as indicated by marker color. Thus, the sensitive neuron
would be better suited to convey information regarding song inten-
sity, whereas the invariant neuron would be better suited to convey
information regarding song identity.

To further quantify how neural discrimination performance
changed with intensity, we used a spike train classification
method (Narayan et al., 2006; Wang et al., 2007) (also see Mate-
rials and Methods). The effect of intensity on neural discrimina-
tion performance can be summarized using an intensity invari-
ance curve, i.e., a measure of how accurately spike trains can be
classified to the correct song across different intensities. We used
an invariance index ranging from 0 to 1 to quantify the flatness of
this curve (see Materials and Methods), with 1 indicating perfect
invariance. Figure 2E illustrates the intensity invariance curves
for the example intensity-sensitive neuron (neuron 1) and the

Billimoria et al. • Invariance in Auditory Discrimination J. Neurosci., June 18, 2008 • 28(25):6304 – 6308 • 6305



intensity-invariant example (neuron 2), both shown in the pre-
vious figure. The sensitive neuron (neuron 1) shows a range of
performance from 50 to 98% as the stimulus intensity is changed
and has an invariance index of 0.34. In contrast, the invariant
neuron example (neuron 2) shows a relatively flat intensity in-
variance curve, near 100% performance, indicating similar clas-
sification performance across the intensities (invariance index of
0.96). Figure 2F shows a histogram of the invariance indices for
all neurons included in the dataset. Neurons that were unable to
discriminate better than halfway between chance and perfect at at
least one intensity were excluded from further analysis. These
neurons that were poor at discriminating at any stimulus inten-
sity were not shown because they would artifactually appear in-
variant. Sixteen percent of the neurons in our two-song discrim-
ination dataset were relatively invariant to intensity (invariance
index �0.85). To determine whether intensity invariance was
observed with discrimination between more than two songs, we
assessed the intensity invariance with a stimulus set consisting of
five songs (supplemental Fig. 6, available at www.jneurosci.org as
supplemental material). We found that 5 of the 22 sites showed
intensity invariance (index �0.85).

We were curious to see whether the neurons that were highly
invariant shared any other neural response properties. Figure 3
shows scatter plots of the invariance index with three other mea-
sures: discrimination performance, spike train reproducibility, and
temporal sparseness of spike trains, indicating that the most invari-
ant neurons in our dataset (invariance index �0.85) also tended to
have higher discrimination performance and more reproducible,
temporally sparse spike trains. By discrimination performance, we
mean the percentage of correct classification of the song identity
given the classification scheme that we used. Overall, invariance was
significantly correlated with all three response measures.

Discussion
Previously, we found that only neurons with the highest levels of
performance can match the behavioral performance of songbirds in
a discrimination task for a single intensity (Wang et al., 2007). The
combination of high levels of invariance and performance in some
neurons suggests that the neurons with the best discrimination per-
formance provide a compact code for accurate discrimination that is
also robust to changes in stimulus intensity. Our study also shows
that sparse codes can be more invariant, in addition to other pro-

Figure 1. Two example auditory neurons that show sensitivity (left) and invariance (right) to stimulus intensity. A, The song waveform. B, Stacked spike time rasters aligned in time with
increasing amplitudes lower in the panel. A 6 dB increase in stimulus amplitude corresponds to a doubling of the amplitude. Each stimulus was presented randomly interleaved, and the responses
to successive stimuli are separated by a horizontal line. C, Overlay of the peristimulus time histograms for the lowest (in red) and highest (in black) stimulus amplitudes. D, Plot of mean spike rate
shows a significant increase in spike rate over the range of stimulus amplitudes ( p � 0.001, 1-way repeated-measures ANOVA; error bars indicate SD of the mean) for neuron 1 and less (although
still significant; p � 0.001, 1-way repeated-measures ANOVA; error bars indicate SD of the mean) variation in spike rates for neuron 2.
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posed roles for sparse codes (Olshausen and Field, 2004). We posit
that sparse coding neurons can be more invariant because they are
detecting specific features of the stimulus rather than encoding a
stimulus parameter into a spike rate.

The effects of intensity on the coding of natural sounds such as
speech has been studied extensively at early stages of auditory pro-
cessing (Delgutte, 1997). These studies have addressed the
“dynamic-range” problem, which is the problem of encoding
sounds over a wide range of perceptually relevant intensities given
the limited dynamic range of neural responses. Proposed solutions
have been based on distributed population codes, for example, rate-
place or temporal codes (Sachs and Young, 1979; Young and Sachs,
1979). Our results identify a neural correlate for intensity-invariant
discrimination of natural sounds based on responses at single sites in
a brain area analogous to the primary cortical level. Although invari-

ance is often thought of as a higher cognitive
property, our results demonstrate that inten-
sity invariance can be found at the primary
cortical level. Studies in auditory cortex have
found neural correlates for the perception of
pitch (Bendor and Wang, 2005) and the cat-
egorical perception of consonants (Stein-
schneider et al., 1995). Although these repre-
sentations can be thought of as forms of
invariance, i.e., invariance to different har-
monic complexes with the same fundamen-
tal frequency and invariance to different
voice onset times within the same category,
they were not shown to be intensity invariant.
To date, intensity invariance has been ob-
served in the spike rate in response to a simple
stimulus of auditory pulses (Bendor and
Wang, 2007). Other forms of invariance at
the single-neuron level have also been ob-
served at high levels of sensory processing in
the visual (Logothetis and Sheinberg, 1996;
Quiroga et al., 2005) and olfactory (Stopfer et
al., 2003) systems. Together, these studies
suggest a convergence of information from
distributed representations in the early stages
of sensory processing to single-neuron repre-
sentations at higher levels. Although the pre-
cise nature of convergence that may lead to
intensity invariance remains unclear, experi-
mental (Perez-Orive et al., 2002; Stopfer et
al., 2003) and theoretical (Buonomano and
Merzenich, 1999; Hopfield and Brody, 2001;
Brody and Hopfield, 2003; Wyss et al., 2003;
Barak and Tsodyks, 2006) studies have
shown that some types of invariance can arise
via the readout of temporal population
codes. In the birdsong system, such a scheme
could involve a readout of synchronous pop-
ulation responses to natural sounds (Woolley
et al., 2006). Adaptive mechanisms that
change the kinetics and gain of receptive
fields as a function of intensity (Nagel and
Doupe, 2006) may also contribute.

From a functional viewpoint, intensity in-
variance is an important step toward the rec-
ognition of complex sounds. Areas down-
stream from field L such as HVC and cM
contain neurons that are highly selective for

specific songs, e.g., the bird’s own song (Margoliash and Fortune,
1992) and the song of another bird of the same species (Gentner and
Margoliash, 2003). To achieve such a high degree of selectivity, the
system must solve a potential problem, i.e., confusing the response to
a preferred song at a low intensity with the response to a nonpre-
ferred song at a high intensity. Intensity-invariant neurons may pro-
vide a solution to this problem, facilitating downstream recognition
of complex natural sounds.
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p � 0.00836). Temporal sparseness is a measure of the firing rate distribution over time,
calculated using a bin size of 10 ms (see Materials and Methods). Neurons with equal (or similar)
firing rates in all bins would have a temporal sparseness value of (or near) 0, whereas neurons
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